必修二线面垂直经典例题

合集下载

线面垂直题型20道

线面垂直题型20道

线面垂直题型20道
1. 两条直线的夹角为90度,则它们一定垂直。

2. 如果一条直线垂直于另一条直线,那么任意一条过这两条直线的线段,这条线段上的点就分别与这两条直线的交点连成的线段垂直。

3. 两条直线分别垂直于第三条直线,则这两条直线平行。

4. 一条线段的中垂线与线段垂直。

5. 任意一个点到平面上一直线的垂足所在的直线与这条直线垂直。

6. 如果一个三角形的两条边互相垂直,则这个三角形是直角三角形。

7. 如果一条直线与一个平面垂直,则这条直线称为这个平面的法线。

8. 一个正方体的某个面与它所在的平面垂直。

9. 一个矩形的对角线互相垂直。

10. 一个正方形的对角线互相垂直。

11. 如果两个面互相垂直,则它们的法线互相平行。

12. 如果平面P垂直于直线L1,且L1垂直于直线L2,则平面P和直线L2互相平行。

13. 如果两条直线互相垂直,则它们的斜率的乘积为-1。

14. 如果一条直线过一个圆的圆心,则这条直线与圆的切线垂直。

15. 如果一条直线垂直于直径所在的直线,则它和圆的切线互相平行。

16. 直角梯形的两条腰互相垂直。

17. 如果两个向量垂直,则它们的点积为0。

18. 如果直线L1垂直于平面P,那么L1上任意一点到P的距离均相等。

19. 一个正六面体的某个面与它所在的平面垂直。

20. 如果两个三维空间中的直线垂直,则它们的方向向量的点积为0。

线面垂直经典例题及练习题-完整可编辑版

线面垂直经典例题及练习题-完整可编辑版

页脚下载后可删除,如有侵权请告知删除!立体几何1.P 点在那么ABC ∆所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC两两垂直,那么D 点是那么ABC ∆ 〔 B 〕(A)重心 (B) 垂心 (C)内心 (D)外心2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 〔 A 〕(A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行3.假设两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是〔 A 〕(A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的选项是 〔 B 〕(A)假设直线//a 平面M ,直线b a ⊥,那么直线⊥b 平面M (B)假设平面M //平面N ,那么平面M 内任意直线a //平面N(C)假设平面M 与N 的交线为a ,平面M 内的直线a b ⊥,那么N b ⊥ (D)假设平面N 的两条直线都平行平面M ,那么平面N //平面M5.a 、b 表示两条直线,α、β、γ表示三个平面,以下命题中错误的选项是 〔A 〕 (A),,αα⊂⊂b a 且ββ//,//b a ,那么βα// (B)a 、b 是异面直线,那么存在唯一的平面与a 、b 等距 (C) ,,,b a b a ⊥⊂⊥βα那么βα// (D),,,//,βαβγγα⊥⊥⊥b a 那么b a ⊥6.直线l //平面α,αβ⊥,那么l 与平面β的位置关系是 〔 D 〕 (A) l β⊂ (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能 7.直线l ⊥平面α,直线m ⊂平面β,有以下四个命题:①//l m αβ⇒⊥②//l m αβ⊥⇒③//l m αβ⇒⊥④//l m αβ⊥⇒,其中正确的选项是〔D 〕(A) ①② (B) ②④ (C) ③④ (D) ①③8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,那么〔 B 〕 (A)////αβγδ或 (B) ////αβγδ且(C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行 9.平面α和平面β相交,a 是α内的一条直线,那么〔 D 〕(A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线 (C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线页脚下载后可删除,如有侵权请告知删除!10.PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,那么互相垂直的平面有〔 C 〕(A) 5对 (B) 6对 (C) 7对 (D) 8对12. 如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点. 求证:MN ⊥AB .13. :如图,AS ⊥平面SBC ,SO ⊥平面ABC 于O , 求证:AO ⊥BC .15. 如图,P ∉平面ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC ⊥平面PBC16. 如图:在斜边为AB 的R t △ABC 中,过点A 作PA ⊥平面ABC ,AE ⊥PB 于E ,AF ⊥PC 于F ,〔1〕求证:BC ⊥平面PAC ;〔2〕求证:PB ⊥平面AEF.17. 如图:PA ⊥平面PBC ,AB =AC ,M 是BC 的中点,求证:BC ⊥PM.CFEPBAC BAM P页脚下载后可删除,如有侵权请告知删除!如图,在正三棱柱111C B A ABC -.中,底面ABC 为正三角形,M 、N 、G 分别是棱CC 1、AB 、BC的中点.且AC CC 21=.〔Ⅰ〕求证:CN //平面 AMB 1; 〔Ⅱ〕求证:平面AMG .【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

线线垂直、线面垂直、面面垂直的习题及答案解析

线线垂直、线面垂直、面面垂直的习题及答案解析

线线垂直、线面垂直、面面垂直部分习及答案1.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形.(1)求证:BC ⊥AD ;2如图,在三棱锥S —ABC 中,SA ⊥平面ABC ,平面SAB ⊥平面SBC . (1)求证:AB ⊥BC ;3.如图,四棱锥P —ABCD 的底面是边长为a 的正方形,PA ⊥底面ABCD ,E 为AB 的中点,且PA=AB .(1)求证:平面PCE ⊥平面PCD ;(2)求点A 到平面PCE 的距离.4. 如图2-4-2所示,三棱锥S —ABC 中,SB=AB ,SC=AC ,作AD ⊥BC 于D ,SH ⊥AD 于H , 求证:SH ⊥平面ABC.(第1题)5. 如图所示,已知Rt△ABC所在平面外一点S,且SA=SB=SC,点D 为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.6. 证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1DAC7. 如图所示,直三棱柱中,∠ACB=90°,AC=1,,侧棱,侧面的两条对角线交点为D,的中点为M.求证:CD⊥平面BDM.8.在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.9. 如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.10.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.11:已知直线PA垂直于圆O所在的平面,A为垂足,AB为圆O的直径,C是圆周上异于A、B的一点。

求证:平面PAC 平面PBC。

12.. 如图1-10-3所示,过点S 引三条不共面的直线,使∠BSC=90°,∠ASB=∠ASC=60°,若截取SA=SB=SC. 求证:平面ABC ⊥平面BSC13. 如图1-10-5所示,在四面体ABCD 中,BD= a, AB=AD=BC=CD=AC=a.求证:平面ABD ⊥平面BCD .214.如图所示,△ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE=AC=2BD ,M 是AE 的中点,求证:(1)DE=DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA .15.如图所示,已知PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面PAD ;(2)求证:MN ⊥CD ;(3)若∠PDA=45°,求证:MN ⊥平面PCD .16. 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD答案与提示:1. 证明:(1)取BC 中点O ,连结AO ,DO .∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O , ∴BC ⊥平面AOD .又AD ⊂平面AOD , ∴BC ⊥AD .2. 【证明】作AH ⊥SB 于H ,∵平面SAB ⊥平面SBC .平面SAB ∩平面SBC=SB ,∴AH ⊥平面SBC ,又SA ⊥平面ABC ,∴SA ⊥BC ,而SA 在平面SBC 上的射影为SB ,∴BC ⊥SB ,又SA ∩SB=S ,∴BC ⊥平面SAB .∴BC ⊥AB .3. 【证明】PA ⊥平面ABCD ,AD 是PD 在底面上的射影,又∵四边形ABCD 为矩形,∴CD ⊥AD ,∴CD ⊥PD ,∵AD ∩PD=D ∴CD ⊥面PAD ,∴∠PDA 为二面角P —CD —B 的平面角,∵PA=PB=AD ,PA ⊥AD ∴∠PDA=45°,取Rt △PAD 斜边PD 的中点F ,则AF ⊥PD ,∵AF ⊂面PAD ∴CD ⊥AF ,又PD ∩CD=D ∴AF ⊥平面PCD ,取PC 的中点G ,连GF 、AG 、EG ,则GF21CD 又AE 21CD ,∴GF AE ∴四边形AGEF 为平行四边形∴AF ∥EG ,∴EG ⊥平面PDC 又EG ⊂平面PEC ,∴平面PEC ⊥平面PCD .(2)【解】由(1)知AF ∥平面PEC ,平面PCD ⊥平面PEC ,过F 作FH ⊥PC 于H ,则FH ⊥平面PEC∴FH 为F 到平面PEC 的距离,即为A 到平面PEC 的距离.在△PFH 与 △PCD 中,∠P 为公共角,而∠FHP=∠CDP=90°,∴△PFH ∽△PCD .∴PC PFCD FH =,设AD=2,∴PF=2,PC=324822=+=+CD PD , ∴FH=362322=⋅∴A 到平面PEC 的距离为36. 4.【证明】取SA的中点E,连接EC ,EB. ∵SB=AB,SC=AC, ∴SA ⊥BE,SA ⊥CE. 又∵CE ∩BE=E, ∴SA ⊥平面BCE.∵BCBCE5. 证明:(1)因为SA=SC ,D 为AC 的中点, 所以SD ⊥AC.连接BD. 在Rt △ABC 中,有AD=DC=DB ,所以△SDB ≌△SDA , 所以∠SDB=∠SDA , 所以SD ⊥BD.又AC ∩BD=D , 所以SD ⊥平面ABC. (2)因为AB=BC ,D 是AC 的中点, 所以BD ⊥AC. 又由(1)知SD ⊥BD , 所以BD 垂直于平面SAC 内的两条相交直线,所以BD⊥平面SAC.6.证明:连结ACBD AC⊥AC为A1C在平面AC上的射影∴⊥⊥⎫⎬⎭⇒⊥BD A CA C BC A C BC D11111同理可证平面7.证明:如右图,连接、、,则.∵,∴为等腰三角形.又知D 为其底边的中点,∴.∵,,∴.又,∴. ∵为直角三角形,D为的中点,∴,.又,,∴..即CD⊥DM.∵、为平面BDM内两条相交直线,∴ CD⊥平面BDM.8.证明:取AB的中点F,连结CF,DF.∵AC BC=,∴CF AB⊥.∵AD BD⊥.=,∴DF AB又CF DF F=,∴AB⊥平面CDF.∵CD⊂平面CDF,∴⊥.C D又CD BE⊥,BE AB B=,∴CD⊥平面ABE,CD AH⊥.∵AH CD⊥,AH BE=,⊥,CD BE E∴AH⊥平面BCD.9.证明:如图,已知PA=PB=PC=a,由∠APB=∠APC=60°,△PAC,△PAB为正三角形,则有:PA=PB=PC=AB=AC=a,取BC中点为E直角△BPC中,,,由AB=AC ,AE ⊥BC ,直角△ABE 中,,,, 在△PEA 中,,,∴,平面ABC ⊥平面BPC.10. 证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC=45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D , ∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC .(2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识1, (第10题)可得OF=5又OE=1,所以,tan∠EFO=5.11.(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O 的直径∴BC⊥AC;又PA⊥平面ABC,BC⊂平面ABC,∴BC⊥PA,从而BC⊥平面PAC.∵BC ⊂平面PBC,∴平面PAC⊥平面PBC..12.证明:如图1-10-4所示,取BC的中点D,连接AD,SD.由题意知△ASB与△ASC是等边三角形,则AB=AC,∴AD⊥BC,SD⊥BC.令SA=a,在△SBC中,SD= a,又AD= = a,∴AD2+SD2=SA2,即AD⊥SD.又∵AD⊥BC,∴AD⊥平面SBC.∵AD ABC,∴平面ABC⊥平面SBC.13.证明:取BD的中点E,连接AE,CE.则AE⊥BD,BD⊥CE.在△ABD中,AB=a,BE= BD= ,∴AE= ,同理,CE= .在△AEC中,AE=EC= ,AC=a,∴AC2=AE2+EC2,即AE⊥EC.∵BD∩EC=E,∴AE⊥平面BCD.又∵AE ABD,∴平面ABD⊥平面BCD14.证明: ((1)取EC的中点F,连接DF.∵ CE⊥平面ABC,∴ CE⊥BC.易知DF∥BC,CE⊥DF.∵ BD∥CE,∴ BD⊥平面ABC.在Rt△EFD和Rt△DBA中,∵,,∴ Rt△EFD≌Rt△DBA.故DE=AD.(2)取AC的中点N,连接MN、BN,MN CF.∵ BD CF,∴ MN BD.N平面BDM.∵ EC⊥平面ABC,∴ EC⊥BN.又∵ AC⊥BN,∴ BN⊥平面ECA.又∵ BN平面MNBD,∴平面BDM⊥平面ECA.(3)∵ DM∥BN,BN⊥平面ECA,∴ DM⊥平面ECA.又∵ DM平面DEA,∴平面DEA⊥平面ECA.15.证明:(1)取PD的中点E,连接AE、EN,则,故AMNE为平行四边形,∴ MN∥AE.∵ AE平面PAD,MN平面PAD,∴ MN∥平面PAD.(2)要证MN⊥CD,可证MN⊥AB.由(1)知,需证AE⊥AB.∵ PA⊥平面ABCD,∴ PA⊥AB.又AD⊥AB,∴ AB⊥平面PAD.∴ AB⊥AE.即AB⊥MN.又CD∥AB,∴ MN⊥CD.(3)由(2)知,MN⊥CD,即AE⊥CD,再证AE⊥PD即可.∵ PA⊥平面ABCD,∴ PA⊥AD.又∠PDA=45°,E为PD的中点.∴ AE⊥PD,即MN⊥PD.又MN ⊥CD ,∴ MN ⊥平面PCD .16.证明:连结MO ,1A M ,∵DB ⊥1A A ,DB ⊥AC ,1A A AC A =,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O .设正方体棱长为a ,则22132A O a =,2234MO a =.在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1A O O M ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD .。

线面垂直判定经典证明题

线面垂直判定经典证明题

线面垂直判定经典证明题1.已知:在三角形ABC中,PA垂直于AB和AC。

证明PA垂直于平面ABC。

2.已知:在三角形ABC中,PA垂直于AB,BC垂直于平面PAC。

证明PA垂直于BC。

3.已知:在三棱锥V-ABC中,VA=VC,AB=BC。

证明VB垂直于AC。

4.已知:在正方体ABCD-EFGH中,O为底面ABCD的中心。

证明BD垂直于平面AEGC。

5.已知:在圆O中,AB是直径,PA垂直于AC和AB。

证明BC垂直于平面PAC。

6.已知:在三角形ABC中,AD垂直于BD和DC,AD=BD=CD,∠BAC=60°。

证明BD垂直于平面ADC。

7.已知:在矩形ABCD中,PA垂直于平面ABCD,M和N分别是AB和PC的中点。

1) 证明MN平行于平面PAD。

2) 证明XXX垂直于CD。

3) 若∠PDA=45°,证明MN垂直于平面PCD。

8.已知:在棱形ABCD所在平面外,P满足PA=PC。

证明AC垂直于平面PBD。

9.已知四面体ABCD中,AB=AC,BD=CD,平面ABC垂直于平面BCD,E是棱BC的中点。

1) 证明AE垂直于平面BCD。

2) 证明AD垂直于BC。

10.在三棱锥ABCD中,AB=1,BC=2,BD=AC=3,AD=2.证明AB垂直于平面BCD。

11.在四棱锥S-ABCD中,SD垂直于平面ABCD,底面ABCD是正方形。

证明AC垂直于平面SBD。

12.已知:正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE垂直于平面CDE。

证明AB垂直于平面ADE。

13.在三棱锥P-ABC中,PA、PB、PC两两垂直,H是△XXX的垂心。

证明PH垂直于底面ABC。

14.在正方体ABCD-A1B1C1D1中,证明A1C垂直于平面BC1D1.15.在△ABC所在平面外一点S,SA垂直于平面ABC,平面SAB垂直于平面SBC。

证明AB垂直于BC。

16.在直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D是A1B1的中点。

必修二线面垂直经典例题

必修二线面垂直经典例题
而 PD⊂平面 PCD,∴AE⊥PD. ∵PA⊥底面 ABCD,∴PA⊥AB.
又∵AB⊥AD 且 PA∩AD=A, ∴AB⊥平面 PAD,而 PD⊂平面 PAD, ∴AB⊥PD.又∵AB∩AE=A, ∴PD⊥平面 ABE.
解题小结:
破解此类问题的关键在于熟练把握空间垂直关系的判定与性质, 注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间 垂直关系的基础.由于“线线垂直”、“线面垂直”、“面面垂 直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个 核心而展开,这是化解空间垂直关系难点的技巧所在.
证明 (1)由四棱锥 P—ABCD 中, ∵PA⊥底面 ABCD,CD⊂平面 ABCD, ∴PA⊥CD.∵AC⊥CD,PA∩AC=A, ∴CD⊥平面 PAC. 而 AE⊂平面 PAC,∴CD⊥AE. (2)由 PA=AB=BC,∠ABC=60°, 可得 AC=PA. ∵E 是 PC 的中点,∴AE⊥PC. 由(1),知 AE⊥CD,且 PC∩CD=C, ∴AE⊥平面 PCD.
(2)求证:VB ⊥AC
小结:
A
K
C
1、问题(1)的线线垂直是通过平面几何知识解决的。 B
体现了空间向平面的转化。
2.问题(2)的线线垂直是异面垂直,又转化为新的线面 垂直解决;
即:欲证线面垂直,需证线线垂直,
欲证线线垂直,又需证新的线面垂直。
体现了空间关系的相互转化。
变题一:
空间四边形ABCD中,AB=AD,CB=CD, 求证: AC⊥BD.
知识背景:
1、线面垂直的定义; 2、线面垂直的最基本性质 ; 3.线面垂直的判定定理。
例1.三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。
(1)求证:AC ⊥平面VKB (2)求证:VB ⊥AC

人教课标版高中数学必修2典型例题:直线与平面垂直的判定

人教课标版高中数学必修2典型例题:直线与平面垂直的判定

2.3.1 直线与平面垂直的判定
【例1】三棱锥P-ABC中,PA⊥BC,PB⊥AC,PO⊥平面ABC,垂足为O,求证:O为底面△ABC的垂心.
【例2】如图,ABCD是正方形,SA垂直于平面ABCD,过A且垂直于SC的平面交SB、SC、SD分别于点E,F,G,求证:AE⊥SB,AG⊥S D.
参考答案
例1
【分析】可证O为三角形ABC的两条高线的交点.
【证明】连接OA、OB、OC,∵PO⊥平面ABC,
∴.
又∵,
∴,得
,
∴O为底面△ABC的垂心.
【点拨】此例可以变式为“已知,求证”,其思路是接着利用射影是垂心的结论得到后进行证明. 三条侧棱两两垂直时,也可按同样的思路证出.
例2:
【分析】本题考查线面垂直的判定与性质定理,
以及线线垂直和线面垂直相互转化的思想.由于
图形的对称性,所以两个结论只需证一个即可.
欲证,可证平面,为此须
证,,进而转化证明平面,平面.
【证明】∵SA⊥平面ABCD,平面ABCD,
∴.
又∵ABCD为正方形,
∴.
∴平面.
∵平面,
∴.
又∵平面,
∴.
∴平面.
又∵平面,
∴,同理可证.
【点拨】(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.。

第29讲 线面垂直证线线平行和垂直2种题型(解析版) 高一数学同步题型讲义(新人教2019)必修二

第29讲 线面垂直证线线平行和垂直2种题型(解析版) 高一数学同步题型讲义(新人教2019)必修二

第29讲线面垂直证线线平行和垂直2种题型【题型目录】题型一:线面垂直的证线线平行题型二:线面垂直的证线线垂直【典型例题】题型一:线面垂直的证线线平行【例1】在正方体1111ABCD A B C D -中,直线l (与直线1BB 不重合)⊥平面ABCD ,则有()A .1BB l⊥B .1BB l ∥C .1BB 与l 异面D .1BB 与l 相交【答案】B【分析】根据线面垂直的性质即可得出答案.【详解】解:因为l ⊥平面ABCD ,且1BB ⊥平面ABCD ,直线l 与直线1BB 不重合,所以1BB l ∥.故选:B.【例2】在空间中,下列说法正确的是()A .垂直于同一直线的两条直线平行B .垂直于同一直线的两条直线垂直C .平行于同一平面的两条直线平行D .垂直于同一平面的两条直线平行【答案】D【分析】根据空间中线、面的位置关系理解判断A 、B 、C ,根据线面垂直的性质判断D .【详解】垂直于同一直线的两条直线的位置关系有:平行、相交和异面,A 、B 不正确;平行于同一平面的两条直线的位置关系有:平行、相交和异面,C 不正确;根据线面垂直的性质可知:D 正确;故选:D .【例3】圆柱OP 如图所示,AC 为下底面圆的直径,DE 为上底面圆的直径,BD ⊥底面ABC ,证明://BP 面AEC【答案】证明见解析【分析】连接BO ,OE ,OP ,可证明四边形PEOB 为平行四边形,得到//PB OE ,再通过线面平行的判定定理即可证明【详解】证明:连接BO ,OE ,OP ,可得OP ⊥平面ABC ,∵BD ⊥平面ABC ,∴//OP BD ,∵OP BD =,∴四边形OPDB 为平行四边形,∴//DP OB ,∴//PE OB 且PE OB =,∴四边形PEOB 为平行四边形,∴//PB OE ,∵OE ⊂平面AEC ,BP ⊄平面AEC ,∴//BP 平面AEC【例4】如图,已知多面体ABCDE ,⊥AE 平面,⊥ABC DC 平面ABC ,且2AE DC ==,证明://AC 平面BED .【答案】证明见解析.【分析】利用线面垂直的性质证得//AE DC ,进而得//AC ED ,再利用线面平行的判定推理作答.【详解】因为⊥AE 平面,⊥ABC DC 平面ABC ,则//AE DC ,又AE DC =,即四边形ACDE 为平行四边形,因此//AC ED ,而AC ⊄平面,⊂BED ED 平面BED ,所以//AC 平面BED .【题型专练】1.若a 、b 是空间中两条不同的直线,则a b ∥的充分条件是()A .直线a 、b 都垂直于直线lB .直线a 、b 都垂直于平面αC .直线a 、b 都与直线l 成30︒角D .直线a 、b 都与平面α成60︒角【答案】B【分析】根据线线平行、线线角等知识对选项进行分析,从而确定正确选项.【详解】A 选项,,a b 都与l 垂直,可能a b ⊥r r ,A 选项错误.B 选项,,a b 都垂直于平面α,则a b ∥,B 选项正确.C 选项,,a b 都与l 成30︒角,可能,a b 相交,C 选项错误.D 选项,,a b 都与平面α成60︒角,可能,a b 异面,D 选项错误.故选:B2.(多选题)已知α,β是两个不同的平面,m ,n ,l 是三条不同的直线,则下列命题中正确的是()A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若m α⊥,n α⊥,则m n ∥C .若l αβ= ,m α∥,m β∥,则m l ∥D .若l αβ= ,m α⊂,m l ⊥,则m β⊥【答案】BC【分析】利用面面垂直的性质判断选项A ;利用线面垂直的性质判断选项B ;利用线面平行的性质判断选项C ;利用线面垂直判定定理判断选项D.【详解】选项A :若αβ⊥,m α⊂,n β⊂,则m n ∥或m n 、相交或m n 、互为异面直线.判断错误;选项B :若m α⊥,n α⊥,则m n ∥.判断正确;选项C :设平面a αδ= ,m δ⊂,又m α∥,则m a∥设平面b βγ= ,m γ⊂,又m β∥,则m b ∥,则a b ∥,又b β⊂,a β⊄,则a β∥,又a α⊂,l αβ= ,则a l ∥,则m l ∥.判断正确;选项D :若l αβ= ,m α⊂,m l ⊥,则m β、的位置关系为相交,当且仅当αβ⊥时m β⊥.判断错误.故选:BC3.在梯形ABCD 中,AB CD ,2AB =,4CD =,3AD BC ==,BD 与AE 交于点G .如图所示沿梯形的两条高AE ,BF 所在直线翻折,使得90DEF CFE ∠=∠=︒.(1)求证:AD BC ∥;(2)求三棱锥C BDG -的体积.4.已知空间几何体ABCDE 中,ABC ,ECD 是全等的正三角形,平面ABC ⊥平面BCD ,平面ECD ⊥平面BCD .(1)若BD ==BC ED ⊥;(2)证明://AE BD .所以//AE MN ,又//MN BD ,所以//AE BD .题型二:线面垂直的证线线垂直【例1】如图,在三棱柱111ABC A B C -中,1AC BC ⊥,1AC CC =.(1)记平面1A BC 与平面111A B C 的交线为l ,求证://l 平面11BCC B ;(2)求证:11A C AB ⊥.【答案】(1)证明见解析;(2)证明见解析【分析】(1)由棱柱的性质得11//BC B C ,从而//BC 平面111A B C ,推导出//BC l ,由此能证明//l 平面11BCC B ;(2)连接1AC ,利用菱形的对角线相互垂直和已知条件得到线线垂直,再利用线面垂直的判定定理得到1A C ⊥平面11AB C ,进而利用线面垂直的性质证明11A C BC ⊥.【详解】(1)由棱柱的性质得11//BC B C ,因为BC ⊄平面111A B C ,11B C ⊂平面111A B C ,所以//BC 平面111A B C ,因为BC ⊂平面1A BC ,平面1A BC 与平面111A B C 的交线为l ,所以//BC l ,因为l ⊄平面11BCC B ,BC ⊂平面11BCC B ,∴//l 平面11BCC B .(2)连接1AC ,。

数学必修二直线与平面垂直的性质练习题含答案.docx

数学必修二直线与平面垂直的性质练习题含答案.docx

数学必修二直线与平面垂直的性质学校:班级:姓名:考号:1.是o。

的直径,点C是。

上的动点(点C不与4, B重合),过动点C的直线m垂直于O。

所在的平面,D,£分别是",VC的中点,则下列结论错误的是()A.直线DE //平面ABCB.直线DE 1平面UBCC.DE 1 VBD.DE 1 AB2,垂直于同一平面的两条直线()A.平行B.垂直C.相交D.异面3.设1, m, n均为直线,其中zn, 1在平面a内,贝lj'7 1 a"是“I 1 m且Z 1 n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4. A ABC所在平面外一点F,分别连接P4、PB、PC,则这四个三角形中直角三角形最多有()A.4个B.3个C.2个D.1个5,下列命题中,真命题是()A.若一条直线平行于一个平面内的一条直线,则这条直线与这个平面平行B.若一条直线垂直于一个平面内的两条直线,则这条直线与这个平面垂直C.若一条直线与一个平面平行,则这条直线与这个平面内的任何一条直线平行D.若一条直线垂直于一个平面,则这条直线与这个平面内的任何一条直线垂直6,如图,在中,^ABC = 90°, P为&ABC所在平面外一点,P4 _L平面4BC, 则四面体P-ABC中共有()个直角三角形.A.4B.3C.2D.17.如图:已知AABC是直角三角形,履以=90。

,M为AB的中点,PM ABC所在的平面,那么PA、PB、PC的大小关系是()A.PA > PB > PCB.PB > PA > PCC.PC > PA > PBD.PA = PB = PC8.如图,已知四边形ABCD为正方形,PD 1平面0BCD且P D = AD,则下列命题中错误的是()PA.过BD且与PC平行的平面交P4于M点,则M为PA的中点B.过4C且与PB垂直的平面交PB于N点,则N为PB的中点C.HAD且与PC垂直的平面交PC于H点,则H为PC的中点D.过P、B、C的平面与平面PAD的交线为直线Z,贝U//AD9.过△ABC内一点M任作一条直线Z,再分别过顶点4, B, C作的垂线,垂足分别为D,E,F,若AD + BE + CF = 0恒成立,则点M是△ ABC的()A.垂心B.重心C.外心D.内心10,已知四棱柱ABCD - AWm底面为平行四边形,对角线4G与平面务BD相交于点P,贝叩是"BD 的()A.重心B.内心C.外心D.中心11.若0P垂直于正方形ABCD所在平面,且= 4P = 2,贝IJPC =.12,如果直线Z 1平面a,①若m//Z,则m 1 a;②若m 1 a,则m//Z;③若m/ / a, 则mil-,上述判断正确的是.13.如图,在正方体ABCD - AiBgiDi中,点F在侧面BCC1B1及其边界上运动,并且总是保持4P 与BD]垂直,则动点P的轨迹为.14,设a///?, AEa, Cea, Be/?, D G /?,直线AB 与CD 交于0,若AO = 8, B0 = 9, CD = 34,贝UC。

线面垂直判定(解答题)

线面垂直判定(解答题)

1如图1,在正方体1111ABCD A B C D-中,M为1CC的中点,AC交BD于点O,求证:1A O⊥平面MBD.2如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,AD⊥PC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.3 如图1所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB SC SD,,于E F G,,.求证:AE SB⊥,AG SD⊥.4 如图2,在三棱锥A-BCD中,BC=AC,AD=BD,F是AB中点,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.5 如图3,AB是圆O的直径,C是圆周上一点,PA 平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.6. 空间四边形ABCD中,若AB⊥CD,BC⊥AD,求证:AC⊥BDADB OC7. 证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1DAC证明:连结ACBD AC ⊥AC 为A 1C 在平面AC 上的射影∴⊥⊥⎫⎬⎭⇒⊥BD A CA C BC A C BC D11111同理可证平面8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点,求证:MN AB ⊥C. 证:取PD 中点E ,则EN DC //12C⇒EN AM //∴AE MN //又平面平面平面 CD AD PA AC CD PAD AE PAD ⊥⊥⎫⎬⎭⇒⊥⊂⎫⎬⎭⇒⊥⎫⎬⎪⎭⎪⇒⊥CD AE CD AB AE MN MN AB ////9如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A'ED=60°,求证:A'E ⊥平面A'BC分析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。

解: ∵FG ∥BC ,AD ⊥BC∴A'E ⊥FG∴A'E ⊥BC设A'E=a ,则ED=2a 由余弦定理得:A'D 2=A'E 2+ED 2-2•A'E •EDcos60°=3a2∴ED 2=A'D 2+A'E 2∴A'D ⊥A'E∴A'E ⊥平面A'BC10如图, 在空间四边形SABC 中, SA 平面ABC , ABC = 90, AN SB 于N , AM SC 于M 。

高一数学必修第二册 2019(A版)_【典型例题】空间直线、平面的垂直(第一课时):面面垂直(解析版

高一数学必修第二册 2019(A版)_【典型例题】空间直线、平面的垂直(第一课时):面面垂直(解析版

空间直线、平面的垂直(第一课时):面面垂直【例1】(2019·江苏高三月考)如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点//FG CD ∴,且12FG CD = 又E 为AB 中点//AE CD ∴,且12AE CD = //AE FG ∴,AE FG =四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设ACDE H = 由AEHCDH ∆∆及E 为AB 中点 得12AH AE CH CD ==又2AB =1BC =AC ∴13AH AC ==AH AB AE AC ∴== 又BAD ∠为公共角GAE BAC ∴∆∆90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A =DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE【例2】(2019·湖南衡阳市八中高三月考(文))如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。

(1)求证:BC ⊥平面ACFE ; (2)若12EM MF =,求证:AM ∥平面BDF . 【答案】(1)证明见解析(2)证明见解析【解析】(1)在梯形ABCD 中,∵AB ∥CD ,AD=CD=CB =a ,∠ABC =60°∴四边形ABCD 是等腰梯形且∠DCA =∠DAC =30°,∠DCB =120°∴∠ACB =∠DCB -∠DCA =90°∴AC ⊥BC又∵平面ACFE ⊥平面ABCD ,交线为AC ,∴BC ⊥平面ACFE .(2)在梯形ABCD 中,设AC BD=N ,连接FN ,则CN :NA =1:2又∵EM :MF =1:2,而EF=AC∴MF ∥AN ,且MF =AN ∴四边形ANFM 是平行四边形,∴AM ∥NF又∵NF ⊂平面BDF ,AM ⊄平面BDF ∴AM ∥平面BDF .【举一反三】1.如图,四面体P ABC -中,13PA PB ,平面PAB ⊥平面ABC ,90ACB ∠=︒,86AC BC ,,则PC _______.【答案】13【解析】取AB 的中点E ,连接,PE EC .因为90,8ACB AC ,6BC =,所以10AB =,所以5CE =. 因为13PA PB ,E 是AB 的中点,所以,12PEAB PE . 因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PE ⊂平面PAB ,所以PE ⊥平面ABC .因为CE ⊂平面ABC ,所以PE CE ⊥.在Rt PEC ∆中,2213PC PE CE .2.如图,已知四边形ABCD 是矩形,PA ⊥平面ABCD ,M ,N 分别是AB ,PC 的中点.(1)求证:MN CD ⊥.(2)若PA AD =,求证:平面MND ⊥平面PDC .【答案】(1)见解析;(2)见解析【解析】(1)证明:连接AC .过点N 作NO AC ⊥于点O ,连接OM .PA ⊥平面ABCD ,PA AC ∴⊥.又//PA NO ,NO ∴⊥平面ABCD ,且N 为PC 的中点, 知O 为AC 中点,QM 为MN 在平面ABCD 内的射影,显然OM AB ⊥,MN AB ∴⊥.//AB CD ,MN CD ∴⊥(2)连接,PM MC ,由PA AD BC ==,AM MB =,PA AM ⊥,MB BC ⊥,可知PM MC =. 又N 为PC 的中点,MN PC ∴⊥.又MN DC ⊥,MN ∴⊥平面PCD ,∴平面MND ⊥平面PCD .3.(2019·北京高一期末)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,对角线AC ,BD 交于点O .(Ⅰ)若AC PD ⊥,求证:AC ⊥平面PBD ;(Ⅱ)若平面PAC ⊥平面ABCD ,求证:PB PD =;(Ⅲ)在棱PC 上是否存在点M (异于点C ),使得BM ∥平面PAD ?说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不存在,理由详见解析.【解析】(Ⅰ)证明:因为底面ABCD 是菱形,所以AC BD ⊥.因为AC PD ⊥,BD PD D =,,BD PD ⊂平面PBD ,所以AC⊥平面PBD.(Ⅱ)证明:连接PO.⊥.由(Ⅰ)可知AC BD因为平面PAC⊥平面ABCD,所以BD⊥平面PAC.因为PO⊂平面PAC,⊥.所以BD PO因为底面ABCD是菱形,=.所以BO DO=.所以PB PD(Ⅲ)解:不存在,证明如下.假设存在点M(异于点C),使得BM平面PAD.因为菱形ABCD中,BC AD,且BC⊄平面PAD,所以BC平面PAD.又因为BM⊂平面PBC,所以平面PBC平面PAD.这显然矛盾!从而,棱PC上不存在点M,使得BM∥平面PAD。

线面垂直判定定理测试题(含答案)

线面垂直判定定理测试题(含答案)

线面垂直判定定理测试题1.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA//平面BDE时,求三棱锥E-BCD的体积.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.3.如图,已知AF⊥面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=1,AB=2(1)求证:AF∥面BCE;(2)求证:AC⊥面BCE;(3)求三棱锥E-BCF的体积.4.如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.5.如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=√3.(1)求证:CD⊥平面ADS;(2)求AD与SB所成角的余弦值;(3)求二面角A-SB-D的余弦值.6.如图,在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB;(2)AM⊥平面PCD.7.如图所示四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,BC∥AD,PA=AB=BC=2,AD=4,E为PD的中点,F为PC中点.(Ⅰ)求证:CD⊥平面PAC;(Ⅱ)求证:BF∥平面ACE;(Ⅲ)求直线PD与平面PAC所成的角的正弦值.答案和解析1.【答案】(1)证明:由PA ⊥AB ,PA ⊥BC ,AB ⊂平面ABC ,BC ⊂平面ABC ,且AB ∩BC =B ,可得PA ⊥平面ABC ,由BD ⊂平面ABC ,可得PA ⊥BD ;(2)证明:由AB =BC ,D 为线段AC 的中点,可得BD ⊥AC ,由PA ⊥平面ABC ,PA ⊂平面PAC ,可得平面PAC ⊥平面ABC ,又平面PAC ∩平面ABC =AC ,BD ⊂平面ABC ,且BD ⊥AC ,即有BD ⊥平面PAC ,BD ⊂平面BDE ,可得平面BDE ⊥平面PAC ;(3)解:PA //平面BDE ,PA ⊂平面PAC ,且平面PAC ∩平面BDE =DE ,可得PA //DE ,又D 为AC 的中点,可得E 为PC 的中点,且DE =12PA =1,由PA ⊥平面ABC ,可得DE ⊥平面ABC ,可得S △BDC =12S △ABC =12×12×2×2=1, 则三棱锥E -BCD 的体积为13DE •S △BDC =13×1×1=13.【解析】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA//DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.2.【答案】解:(1)证明:∵底面ABCD是正方形,∴AB∥CD ,又∵AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD ,又∵A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,∴AB∥EF ;(2)证明:在正方形ABCD中,CD⊥AD ,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,CD⊂平面ABCD,CD⊄平面PAD∴CD⊥平面PAD ,又∵AF⊂平面PAD ,∴CD⊥AF ,由(1)可知,AB∥EF,又∵AB∥CD,C,D,E,F在同一平面内,∴CD∥EF ,∵点E是棱PC中点,∴点F是棱PD中点,在△PAD中,∵PA=AD,∴AF⊥PD ,又∵PD∩CD=D,PD、CD⊂平面PCD,∴AF⊥平面PCD.【解析】(1)证明AB∥平面PCD,即可得AB∥EF;(2)利用平面PAD⊥平面ABCD,证明CD⊥AF,PA=AD,所以AF⊥PD,即可证明AF⊥平面PCD;本题考查线面平行的性质,平面与平面垂直的性质,考查线面垂直,考查学生分析解决问题的能力,属于中档题.3.【答案】(1)证明:∵四边形ABEF为矩形,∴AF∥BE,∵AF⊄平面BCE,BE⊄平面BCE,∴AF∥面BCE.(2)证明:∵AF⊥面ABCD,四边形ABEF为矩形,∴BE⊥平面ABCD,∵AC⊂平面ABCD,∴AC⊥BE,∵四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=1,AB=2 ∴AC=BC=√12+12=√2,∴AC2+BC2=AB2,∴AC⊥BC,∵BC∩BE=B,∴AC⊥面BCE.(3)解:三棱锥E-BCF的体积:V E-BCF=V C-BEF=13×S△BEF×AD=1 3×12×BE×EF×AD=1 3×12×1×2×1=13.【解析】本题考查线面平行、线面垂直的证明,考查三棱锥的体积的求法,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、转化化归思想,考查数据处理能力和运用意识,是中档题.(1)推导出AF∥BE,由此能证明AF∥面BCE.(2)推导出AC⊥BE,AC⊥BC,由此能证明AC⊥面BCE.(3)三棱锥E-BCF的体积V E-BCF=V C-BEF,由此能求出结果.4.【答案】证明:(1)取AC中点O,连结DO、BO,∵△ABC是正三角形,AD=CD,∴DO⊥AC,BO⊥AC,∵DO∩BO=O,∴AC⊥平面BDO,∵BD⊂平面BDO,∴AC⊥BD.(2)解:连结OE,由(1)知AC⊥平面OBD,∵OE⊂平面OBD,∴OE⊥AC,设AD=CD=√2,则OC=OA=1,EC=EA,∵AE⊥CE,AC=2,∴EC2+EA2=AC2,∴EC=EA=√2=CD,∴E是线段AC垂直平分线上的点,∴EC=EA=CD=√2,由余弦定理得:cos∠CBD=BC2+BD2−CD22BC⋅BD =BC2+BE2−CE22BC⋅BE,即4+4−22×2×2=4+BE2−22×2×BE,解得BE=1或BE=2,∵BE<BD=2,∴BE=1,∴BE=ED,∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,∵BE=ED,∴S△DCE=S△BCE,∴四面体ABCE与四面体ACDE的体积比为1.【解析】本题考查线线垂直的证明,考查两个四面体的体积之比的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(1)取AC中点O,连结DO、BO,推导出DO⊥AC,BO⊥AC,从而AC⊥平面BDO,由此能证明AC⊥BD.(2)连结OE,设AD=CD=,则OC=OA=1,由余弦定理求出BE=1,由BE=ED,四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,S△DCE=S△BCE,由此能求出四面体ABCE与四面体ACDE的体积比.5.【答案】解:(I)证明:∵ABCD是矩形,∴CD⊥AD又SD⊥AB,AB∥CD,则CD⊥SD(2分)AD⊥SD∴CD⊥平面ADS(II)矩形ABCD,∴AD∥BC,即BC=1,∴要求AD与SB所成的角,即求BC与SB所成的角在△SBC中,由(1)知,SD⊥面ABCD.∴Rt△SDC中,SC=√(√3)2+22=√7∴CD是CS在面ABCD内的射影,且BC⊥CD,∴SC⊥BCtan∠SBC=SCCB =√71=√7cos∠SBC=√24从而SB与AD的成的角的余弦为√24.(III)∵△SAD中SD⊥AD,且SD⊥AB∴SD⊥面ABCD.∴平面SDB⊥平面ABCD,BD为面SDB与面ABCD的交线.∴过A作AE⊥DB于E∴AE⊥平面SDB又过A作AF⊥SB于F,连接EF,从而得:EF⊥SB∴∠AFB为二面角A-SB-D的平面角在矩形ABCD中,对角线∵√12+22=√5BD=√5∴在△ABD中,AE=AB⋅CDBD =1⋅2√5=2√55由(2)知在Rt△SBC,SB=√(√7)2+12=√8.而Rt△SAD中,SA=2,且AB=2,∴SB2=SA2+AB2,∴△SAB为等腰直角三角形且∠SAB为直角,∴AF=√22AB=√2∴sin∠AFE=AEAF =2√55√2=√105所以所求的二面角的余弦为√155【解析】(1)要证CD⊥平面ADS,只需证明直线CD垂直平面ADS内的两条相交直线AD、SD即可;(2)要求AD与SB所成的角,即求BC与SB所成的角,解三角形可求AD与SB所成角的余弦值;(3)过A作AE⊥DB于E 又过A作AF⊥SB于F,连接EF,说明∠AFB为二面角A-SB-D的平面角,解三角形可求二面角A-SB-D的余弦值.本题考查直线与平面垂直的判定,二面角的求法,异面直线所成的角,考查学生逻辑思维能力,计算能力,是中档题.6.【答案】证明:(1)因为M、N分别为PD、PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC.所以MN∥AB,又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,P为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,又平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AM⊂平面PAD,所以CD⊥AM.因为CD、PD⊂平面PCD,CD∩PD=D,∴AM⊥平面PCD.【解析】(1)推导出MN∥DC,AB∥DC.从而MN∥AB,由此能证明MN∥平面PAB.(2)推导出AM⊥PD,CD⊥AD,从而CD⊥平面PAD,进而CD⊥AM,由此能证明AM⊥平面PCD.本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.7.【答案】(Ⅰ)证明:因为PA⊥底面ABCD,CD⊂面ABCD,所以PA⊥CD,又因为直角梯形ABCD中,AC=2√2,CD=2√2,所以AC2+CD2=AD2,即AC⊥CD,又PA∩AC=A,所以CD⊥平面PAC;(Ⅱ)解法一:如图,连接BD,交AC于O,取PE中点G,连接BG,FG,EO,则在△PCE中,FG∥CE,又EC⊂平面ACE,FG⊄平面ACE,所以FG∥平面ACE,因为BC∥AD,所以BOOD =GEED,则OE∥BG,又OE⊂平面ACE,BG⊄平面ACE,所以BG∥平面ACE,又BG∩FG=G,所以平面BFG∥平面ACE,因为BF⊂平面BFG,所以BF∥平面ACE.解法二:如图,连接BD,交AC于O,取PE中点G,连接FD交CE于H,连接OH,则FG∥CE,在△DFG中,HE∥FG,则GEED =FHHD=12,在底面ABCD中,BC∥AD,所以BOOD =BCAD=12,所以FHHD =BOOD=12,故BF∥OH,又OH⊂平面ACE,BF⊄平面ACE,所以BF∥平面ACE.(Ⅲ)由(Ⅰ)可知,CD⊥平面PAC,所以∠DPC为直线PD与平面PAC所成的角,在Rt△PCD中,CD=2√2,PD=√PA2+AD2=2√5,所以sin∠DPC=CDPD =2√22√5=√105,所以直线PD与平面PAC所成的角的正弦值为√105.【解析】本题考查线面垂直、线面平行,考查线面角,解题的关键是掌握线面垂直、线面平行的判定方法,正确找出线面角.(Ⅰ)证明CD⊥平面PAC,证明PA⊥CD,AC⊥CD即可;(Ⅱ)解法一:连接BD,交AC于O,取PE中点G,连接BG,FG,EO,证明平面BFG∥平面ACE,即可证得BF∥平面ACE;解法二:如图,连接BD,交AC于O,取PE中点G,连接FD交CE于H,连接OH,则证明BF∥OH,即可证得BF∥平面ACE;(Ⅲ)确定∠DPC为直线PD与平面PAC所成的角,在Rt△PCD中,即可求得直线PD与平面PAC所成的角的正弦值.第11页,共11页。

线面垂直习题精选完整版

线面垂直习题精选完整版

线面垂直的证明中的找线技巧◆通过计算,运用勾股定理寻求线线垂直 1 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD .证明:连结MO ,1A M,∵DB ⊥1A A ,DB ⊥AC ,1A A AC A =I ,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2234MO a =.在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM∩DB =O ,∴ 1A O ⊥平面MBD .评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明. ◆利用面面垂直寻求线面垂直2 如图2,P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC ⊥平面PAC .证明:在平面PAC 内作AD ⊥PC 交PC 于D .因为平面PAC ⊥平面PBC ,且两平面交于PC ,AD ⊂平面PAC ,且AD ⊥PC , 由面面垂直的性质,得AD ⊥平面PBC . 又∵BC ⊂平面PBC ,∴AD ⊥BC .∵PA ⊥平面ABC ,BC ⊂平面ABC ,∴PA ⊥BC . ∵AD ∩PA =A ,∴BC ⊥平面PAC .(另外还可证BC 分别与相交直线AD ,AC 垂直,从而得到BC ⊥平面PAC ).评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于EFG ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ⊂平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥.评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.4 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD . 证明:取AB 的中点F,连结CF ,DF . ∵ACBC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =I ,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B =I , ∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =I ,∴ AH ⊥平面BCD .评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5 如图3,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.证明:∵AB是圆O的直径,∴AC BC⊥.∵PA⊥平面ABC,BC⊂平面ABC,∴PA BC⊥.∴BC⊥平面APC.∵BC⊂平面PBC,∴平面APC⊥平面PBC.∵AE⊥PC,平面APC∩平面PBC=PC,∴AE⊥平面PBC.∵AE⊂平面AEF,∴平面AEF⊥平面PBC.评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.6. 空间四边形ABCD中,若AB⊥CD,BC⊥AD,求证:AC⊥BDADB OC证明:过A作AO⊥平面BCD于OΘAB CD CD BO⊥∴⊥,同理BC⊥DO ∴O为△ABC的垂心于是BD CO BD AC⊥⇒⊥7. 证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1DD1C1A1B1D CA B证明:连结ACΘBD AC⊥AC为A1C在平面AC上的射影∴⊥⊥⎫⎬⎭⇒⊥BD A CA C BC A C BC D11111同理可证平面8. 如图,PA⊥平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MN AB⊥PND CA BM. 证:取PD中点E,则EN DC//12PE ND CA BM⇒EN AM //∴AE MN //又平面平面平面ΘCD AD PA AC CD PAD AE PAD ⊥⊥⎫⎬⎭⇒⊥⊂⎫⎬⎭⇒⊥⎫⎬⎪⎭⎪⇒⊥CD AE CD AB AE MN MN AB ////9如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC分析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。

高中数学必修2立体几何常考题型:直线与平面、平面与平面垂直的性质(复习课)全面版

高中数学必修2立体几何常考题型:直线与平面、平面与平面垂直的性质(复习课)全面版

直线与平面、平面与平面垂直的性质( 复习课 )【常考题型】题型一、线面、面面垂直的综合问题【例 1】如图,已知直线a⊥ α,直线 b⊥ β,且 AB⊥ a,AB⊥ b,平面α∩β= c.求证: AB∥ c.[ 证明 ]如图,过点 B 作直线 a′ ∥a, a′与 b 确立的平面设为γ.由于 a′ ∥a,AB⊥a,所以 AB ⊥a′,又 AB⊥b, a′∩ b= B,所以 AB ⊥γ.由于 b⊥β, c? β,所以 b⊥c.①由于 a⊥α, c? α,所以 a⊥c,又 a′ ∥a,所以 a′ ⊥c.②由①②可得c⊥γ,又 AB⊥γ,所以 AB∥c.【类题通法】判断线线、线面的平行或垂直关系,一般要利用判断定理和性质定理,有时也能够放到特殊的几何体中(如正方体、长方体等)而后再判断它们的地点关系.【对点训练】1.如下图:平面α,β,直线a,且α⊥ β,α∩ β=AB,a∥ α,a⊥ AB.求证: a⊥ β.证明:∵a∥α,过 a 作平面γ交α于 a′,则 a∥a′∵a⊥AB ,∴a′ ⊥AB.∵α⊥β,α∩β= AB,∴a′ ⊥β,∴a⊥β.题型二、求点到面的距离 【例2】 已知△ABC , AC =BC =1, AB =2,又已知S 是△ ABC所在平面外一点,SA= SB = 2, SC =5,点P 是 SC 的中点,求点P 到平面ABC的距离.[ 解] 法一: 如下图,连结 PA , PB.易知△SAC ,△ACB 是直角三角形,所以 SA ⊥AC ,BC ⊥AC.取 AB 、 AC 的中点 E 、F ,连结 PF , EF ,PE ,则 EF ∥BC ,PF ∥SA.所以 EF ⊥AC , PF ⊥AC.由于 PF ∩ EF =F ,所以 AC ⊥平面 PEF.又 PE? 平面 PEF ,所以 PE ⊥AC.易证△SAC ≌△SBC.由于 P 是 SC 的中点,所以 PA =PB .而 E 是 AB 的中点,所以 PE ⊥AB .由于 AB ∩ AC =A ,所以 PE ⊥平面 ABC.进而 PE 的长就是点 P 到平面 ABC 的距离.151 2在 Rt △AEP 中, AP =2SC = 2 ,AE =2AB = 2 ,225 1 3所以 PE = AP -AE =4- 2= 2 , 即点 P 到平面 ABC 的距离为3 2.法二: 如下图,过 A 作 AE ∥BC ,过 B 作 BF ∥AC ,交 AE 于点 D ,则四边形 ACBD 为正方形.连结 SD.由于 AC ⊥SA , AC ⊥AD , SA ∩ AD = A ,所以 AC ⊥平面 SDA.所以 AC ⊥SD.又由题意,可知BC ⊥SB.由于 BC ⊥BD ,SB ∩ BD = B ,所以 BC ⊥平面SDB ,所以 BC ⊥SD.又 BC ∩ AC =C ,于是 SD ⊥平面 ACBD .所以 SD 的长为点 S到平面 ABC 的距离.在 Rt△SDA 中易得 SD=SA2-AD 2= 22- 12= 3.由于 P 为 SC 的中点,故点P 到平面 ABC 的距离为13 2SD=2 .【类题通法】求点到面的距离的重点是确立过点与平面垂直的线段.可经过外形进行转变,转变为易于求解的点,等体积法也是求点到平面的距离的常用方法.【对点训练】2.如下图,正四棱柱 ABCD - A1B1C1D1中,底面边长为 2 2,侧棱长为 4, E, F 分别为棱 AB ,BC 的中点, EF∩ BD =G.(1)求证:平面 B1EF⊥平面 BDD 1B1;(2)求点 D1到平面 B1EF 的距离.解:证明: (1)连结 AC.∵正四棱柱 ABCD - A1B1C1D1的底面是正方形,∴AC⊥BD .又 AC ⊥DD 1,且 BD ∩DD 1= D,故 AC⊥平面 BDD 1B1,∵E, F 分别为棱 AB, BC 的中点,故EF ∥AC,∴EF⊥平面 BDD 1B1,∴平面 B1EF ⊥平面 BDD 1B1.(2)解题流程:题型三、折叠问题【例 3】如图,在矩形ABCD中,AB=2AD,E是AB的中点,沿 DE 将△ ADE 折起.(1)假如二面角 A- DE -C 是直二面角,求证: AB=AC ;(2) 假如 AB= AC,求证:平面ADE ⊥平面 BCDE .[证明 ] (1)过点 A 作 AM ⊥DE 于点 M,则 AM ⊥平面 BCDE ,∴AM ⊥BC.又 AD= AE,∴M 是 DE 的中点.取BC 中点 N,连结 MN , AN,则 MN ⊥BC.又 AM ⊥BC,AM∩ MN=M,∴BC⊥平面 AMN ,∴AN⊥BC.又∵N 是 BC 中点,∴AB= AC.(2)取 BC 的中点 N,连结 AN.∵AB= AC,∴AN⊥BC.取 DE 的中点 M,连结 MN , AM,∴MN ⊥BC.又 AN∩MN=N,∴BC⊥平面 AMN ,∴AM ⊥BC.又 M 是 DE 的中点, AD= AE,∴AM⊥DE .又∵DE 与 BC 是平面 BCDE 内的订交直线,∴AM ⊥平面 BCDE .∵AM ? 平面 ADE ,∴平面 ADE ⊥平面 BCDE .【类题通法】解决折叠问题的策略(1) 抓住折叠前后的变量与不变量.一般状况下,在折线同侧的量,折叠前后不变,“ 越过”折线的量,折叠前后可能会发生变化,这是解决这种问题的重点.(2) 在解题时认真审察从平面图形到立体图形的几何特点的变化状况.注意相应的点、直线、平面间的地点关系,线段的长度,角度的变化状况.【对点训练】3.如下图,在平行四边形 ABCD 中,已知 AD =2AB= 2a,BD = 3a, AC∩ BD= E,将其沿对角线 BD 折成直二面角.求证: (1) AB⊥平面 BCD ;(2) 平面 ACD ⊥平面 ABD .证明: (1) 在△ABD 中, AB= a,AD = 2a, BD =3a,222∴AB +BD =AD ,∴∠ABD = 90°,∴AB⊥BD.又∵平面 ABD ⊥平面 BCD ,平面 ABD ∩平面 BCD =BD ,AB? 平面 ABD,∴AB⊥平面 BCD .(2)∵折叠前四边形 ABCD 是平行四边形,且 AB⊥BD ,∴CD ⊥BD .∵AB⊥平面 BCD ,∴AB⊥CD .又∵AB∩ BD=B,∴CD ⊥平面 ABD.又∵CD ? 平面 ACD,∴平面 ACD ⊥平面 ABD .【练习反应】1.如下图,三棱锥P,A,B 是定点,则动点P-ABC 的底面在平面C 运动形成的图形是(α上,且)AC ⊥PC,平面PAC⊥平面PBC,点A.一条线段B.一条直线分析:选 D∵平面PAC⊥平面PBC,AC⊥PC,AC?平面PAC,且平面PAC∩平面 PBC =∴AC⊥平面 PBC.又∵BC? 平面 PBC ,∴AC ⊥BC,∴∠ACB= 90°,∴动点 C 运动形成的图形是以AB 为直径的圆,除掉 A 和 B 两点,应选 D.2.在三棱锥P— ABC 中,平面 PAC⊥平面角形, PC= 4,M 是 AB 边上的一动点,则PM ABC,∠ PCA = 90°,△ ABC 是边长为 4 的正三的最小值为 ()A.23B.27C.43D.47分析:选B连结CM ,则由题意PC⊥平面 ABC,可得PC⊥CM ,所以 PM=PC 2+CM 2,要求PM的最小值只需求出CM的最小值即可,在△ABC 中,当CM ⊥AB 时CM有最小值,此时有CM=4×32 =23,所以 PM 的最小值为 2 7.3.若组成教室墙角的三个墙面记为α,β,γ,交线记为BA,BC,BD ,教室内一点墙面α,β,γ的距离分别为 3 m, 4 m,1 m ,则 P 与墙角 B 的距离为 ________ m.P 到三分析:过点P 向各个面作垂线,组成以BP为体对角线的长方体.|BP|=32+ 42+ 1=26.答案:264.如下图,平面α⊥平面β, A∈ α, B∈ β, AA′⊥ A′ B′, BB′⊥ A′ B′,且 AA′= 3, BB′= 4,A′ B′= 2,则三棱锥 A— A′ BB′的体积 V= ________.分析:由题意 AA1⊥面A′ BB′,BB′ ⊥面A′ B′A,则三棱锥 A—A′ BB′中,AA′为高,底面△A′ BB′为 Rt△.∴V A-′BB′ =1△′BB′=1×3×1× 2×4= 4.AA′ ·S323答案: 45.如图,已知平面α⊥平面γ,平面β⊥平面γ.α∩ γ= a,β∩γ=b,且 a∥b,求证:α∥ β.证明:在平面γ内作直线c⊥a.∵α⊥γ,α∩ γ= a,∴c⊥α.∵a∥b,∴c⊥b.又∵β⊥γ,β∩ γ= b,∴c⊥β,∴α∥β.你曾落的泪,最都会成阳光,照亮脚下的路。

线面垂直及应用(习题及答案)

线面垂直及应用(习题及答案)

线面垂直及应用(习题)➢例题示范例1:如图,在正三棱柱ABC-A1B1C1 中,AB=AA1=1,则点C 到平面ABC1 的距离为()A.42 6B.3C.217D.2 37思路分析:思路一:观察特征,考虑采用构造垂面法,取AB 的中点E ,易证平面C1CE⊥平面ABC1,过点C 作CF⊥C1E,则CF 的长即为所求距离,接着在直角三角形中研究边角关系,求解.思路二:采用等体积法,VC -ABC =VC -ABC,建立等式,求解.1 1解题过程:方法一:如图,取AB 的中点E,连接CE,C1E,过点C 作CF⊥C1E 于点F.在正三棱柱ABC-A1B1C1 中,CC1⊥平面ABC,则AB⊥CC1,∵△ABC 是等边三角形,∴AB⊥CE,又CE CC1=C,∴AB⊥平面CC1E,∴平面C1CE⊥平面ABC1,∴CF⊥平面ABC1,则CF 的长即为所求距离.在Rt△CEC1 中,CC1=1,CE = 3AB =3,∴C1E =2 2 =7.2由等面积得,CF =CC1 ⨯CE=C1E21,7即点C 到平面ABC1 的距离为21.71CC12 +CE 22 1 37方法二:在正三棱柱ABC-A1B1C1 中,CC1⊥平面ABC,AB=BC=AC=CC1=1,易得AC1=BC1=,S△ ABC =4,在△ABC1 中,AC1=BC1= ,AB=1,∴ S△ ABC =4,∵VC -A BC=V C -ABC ,设点 C 到平面ABC1 的距离为d,1 1则1⨯7⨯d =1⨯3⨯1 ,解得d =21.3 4 3 4 7例2:如图,∠BAC 在平面α内,点P 在α外,PE⊥AB,PF⊥AC,PO⊥α,垂足分别为E,F,O,且PE=PF,求证:∠BAO=∠CAO.思路分析:根据特征,有线面垂直、平面的斜线与平面内直线垂直,根据三垂线定理的逆定理处理.解题过程:∵PO⊥α,PE⊥AB,PF⊥AC,∴OE⊥AB,OF⊥AC,∵PE⊥AB,PF⊥AC,PE=PF,∴Rt△PAE≌Rt△PAF,∴AE=AF,∴Rt△AOE≌Rt△AOF,∴∠BAO=∠CAO.2232 3323➢巩固练习1.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,PA⊥底面ABCD,PA=AB=2,则点C 到平面PBD 的距离为()A.B.C.D.1第1 题图第2 题图2.如图,在四棱锥P-ABCD 中,底面ABCD 是直角梯形,PA⊥底面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=2,AD=4,则点A 到平面PCD 的距离为()A.63B.2C.26D.233.如图,在四棱锥P-ABCD 中,底面ABCD 是直角梯形,PA⊥底面ABCD,AD∥BC,∠BAD=90°,BC=2,PA=AB=1,则点D 到平面PBC 的距离为()A.22B.1C.12 3D.33第3 题图第4 题图4.如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E 是BC 的中点,则点B1 到平面AEC1 的距离为()A.B.4 3C.3D.623665.下列命题:①若a 是平面α的斜线,直线b 垂直于a 在平面α内的射影,则a⊥b;②若a 是平面α的斜线,平面β内的直线b 垂直于a 在平面α内的射影,则a⊥b;③若a 是平面α的斜线,直线b⊂α且b 垂直于a 在另一平面β内的射影,则a⊥b;④若a 是平面α的斜线,直线b∥α且b 垂直于a 在平面α内的射影,则a⊥b.其中正确的有()A.0 个B.1 个C.2 个D.3 个6.如图,PA⊥矩形ABCD,则下列结论中不正确的是()A.PD⊥BD B.PD⊥CDC.PB⊥BC D.PA⊥BD7.如图,下列四个正方体中,l 是正方体的一条对角线,M,N,P 分别为其所在棱的中点,能得出直线l⊥平面MNP 的图形是()①②③④A.①④B.①②C.②④D.①③48.直接利用三垂线定理证明下列各题:(1)已知:PA⊥正方形ABCD 所在平面,O 是BD 的中点,求证:PO⊥BD,PC⊥BD.(2)已知:PA⊥平面PBC,PB=PC,M 是BC 的中点,求证:BC⊥AM.59.如图,在直三棱柱ABC-A1B1C1 中,∠ACB=90°,AC=BC=a,AA1 2a ,D,E,M 分别为棱AB,BC,AA1的中点.(1)求证:A1B1⊥C1D;(2)求点C 到平面MDE 的距离.10.如图,在直三棱柱ABC-A1B1C1 中,AB=4,AC=AA1=2,∠ACB=90°.(1)求证:A1C⊥B1C1;(2)求点B1 到平面A1BC 的距离.62 【参考答案】 1.B 2.C 3.A 4.B 5.B 6.A 7.A 8. 证明略.9. (1)证明略; (2)点 C 到平面 MDE 的距离为 6a .610. (1)证明略;(2)点 B 1 到平面 A 1BC 的距离为 .7。

线面垂直判定经典证明题

线面垂直判定经典证明题

线面垂直判定经典证明题第一篇:线面垂直判定经典证明题线面垂直判定1、已知:如图,PA⊥AB,PA⊥AC。

求证:PA⊥平面ABC。

2、已知:如图,PA⊥AB,BC⊥平面PAC。

求证:PA⊥BC。

3、如图,在三棱锥V-ABC中,VA=VC,AB=BC。

求证:VB⊥AC4、在正方体ABCD-EFGH中,O为底面ABCD中心。

求证:BD⊥平面AEGC5、如图,AB是圆O的直径,PA⊥AC, PA⊥AB,求证:BC⊥平面PAC6、如图,AD⊥BD, AD⊥DC,AD=BD=CD,∠BAC=60°求证:BD⊥平面ADC7、.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.8、已知:如图,P是棱形ABCD所在平面外一点,且PA=PC 求证:AC⊥平面PBD __C9、已知四面体ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E为棱BC的中点。

(1)求证:AE⊥平面BCD;(2)求证:AD⊥BC;BECD10、三棱锥A-BCD中,AB=1,AD=2,求证:AB⊥平面BCD11、在四棱锥S-ABCD中,SD⊥平面ABCD,底面ABCD是正方形求证:AC⊥平面SBD12、如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,求证:AB⊥平面ADE;AED13、三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,H是△ABC的垂心求证:PH 底面ABC14、正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D._A_115、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BCSCAB16、如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中点.求证C1D ⊥平面A1B ;第二篇:线面垂直的判定漯河高中2013—2014高一数学必修二导学案2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质编制人:魏艳丽方玉辉审核人:高一数学组时间:2013.12.03【课前预习】一、预习导学1、直线与平面垂直的性质定理:_________________________________________.2、垂直于同一条直线的两个平面____________.3、平面与平面垂直的性质定理:_________________________________________.4、如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在___________.二、预习检测教材P71、P73【课内探究】[例1]如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面.[例2]如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交SB于E,过E作EF⊥SC交SC于F.(1)求证:AF⊥SC;(2)若平面AEF交SD于G,求证:AG⊥SD.我主动,我参与,我体验,我成功第1页(共4页)[例3]10、在三棱锥P—ABC中,△PAB是等边三角形,∠PAC=∠PBC=90º.(1)证明:AB⊥PC;(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P—ABC的体积.[例4]如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C;(3)若截面MBC1⊥平面BB1C1C,则AM=MA1吗?请叙述你的判断理由.我主动,我参与,我体验,我成功第2页(共4页)【巩固训练】1.已知两个平面互相垂直,那么下列说法中正确的个数是()①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线;③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上;④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A.4B.3C.2D.1()()2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是A.相交B.平行C.异面D.相交或平行3.若m、n表示直线,α表示平面,则下列命题中,正确命题的个数为m∥n⎫m⊥α⎫⎪⎪⎬⎬⇒m∥n;①⇒n⊥α;②⎪⎪m⊥α⎭n⊥α⎭m⊥α⎫m∥α⎫⎪⎪⎬⎬⇒n⊥α.③⇒m⊥n;④⎪⎪n∥α⎭m⊥n⎭A.4B.3C.2D.1D.重心oo4.在△ABC所在的平面α外有一点P,且PA=PB=PC,则P在α内的射影是△ABC的()A.垂心B.外心C.内心5.如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为45和30.过A、B分别作两平面交线的垂线,垂足分别为A′、B′,则AB∶A′B′等于()A.3∶1B.2∶1C.3∶2D.4∶36.设α-l-β是直二面角,直线a⊂α,直线b⊂β,a,b与l都不垂直,那么()A.a与b可能垂直,但不可能平行B.a与b不可能垂直,但可能平行 C.a与b可能垂直,也可能平行 D.a与b不可能垂直,也不可能平行7.若α⊥β,α∩β=AB,a∥α,a⊥AB,则a与β的关系为________.8.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.①a和b垂直于正方体的同一个面;②a和b在正方体两个相对的面内,且共面;③a和b平行于同一条棱;④a和b在正方体的两个面内,且与正方体的同一条棱垂直.9.如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.我主动,我参与,我体验,我成功第3页(共4页)求证:BC⊥AB.10.如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M是AB的中点.11.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4(1)设M是PC上的一点,求证:平面M BD⊥平面PAD;(2)求四棱锥P—ABCD的体积.※12.如图,直三棱柱ABC-A1B1C1中,AC=BC=1,D是棱AA12的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1的大小.我主动,我参与,我体验,我成功第4页(共4页)第三篇:线面垂直的判定1(模版)深圳市第二课堂文化教育徐老师***直线与平面垂直的判定1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定2.直线a与b垂直,b⊥平面α,则a与平面α的位置关系是()A.a∥αB.a⊥αC.a⊂αD.a⊂α或a∥α3.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .m⊂α,n⊂α,m//β,n//β⇒α//βB.α//β,m⊂α,n⊂β⇒m//nC.m⊥α,m⊥n⇒n//αD. m//n,n⊥α⇒m⊥α4.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α②α//β,m⊂α,n⊂β⇒m//n③m//n,m//α⇒n//α④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③5.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于()A.BC.D26.如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD 与平面B1DC所成角的正弦值为.7.如图,在正三棱柱ABC-A1B1C1中,侧棱长为2,底面三角形的边长为1,则BC1与侧面ACC1A1所成的角是.(第6题图)(第7题图)8.已知∆ABC所在平面外一点P到∆ABC三顶点的距离都相等,则点P在平面ABC内的射影是∆ABC的。

高一必修2-直线、平面垂直的性质及判定(习题及答案)

高一必修2-直线、平面垂直的性质及判定(习题及答案)

高一必修2 直线、平面垂直的性质及判定(习题及答案)典型例题一例1下列图形中,满足唯一性的是( ).A .过直线外一点作与该直线垂直的直线B .过直线外一点与该直线平行的平面C .过平面外一点与平面平行的直线D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是( ).A .(1)、(2)B .(2)、(3)C .(3)、(4)D .(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中,∵O E 、分别是B B 1和DB 的中点,∴D B EO 1//.∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影.又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD ,∴⊥D B 1平面1ACD .∵EO D B //1,∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =,∴AC OE ⊥.在正方体1DB 中易求出: a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=, ()a a a E B B D E D 232222212111=⎪⎭⎫ ⎝⎛+=+=. ∵21221E D OE O D =+,∴OE O D ⊥1. ∵O AC O D = 1,O D 1、⊂AC 平面1ACD ,∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ① 在Rt △BHD 中有:BHBD =αcos ② 在Rt △ABD 中有:BA BD =βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG . 在Rt △GCH 中,11112=⋅=HG GC HO OK . 说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==.(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;(2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥.取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线).(2)∵BC BA =,∴AC BD ⊥.又∵SD ⊥面ABC ,∴BD SD ⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形. 综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO ,∴AO PO ⊥,BO PO ⊥,CO PO ⊥∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆,∴OC OB OA ==,∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形, ∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂,∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求.过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂,∴E B BC 1⊥.又B B A BC =1 ,∴111BCD A E B 平面⊥.即线段E B 1的长即为所求,在B B A Rt 11∆中,13601251252211111=+⨯=⋅=B A BB B A E B , ∴直线11C B 到平面11BCD A 的距离为1360. 说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.例24 AD 、BC 分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为︒30,cm AD 8=,BC AB ⊥,BC DC ⊥.求线段BC 的长.分析:首先依据题意,画出图形,利用平移,将异面直线AD 、BC 所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出BC 之长.解:如图,在平面α内,过A 作BC AE //,过C 作AB CE //,两线交于E . ∵BC AE //,∴DAE ∠就是AD 、BC 所成的角,︒=∠30DAE .∵BC AB ⊥,∴四边形ABCE 是矩形.连DE ,∵CD BC ⊥,CE BC ⊥,且C CE CD = ,∴CDE BC 平面⊥.∵BC AE //,∴CDE AE 平面⊥.∵CDE DE 平面⊂,∴DE AE ⊥. 在AED Rt ∆中,得34=AE ,∴)(34cm AE BC ==.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.。

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲精编版

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲精编版

线面垂直的证明中的找线技巧◆通过计算,运用勾股定理寻求线线垂直1 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD .证明:连结MO ,1A M,∵DB ⊥1A A ,DB ⊥AC ,1A AAC A =,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2234MO a =.在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.◆利用面面垂直寻求线面垂直2 如图2,P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC ⊥平面PAC .证明:在平面PAC 内作AD ⊥PC 交PC 于D .因为平面PAC ⊥平面PBC ,且两平面交于PC ,AD ⊂平面PAC ,且AD ⊥PC , 由面面垂直的性质,得AD ⊥平面PBC . 又∵BC ⊂平面PBC ,∴AD ⊥BC .∵PA ⊥平面ABC ,BC ⊂平面ABC ,∴PA ⊥BC .∵AD ∩PA =A ,∴BC ⊥平面PAC .(另外还可证BC 分别与相交直线AD ,AC 垂直,从而得到BC ⊥平面PAC ).评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ⊂平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥.评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.4 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .证明:取AB 的中点F,连结CF ,DF . ∵ACBC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴ AH ⊥平面BCD .评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5 如图3,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点, 求证:平面AEF ⊥平面PBC .证明:∵AB 是圆O的直径,∴AC BC ⊥.∵PA ⊥平面ABC ,BC⊂平面ABC ,∴PA BC ⊥.∴BC ⊥平面APC . ∵BC ⊂平面PBC ,∴平面APC ⊥平面PBC .∵AE ⊥PC ,平面APC ∩平面PBC =PC , ∴AE ⊥平面PBC .∵AE ⊂平面AEF ,∴平面AEF ⊥平面PBC .评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.6. 空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD ,求证:AC ⊥BDAD B O C证明:过A 作AO ⊥平面BCD 于O 。

最新人教版高中数学必修2第二章《平面与平面垂直的判定》典型例题1

最新人教版高中数学必修2第二章《平面与平面垂直的判定》典型例题1

拓展延伸应用点一判断线面垂直【例1】如图,AB是圆O的直径,P A垂直于圆O所在平面,M是圆周上任意一点,AN⊥PM,垂足为N.求证:AN⊥平面PBM.思路分析:要证线面垂直,需证直线和平面内的两条相交直线都垂直.已知AN⊥PM,只需再证AN和平面PBM内的另一条直线BM或PB垂直即可.证明:设圆O所在平面为α,则已知P A⊥α,且BM⊂α,∴P A⊥BM.又∵AB为⊙O的直径,点M为圆周上一点,∴AM⊥BM.由于P A∩AM=A,∴BM⊥平面P AM.而AN⊂平面P AM,∴BM⊥AN.又PM⊥AN,PM∩BM=M,∴AN⊥平面PBM.应用点二判定面面垂直【例2】已知△ABC中,∠ABC=90°,P为△ABC所在平面外的一点,P A=PB=PC,求证:平面P AC⊥平面ABC.思路分析:要证面面垂直,只需证一个平面经过另一个平面的一条垂线即可.证明:如图所示,取AC的中点O,连接PO,OB,∵AO=OC,P A=PC,∴PO⊥OA.又∵∠ABC=90°,∴OB=OA.又∵PB=P A,PO=PO,∴△POB≌△POA.∴∠POA=∠POB=90°,∴PO⊥OB.又∵OA∩OB=O,∴PO⊥平面ABC.∵PO⊂平面P AC,∴平面P AC⊥平面ABC.应用点三计算直线和平面所成的角【例3】如右图,Rt △ABC 在平面α内,点P 在平面α外,P 到直角顶点A 的距离为8,到两条直角边的距离均为52,求:(1)P 到平面α的距离;(2)P A 与平面α所成角的正弦值.思路分析:要求P 到平面α的距离,过P 作PO ⊥α于点O ,OD ⊥AB 于D ,OE ⊥AC 于E .利用勾股定理得到AD 和AE 的长相等,从而知四边形ADOE 为正方形,易求得AO 的长,从而在Rt △P AO 中,利用勾股定理得到PO 的长度即为P 到平面α的距离.而∠P AO 即为P A 与平面α所成的角.解:(1)如上图,过P 作PO ⊥α于点O ,连结OA ,作OD ⊥AB 于点D ,连结PD .则PO ⊥AB ,于是AB ⊥平面POD ,从而AD ⊥PD ,故PD =52,进而AD =P A 2-PD 2=14.同理,作OE ⊥AC 于E 点,连结PE ,则AE =14.∴矩形ADOE 为正方形.∴AO =2AD =27.∴PO =P A 2-AO 2=6,即P 到平面α的距离为6.(2)由(1)可知,∠P AO 便是P A 与平面α所成的角.sin ∠P AO =PO P A =34. 应用点四 计算二面角【例4】如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角A -BD 1-P 的大小.思路分析:首先应作出二面角的平面角.由题可知AB ⊥平面AD 1,所以BD 1在平面AD 1上的射影就是AD 1,再过P 作AD 1的垂线PF ,则PF ⊥平面ABD 1,过F 作D 1B 的垂线FE ,连接PE ,则∠PEF 即为所求二面角的平面角.解:过P 作AD 1的垂线,垂足是F ,再作FE ⊥BD 1,E 为垂足,连接PE .∵AB ⊥平面AD 1,PF ⊂平面AD 1,∴AB⊥PF.又PF⊥AD1,AB∩AD1=A,∴PF⊥平面ABD1.∴PF⊥BD1.又∵EF⊥BD1,PF∩EF=F,∴BD1⊥平面PEF. 又PE⊂平面PEF,∴PE⊥BD1.∴∠PEF为所求二面角的平面角.在Rt△AFP中,AF=PF=24,则D1F=D1A-AF=324.由Rt△D1AB∽Rt△D1EF,得EFAB=D1FD1B,则EF=64.在Rt△PEF中,tan∠PEF=PFEF=33,所以,∠PEF=30°.即二面角A-BD1-P的平面角为30°.应用点五线面垂直的综合应用【例5】在矩形ABCD中,AB=1,BC=a(a>0),P A⊥平面AC,且P A=1,则BC边上是否存在点Q,使得PQ⊥QD?并说明理由.思路分析:若存在Q点,作PQ⊥QD,由线面垂直的判定定理可知,只需AQ⊥QD,即△AQD为直角三角形即可.解:如图所示,假设存在点Q,使PQ⊥QD.连接AQ,∵P A⊥平面AC,PQ⊥QD,∴AQ⊥QD.不妨设AQ=x(x>0),则AQ2=x2,QD2=QC2+CD2=(a-x2-1)2+1,AD2=a2,在Rt△AQD中,由勾股定理得x2+(a-x2-1)2+1=a2,即x4-a2x2+a2=0.令t=x2,则t2-a2t+a2=0.(*)∵a>0,∴t1t2=a2>0,t1+t2=a2>0.(*)的判别式△=a2(a2-4).①当0<a<2时,△<0,方程(*)无正实根.②当a>2时,△>0,方程(*)有两个相异正实根.③当a=2时,△=0,方程(*)有两个相等的正实根.故当0<a<2时,BC边上不存在点Q,使PQ⊥QD;当a=2时,BC边上存在一点Q(即PQ的中点),使PQ⊥QD;当a>2时,BC边上存在两个点Q,使QP⊥QD.。

必修2立体线面垂直专项练习

必修2立体线面垂直专项练习

必修(2)立体几何垂直关系专项练习
1、ABCD—A1B1C1D1是正四棱柱,求证:BD⊥平面ACC1A1
2、正三棱柱ABC-A1B1C1的所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H
⑴求证:AE⊥平面A1BD;
⑵求顶点B1到平面A1BD的距离
3、在棱长为a的正方体ABCD- A1B1C1D1中,点E、F分别为棱AB与BC的中点。

求点D到平面B1EF的距离
4、在长方体ABCD- A1B1C1D1中,棱AD=DC=3,DD1=4,过点D作D1C的垂线交CC1于点E,交D1C于点F。

求证:A1C⊥BE
5、四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点。

求证:EF⊥平面PAB
6、已知棱长为a的正方体ABCD- A1B1C1D1,E为BC中点。

求证:面B1C1D⊥面B1ED
7、在长方体ABCD- A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动。

⑴证明:D1E⊥A1D
⑵当E为AB的中点时,求点E到面ACD1的距离
8、ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°
⑴求证:平面PBD⊥平面PAC
⑵求点A到平面PBD的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
P
备选题: 如图所示,在四棱锥 P—ABCD 中,PA⊥底面 ABCD, AB⊥AD,AC⊥CD,∠ABC=60° ,PA=AB=BC,E 是 PC 的中 点. 证明:(1)CD⊥AE; (2)PD⊥平面 ABE.
解题分析:
第(1)问通过 DC⊥平面 PAC 证明; 也可通过 AE⊥平面 PCD 得到 结论; 第(2)问利用线面垂直的判定定理证明直线 PD 与平面 ABE 内的两条相交直线垂直.
证明 (1)由四棱锥 P—ABCD 中, ∵PA⊥底面 ABCD,CD⊂平面 ABCD, ∴PA⊥CD.∵AC⊥CD,PA∩AC=A, ∴CD⊥平面 PAC.
而 AE⊂平面 PAC,∴CD⊥AE.
(2)由 PA=AB=BC,∠ABC=60° , 可得 AC=PA.
∵E 是 PC 的中点,∴AE⊥PC. 由(1),知 AE⊥CD,且 PC∩CD=C, ∴AE⊥平面 PCD.
小结:线面垂直证明的难点突破
由于线面垂直的证明往往需要通过线线、线面垂直的
不断转化,所以我们一定要了解给出几何体中的已有 的垂直关系,进而寻找目标平面内与已知直线垂直的 直线。
特别是异面线线垂直的证明有一定难度,常常要转化
为先证一条直线和另一直线所在某个平面垂直。这个 平面的发现至关重要。
变题二: 判断:四边相等的四边形,对角线互相垂直
练习1:
(2011北京高考理科)如图,在四棱锥 P-ABCD中,PA⊥平面ABCD, BAD=600, 底面ABCD是菱形,AB=2, (1)求证:BD⊥平面PAC; (2)略; P (3)略。
D A B C
例2.如图,圆O所在一平面为 , AB是圆O 的直径,C 在圆周上, 且PA AC, PA AB, 求证:(1)PA BC (2)BC 平面PAC
思考:三棱锥中最多有几个直角三角形?
思考:三棱锥P-ABC中最多有几个直角三角形?
P
A C
O
B
例3、已知直角△ABC所在平面外有一点P,且 PA=PB=PC,D是斜边AB的中点,
求证:PD⊥平面ABC.
证明: ∵PA=PB,D为AB中点 ∴ PD⊥AB,连接CD, ∵D为Rt△ABC斜边的中点 ∴ CD=AD, 又PA=PC,PD=PD ∴ △PAD≌△PCD 而PD⊥AB ∴ PD⊥CD, CD∩AB = D ∴PD ⊥平面ABC P
C B
A
D
证明线线垂直的常用方法:
如果两条直线共面或能转化为共面,则转化为在平面
内证明垂直关系,用平面几何知识证明垂直的主要办 法有:勾股定理,等腰三角形三线合一,相似三角形 等; 如果两条直线异面,又不便平移到一个平面内证明垂 直,通常就再转化为证明平面内的直线与已知直线所 在的某个平面垂直。 即:通过另一组线面垂直证明线线垂直。
而 PD⊂平面 PCD,∴AE⊥PD. ∵PA⊥底面 ABCD,∴PA⊥AB.
又∵AB⊥AD 且 PA∩AD=A, ∴AB⊥平面 PAD,而 PD⊂平面 PAD, ∴AB⊥PD.又∵AB∩AE=A, ∴PD⊥平面 ABE.
解题小结:
破解此类问题的关键在于熟练把握空间垂直关系的判定与性质, 注意平面图形中的一些线线垂直关系的灵活利用, 这是证明空间 垂直关系的基础.由于“线线垂直”、“线面垂直”、“面面垂 直”之间可以相互转化, 因此整个证明过程围绕着线面垂直这个 核心而展开,这是化解空间垂直关系难点的技巧所在.
知识背景:
1、线面垂直的定义;
2、线面垂直的最基本性质;
3、线面垂直的判定定理。
例1、三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。
(1)求证:AC ⊥平面VKB (2)求证:VB ⊥AC
V
K
A C
B
例1、三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。 (1)求证:AC ⊥平面VKB (2)求证:VB ⊥AC
A K V
C
小结:
1、问题(1)的线线垂直是通过平面几何知识解决的。 体现了空间向平面的转化。 2、问题(2)的线线垂直是异面垂直,又转化为新的线面 垂直解决; 即:欲证线面垂直,需证线线垂直, 欲证线线垂直,又需证新的线面垂直。 体现了空间关系的相互转化。
B
变题一:
空间四边形ABCD中,AB=AD,CB=CD, 求证:AC⊥BD.
练习2. 如图,已知点M是菱形ABCD所在平面外一点,且MA=MC 求证:AC⊥平面BDM
M
D
O A B
C
练习3 如图 平面α、β相交于PQ,线段OA、OB分别垂直平面α、 β, 求证:PQ⊥AB 证明: ∵OA⊥α PQ α ∴ OA⊥PQ OB⊥β, PQ β ∴ OB⊥PQ 又OA∩OB=0 ∴PQ⊥平面OAB 而AB平面OAB ∴ PQ⊥AB O Q A
解:(1) AB , AC , 且AB AC A PA AC , PA AB PA 又 BC PA BC
A
P
O
C
B
(2) C为 圆 O上 一 点 ,AB 为 直 径 BC AC 1得BC PA, 由 又 PA AC A BC 面PAC
相关文档
最新文档