Lingo作业
Lingo作业练习
Lingo作业1 、用长度500cm的钢条,截成长度为98和78cm的两种毛坯,要求截出长度98cm的毛坯10000根,78cm的毛坯20000根,问怎么样截法,才使所用原材料最少。
2、某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的钢管都是19m.(1)现有一客户需要50根4m、20根6m和15根8m的钢管,应如何下料最节省?(2)零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。
此外该客户需要(1)中的三种钢管外,还需要10根5m的钢管,应如何下料最省?3、电视台为某个广告公司特约播放两套片集,其中片集甲播映时间为20min,广告时间为1min,收视观众60万;片集乙播映时间10min,广告时间1min,收拾观众20万,广告公司规定每周至少有6min广告,而电视台每周只能为该公司提供不多于80min的节目时间。
电视台每周播映两套片集各多少次,才能获得最高的收视率?4、某公司计划在A,B,C三个区建立销售部,确定了7个位置M1-M7可供选择,并且规定:(1)在A区,从M1,M2,M3中至多选两个;(2)在B区,M4,M5中至少选一个;(3)在C区,M6,M7中至少选一个;已知:如果选择M1-M7,则分别投资为200,300,350,250,350,200,400万元,预计每年可以获利50,80,120,70,100,60,120万元,现在公司可用于投资的资金是1200万元,问应如何建立销售部?5、有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书处初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。
由于4名同学的专业背景不同,所以每个人在三个阶段的面试时间也不同,如下表所示(单位:min):这4名同学约定他们全部面试完以后一起离开公司。
lingo作业
Lingo 作业水利工程6班黄一国131602010045第一题一、问题重述某电子厂生产三种产品供应给政府部门:晶体管、微型模块、电路集成器。
该工厂从物理上分为四个加个区域:晶体管生产线、电路印刷与组装、晶体管与模块质量控制、电路集成器测试与包装。
生产中的要求如下:生产一件晶体管需要占用晶体管生产线0.1h的时间,晶体管质量控制区域0.5h的时间,另加0.70元的直接成本;生产一件微型模块需要占用质量控制区域0.4h的时间,消耗3个晶体管,另加0.5元的直接成本;生产一件电路集成器需要占用电路印刷区域0.1h的时间,测试与包装区域0.5h的时间,消耗3个晶体管、3个微型模块,另加2.00元的直接成本。
假设三种产品(晶体管、微型模块、电路集成器)的销售量是没有限制的,销售价格分别为2元,8元,25元。
在未来的一个月里,每个加工区域均有200h的生产时间可用,请建立数学模型,帮助确定生产计划,使工厂的收益最大。
二、模型假设1、假设工厂够保证原材料的供应,而且生产设备等无意外,从而保证工厂正常生产。
2、假设工厂产品无滞销等突发情况。
3、假设工厂生产的产品无残次品,即理想生产状态。
三、符号说明x为晶体管直接售出数量y为微型模块直接售出数量z为电路集成器直接售出数量四、问题分析问题要求是在有限的时间内获得最大利润。
已知四个加工区域:晶体管生产线、电路印刷与组装、晶体管与模块质量控制、电路集成器测试与包装的生产时间均为200小时,而三种产品的销售量是没有限制的,产品价格为2.0元,8元,25元。
单位产品生产时间如下图:单位产品生产利润如下图:针对时间有限问题,列出四个约束条件,建立获益最大目标函数,利用lingo求出最优解。
五、建立模型与求解目标函数:MAX=1.3*x+5.4*y+13.1*z;约束条件:0.1*x+0.3*y+0.9*z<=200; 晶体管生产线生产用时0.1*z<=200; 电路印刷与组装生产用时0.5*x+1.9*y+5.7*z<=200; 晶体管与模块质量控制生产用时0.5*z<=200; 电路集成器测试与包装生产用时@gin(x);@gin(y);@gin(z);六、程序运行后截图结果报告表面:晶体管单独出售1件,作为原材料生产315件;微型模块单独售出105件,集成电路不生产。
运用lingo解决问题的例子
运用lingo解决问题的例子
以下是一个运用LINGO解决实际问题的例子:
问题描述:
某公司生产A、B两种产品,已知生产1单位A产品需要3单位原料1和2单位原料2,同时产生2单位废料;生产1单位B产品需要4单位原料1和2单位原料2,同时产生3单位废料。
该公司有10单位原料1和8单位原料2,同时最多可以产生10单位废料。
请为公司制定一个生产计划,使得A、B两种产品的产量最大。
模型建立:
1. 设x1为A产品的产量,x2为B产品的产量。
2. 设原料1的消耗为3x1 + 4x2,原料2的消耗为2x1 + 2x2,废料产生为2x1 + 3x2。
3. 原料1的限制条件为3x1 + 4x2 <= 10,原料2的限制条件为2x1 +
2x2 <= 8,废料的限制条件为2x1 + 3x2 <= 10。
4. 目标函数为max x1 + x2,即最大化A、B两种产品的产量之和。
LINGO代码:
SETS:
I / 1 /;
J / 1,2 /;
K / I,J /;
PARAMETERS:
C(K) / 3I + 4J, 2I + 2J, 2I + 3J /; D(I) / 10 /;
E(I) / 8 /;
F(I) / 10 /;
VARIABLES:
X(K) / >=0 /;
MAXIMIZE Z: X(1) + X(2); SUBJECT TO:
3X(1) + 4X(2) <= D(1);
2X(1) + 2X(2) <= E(1);
2X(1) + 3X(2) <= F(1); ENDSETS
END。
LINGO练习题答案
1、用LINGO 软件解方程组221212222359x x x x ⎧+=⎪⎨-=-⎪⎩。
2、用LINGO 软件解方程组1211221222/64x x x x x ⎧⎪-=-⎨⎪=⎩。
3、用LINGO 软件解线性规划问题4、用LINGO 软件解二次规划问题且12,x x 都是整数5、用LINGO 软件解下列问题(1)max 12z=x x +12121212..26,4520,,0,,s tx x x x x x x x +≤+≤≥为整数(2) min 2212z=x -3-2x +()()22121212..-50,24,,0s tx x x x x x +≤+≤≥。
(3) min 2212z=x ++x +(1)(1) 22122..-20,1s tx x x +≤≥。
max 23,..4310,3512,,0.z x y s t x y x y x y =++≤+≤≥22121122121212max 982770.32,..100,2,,0,x x x x x x s t x x x x x x +---+≤≤≥6、用LINGO软件分别产生序列(1){1,3,5,7,9,11};(2){1,4,9,16,25,36};(3)1111 {1,,,,}6122030.7、已知向量c={1,3,0.5,7,5,2},用LINGO软件解答下列问题。
(1)求向量c前5个数中的最大值;(2)求向量c后4个数平方中的最小值;(3)求向量c 中所有数的和。
8、某学校游泳队要从5名队员中选4名参加4乘100米混合泳接力赛。
5名队员4种泳姿的百米成绩(单位:秒)-----------------------------------------------------------------------------------李王张刘赵蝶泳66.8 57.2 78 70 67.4仰泳75.6 66 67.8 74.2 71蛙泳87 66.4 84.6 69.6 83.8自由泳58.6 53 59.4 57.2 62.4-----------------------------------------------------------------------------------如何选拔?(1)请建立“0----1规划”模型;(2)用Lingo求解。
Lingo精选题目及参考答案
Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Max x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||min 4321x x x x z +++=s.t. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
6.1 指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表:问指派哪个人去完成哪项工作,可使总的消耗时间为最小?6.2 分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小?1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+0.4*x2+0.8*x3+1.5*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for(ss(i):@free(S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end6.1、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==⨯4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/;worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略;[obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e !每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略;!@for(time(i,j):@bin(f(i,j))); end6.2设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j 的煤量为ij g那么可以列出如下优化方程式∑∑==⨯=3121min j i ij ij L gs.t ()3,2,121==∑=j d gi jij()2,131=≤∑=i s gj iijmodel : sets :supply/1,2/:s; demand/1,2,3/:d;link(supply,demand):road,sd; endsets data :road=10 5 6 4 8 12; d=50 70 40; s=60 100; enddata[obj] min =@sum (link(i,j):road(i,j)*sd(i,j)); @for (demand(i):@sum (supply(j):sd(j,i))=d(i)); @for (supply(i):@sum (demand(j):sd(i,j))<s(i));end1.线性规划模型。
Lingo精选题目及答案
Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Max x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||min 4321x x x x z +++=s.t. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
6.1 指派问题6.2 分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小?1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+0.4*x2+0.8*x3+1.5*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for(ss(i):@free(S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end6.1、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==⨯4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/;worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略;[obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e !每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略;!@for(time(i,j):@bin(f(i,j))); end6.2设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j 的煤量为ij g那么可以列出如下优化方程式∑∑==⨯=3121min j i ij ij L gs.t ()3,2,121==∑=j d gi jij()2,131=≤∑=i s gj iijmodel : sets :supply/1,2/:s; demand/1,2,3/:d;link(supply,demand):road,sd; endsets data :road=10 5 6 4 8 12; d=50 70 40; s=60 100; enddata[obj] min =@sum (link(i,j):road(i,j)*sd(i,j)); @for (demand(i):@sum (supply(j):sd(j,i))=d(i)); @for (supply(i):@sum (demand(j):sd(i,j))<s(i));end1.线性规划模型。
LINGO练习
∑=nj i ijij xc1,1 解非线性方程组⎪⎩⎪⎨⎧=+++=+4222222y y x x y x2 装配线平衡模型 一条装配线含有一系列的工作站,在最终产品的加工过程中每个工作站执行一种或几种特定的任务。
装配线周期是指所有工作站完成分配给它们各自的任务所化费时间中的最大值。
平衡装配线的目标是为每个工作站分配加工任务,尽可能使每个工作站执行相同数量的任务,其最终标准是装配线周期最短。
不适当的平衡装配线将会产生瓶颈——有较少任务的工作站将被迫等待其前面分配了较多任务的工作站。
问题会因为众多任务间存在优先关系而变得更复杂,任务的分配必须服从这种优先关系。
这个模型的目标是最小化装配线周期。
有2类约束:① 要保证每件任务只能也必须分配至一个工作站来加工; ② 要保证满足任务间的所有优先关系。
例 有11件任务(A —K )分配到4个工作站(1—4),任务的优先次序如下图。
每件任务所花费的时间如下表。
3 旅行售货员问题(又称货郎担问题,Traveling Salesman Problem )有一个推销员,从城市1出发,要遍访城市2,3,…,n 各一次,最后返回城市1。
已知从城市i 到j 的旅费为ij c,问他应按怎样的次序访问这些城市,使得总旅费最少?可以用多种方法把TSP 表示成整数规划模型。
这里介绍的一种建立模型的方法,是把该问题的每个解(不一定是最优的)看作是一次“巡回”。
在下述意义下,引入一些0-1整数变量:ij x ⎩⎨⎧≠=其它情况,且到巡回路线是从,0,1j i j i 其目标只是使为最小。
这里有两个明显的必须满足的条件:访问城市i 后必须要有一个即将访问的确切城市;访问城市j 前必须要有一个刚刚访问过的确切城市。
用下面的两组约束分别实现上面的两个条件。
ni xnj ij,,2,1,11 ==∑=nj xni ij,,2,1,11==∑=到此我们得到了一个模型,它是一个指派问题的整数规划模型。
lingo题目与答案(附程序)
Lingo软件题目与答案1.一奶产品加工厂用牛奶生产A1,A2两种奶产品,1桶牛奶可以在甲类设备上用12h加工,成3kg A1,或者在乙类设备上用8h加工成4kg A2。
根据市场需求,生产的A1,A2全部能售出,且每千克A1获利24元,每千克A2获利16元。
现在加工厂每天能得到50桶牛奶供应,每天正式工人的劳动时间为480h,并且甲类设备每天最多加工100kg A1,乙类设备的加工时间没有限制,讨论以下问题1)若35元可以买一桶牛奶,做这项投资是否值得?若投资,每天最多购买多少桶牛奶?2)若聘用临时工人以增加劳动时间,付给临时工人的工资最多是多少?3)由于市场需求变化,每千克A1的获利增加到30元,是否改变原有的生产计划?Lingo程序:model:max=72*x+64*y;x+y<50;12*x+8*y<480;3*x<100;end2.一汽车厂生产小、中、大三种类型的的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润以及每月工厂钢材、劳动时间如下表。
1)制定生产计划,使工厂利润最大;2)若生产某类型车,则至少需生产80辆,求改变后的生产计划。
3.建筑工地的位置(a,b)和水泥日用量d如下表,目前有两个临时料场位于P(5,1),Q(2,7),日储量各有20t。
1)求从P,Q两料场分别向各工地运送多少吨水泥,使总的吨公里数最小;2)现打算舍弃原有料场,新建两个料场A,B,求新料场的位置,使新的吨公里数最小,此时与P,Q相比能节省多少吨公里。
4.设从4个产地Ai往3个销地Bj运送物资,产量、销量和单位运费如下表,求总运费最少的运输方案和总运费。
Lingo程序:Model:sets:warehouse/1..3/:a;customer/1..4/:b;link(warehouse,customer):c,x;endsetsdata:a=30,25,21;b=15,17,22,12;c=6,2,6,7,4,9,5,3,8,8,1,5;enddata[OBJ]min=@sum(link:c*x);@for(warehouse(i): @sum(customer(j):x(i,j))<a(i));@for(customer(j):@sum(warehouse(i):x(i,j))=b(j));end5.求下图中v1到v11的最短路Lingo程序:Model:sets:cities/1..11/;roads(cities,cities):p,w,x; endsetsdata: !半连通图和权图;p=0 1 1 1 0 0 0 0 0 0 00 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 10 0 0 0 1 1 1 1 0 1 10 0 0 0 0 0 1 0 1 0 10 0 0 0 0 0 0 1 1 1 0;w=0 2 8 1 0 0 0 0 0 0 02 0 6 0 1 0 0 0 0 0 08 6 0 7 5 1 2 0 0 0 01 0 7 0 0 0 9 0 0 0 00 1 5 0 0 3 0 2 9 0 00 0 1 0 3 0 4 0 6 0 00 0 2 9 0 4 0 0 3 1 00 0 0 0 2 0 0 0 7 0 90 0 0 0 9 6 3 7 0 1 20 0 0 0 0 0 1 0 1 0 40 0 0 0 0 0 0 0 9 2 4;enddatan=@size(cities);min=@sum(roads:w*x);@for(cities(i)|I # ne # 1 # and # I # ne # n: @sum(cities(j):p(i,j)*x(i,j))=@sum(cities(j):p(j,i)*x(j,i)));@sum(cities(j):p(1,j)*x(1,j))=1;end6.露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。
lingo作业
作业9、投资问题
作业10、装箱问题
例:已知30个物品,其中6个长0.51m, 6个长0.27m,6个长0.26m,余下12个长 0.23m,箱子长为1m。问最少需多少个 箱子才能把30个物品全部装进箱子
作业5:圆钢原材料每根长19m,现需要A、B、 C、D三种圆钢材料,长度分别为4m,5m,6m, 8m数量分别为50,10,20,15根,因不同下 料方式之间的转换会增加成本,因而要求不同 的下料方式不超过3种,试安排下料方式,使 所需圆钢原材料的总数最少?
作业6.配料问题
作业7.选址问题
作业8.指派问题
作业3:员工时序安排模型
某项工作一周7天都需要有人上班,周一至周 日所需的最少人数分别为20,16,13,16, 19,14和12.要求员工一周连续工作5天,然后 休息2天,试求每周所需最少总人数,并给出 安排(注意这是稳定后的情况)
作业4 下料问题
圆钢原材料每根长5.5m,现需要A、B、C三 种圆钢材料,长度分别为3.1m,2.1m,1.2m,数 量分别为100,200,400根,试安排下料方式, 使所需圆钢原材料的总数最少?
作业
作业1:基金的优化使用
假设某校基金会得到一笔数额为M万元的基金, 打算将其存入银行。校基金会计划在n年内每 年用部分本息奖励优秀师生,要求每年的奖 金额相同,且在n年末仍保留原基金数额。银 行存款税后年利率见表
存期 税后年利率% 1年 1.8 2年 2.16 3年 2.592 5年 2.88
校基金会希望获得最佳的基金使用计划,以提 高每年的奖金额,请在M=5000万元,n=5的 情况下设计具体存款方案
数学建模lingo作业-习题讲解
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
Lingo上机作业(二)
例2.16
MODEL:
MAX=2*X1+X2;
5*X2<=15;
6*X1+2*X2<=24;
X1+X2<=5;
当x1=3.5,x2=1.5时取得最优解8.5
运筹学实验报告
实验课程:运筹学实验日期:任课教师:
班级:数学与应用数学二班姓名:林倩学号:2512150410
一、实验名称:线性规划模型的灵敏度分析
二、实验目的:
进一步掌握Lingo软件的基本功能。熟悉Lingo软件的灵敏度分析功能,增强自身的动手能力,提高实际应用能力
三、实验要求:
1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令
即从A1运往B1 50,A1运往B2 150,A2运往B1 100,A2运往B3 200时调用所用运费最小为2500.
总结和注意问题
1.要特别注意Lingo中数学模型的输入:
(1)max z→max,min z→min;
(2)每一行(包括目标函数)用英文的分号结束;
(3)数与变量的乘积用*表示;
(4)不等号≤和≥用<=和>=或<和>表示;
1、问每天生产多少甲、乙产品,可使利润最大?
设每天生产甲为x1,乙为x2.运筹学模型如下:
Lingo求解如下:
MODEL:
MAX=20*X1+30*X2;
X1<=60;
X2<=50;
X1+2*X2<=120;
解得当x1=60,x2=30时取得最优解为2100.即生产甲产品60,乙产品30时获利最大,最大利润为2100.
Lingo上机作业(二)
总结和注意问题
1.要特别注意Lingo中数学模型的输入:
(1)max z→max,min z→min;
(2)每一行(包括目标函数)用英文的分号结束;
(3)数与变量的乘积用*表示;
(4)不等号≤和≥用<=和>=或<和>表示;
当x1=0,x2=50,x3=0,x4=30,x5=0,x6=40时取得最大值780。
最优解保持不变时,x1的系数范围是(11,无穷),x2的系数范围是(0,20), x3的系数范围是(0,无穷),x4的系数范围是(0.13), x5的系数范围是(9,无穷),x6的系数范围是(0,10).
例2.20
5、对问题1数学模型进行灵敏度分析,并回答以每小时10元价格聘请临时工人,增加劳动时间30小时是否划算,为什么,最多增加到多少小时?
经对问题一进行灵敏度分析可得,最优解保持不变时,x1的系数范围是(15,无穷),x2的系数范围是(0,40).如题所做是划算的,最多增加40个小时。
4、某公司从两个产地A1,A2将物品运往三个销地B1,B2,B3,各产地的产量,销地的销量如下表所示,如何调用所用运费最小?(利用lingo软件求解)
1、问每天生产多少甲、乙产品,可使利润最大?
设每天生产甲为x1,乙为x2.运筹学模型如下:
Lingo求解如下:
MODEL:
MAX=20*X1+30*X2;
X1<=60;
X2<=50;
X1+2*X2<=120;
解得当x1=60,x2=30时取得最优解为2100.即生产甲产品60,乙产品30时获利最大,最大利润为2100.
lingo练习
数学规划模型及lingo 求解练习: 1.考虑下述不平衡指派问题。
现有7个人指派给他们5项任务,效率矩阵如下表。
约定:①一个任务只能被一个人完成;②一个人在某时刻只能做一项任务;③所(1) lingo 代码求解,给出最优指派以及最优值; 1. 模型的建立:设:题干中有i 个人共要完成j 件事情,可建立以下模型:i=1,2,3…..m j=1,2,3…..n=0或1xij=1:指派第i 人做第j 事 xij=0: 不指派第i 人做第j 事 ( cij )称为系数矩阵。
2. 详细代码: Model: SETS:Chandi/1..7/:cl; Xiaodi/1..5/:xl;ChanXiao(Chandi,Xiaodi):c,x; ENDSETS DATA:c=2 15 13 1 8 10 4 14 15 7 9 14 16 13 8 7 8 11 9 4 8 4 15 8 6 12 4 6 8 13 5 16 8 5 10;m nij iji=1j=1min =c x Z •∑∑11nijj x==∑11miji x==∑ijx[obj] min=@sum(ChanXiao:c*x);@for(Chandi(i):@sum(Xiaodi(j):x(i,j))<1); @for(Xiaodi(j):@sum(Chandi(i):x(i,j))=1);@for(Chandi(i):@sum(Xiaodi(j):c(i,j)*x(i,j))<Cmax); @for(ChanXiao(i,j):@bin(x(i,j))); End(2) 目标是任务尽早完工。
建立数学规划模型,并编写lingo 代码求解,给出最优指派以及最优值; 1.模拟建立:设:题干中有i 个人共要完成j 件事情,可建立以下模型: min max Z C =•j=1,2,3,….ni=1,2,3,….mi=1,2,3…..m 0或1xij=1:指派第i 人做第j 事 xij=0: 不指派第i 人做第j 事 ( cij )称为系数矩阵。
Lingo精选题目及答案
Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Max x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||min 4321x x x x z +++=s.t. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
6.1 指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表:问指派哪个人去完成哪项工作,可使总的消耗时间为最小?6.2 分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小?1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+0.4*x2+0.8*x3+1.5*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for(ss(i):@free(S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end6.1、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==⨯4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/;worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略;[obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e !每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略;!@for(time(i,j):@bin(f(i,j))); end6.2设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j 的煤量为ij g那么可以列出如下优化方程式∑∑==⨯=3121min j i ij ij L gs.t ()3,2,121==∑=j d gi jij()2,131=≤∑=i s gj iijmodel : sets :supply/1,2/:s; demand/1,2,3/:d;link(supply,demand):road,sd; endsets data :road=10 5 6 4 8 12; d=50 70 40; s=60 100; enddata[obj] min =@sum (link(i,j):road(i,j)*sd(i,j)); @for (demand(i):@sum (supply(j):sd(j,i))=d(i)); @for (supply(i):@sum (demand(j):sd(i,j))<s(i));end1.线性规划模型。
lingo练习题目
Lingo培训计划培训目的:了解线性规划、非线性规划和整数规划的基本概念和性质,掌握把一个实际问题转化为规划问题的步骤和思想。
掌握lingo软件的使用方法,熟悉把一个规划问题输入lingo软件的方法,理解输出结果的含意。
进度安排:第一天上午-理论学习1.Lingo12简介2.线性规划的概念3.线性规划求解方法4.线性规划例题5. Lingo软件各部分功能介绍6.求解线性规划例题7.对例题结果的解释8.整数规划的概念与特点9.整数规划例题10.软件求解整数规划问题第一天下午-机房练习1.安装Lingo软件,复习上午的理论知识2.熟悉软件的各种菜单和工具3.输入上午的例题,观察结果4.完成下列习题:1)一家餐厅24小时全天候营业,在各时间段中所需要的服务员数量分别为:2:00~6:00 3人6:00~10:00 9人10:00~14:00 12人14:00~18:00 5人18:00~22:00 18人22:00~ 2:00 4人设服务员在各时间段的开始时点上上班并连续工作八小时,问该餐厅至少配备多少服务员,才能满足各个时间段对人员的需要。
试构造此问题的数学模型。
2)现要截取2.9米、2.1米和1.5米的元钢各100根,已知原材料的长度是7.4米,问应如何下料,才能使所消耗的原材料最省。
试构造此问题的数学模型。
3)某糖果厂用原料A、B、C加工成三种不同牌号的糖果甲、乙、丙。
已知各种牌号糖果中A、B、C三种原料的含量要求、各种原料的单位成本、各种原料每月的限制用量、三种牌号糖果的单位加工费及售价如表1所示。
问该厂每月生产这三种牌号糖果各多少千克,才能使该厂获利最大?试建立这个问题的线性规划模型。
4)某厂在今后4个月内需租用仓库存放物资,已知各个月所需的仓库面积如表2所示。
租金与租借合同的长短有关,租用的时间越长,享受的优惠越大,具体数字见表3。
租借仓库的合同每月初都可办理,每份合同具体规定租用面积数和期限。
Lingo题目和答案
答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x xmax =4*x1+3*x2;2*x1+x2<=10; x1+x2<=8; x2<=7; endGlobal optimal solution found at iteration: 4 Objective value: 26.00000Variable Value Reduced Cost X1 2.000000 0.000000 X2 6.000000 0.000000Row Slack or Surplus Dual Price 1 26.00000 1.000000 2 0.000000 1.000000 3 0.000000 2.000000 4 1.000000 0.0000002、整数规划求解219040Max x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x max =40*x1+90*x2; 9*x1+7*x2<=56; 7*x1+20*x2<=70; endGlobal optimal solution found at iteration: 2 Objective value: 355.8779Variable Value Reduced Cost X1 4.809160 0.000000 X2 1.816794 0.000000Row Slack or Surplus Dual Price 1 355.8779 1.000000 2 0.000000 1.297710 3 0.000000 4.0458023、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x xmax =x1*x1+0.4*x2+0.8*x3+1.5*x4; 3*x1+2*x2+6*x3+10*x4<=10; @bin (x1); @bin (x2); @bin (x3); @bin (x4); endLinearization components added: Constraints: 4 Variables: 1 Integers: 1Global optimal solution found at iteration: 0 Objective value: 1.800000Variable Value Reduced Cost X1 1.000000 0.000000 X2 0.000000 -0.4000000 X3 1.000000 -0.8000000 X4 0.000000 -1.500000Row Slack or Surplus Dual Price 1 1.800000 1.000000 2 1.000000 0.0000004、非线性规划求解||4||3||2||min 4321x x x x z +++=s.t. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x xmin =@abs (x1)+2*@abs (x2)+3*@abs (x3)+4*@abs (x4); x1-x2-x3+x4=0; x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;Linearization components added: Constraints: 16 Variables: 16 Integers: 4Global optimal solution found at iteration: 2 Objective value: 2.000000Variable Value Reduced Cost X1 0.5000000 0.000000 X2 0.000000 1.000000 X3 0.5000000 0.000000 X4 0.000000 7.000000Row Slack or Surplus Dual Price 1 2.000000 -1.000000 2 0.000000 1.000000 3 0.000000 -2.000000 4 0.000000 0.0000005、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
LINGO软件求解优化问题(2)作业
基本 集合 派生 集合
计算机学院 张亚玲
data: c41 , c42 , c51 , c52 , c61 , c62 a=1.25,8.75,0.5,5.75,3,7.25; b=1.25,0.75,4.75,5,6.5,7.75; 需求点的位置 d=3,5,4,7,6,11; e=20,20; 供需量 x,y=5,1,2,7; enddata
西安科技大学
例3 选址问题
目标:吨公里
min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));
min
2 2 1/ 2 c [( x a ) ( y b ) ] ij j i j i j 1 i 1
2
6
sets: demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(demand,supply):c; endsets
段
计算机学院 张亚玲
结果:总吨公里数为136.2
西安科技大学
作业练习
例1 选址问题——进一步讨论
(2)改建两个新料场
需要确定新料场位置(xj,yj)和运量cij ,使总吨公里数最小。
计算机学院 张亚玲
西安科技大学
作业练习
2、使用集合循环函数求解
max aij ( xi y j )
i 1 j 1 10 5
计算机学院 张亚玲
lingo程序练习题
lingo程序练习题Lingo是一种编程语言,它的特点在于简单易用和高效。
为了更好地掌握和理解Lingo编程,我们可以通过练习题的方式来提升我们的实战能力。
下面将给出一些适用于Lingo程序的练习题,以帮助读者熟悉和掌握这门语言。
1. 输出"Hello, World!"编写一个Lingo程序,输出“Hello, World!”。
这是Lingo程序入门的经典练习题,通过完成这道题目,你可以熟悉Lingo的基本语法和输出功能。
2. 计算两个数的和编写一个Lingo程序,输入两个数,然后计算它们的和并将结果输出。
这道题目可以帮助你熟练使用Lingo的输入和计算功能。
3. 判断奇偶数编写一个Lingo程序,输入一个数,判断它是奇数还是偶数,并输出对应的结果。
这道题目可以帮助你理解和掌握Lingo的判断语句和逻辑判断。
4. 字符串连接编写一个Lingo程序,输入两个字符串,将它们连接起来并输出。
这道题目可以帮助你熟悉Lingo的字符串处理功能。
5. 猜数游戏编写一个Lingo程序,生成一个1到100的随机数,然后让用户进行猜数游戏,直到猜对为止。
每次猜数时,程序都会给出相应的提示,比如“猜的数太大了”或“猜的数太小了”。
完成这道题目可以帮助你运用到Lingo的随机数生成和循环控制等功能。
6. 查找素数编写一个Lingo程序,输入一个数,判断它是否为素数,并输出判断结果。
这道题目可以练习你对素数的判断和Lingo的循环控制能力。
总结:通过完成上述练习题,你可以逐渐熟悉和掌握Lingo编程语言,提升你的实战能力。
同时,这些练习题也可以帮助你加深对Lingo编程语言各个方面的理解,如输入输出、数学运算、条件判断、字符串处理、循环控制等。
希望你能够享受编程的乐趣,并在实践中不断提升自己。
加油!。
LINGO练习题-1及答案
LINGO练习题-1及答案LINGO练习题-1及答案LINGO测试-11、用LINGO软件解方程组(1)221212222359 x x x x?+=??-=-??。
model:x^2+2*y^2=22;3*x-5*y=-9;endSolution is locally infeasible Infeasibilities:0.5417411E-04Extended solver steps:5Total solver iterations:20Variable ValueX 2.000005Y 3.000003Row Slack or Surplus1-0.5417411E-0420.0000002、用LINGO软件解线性规划问题model:max=2*x+3*y;4*x+3*y<=10;3*x+5*y<=12;x>0;y>0;endGlobal optimal solution found.Objective value:7.454545Infeasibilities:0.000000Total solver iterations:2Variable Value Reduced CostY 1.6363640.000000Row Slack or Surplus Dual Pricemax23,..4310,3512,,0.z x y s t x y x y x y=++≤+≤≥17.454545 1.00000020.0000000.9090909E-0130.0000000.54545454 1.2727270.0000005 1.6363640.0000003、用LINGO软件二次规划问题(1)min2212z=x-3-2x+()()22121212..-50,24,,0s tx x x x x x+≤+≤≥。
model:min=(x1-3)^2+(x2-2)^2;x1^2+x2^2-5<=0;x1+2*x2<=4;x1>=0;x2>=0;endLocal optimal solution found. Objective value: 2.000000 Infeasibilities:0.5384996E-06 Extended solver steps:5 Total solver iterations:64 Variable Value Reduced CostX1 2.0000000.000000X20.99999990.000000Row Slack or Surplus Dual Price 1 2.000000-1.0000002-0.5384996E-060.333333130.0000000.666667050.99999990.000000(2)model:22221212334412132344max23x x x2x x5x,..25,12,,{0,1},2,0.z x x s t x x x x x x x x=-+-++-≤≤≤∈Z∈≥>max=x1^2-2*x2^2+3*x1*x2-x3^2+2*x3*x4+5*x4^2;x1-2*x2<=5;1<=x1;x1<=2;x3/x4>=2;x4>0;@gin(x2);@bin(x3);endLinearization components added:Constraints:4Variables:1Local optimal solution found.Objective value:9.250000Objective bound:9.250000Infeasibilities:0.000000Extended solver steps:2Total solver iterations:39Variable Value Reduced Cost X1 2.0000000.000000X2 1.000000-1.999996X3 1.000000199997.5X40.5000000 0.000000Row Slack or Surplus Dual Price19.250000 1.0000002 5.0000000.00000040.0000007.00000350.000000-1.74999760.50000000.0000004、用LINGO软件分别产生序列(1){1,3,5,7,9,11};model:sets:set1/1..6/:x;endsets@for(set1(i):x(i)=2*i-1);endFeasible solution found. Total solver iterations:0 Variable ValueX(1) 1.000000X(2) 3.000000X(3) 5.000000X(4)7.000000X(5)9.000000X(6)11.00000Row Slack or Surplus10.00000020.00000030.00000040.00000050.00000060.000000(2)1111{1,,,,}6122030model:sets:set2/1..5/:x;endsets@for(set2(i):x(i)=1/(i*(i+1))); endFeasible solution found.Total solver iterations:0Variable ValueX(1)0.5000000X(2)0.1666667X(3)0.8333333E-01X(4)0.5000000E-01X(5) 0.3333333E-01Row Slack or Surplus10.00000020.00000030.00000040.00000050.0000005、已知向量c={1,3,0.5,7,5,2},用LINGO软件解答下列问题。
lingo作业
Lingo软件LINGO是一种专门用于求解数学规划问题的软件包。
由于LINGO执行速度快,易于方便地输入、求解和分析数学规划问题,因此在教学、科研和工业界得到广泛应用。
LINGO 主要用于求解线性规划、非线性规划、二次规划和整数规划等问题,也可以用于求解一些线性和非线性方程组及代数方程求根等。
LINGO的最新版本为LINGO7.0,但解密版通常为4.0和5.0版本,本书就以LINGO5.0为参照而编写。
1.LINGO编写格式LINGO模型以MODEL开始,以END结束。
中间为语句,分为四大部分(SECTION):(1)集合部分(SETS):这部分以“SETS:”开始,以“ENDSETS”结束。
这部分的作用在于定义必要的变量,便于后面进行编程进行大规模计算,就象C语言在在程序的第一部分定义变量和数组一样。
在LINGO中称为集合(SET)及其元素(MEMBER或ELEMENT,类似于数组的下标)和属性(A TTRIBUTE,类似于数组)。
LINGO中的集合有两类:一类是原始集合(PRIMITIVE SETS),其定义的格式为:SETNAME/member list(or 1..n)/:attribute,attribute,etc。
另一类是是导出集合(DERIVED SETS),即引用其它集合定义的集合,其定义的格式为:SETNAME(set1,set2,etc。
):attribute,attribute,etc。
如果要在程序中使用数组,就必须在该部分进行定义,否则可不需要该部分。
(2)目标与约束:这部分定义了目标函数、约束条件等。
一般要用到LINGO的内部函数,可在后面的具体应用中体会其功能与用法。
求解优化问题时,该部分是必须的。
(3)数据部分(DA TA):这部分以“DA TA:”开始,以“END DA TA”结束。
其作用在于对集合的属性(数组)输入必要的数值。
格式为:attribut=value_list。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lingo 作业:
6、某工厂生产A ,B ,C ,D 四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示。
设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。
问:如何安排生产,才能使月利润最大?又若A ,B ,C ,D 四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 表1-18
产品
A B C D 刨(台时)
0.3 0.5 0.2 0.4 磨(台时)
0.9 0.5 0.7 0.8 钻(台时)
0.7 0.5 0.4 0.6 镗(台时)
0.4 0.5 0.8 0.7 成本(元/件)
150 100 120 200 售价(元/件)
200 130 150 230 解:(1)模型代码如下:
432130303050x x x x Max +++= Z
⎪⎪⎩⎪⎪⎨⎧≤+++≤+++≤+++≤+++200
7.08.05.04.02006.04.05.07.02008.07.05.09.02004.02.05.03.0..4321432143214321x x x x x x x x x x x x x x x x T S 结果如下:
Global optimal solution found.
Objective value: 12000.00
Total solver iterations: 2
Variable Value Reduced Cost X1 0.000000 0.000000 X2 400.0000 0.000000 X3 0.000000 8.666667 X4 0.000000 15.33333
Row Slack or Surplus Dual Price 1 12000.00 1.000000 2 0.000000 6.666667 3 0.000000 53.33333 4 0.000000 0.000000 5 0.000000 0.000000 即:B 产品生产400件,最大利润为12000元
(2)模型代码如下:
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≤≤≤≤≤+++≤+++≤+++≤++++++=400200
350300
2007.08.05.04.02006.04.05.07.02008.07.05.09.02004.02.05.03.0..303030504
32143214321432143214
321x x x x x x x x x x x x x x x x x x x x T S x x x x Max Z 结果如下:
Global optimal solution found.
Objective value: 11888.89
Total solver iterations: 1
Variable Value Reduced Cost X1 27.77778 0.000000 X2 350.0000 0.000000 X3 0.000000 8.888889 X4 0.000000 14.44444
Row Slack or Surplus Dual Price 1 11888.89 1.000000 2 16.66667 0.000000 3 0.000000 55.55556 4 5.555556 0.000000 5 13.88889 0.000000 6 272.2222 0.000000 7 0.000000 2.222222 8 200.0000 0.000000 9 400.0000 0.000000 即:A 产品生产28件,B 产品生产350件
7、某工厂在计划期内要安排生产I ,II 两种产品,每种产品都要经过A ,B 两道工序加工,A 工序加工合格率为95%,B 工序加工合格率为98%,原料价格为每千克8元,原料占用资金不得超过30000元,已知生产单位产品所需工时,原料消耗,产品单价,A ,B 两道工序有效工时如表1-19所示,要求安排最优的生产计划,使该厂利润最大?
表1-19
I II 工序有效工时 A 工序(工时)
0.4 0.6 2000 B 工序(工时)
0.3 0,4 1500 原料(千克)
1 2 单价(元/件) 20 28
解: 模型代码如下:
⎪⎩⎪⎨⎧≤+≤+≤+-⨯⨯+-⨯⨯=300001681500
4.03.020006.04.0..)1628(98.09
5.0)820(98.095.021
21212
1x x x x x x T S x x Z Max
结果如下: Global optimal solution found. Objective value: 41895.00
Total solver iterations: 2
Variable Value Reduced Cost X1 3750.000 0.000000 X2 0.000000 11.17200
Row Slack or Surplus Dual Price 1 41895.00 1.000000 2 500.0000 0.000000 3 375.0000 0.000000 4 0.000000 1.396500 即:只生产I 产品3750件,最大利润为41895元。
10、某厂用甲、乙、丙三种原料经过A 、B 两道工序混合配制出三种产品I ,II ,III ,已知各种产品中原料甲、乙、丙的含量,原料的单位成本、每百千克各种产品在各工序加工所需设备台时,各工序总加工能力及各产品的销售价如表1-21所示,问该厂应生产I ,II ,III 三种产品各多少,使该厂获得利润最大? 表1-21
原料 工序(台时) 销售价
(百元/百千克) 甲 乙 丙
A B 产品 I II III ≥30% ≥40% ≥40% ≥30%
≤30% ≤50% 0.5
0.4
0.6 0.3 0.2 0.5 30 25 25 原料单位成本
(百元/百千克)
30 20 5 工序总加工能力
()
20000 30000
模型代码如下:
⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨⎧≤+++++≤++++++≤+≥+≤+≥+≤+≥+-+-+-+++++=30000)(5.0)(2.0)(3.020000
)(6.0)(4.0)(5.0)(3.0)
(4.0)(5.0)(4.0)(3.0)(3.0)(5)(20)(30)(25)(25)(30654321654321656655434433212
211426363654321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Z Max 结果如下:
Global optimal solution found.
Objective value: 625000.0 Total solver iterations: 1
Variable Value Reduced Cost X1 0.000000 0.000000 X2 0.000000 27.08333 X3 25000.00 0.000000 X4 25000.00 0.000000 X5 0.000000 0.000000 X6 0.000000 69.16667
Row Slack or Surplus Dual Price 1 625000.0 1.000000 2 0.000000 0.000000 3 0.000000 52.08333 4 5000.000 0.000000 5 0.000000 15.00000 6 0.000000 0.000000 7 0.000000 79.16667 8 0.000000 31.25000 9 20000.00 0.000000 即:生产II 产品50000百千克,最大利润为62500000元。