毕业论文PWM控制的直流调速系统控制电路设计课程设计

合集下载

pwm直流电机调速课程设计

pwm直流电机调速课程设计

一、课程设计的主要目标任务直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。

从控制的角度来看,直流调速还是交流拖动系统的基础。

早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以与少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。

随着单片机技术的日新月异,使得许多控制功能与算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能[2]。

采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。

传统的控制系统采用模拟元件,虽在一定程度上满足了生产要求,但是因为元件容易老化和在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,故系统的运行可靠性与准确性得不到保证,甚至出现事故。

目前,直流电动机调速系统数字化已经走向实用化,伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。

二、课程设计系统方案选取1. 直流电动机运行原理脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需3 要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

直流电动机的转速n和其他参量的关系可表示为图1:直流电机原理图式中Ua——电枢供电电压(V);Ia ——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE ——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。

PWM控制的直流电动机调速系统设计

PWM控制的直流电动机调速系统设计

課程設計設計報告書題目:PWM控制的直流電動機調速系統設計二級學院現代科技學院專業電氣工程及自動化班級電氣062姓名*****學號**********同組同學姓名 ****** ******* 同組同學學 *********** *********2009年 12 月 23 日設計題目:PWM控制的直流電動機調速系統設計1、前言近年來,隨著科技的進步,電力電子技術得到了迅速的發展,直流電機得到了越來越廣泛的應用。

直流它具有優良的調速特性,調速平滑、方便,調速範圍廣;超載能力大,能承受頻繁的衝擊負載,可實現頻繁的無級快速起動、制動和反轉;需要能滿足生產過程自動化系統各種不同的特殊運行要求,從而對直流電機的調速提出了較高的要求,改變電樞回路電阻調速,改變電樞電壓調速等技術已遠遠不能滿足要求,這時通過PWM方式控制直流電機調速的方法應運而生。

採用傳統的調速系統主要有以下缺陷:模擬電路容易隨時間漂移,會產生一些不必要的熱損耗,以及對雜訊敏感等。

而在用了PWM技術後,避免了以上的缺陷,實現了用數字方式來控制模擬信號,可以大幅度降低成本和功耗。

另外,由於PWM 調速系統的開關頻率較高,僅靠電樞電感的濾波作用就可獲得平穩的直流電流,低速特性好;同樣,由於開關頻率高,快速回應特性好,動態抗干擾能力強,可以獲得很寬的頻帶;開關器件只工作在開關狀態,主電路損耗小,裝置效率高。

PWM 具有很強的抗噪性,且有節約空間、比較經濟等特點。

2、設計要求及組內分工2.1設計要求(1)根據電機與拖動實驗室提供的直流電動機,設計基於PWM的電動機調速方案。

(2)選用合適的功率器件,設計電動機的驅動電路。

(3)設計PWM波形發生電路,使能通過按鍵對電機轉速進行調節,要求至少有兩個速度控制按鍵,其中一個為加速鍵(每按一次,使電機轉速增加);另一個為減速鍵,功能與加速鍵相反。

(4)撰寫課程設計報告。

2.2組內分工(1)負責直流電動機調速控制硬體設計及電路焊接:主要由胡佳春和葉秋平完成(2)負責調速控制軟體編寫及調試:主要由朱健和葉秋平完成(3)撰寫報告:主要由胡佳春和朱健完成3、系統設計原理脈寬調製技術是利用數字輸出對模擬電路進行控制的一種有效技術,尤其是在對電機的轉速控制方面,可大大節省能量,PWM控制技術的理論基礎為:衝量相等而形狀不同的窄脈衝加在具有慣性的環節上時,其效果基本相同,使輸出端得到一系列幅值相等而寬度不相等的脈衝,用這些脈衝來代替正弦波或其他所需要的波形。

基于PWM控制的直流电机调速系统的设计

基于PWM控制的直流电机调速系统的设计

= = {
— l 一. :: =: :
P WM信号的产生采用硬件 P WM信号 ,即不 采 用 中断 实 现 P WM 信 号 ,而 是 利 用 单 片机
MP 8G 1 P A模 式 , P A设 置成 P C 2 56的 C 将 C WM模
图 1 整 休设 计
式直接产生 P WM信号 。频率取决于 P A定时器的时钟源,占空 比取决于模块捕获寄存器 C A n C C P L与扩展 的第 9 E A n 位 C PL的值 。由于使用 9 比较 , 出占空比可以真正实现 0 位 输 %到 10 0%可调 ,占空 比计算公式 为
杨春旭 ,林若波,彭燕标
( 阳职业技术学院 ,广东 揭阳 5 2 5 ) 揭 20 1
摘要 :提 出一个基于 P WM 控 制的直流电机控制 系统 ,从硬件电路 和软件设计两方面进行系统设计 ,介绍了调速 系统的整体设计思路 、硬件电路和控制算法。下位机采用 MP 8G 1 C 2 5 6实现硬件 P WM 的输 出,从而控制 电机的电
1 电机控制系统 的整体设计
系统整体设计如图 1所示 ,主要原理框图包 括: C L D显示 、 按盘输入 、测速模块 、P WM调速 模块 4 部分。电路原理图如图 2 所示。
11 P . WM 信 号
1 . : .
MP 8 G 1 单 片机 C 2 56
( 度 的测量 计算 , 速 输入 及 系统 的控制 , P WM信 号输 出 ) 、 .
2 电机调速 系统 的软件设计
2 1 程序流 程框 图 .
当系统启动后 ,单片机进行初始化设置 ,单片机检 i 是否有键按下 ,再执行按键子程序 ,读取键值 ,调用 贝 0

基于单片机的PWM直流电机调速系统设计

基于单片机的PWM直流电机调速系统设计

基于单片机的PWM直流电机调速系统设计摘要本文主要介绍基于单片机的PWM直流电机调速系统的设计和实现方法。

该系统通过利用单片机控制器控制电机的启动、停止、正转和反转等操作,同时实现对电机速度的调节。

在电机工作时,单片机通过PWM技术控制电机的电压和电流,从而达到调节电机转速的效果。

系统设计思路为了实现电机的调速功能,本系统采用基于单片机控制器和PWM技术的电机驱动控制方案。

系统整体分为硬件和软件两个部分,硬件部分主要包括电机、电路组成和控制器,而软件部分则是单片机程序设计。

电路组成系统电路主要由电源、单片机控制器、电机驱动模块和电机组成。

其中,电源主要用于系统供电,单片机控制器主要用于控制电机驱动模块的输出,电机驱动模块负责将单片机控制器输出的PWM信号转换为直流电机可控的电流。

单片机程序设计系统中需要对单片机进行程序设计,以实现对电机的启动、停止、正转和反转等操作,同时实现电机的调节功能。

程序设计主要包括以下几个部分:1.系统初始化:包括系统时钟初始化、输入输出口初始化以及中断配置等。

2.电机控制:控制电机的启动、停止、正转和反转等操作。

3.电机调速:利用PWM技术实现对电机的调节功能。

4.数据处理:对输入的调节参数进行处理,然后转换成PWM占空比输出到电机。

PWM技术原理PWM技术是通过控制模拟信号的占空比,来达到模拟信号的数字化的目的。

具体而言,通过控制PWM信号的占空比,从而实现对电机输出电压和电流的控制,从而达到对电机转速的调节。

系统实现步骤本系统的实现步骤主要包括以下几个部分:电机接线首先,需要根据电机的参数和工作电压要求,正确接线电机。

接线时需要注意电机正反转的问题,以及电路的安全性问题。

程序编写根据我们的设计思路,需要编写相应的单片机程序。

程序编写包括系统初始化、电机控制、电机调速和数据处理等部分。

编写程序时需要考虑到各参数变化的初始值和变化范围,以及程序的鲁棒性和可调节性。

系统调试在程序编写完成后,需要对整个系统进行调试。

基于单片机实现直流电机PWM调速系统毕业设计

基于单片机实现直流电机PWM调速系统毕业设计

畢業設計(論文)基於單片機實現直流電機PWM調速系統系別:電氣與資訊工程系專業班級:電氣自動化06—32(1)班指導教師:董曉紅老師完成日期:2009年6月12日一、題目:基於單片機實現直流電機PWM調速系統二、指導思想和目的:通過畢業設計,培養學生綜合運用所學的知識和技能解決問題的本領,鞏固和加深對所學知識的理解;培養學生調查研究的習慣和工作能力;培養學生建立正確的設計和科學研究的思想,樹立實事求是、嚴肅認真的科學工作態度。

三、設計任務或主要技術指標:利用MCS-51系列單片機,通過PWM方式控制直流電機調速的方法。

採用了專門的晶片組成了PWM信號的發生系統,然後通過放大來驅動電機。

利用直流測速發電機測得電機速度,經過濾波電路得到直流電壓信號,把電壓信號輸入給A/D轉換晶片最後回饋給單片機,在內部進行PI運算,輸出控制量完成閉環控制,實現電機的調速控制。

四、設計進度與要求:1):佈置設計任務,深入瞭解設計內容,搜集參考資料,學習有關內容。

2):學習學校畢業設計的的實際情況,和格式要求。

3):設計網路拓撲結構以及構思設計的基本思路和設計過程。

4):根據根據設計要求和構思思路查找設計內容。

5):根據要求和設計的基本方案對設計要求的材料進行預算。

6):完善設計方案並繪製必須的圖紙草圖,編寫設計說明書。

7):對圖紙進行校正和測繪,畫合格的正式圖紙。

8):總結,熟悉設計內容,準備畢業答辯,完成答辯。

五、主要參考書及參考資料:[1] 王離九,黃錦恩編著,電晶體脈衝直流調速系統,華中理工大學出版社出版[2] 丁元傑主編,上海市教育委員會組編,單片微機原理及應用,機械工業出版社[3] 李榮生主編,電氣傳動控制系統設計指導,機械工業出版社[4] 吳守箴,臧英傑編著,電氣傳動的脈寬調製控制技術,機械工業出版社[5] 陳伯時主編,自動控制系統---電力拖動控制,中央廣播電視大學出版社專業班級:電氣自動化06—32(1)班學生:景天紅指導教師:董曉紅老師教研室主任(簽名):系(部)主任(簽名):年月日新疆工業高等專科學校畢業設計(論文)評定意見書設計(論文)題目:基於單片機實現直流電機PWM調速系統專題:基於單片機實現直流電機PWM調速系統設計者:姓名景天紅專業電氣自動化班級06—32(1)班設計時間:2009年4月20日—2009年6月12日指導教師:姓名職稱單位評閱人:姓名職稱單位評定意見:評定成績:指導教師(簽名):年月日評閱人(簽名):年月日答辯委員會主任(簽名):年月日(上頁背面)畢業設計評定意見參考提綱1.學生完成的工作量與內容是否符合任務書的要求。

直流电机的PWM电流速度双闭环调速系统课程设计

直流电机的PWM电流速度双闭环调速系统课程设计

电力拖动课程设计题目:直流电机的PWM电流速度双闭环调速系统姓名:学号:班级:指导老师:课程评分:日期目录一、设计目标与技术参数二、设计基本原理(一)调速系统的总体设计(二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图(五)双闭环调速系统的硬件电路(六)泵升电压限制(七)主电路参数计算和元件选择(八)调节器参数计算三、仿真(一)仿真原理(含建模及参数)(二)重要仿真结果(目的为验证设计参数的正确性)四、结论参考文献附录1:调速系统总图附录2:调速系统仿真图一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。

PWM变换器的放大系数:K S=20。

二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。

但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。

这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。

如图2-1所示。

图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于PWM技术的无刷直流电机的调速系统设计Brushless DC Motor Speed Control System Based On PWM摘要无刷直流电机(BLDCM)具有调速性能优异、运行性能可靠和维护方便等优点,相较于有刷直流电机,其采用电子换向取代机械换向,有效地提高了电动机的运行效率,也使得其成品体积更加的轻巧。

但是无刷直流电机也存在转矩脉动、控制器复杂、成本较高等缺陷,这些缺陷的存在也一定程度上影响了无刷直流电机作为高效、先进电机在应用上的普及,因此研究如何改善以及解决无刷直流电机存在的问题便具有更加明显的现实意义。

MATLAB是一款用于数据分析与计算、算法开发以及动态系统建立与仿真的数学软件。

最初是由美国MathWorks公司出品的商用数学软件,其由Matlab和Simulink 两个重要组成部分构成,现在更是应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

本文通过对无刷直流电机结构以及工作原理的研究与分析,找出导致其具有较大转矩脉动的原因,并先从理论上得到如何抑制转矩脉动的方法,再通过Matlab 建立起无刷直流电机的仿真模型,对其仿真结果进行分析与改善,从而有效地抑制无刷直流电机的转矩脉动。

关键词:无刷直流电机,转矩脉动,仿真模型AbstractBrushless DC motor (BLDCM) has excellent speed performance, reliable performance and easy maintenance, etc., compared to a brush DC motor, which uses electronically commutated replace mechanical commutation, effectively improve the operating efficiency of the motor, but also so that the volume of the finished product more compact. But there brushless DC motor torque ripple controller complexity, high cost and other defects, the presence of these defects also affected to some extent, a brushless DC motor as efficient and advanced motor universal in application, how to improve and therefore research solve the problems of the brushless DC motor will have more obvious practical significance.MATLAB is a tool for data analysis and computation, algorithm development, and simulation of dynamic systems to establish and mathematical software. MathWorks was originally developed by the US company produced commercial mathematical software, which consists of Matlab and Simulink are two important parts, and now it is used in engineering calculations, control design, signal processing and communications, image processing, signal detection, financial modeling design and analysis and other fields.Based on the brushless DC motor structure and working principle of research and analysis to identify the cause of which has a large torque ripple, and theoretically first get how to suppress torque ripples, established through Matlab brushless Simulation Model DC motor, its simulation results are analyzed and improved in order to effectively suppress the torque ripple of the brushless DC motorKeywords:Brushless DC motor; The torque pulsation; The simulation model目录第一章绪论 (6)1.1 研究背景及研究意义 (6)1.2 无刷直流电机调速系统的国内外研究现状 (7)1.3 本文的主要研究内容及章节安排 (8)第二章无刷直流电机的基本原理 (9)2.1 无刷直流电机的基本结构 (9)2.1.1 电机本体 (9)1.电动机定子 (9)2. 电动机转子 (10)2.1.2 位置传感器 (10)2.2 无刷直流电机的工作原理及换相过程 (12)2.2.1 无刷直流电机的工作原理 (13)2.2.2 无刷直流电机的换相过程 (15)2.3 无刷直流电机的应用 (16)2.4 本章小结 (16)第三章基于PWM技术的无刷直流电机转矩脉动抑制 (17)3.1 PWM控制技术简介 (17)3.1.1 PWM控制技术的基本原理 (17)3.1.2 PWM控制技术的控制方法 (18)3.2 Buck变换器的原理及控制方式 (19)3.2.1 Buck变换器的原理 (19)3.2.2 Buck变换器的控制方式 (20)3.3 无刷直流电机转矩脉动的产生 (20)3.3.1传导区转矩脉动 (21)3.3.2换相区转矩脉动 (22)3.4 无刷直流电机转矩脉动的抑制 (24)3.5 本章小结 (27)第四章无刷直流电机的仿真分析 (28)4.1 MATLAB和SIMULINK的介绍 (28)4.2 无刷直流电机的数学模型 (29)4.2.1电机本体模块 (30)4.2.2转矩计算模块 (31)4.2.3速度控制模块 (32)4.2.4电流控制模块 (32)4.2.5电压逆变模块 (33)4.3无刷直流电机的仿真结果 (33)4.4本章小结 (38)结论 (39)致谢 (40)参考文献 (41)附录 (42)第一章绪论1.1 研究背景及研究意义对于工厂生产和社会发展而言,电力拖动都有着举足轻重的地位,为了满足生产工艺的需求,通过控制电机的转矩以及转速来控制电动机的转速以及位置,这样就可以形成一个自动化系统,称之为电力拖动。

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (3)1 设计要求及主要技术指标: (4)1.1 设计要求 (4)1.2 主要技术指标 (5)2 设计过程 (6)2.1 题目分析 (9)2.2 整体构思 (10)2.3 具体实现 (12)3 元件说明及相关计算 (14)3.1 元件说明 (14)3.2 相关计算 (15)4 调试过程 (16)4.1 调试过程 (16)4.2 遇到问题及解决措施 (20)5 心得体会 (21)参考文献 (22)附录一:电路原理图 (23)附录二:程序清单 (24)设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。

电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。

通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。

电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。

关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM 调速控制装置。

1.1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。

(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。

(3)设计一个4个按键的键盘。

K1:“启动/停止”。

K2:“正转/反转”。

K3:“加速”。

K4:“减速”。

(4)手动控制。

在键盘上设置两个按键----直流电动机加速和直流电动机减速键。

在手动状态下,每按一次键,电动机的转速按照约定的速率改变。

基于PWM控制直流电机自动调速系统设计

基于PWM控制直流电机自动调速系统设计

1 绪论1.1 课题的研究背景和意义直流电动机是最早出现的电动机,也是最早能实现调速的电动机。

长期以来,直流电动机一直占据着调速控制的统治地位。

由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。

近年来,直流电动机的结构和控制方式都发生了很大变化。

随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制 (PulseWidthModulation,简称PWM)控制方式已成为绝对主流。

这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。

五十多年来,直流电气传动经历了重大的变革。

首先,实现了整流器件的更新换代,从50年代的使用己久的直流发电机一电动机组(简称G-M系统)及水银整流装置,到60年代的晶闸管电动机调速系统(简称V-M系统),使得变流技术产生了根本的变革。

再到脉宽调制 (PulsewidthModulation)变换器的产生,不仅在经济性和可靠性上有所提高,而且在技术性能上也显示了很大的优越性,使电气传动完成了一次大的飞跃。

另外,集成运算放大器和众多的电子模块的出现,不断促进了控制系统结构的变化。

随着计算机技术和通信技术的发展,数字信号处理器单片机应用于控制系统,控制电路己实现高集成化,小型化,高可靠性及低成本。

以上技术的应用,使系统的性能指标大幅度提高,应用范围不断扩大。

由于系统的调速精度高,调速范围广,所以,在对调速性能要求较高的场合,一般都采用直流电气传动。

技术迅速发展,走向成熟化、完善化、系统化、标准化,在可逆、宽调速、高精度的电气传动领域中一直居于垄断地位[1]。

目前,国内各大专院校、科研单位和厂家也都在开发直流数字调速装置。

姚勇涛等人提出直流电动机及系统的参数辨识的方法。

该方法依据系统或环节的输入输出特性,应用最小二乘法,即可获得系统或环节的内部参数,所获的参数具有较高的精度,方法简便易行。

基于PWM控制的直流电机自动调速系统设计

基于PWM控制的直流电机自动调速系统设计

基于PWM控制的直流电机自动调速系统设计一、引言直流电机是工业中最常见的电动机之一,其工作原理简单,结构紧凑,控制方便,广泛应用于各行各业。

为了满足不同工况下的运行需求,需要设计一个自动调速系统来调整直流电机的转速。

本文将基于PWM控制方法设计一个直流电机自动调速系统。

二、系统设计1.系统结构直流电机自动调速系统的基本结构包括传感器、控制器、电源和执行器。

传感器用于检测电机的转速,控制器根据检测到的转速信号进行处理,并通过PWM控制方法调整电机的输入电压,从而实现自动调速。

2.传感器选择直流电机的转速检测一般使用霍尔效应传感器来实现。

霍尔传感器可以直接测量电机转子的位置,并根据位置变化来计算转速。

传感器输出的信号经过放大和处理后,可以作为控制器的输入信号。

3.控制器设计控制器是整个自动调速系统的核心部分。

控制器接收传感器的转速信号,并通过PID算法对电机的转速进行调节。

PID算法是一种经典的控制方法,可以根据当前的偏差、偏差变化率和偏差积分值来计算控制量。

在本系统中,控制器输出的控制量即为PWM信号。

4.PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过调整脉冲宽度来控制输出电压的方法。

在本系统中,PWM控制方法可以通过改变PWM信号的占空比来调整电机的输入电压。

当需要提高电机转速时,增加PWM信号的占空比;当需要降低电机转速时,减小PWM信号的占空比。

通过反馈控制,控制器可以根据实际转速信号不断调整PWM信号的占空比,从而实现电机的自动调速。

5.电源选择在直流电机自动调速系统中,电源需要提供稳定的直流电压以供电机正常工作。

一般可选择线性稳压器或开关稳压器来提供所需的直流电压。

在选择电源时,需要考虑电机的功率和电源的效率,以确保系统的稳定性和可靠性。

6.执行器选择执行器是将控制信号转换为实际操作的部分。

在直流电机自动调速系统中,执行器可选择光耦隔离器和驱动芯片来实现PWM信号控制。

PWM直流电机调速系统设计

PWM直流电机调速系统设计

PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。

本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。

一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。

2.传感器:传感器主要用于检测电机转速和转速反馈。

常用的传感器有霍尔传感器和编码器。

3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。

控制器一般包括比较器、计数器、时钟和PWM 发生器。

4.功率电源:功率电源负责提供PWM信号的电源。

PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。

二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。

2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。

3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。

4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。

5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。

三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。

2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。

3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。

根据测试结果进行参数调整。

4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。

为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。

PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。

本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。

二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。

在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。

2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。

在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。

三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。

该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。

2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。

常用的PWM信号发生电路有555定时器电路和单片机控制电路等。

3、驱动电路驱动电路用于控制电机的供电电压。

常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。

通过改变驱动电路的控制信号,可以改变电机的转速。

四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。

常见的控制算法有PID控制算法等。

PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。

在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。

五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。

单片机控制PWM的直流电机调速系统的设计

单片机控制PWM的直流电机调速系统的设计

单片机控制PWM的直流电机调速系统的设计PWM(脉宽调制)是一种常用的电压调节技术,可以用来控制直流电机的转速。

在单片机控制PWM的直流电机调速系统中,主要包括硬件设计和软件设计两个方面。

硬件设计方面,需要考虑的主要内容有:电机的选择与驱动、电源电压与电流的设计、速度反馈电路的设计。

首先,需要选择合适的直流电机和驱动器。

选择直流电机时需考虑其功率、转速、扭矩等参数,根据实际需求选择合适的电机。

驱动器可以选择采用集成驱动芯片或者离散元件进行设计,通过PWM信号控制电机的速度。

其次,需要设计合适的电源电压与电流供应。

直流电机通常需要较大的电流来实现工作,因此需要设计合适的电源电流,以及保护电路来防止电流过大烧坏电机和电路。

最后,需要设计速度反馈电路来实现闭环控制。

速度反馈电路可以选择采用编码器等传感器来获得转速信息,然后通过反馈控制实现精确的速度调节。

软件设计方面,需要考虑的主要内容有:PWM输出的控制、速度闭环控制算法的实现。

首先,需要编写代码实现PWM输出的控制。

根据具体的单片机型号和开发环境,使用相关的库函数或者寄存器级的编程来实现PWM信号的频率和占空比调节。

其次,需要实现速度闭环控制算法。

根据速度反馈电路获取的速度信息,通过比较目标速度与实际速度之间的差异,调整PWM信号的占空比来实现精确的速度调节。

常用的速度闭环控制算法有PID控制算法等。

最后,需要优化程序的鲁棒性和稳定性。

通过合理的调节PID参数以及增加滤波、抗干扰等功能,提升系统的性能和稳定性。

在实际的设计过程中,需要根据具体的应用需求和单片机性能等因素,进行合理的选择和调整。

同时,还需要通过实验和调试来验证系统的可靠性和稳定性,不断进行优化和改进,以获得较好的调速效果。

直流PWM调速系统课设

直流PWM调速系统课设

(一)任务书1 性能指标稳态指标:系统无静差动态指标:σi<=5%;空载起动到额定转速时σn<=10% 。

2 给定电机及系统参数P N=220W,U N=48V,I N=3.7A,λ=2,n N=200r/min,R a=6.5欧姆电枢回路总电阻R =8欧姆电枢回路总电感L =120mH电机飞轮惯量GD2=1.29 Nm23 设计步骤及说明书要求①画出系统结构图,并简要说明工作原理②根据给定电机参数,设计整流变压器,并计算变压器容量及副边电压值;选择整流二极管及开关管的参数,并确定过流、过压保护元件参数。

③分析PWM变换器,脉宽调制器(UPW)及逻辑延时(DLD)工作原理。

④设计ACR、ASR并满足给定性能指标要求。

⑤完成说明书,对构成系统的各环节分析时,应先画出本环节原理图,对照分析。

⑥打印说明书(B5),打印电气原理图(A2)。

并交软盘(一组)一张。

目录(二) 实验设计方法及其步骤一、 概述该系统是运用H 型双极模式PWM 控制的原理,采用电流速度双闭环控制方式,设计的一个基于PWM 控制的直流电机控制系统,并设计了软启动电路和完善的保护电路,确保直流电机控制系统准确、可靠地运行。

在主电路设计上,三相交流电经整流电路整流、电容滤波,再由4个IGBT 组成的H 型双极模式转换电路进行调压控制电机速度。

在控制电路中,采用双闭环控制系统,内环是电流环,外环是速度环。

电流检测采用根据磁场补偿原理制成的新型霍尔效应电流互感器—LEM 模块[1].,电流环调节器采用PI 调节,电流调节器输出控制脉冲宽度调制电路产生PWM 波,再通过脉冲分配电路和驱动电路控制IGBT 实现功率变换。

速度检测采用直流测速发电机,其结构简单可靠,准确度高。

为使整个系统能正常安全地运行,设计了过流、过载、过压、欠压保护电路,另外还有过压吸收电路。

确保了系统可靠运行。

二、 系统结构框图及工作原理2.1 系统结构框图如下:双闭环脉宽调速系统的原理框图如图2-1所示。

PWM控制的直流电动机调速系统设计

PWM控制的直流电动机调速系统设计

PWM控制的直流电动机调速系统设计PWM(脉宽调制)控制的直流电动机调速系统是一种常用于工业和家用电机控制的方法。

它可以通过调整输出脉冲宽度来控制电机的转速。

本文将详细介绍PWM控制的直流电动机调速系统的设计原理和步骤。

一、设计目标本文所设计的PWM控制的直流电动机调速系统的设计目标如下:1.实现电机的精确转速控制。

2.提供多种转速档位选择。

3.实现反转功能。

4.提供过载保护功能。

二、设计原理具体的设计原理如下:1.产生PWM信号:使用微控制器或单片机的计时器/计数器模块来产生固定频率的脉冲信号,频率一般选择在20kHz左右。

通过调整计时器的计数值来改变脉冲的宽度,从而实现不同的电机转速。

2.控制电机转速:将微控制器或单片机的PWM输出信号经过电平转换电路后,接入电机的电源线,通过控制PWM信号的高电平时间来控制电机的转速。

3.实现不同的转速档位选择:通过增加多个PWM信号输出通道,可以实现多个转速档位的选择。

通过选择不同的PWM信号输出通道,可以实现不同的转速设定。

4.实现反转功能:通过改变PWM信号的极性可以实现电机的正转和反转操作。

正转时,PWM信号的高电平时间大于低电平时间;反转时,PWM信号的高电平时间小于低电平时间。

5.过载保护功能:通过添加电机负载的电流检测电路和电流限制功能,可以实现对电机过载时的自动保护。

三、设计步骤1.确定电机的额定电压和额定转速。

2.选择合适的微控制器或单片机作为控制核心,并编写PWM信号产生程序。

3.选择合适的驱动电路,将PWM信号转换成电机所需的电流和电压。

常用的驱动电路有H桥驱动电路和MOSFET驱动电路。

4.搭建电路原型,并进行电路调试和测试。

5.编写控制程序,实现转速档位选择、反转和过载保护功能。

6.进行系统整合和调试,确保系统的各项功能正常。

7.进行性能测试,并根据测试结果对系统进行调整和优化。

8.最后对系统进行稳定性测试,并记录测试结果。

四、总结本文详细介绍了PWM控制的直流电动机调速系统的设计原理和步骤。

基于单片机的PWM直流电机调速系统设计论文(附电路图、程序清单)

基于单片机的PWM直流电机调速系统设计论文(附电路图、程序清单)

图 2.2 直流电机原理图
2.2 直流电机的调速方法
根据直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直 流电动机的调速方法有三种: (1)调节电枢供电电压 U。改变电枢电压主要是从额定电压往下降低电枢电压, 从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调 速的系统来说,这种方法最好。 大容量可调直流电源。 (2)改变电动机主磁通 。改变磁通可以实现无级平滑调速,但只能减弱磁通进 变化时间 变化遇到的时间常数较小,能快速响应,但是需要
第1章 引 1.1 概况

现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元 件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。 在这一系统中可对生产机械进行自动控制。 随着近代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动化电 力拖动正朝着计算机控制的生产过程自动化的方向迈进。以达到高速、优质、高效率 地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成 部分。另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。特别对于 小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可 靠性与柔性,还有易于应用的优点。自动化的电力拖动系统更是低成本自动化系统的 重要组成部分。 在如今的现实生活中,自动化控制系统已在各行各业得到广泛的应用和发展,其 中自动调速系统的应用则起着尤为重要的作用。虽然直流电机不如交流电机那样结构 简单、价格便宜、制造方便、容易维护,但是它具有良好的起、制动性能,宜于在广 泛的范围内平滑调速,所以直流调速系统至今仍是自动调速系统中的主要形式。现在 电动机的控制从简单走向复杂,并逐渐成熟成为主流。其应用领域极为广泛,例如: 军事和宇航方面的雷达天线、火炮瞄准、惯性导航等的控制;工业方面的数控机床、 工业机器人、印刷机械等设备的控制;计算机外围设备和办公设备中的打印机、传真 机、复印机、扫描仪等的控制;音像设备和家用电器中的录音机、数码相机、洗衣机、 空调等的控制。 随着电力电子技术的发展, 开关速度更快、 控制更容易的全控型功率器件MOSFET 和IGBT成为主流,脉宽调制技术表现出较大的优越性:主电路线路简单,需要用的功 率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能 好,稳速精度高,因而调速范围宽;系统快速响应性能好,动态抗扰能力强;主电路 元件工作在开关状态,导通损耗小,装置效率较高;近年来,微型计算机技术发展速

PWM可逆直流调速系统设计

PWM可逆直流调速系统设计

PWM可逆直流调速系统设计1. 引言PWM(脉冲宽度调制)可逆直流调速系统是一种常用的电机调速系统,广泛应用于工业生产和家电领域。

本文将介绍PWM可逆直流调速系统的设计原理、主要组成部分以及工作原理。

2. 设计原理PWM可逆直流调速系统的设计原理基于脉冲宽度调制技术和电机控制原理。

通过调整PWM信号的脉冲宽度,可以控制电机的转速和运行方向。

主要原理包括: - 电源供应:系统通过电源为电机提供电能。

- PWM信号生成:通过数字控制器或单片机产生PWM 信号。

- H桥驱动电路:将PWM信号转换为适合电机的驱动信号。

- 电机控制:根据PWM信号调整电机的转速和运行方向。

3. 主要组成部分PWM可逆直流调速系统主要由以下几个组成部分构成:3.1 电源供应电源供应是系统的功率来源,可以选择直流电源或交流电源。

直流电源常用的电压范围为12V或24V,交流电源则需要将交流电转换为直流电。

3.2 PWM信号生成PWM信号生成是通过数字控制器或单片机来产生PWM信号的过程。

通过控制PWM信号的占空比,可以改变电机的转速。

3.3 H桥驱动电路H桥驱动电路是将PWM信号转换为适用于电机驱动的信号的关键部分。

H桥由4个开关管组成,根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。

3.4 电机控制电机控制是根据PWM信号调整电机的转速和运行方向的过程。

通过增大或减小PWM信号的占空比,可以控制电机的速度;通过改变PWM信号的极性,可以改变电机的运行方向。

4. 工作原理PWM可逆直流调速系统的工作原理如下:1.首先,电源供应向系统提供电能,为后续的电机驱动做准备。

2.数字控制器或单片机根据预设的参数生成PWM信号,并将其输入到H桥驱动电路。

3.H桥驱动电路根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。

4.电机控制模块根据PWM信号的占空比调整电机的转速,根据PWM信号的极性改变电机的运行方向。

单片机实现直流电机PWM调速系统毕业设计

单片机实现直流电机PWM调速系统毕业设计

毕业设计(论文)题目:利用单片机控制的直流电机转速系统的设计班级:XX姓名:XZ指导教师:XX说明:8051毕业设计任务书7 (3)一、设计题目 (3)第1章绪论 (5)1.1利用单片机控制的直流电机转速系统设计目的和意义 (5)1.1.1选题的目的和意义 (5)1.1.2国内外研究现状简述: (5)1.1.3毕业设计(论文)所采用的研究方法和手段: (5)1.2利用单片机控制的直流电机转速系统的设计设计项目发展 (6)1.3利用单片机控制的直流电机转速系统的设计原理 (6)第2章系统硬件电路的设计 (8)2.1 系统总体设计框图及单片机系统的设计 (9)2.1.1 系统总体设计框图 (9)2.1.2 8051单片机简介 (9)2.1.3 单片机系统中所用其它芯片简介 (11)2.1.4 8051单片机扩展电路及分析 (15)2.2 PWM信号发生电路设计 (17)2.2.1 PWM的基本原理 (17)2.2.2 PWM信号发生电路设计 (18)2.2.3 PWM发生电路主要芯片的工作原理 (19)2.3 功率放大驱动电路设计 (22)2.3.1 芯片IR2110性能及特点 (22)2.3.2 IR2110的引脚图以及功能 (23)2.4 主电路设计 (25)2.4.1 延时保护电路 (25)2.4.2 主电路 (25)2.4.3 输出电压波形 (28)2.5 测速发电机 (28)2.6 滤波电路 (29)2.7 A/D转换 (29)1.7.1 芯片ADC0809介绍 (29)2.7.2 ADC0809的引脚及其功能 (29)第3章.直流调速系统 (30)3.1 直流调速系统概述 (31)3.2单闭环直流调速系统 (31)3.3开环系统机械特性和闭环系统静特性的比较 (33)第4章利用单片机控制的直流电机转速系统的设计 (35)4.1系统软件部分的设计 (35)4.1.1 PI 转速调节器原理图及参数计算 (35)4.2 控制电路设计 (36)4.2.1 单片机资源分配 (36)4.2.2 程序流程图 (40)第5章结论 (41)致谢 (42)参考文献 (43)毕业设计任务书7一、设计题目利用单片机控制的直流电机转速系统的设计二、设计要求设计一个用单片机实现对直流电机转速控制系统。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
第一章绪论 (2)
第二章直流调速系统的方案设计 (3)
2.1设计技术指标要求 (3)
2.2现行方案的讨论与比较 (3)
2.3选择PWM控制调速系统的理由 (4)
2.4采用转速、电流双闭环的理由 (4)
第三章 PWM控制直流调速系统主电路设计 (5)
3.1主电路结构设计 (5)
3.1.1 PWM变换器介绍 (5)
3.1.2泵升电路 (10)
3.2参数设计 (11)
3.2.1 IGBT管的参数 (11)
3.2.2缓冲电路参数 (11)
3.2.3泵升电路参数 (12)
第四章 PWM控制直流调速系统控制电路设计 (12)
4.1检测环节 (12)
(12)
4.1.2电压检测环节 (16)
4.2调节器的选择与调整 (17)
(17)
4.2.2调节器锁零 (17)
4.3 系统的给定电源、给定积分器 (17)
4.3.1给定电源GS (17)
4.3.2给定积分器 (18)
4.4 触发电路的确定 (18)
4.4.1选用触发电路时须考虑的因素 (18)
4.4.2触发电路同步电压的选取 (19)
第五章课程设计原始数据 (21)
第六章参数计算 (21)
6.1电流调节器的设计 (21)
6.2速度调节器设计 (22)
课程设计总结
参考文献
第一章绪论
在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。

直流电机是最常见的一种电机,在各领域中得到广泛应用。

研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。

电机调速问题一直是自动化领域比较重要的问题之一。

不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。

本文基于PWM 的双闭环直流调速系统进行了研究,并设计出应用于直流电动机的双闭环直流调速系统。

首先描述了变频器的发展历程,提出了PWM 调速方法的优势,指出了未来PWM 调速方法的发展前景,点出了研究PWM 调速方法的意义。

应用于直流电机的调速方式很多,其中以PWM 变频调速方式应用最为广泛,而PWM 变频器中,H 型PWM 变频器性能尤为突出,作为本次设计的基础理论,本文将对PWM 的理论进行详细论述。

在此基础上,本文将做出SG3525单片机控制的H 型PWM 变频调速系统的整体设计,然后对各个部分分别进行论证,力图在每个组成单元上都达到最好的系统性能。

关键词:直流调速 ;双闭环 ;PWM ;SG3525 ;直流电机
第二章 直流调速系统的方案设计
2.1 设计技术指标要求
1.直流电动机:
型号:DJ15
功率:485W
电枢电压:220V
电枢电流:1.2A
额定转数:1600rpm
2.调速范围:1:1200
3.起动时超调量:电流超调量:%5≤i σ;转速超调量: %5≤n σ
2.2 现行方案的讨论与比较
直流电动机的调速方法有三种:
(1)调节电枢供电电压U 。

改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。

对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。

a I 变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。

(2)改变电动机主磁通 。

改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。

f I 变化时间遇到的时间常数同a I 变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。

(3)改变电枢回路电阻R 。

在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。

但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。

改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。

弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。

因此,自动控制的直流调速系统往往以调压调速为主速。

改变电枢电压调速是直流调速系统采用的主要方法,调节电枢供电电压需要有专门的可控直流电源,常用的可控直流电源有以下三种:
(1)旋转变流机组。

用交流电动机和直流发电机组成机组,以获得可调的直流电压。

(2)静止可控整流器。

用静止的可控整流器,如汞弧整流器和晶闸管整流装置,产生可调的直流电压。

(3)直流斩波器或脉宽调制变换器。

用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。

2.3 选择PWM 控制系统的理由
脉宽调制器UPW 采用美国硅通用公司(Silicon General )的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM 控制器。

由。

相关文档
最新文档