讲义高一数学必修一函数复习

合集下载

2024年新高一数学讲义(人教A版2019必修第一册)函数的概念及其表示(解析版)

2024年新高一数学讲义(人教A版2019必修第一册)函数的概念及其表示(解析版)

第09讲函数的概念及其表示模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念;2.体会集合语言和对应关系在刻画函数概念中的作用;3.了解构成函数的要素,能求简单函数的定义域;4.掌握函数的三种表示方法:解析法、图象法、列表法.5.会根据不同的需要选择恰当的方法表示函数.知识点1函数的概念1、函数的定义设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2、函数的四个特性:定义域内的任意一个x值,必须有且仅有唯一的y值与之对应.(1)非空性:定义的集合A,B必须是两个非空数集;(2)任意性:A中任意一个数都要考虑到;(3)单值性:每一个自变量都在B中有唯一的值与之对应;(4)方向性:函数是一个从定义域到值域的过程,即A →B .3、函数的三要素(1)定义域:使函数解析式有意义或使实际问题有意义的x 的取值范围;(2)对应关系:是函数关系的本质特征,是沟通定义域与值域的桥梁,在定义域确定的情况下,对应关系控制着值域的形态,f 可以看作是对“x ”施加的某种运算或法则.如:2()f x x =,f 就是对自变量x 求平方.(3)值域:对应关系f 对自变量x 在定义域内取值时相应的函数值的集合,其中,()y f x =表示“y 是x 的函数”,指的是y 为x 在对应关系f 下的对应值.4、函数相等:两个函数定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数为同一个函数.知识点2求函数定义域的依据1、分式中分母不能为零;2(2,)n k k N *=∈其中中;(21,)n k k N *=+∈其中中,x R ∈;3、零次幂的底数不能为零,即0x 中0x ≠;4、实际问题中函数定义域要考虑实际意义;5、如果已知函数是由两个以上数学式子的和、差、积、商的形式构成,那么定义域是使各部分都有意义的公共部分的集合.知识点3函数的表示法1、函数的表示法(1)解析法:用数学表达式表示两个变量之间的对应关系.(2)列表法:列出表格来表示两个变量之间的对应关系.(3)图象法:用图象表示两个变量之间的对应关系.2、描点法作函数图象(1)列表:先找出一些有代表性的自变量x 的值,并计算出与这些值相对应的函数值,用表格的形式表示;(2)描点:从表中得到一些列的点(x ,f (x )),在坐标平面上描出这些点;(3)连线:用光滑的曲线把这些点按自变量的值由小到大的顺序连接起来.知识点4分段函数1、定义:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2、性质:分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.3、分段函数图象的画法(1)作分段函数图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后作出函数的图象.知识点5函数解析式的求法1、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法.(1)确定所有函数问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含有待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决.2、换元法:主要用于解决已知()()f g x 的解析式,求函数()f x 的解析式的问题.(1)先令()=g x t ,注意分析t 的取值范围;(2)反解出x ,即用含t 的代数式表示x ;(3)将()()f g x 中的x 度替换为t 的表示,可求得()f t 的解析式,从而求得()f x .3、配凑法:由已知条件()()()=f g x F x ,可将()F x 改写成关于()g x 的表达式,然后以x 替代g (x ),便得()f x 的解析式.4、方程组法:主要解决已知()f x 与()-f x 、1⎛⎫ ⎪⎝⎭f x 、1⎛⎫- ⎪⎝⎭f x ……的方程,求()f x 解析式.例如:若条件是关于()f x 与()-f x 的条件(或者与1⎛⎫⎪⎝⎭f x )的条件,可把x 代为-x (或者把x 代为x1)得到第二个式子,与原式联立方程组,求出()f x .考点一:对函数概念的理解例1.(23-24高一上·河南濮阳·月考)下图中可表示函数()y f x =的图象是()A .B .C .D .【答案】B【解析】根据函数的定义可知一个x 只能对应一个y 值,故答案为B.故选:B.【变式1-1】(23-24高一上·广东韶关·月考)设{}{}123,,,M N e g h ==,,,如下选项是从M 到N 的四种应对方式,其中是M 到N 的函数是()A .B .C .D .【答案】C【解析】对于A,集合M 中的3对应了集合N 中的两个数,A 错误;对于B,集合M 中的2N 中的两个数,B 错误;对于C,集合M 中的每个数在集合N 中都有唯一的数对应,C 正确;对于D,集合M 中的3对应了集合N 中的两个数,D 错误,故选:C.【变式1-2】(23-24高一上·四川泸州·期末)托马斯说:“函数是近代数学思想之花.”根据函数的概念判断:下列对应关系是集合{}1,2,4=-M 到集合{}1,2,4,16N =的函数的是()A .2y x =B .2y x =+C .2y x =D .2xy =【答案】C【解析】对于A ,集合M 中的元素1-按对应关系2y x =,在集合N 中没有元素与之对应,A 不是;对于B ,集合M 中的元素4按对应关系2y x =+,在集合N 中没有元素与之对应,B 不是;对于C ,集合M 中的每个元素按对应关系2y x =,在集合N 中都有唯一元素与之对应,C 是;对于D ,集合M 中的元素1-按对应关系2x y =,在集合N 中没有元素与之对应,D 不是.故选:C【变式1-3】(23-24高一上·广东佛山·期末)给定数集,(0,),,A B x y ==+∞R 满足方程20x y -=,下列对应关系f 为函数的是()A .:,()f AB y f x →=B .:,()f B A y f x →=C .:,()f A B x f y →=D .:,()f B A x f y →=【答案】B【解析】A 选项,x ∀∈R ,当0x =时,20y x ==,由于0B ∉,故A 选项不合要求;B 选项,()0,x ∀∈+∞,存在唯一确定的y ∈R ,使得2y x =,故B 正确;CD 选项,对于()0,y ∀∈+∞,不妨设1y =,此时21x =,解得1x =±,故不满足唯一确定的x 与其对应,不满足要求,CD 错误.故选:B考点二:求函数的定义域例2.(23-24高一下·广东茂名·期中)函数y =)A .()0,∞+B .()2,+∞C .[)0,∞+D .[)2,+∞【答案】D【解析】对于函数y =20x -≥,解得2x ≥,所以函数y =的定义域是[)2,+∞.故选:D【变式2-1】(23-24高一上·四川乐山·期中)函数3y =)A .[]3,3-B .()3,3-C .][(),33,∞∞--⋃+D .()(),33,-∞-+∞ 【答案】B【解析】由题知290->x ,解得33x -<<,所以函数的定义域为()3,3-.故选:B.【变式2-2】(23-24高一上·重庆璧山·月考)已知函数()f x 的定义域为[1,2]-,则(32)f x -的定义域为()A .1[,2]2B .[1,2]-C .[1,5]-D .5[1,]2【答案】A【解析】由于函数()f x 的定义域为[1,2]-,故1322x -≤-≤,解得122x ≤≤,即函数(32)f x -的定义域为1[,2]2.故选:A.【变式2-3】(23-24高一上·安徽蚌埠·期末)函数()2y f x =+的定义域为[]0,2,则函数()2y f x =的定义域为()A .[]4,0-B .[]1,0-C .[]1,2D .[]4,8【答案】C【解析】函数()2y f x =+的定义域为[]0,2,由[]0,2x ∈,有[]22,4x +∈,即函数()y f x =的定义域为[]2,4,令224x ≤≤,解得12x ≤≤,函数()2y f x =的定义域为[]1,2.故选:C考点三:判断两个函数是否相等例3.(23-24高一上·浙江杭州·期中)下列函数中,与函数2y x =+是同一函数的是()A .2y =B .2y =+C .22x y x=+D .2y =+【答案】D【解析】对A ,2y =的定义域为[)2,-+∞,2y x =+的定义域为R ,故A 错误;对B ,22y x ==+,故B 错误;对C ,22x y x=+的定义域为()(),00,∞∞-⋃+,故C 错误;对D ,22y x ==+,故D 正确.故选:D【变式3-1】(23-24高一上·安徽马鞍山·期中)下列各组函数中,表示同一个函数的是()A .||,y x y =B .2,x y x y x==C .01,y y x ==D .2||,y x y ==【答案】A【解析】选项A ,解析式等价,定义域也相同,所以是同一个函数;选项B ,解析式化简后相同,但定义域不同,因为分母不能取0,所以不是同一个函数;选项C ,解析式化简后都是1,但定义域不同,因为0的0次幂没有意义,所以不是同一个函数;选项D ,解析式不同,定义域也不同,所以不是同一个函数.故选:A.【变式3-2】(23-24高一上·吉林延边·月考)(多选)下列各组函数表示同一函数的是()A .xy x=与1y =B .y =与y x=C .y =|1|y x =-D .321x x y x +=+与y x=【答案】BCD 【解析】对于A ,x y x=的定义域为{}0x x ≠,而函数1y =的定义域为R ,故A 错误;对于B ,函数y x ==,x ∈R ,故B 正确;对于C ,函数1y x ==-,x ∈R ,故C 正确;对于D ,函数()2322111x x x x y x x x ++===++,x ∈R ,故D 正确.故选:BCD.【变式3-3】(23-24高一下·山东淄博·期中)(多选)下列各组函数是同一函数的是()A .()f x =()g x =B .()0f x x =与()01g x x =C .()f x =()g x =D .()22f x x x =-与()22g t t t=-【答案】BD【解析】对A :对()g x =(],0-∞,则()g x ==故()f x =与()g x =A 错误;对B :()()010f x x x ==≠,()()0110g x x x ==≠,故()0f x x =与()01g x x =是同一函数,故B 正确;对C :()f x 定义域为1010x x +≥⎧⎨-≥⎩,即1x ≥,()g x 定义域为210x -≥,即1x ≥或1x ≤-,故()f x =()g x =C 错误;对D :()22f x x x =-与()22g t t t =-定义域与对应关系都相同,故()22f x x x =-与()22g t t t =-是同一函数,故D 正确.故选:BD.考点四:简单函数的求值求参例4.(23-24高一下·云南曲靖·开学考试)已知函数()231f x x x -=-+,则()1f -=()A .5-B .1-C .2D .3【答案】D【解析】取2x =,有()212213f -=-+=.故选:D.【变式4-1】(23-24高一上·辽宁沈阳·期中)已知函数1()4f x x =-,若()2f a =,则a 的值为()A .92B .72C .52D .12-【答案】A【解析】由()2f a =,得124a =-,解得92a =.故选:A 【变式4-2】(22-23高二下·山东烟台·月考)已知函数()212f x x x -=-,且()3f a =,则实数a 的值等于()A B .C .2D .2±【答案】D【解析】令21,23x a x x -=-=,解得=1x -或3x =由此解得2a =±,故选:D【变式4-3】(23-24高一上·安徽安庆·期末)已知定义在R 上的函数()f x 满足()()()()1,12f x y f x f y f +=+-=,则()2f -=()A .1-B .0C .1D .2【答案】A【解析】在()()()1f x y f x f y +=+-中,令1,0x y ==,得()()()(1)10101f f f f =+-⇒=,令1x y ==,得()()()21112213f f f =+-=+-=,令2,2-==y x ,()()()02211f f f =+--=,解得:()21f -=-,故选:A考点五:函数的三种表示方法例5.(23-24高一上·湖南长沙·期末)已知函数(),()f x g x 分别由下表给出:则[(2)]f g 的值是()x123()f x 131()g x 321A .1B .2C .3D .1和2【答案】C【解析】由表可知:(2)2g =,则[(2)](2)3f g f ==.故选:C.【变式5-1】(23-24高一上·河北沧州·期中)已知函数()f x 的对应关系如下表,函数()g x 的图象如下图所示,则()()0f g =()x 014()f x 269A .2B .6C .9D .0【答案】C【解析】由图可知()04g =,由表格可知()()()049f g f ==.故选:C.【变式5-2】(23-24高一上·江苏南京·月考)若函数()f x 和()g x 分别由下表给出,满足()()2g f x =的x 值是()x 1234()f x 2341x1234()g x 2143A .1B .2C .3D .4【答案】D【解析】由()()2g f x =,则()1f x =,则4x =.故选:D【变式5-3】(23-24高一上·广东惠州·期末)已知定义在[]22-,上的函数()y f x =表示为:x [)2,0-0(]0,2y1-2设()1f m =,()f x 的值域为M ,则()A .{}1,2,0,1m M ==-B .{}2,2,0,1m M =-=-C .{}1,|21m M y y ==-≤≤D .{}1,|21m M y y ==-≤≤【答案】B【解析】因为1x =满足(]0,2x ∈,所以()12f m ==-,由表中数据可知:y 的取值仅有2,0,1-三个值,所以{}2,0,1M =-,故选:B.考点六:函数解析式的求解例6.(23-24高一上·全国·课后作业)图象是以()1,3为顶点且过原点的二次函数()f x 的解析式为()A .()236f x x x =-+B .()224f x x x=-+C .()236f x x x=-D .()224f x x x=-【答案】A【解析】设图象是以()1,3为顶点的二次函数()()213f x a x =-+(0a ≠).因为图象过原点,所以03a =+,3a =-,所以()()2231336f x x x x =--+=-+.故选:A【变式6-1】(23-24高一上·新疆乌鲁木齐·月考)已知()22143f x x -=+,则()f x =().A .224x x -+B .22x x +C .221x x --D .224x x ++【答案】D【解析】令21t x =-,则12t x +=,则221()4()3242t f t t t +=+=++,所以()224f x x x =++,故选:D.【变式6-2】(23-24高一上··期末)已知函数()f x 满足:2211f x x x x ⎛⎫-=+ ⎪⎝⎭,则()f x 的解析式为()A .()22f x x =+B .()2f x x=C .()()220f x x x =+≠D .()()220f x x x =-≠【答案】A【解析】因为2221112f x x x x x x ⎛⎫⎛⎫-=+=-+ ⎪ ⎪⎝⎭⎝⎭,∴()22f x x =+,故选:A.【变式6-3】(23-24高一上·河南开封·期中)已知函数()f x 的定义域为(0,)+∞,且满足14()26f x f x x x ⎛⎫+=+ ⎪⎝⎭,则()f x 的最小值为()A .2B .3C .4D .83【答案】D【解析】由14()2()6f x f x x x+=+①,令1x x =,162()(4f x f x x x+=+②,由2⨯-②①得83()2f x x x=+,所以288()333f x x x =+≥=,当且仅当2833x x =,即2x =时,取等号,所以()f x 的最小值为83.故选:D考点七:分段函数的求值求参例7.(23-24高一上·河北石家庄·期中)若21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则 (3)f =()A .9B .10C .6-D .6【答案】C【解析】 (3)236f =-⋅=-.故选:C【变式7-1】(23-24高一上·安徽马鞍山·月考)已知函数()21,02,02,0x x f x x x x ⎧-<⎪==⎨⎪->⎩,则(){}1f f f =⎡⎤⎣⎦()A .2B .1C .0D .-1【答案】A【解析】因为()21,02,02,0x x f x x x x ⎧-<⎪==⎨⎪->⎩,所以()1121f =-=-,()()()211110f f f =-=--=⎡⎤⎣⎦,所以(){}()102f f f f ==⎡⎤⎣⎦.故选:A【变式7-2】(23-24高一上·浙江嘉兴·期末)已知函数()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()3f =()A .14B .12C .2D .4【答案】B【解析】因为()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()()()113113212442f f f -====.故选:B.【变式7-3】(22-23高一上·天津西青·期末)已知函数()231,2,2x x f x x ax x +<⎧=⎨+≥⎩.若2123f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.则实数=a ()A .1-B .1C .2-D .2【答案】B【解析】结合题意可得:2222,=3+1=3333f ⎛⎫<∴⨯ ⎪⎝⎭,()2232,=333123f f f a ⎛⎫⎛⎫≥∴=+= ⎪⎪⎝⎭⎝⎭,解得:1a =.故选:B.【变式7-4】(23-24高一上·安徽宿州·期中)已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是()A .()2,+∞B .[)(]2,00,2-U C .(][),22,-∞-+∞U D .()()2,00,2-⋃【答案】D【解析】由()()0a f a f a -->⎡⎤⎣⎦,若0a >,则()()0f a f a -->,即()1210a a +--⨯-->⎡⎤⎣⎦,解得2a <,所以02a <<若a<0,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为()()2,00,2-⋃.故选:D考点八:函数图象实际应用例8.(23-24高一上·北京·期中)在股票买卖过程中,经常用到两种曲线,一种是即时曲线()y f x =(实线表示);另一种是平均价格曲线()y g x =(虚线表示).如()23f =是指开始买卖第二小时的即时价格为3元;()23g =表示二个小时内的平均价格为3元,下列给出的图象中,可能正确的是()A .B .C .D .【答案】A【解析】开始时,即时价格与平均价格相同,故排除C ;买卖过程中,平均价格不可能一直大于即时价格,故排除B ;买卖过程中,即时价格不可能一直大于平均价格,故排除D ;故选:A.【变式8-1】(23-24高一上·山东·期中)下图的四个图象中,与下述三件事均不吻合的是()(1)我骑着车离开家后一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(2)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(3)我从家出发后,心情轻松,一路缓缓加速行进.A .B .C .D .【答案】D【解析】(1)我骑着车离开家后一路匀速行驶,此时对应的图像为直线递增图像,只是在途中遇到一次交通堵塞,耽搁了一些时间,此时离家距离为常数,然后为递增图像,对应图像A ;(2)我离开家不久,此时离家距离为递增图像,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学,此时离开家的距离递减到0,然后再递增,对应图像C ;(3)我从家出发后,心情轻松,一路缓缓加速行进,此时图像为递增图像,对应图像B ;故选:D【变式8-2】(23-24高一上·宁夏固原·月考)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈()A B O A →→→,则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是()A .B .C .D .【答案】D【解析】当小明在弧AB 上运动时,与O 点的距离相等,所以AB 选项错误.当小明在半径BO 上运动时,与O 点的距离减小,当小明在半径OA 上运动时,与O 点的距离增大,所以C 选项错误,D 选项正确.故选:D【变式8-3】(23-24高一上·福建福州·期中)某市一天内的气温()Q t (单位:℃)与时刻t (单位:时)之间的关系如图所示,令()C t 表示时间段[]0,t 内的温差(即时间段[]0,t 内最高温度与最低温度的差),()C t 与t 之间的函数关系用下列图象表示,则下列图象最接近的是().A .B .C .D .【答案】D【解析】由题意()C t ,从0到4逐渐增大,从4到8不变,从8到12逐渐增大,从12到20不变,从20到24又逐渐增大,从4到8不变,是常数,该常数为2,只有D 满足,故选:D .一、单选题1.(23-24高一下·广东汕头·期中)函数1()2f x x =-的定义域为()A .{2|3x x >且2x ≠}B .{2|3x x <且2x >}C .2|23x x ⎧⎫≤≤⎨⎬⎩⎭D .{2|3x x ≥且2x ≠}【答案】D【解析】由题意得32020x x -≥⎧⎨-≠⎩,解得23x ≥且2x ≠,即定义域为223xx x ⎧⎫≥≠⎨⎬⎩⎭∣且.故选:D .2.(23-24高一上·湖北·期末)已知函数()21f x -的定义域为()1,2-,则函数()1f x -的定义域为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()2,4-D .()2,1-【答案】C【解析】函数()21f x -的定义域为()1,2-,所以12x -<<,224,3213x x -<<-<-<,所以()f x 的定义域为()3,3-,对于函数()1f x -,由313x -<-<,得24-<<x ,所以函数()1f x -的定义域为()2,4-.故选:C3.(22-23高一上·湖南·期中)已知函数()y g x =的对应关系如表所示,函数()y f x =的图象是如图所示,则()1g f ⎡⎤⎣⎦的值为()x123()g x 43-1A .-1B .0C .3D .4【答案】A【解析】由图象可知()13f =,而由表格可知()31g =-,所以()11g f ⎡⎤=-⎣⎦.故选:A 4.(23-24高一上·湖北·期末)已知函数()21,04,01x x f x x x x ⎧+<⎪=⎨+≥⎪+⎩,则()()()1f f f -=()A .2B .3C .3-D .5【答案】A【解析】依题意,()()2412,2221f f +-===+,所以()()()()()()1222f f f f f f -===.故选:A5.(23-24高一上·山东淄博·月考)已知()2122f x x x +=-+,则函数()f x 的解析式是()A .()263f x x x =-+B .()245f x x x =-+C .()245f x x x =--D .()2610f x x x =-+【答案】B【解析】令1t x =+,由于x ∈R ,则R t ∈,1x t =-,所以()()()()221121245f x f t t t t t +==---+=-+,得()245f t t t =-+,所以函数()f x 的解析式为()245f x x x =-+.故选:B6.(23-24高一上·山东青岛·期中)中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.已知集合{}1,2,3M =,{}1,2,3N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是()A .B .C .D .【答案】D【解析】根据函数的定义,在集合M 中任意一个数在N 中有且只有一个与之对应,选项A 中集合M 中2对应的数有两个,故错误;选项B 中集合M 中3没有对应的数,故错误;选项C 中对应法则为从M 到N 的函数,箭头应从M 指向N ,故错误;选项D 中集合M 中任意一个数在集合N 中都有唯一数与之对应,故D 正确,故选:D二、多选题7.(23-24高一上·安徽马鞍山·月考)下列各组函数表示同一函数的是()A .()(),f x x g x ==B .()(),f x x g x ==C .()()1,1f x x g t t =-=-D .()()01,f x x g x x x=+=+【答案】AC【解析】A.()(),f x x g x x ==,定义域都为R ,故表示同一函数;B.()(),f x x g x x ==,故不是同一函数;C.()()1,1f x x g t t =-=-,解析式相同,定义域都为R ,故表示同一函数;D.()()01,1f x x g x x x x =+=+=+,()f x 的定义域为R ,()g x 的定义域为{}|0x x ≠,故不是同一函数,故选:AC8.(23-24高一上·云南曲靖·月考)已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是()A .()f x 的定义域为RB .()f x 的值域为(),4-∞C .()13f =D .若()3f x =,则x【答案】BD【解析】对于A ,因为()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,所以()f x 的定义域为(,1](1,2)(,2)-∞--=-∞ ,所以A 错误;对于B ,当1x ≤-时,21x +≤,当12x -<<时,204x ≤<,所以()f x 的值域为(,1][0,4)(,4)-∞=-∞ ,所以B 正确;对于C ,因为()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,所以2(1)11f ==,所以C 错误;对于D ,当1x ≤-时,由()3f x =,得23x +=,解得1x =(舍去),当12x -<<时,由()3f x =,得23x =,解得x =x =综上,x =D 正确.故选:BD.三、填空题9.(23-24高一上·北京·期中)已知:函数()4f x x =+,()22g x x x =-+,则()f g x =⎡⎤⎣⎦.【答案】224x x -++【解析】函数()4f x x =+,()22g x x x =-+,则()()22224f g x f x x x x ⎡⎤=-+=-++⎣⎦.故答案为:224x x -++10.(23-24高一上·广东珠海·期末)函数y =的值域为.【答案】[]0,4【解析】由y =可得()80x -≥,故08x ≤≤,又()288162x x x x +-⎛⎫-≤= ⎝⎭,当且仅当8x x =-,即4x =时取等号,4≤,故函数y []0,4,故答案为:[]0,411.(23-24高一下·山东淄博·期中)已知函数()2,131,1x x f x x x ≤⎧=⎨->⎩,则不等式()()13f x f x +-<的解集为.【答案】65x x ⎧⎫<⎨⎬⎩⎭【解析】当1x ≤时,10x -≤,()()()1221423f x f x x x x +-=+-=-<,得54x <,所以1x ≤;当12x <≤时,11x -≤,()()()13121533f x f x x x x +-=-+-=-<,得65x <,所以615x <<;当2x >时,11x ->,()()()131311653f x f x x x x +-=-+--=-<,得43x <,所以无解;综上所述,不等式()()13f x f x +-<的解集为65x x ⎧⎫<⎨⎬⎩⎭.故答案为:65x x ⎧⎫<⎨⎬⎩⎭四、解答题12.(23-24高一上·河南濮阳·月考)已知函数()2,01,0132,1x x xf x x x x x ⎧≤⎪-⎪=<<⎨⎪--≥⎪⎩.(1)画出函数()f x 的图象;(2)当()2f x ≥时,求实数x 【答案】(1)作图见解析;(2)1,0,7,.3⎛⎫⎡⎛⎤-∞+∞ ⎪ ⎢⎥⎝⎦⎣⎝⎭【解析】(1)因为()2,01,0132,1x x xf x x x x x ⎧≤⎪-⎪=<<⎨⎪--≥⎪⎩,所以()f x的图象如图所示:(2)由题可得202x x ≤⎧⎨≥⎩或0112x x x<<⎧⎪-⎨≥⎪⎩或1322x x ≥⎧⎨--≥⎩,解得x ≤或103x <≤或7x ≥,所以实数x的取值范围为1,0,7,.3∞∞⎛⎫⎡⎛⎤-⋃⋃+ ⎪ ⎢⎥⎝⎦⎣⎝⎭13.(23-24高一上·广东潮州·期中)已知函数()4,11,11x x x f x x x x-⎧≤-⎪⎪=⎨-⎪>-⎪+⎩2()1g x x =-.(1)求()2f ,()2g 的值;(2)若7(())9f g a =-,求实数a 的值.【答案】(1)13-,3;(2)3±【解析】(1)因为21>-,且()4,11,11x x x f x x x x -⎧≤-⎪⎪=⎨-⎪>-⎪+⎩,所以121(2)123f -==-+.因为2()1g x x =-,所以2(2)213g =-=.(2)依题意,令()g a t =,若1t ≤-,则47(())()9t f g a f t t -===-,解得914t =>-,与1t ≤-矛盾,舍去;若1t >-,则17(())()19t f g a f t t -===-+,解得81t =>-,故2()18g a a =-=,解得3a =±,所以实数a 的值为3±;综上所述:a 的值为3±.。

高一必修一函数复习讲义

高一必修一函数复习讲义

个性化辅导授课教案+∞1)(0,1);1,0)(1,)+∞1,0)(0,1)1)(1,)二次函数常见题型一.最值问题()x f已知函数注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f = 例1求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x ===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1.(2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0.(3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3例2指数函数y =ax ,y =bx ,y =cx ,y =dx 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c .例3比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()例4作出下列函数的图像:(1)y (2)y 22x==-,()121x +【例8】已知=>f(x)(a 1)a a x x -+11 y =2|x-1| (4)y =|1-3x|保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)例5.()()111>+-=a a a x f x x (1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数. 解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x1、x2∈(-∞,+∞)且x1<x2.f(x1)-f(x2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l x x x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 12122.对数函数1.对数的概念一般地,如果ax =N(a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =logaN .a 叫做对数的底数,N 叫做真数.2. 对数与指数间的关系3.对数的基本性质(1)负数和零没有对数. (2)loga1=0(a >0,a ≠1). (3)logaa =1(a >0,a ≠1).10.对数的基本运算性质(1)loga(M ·N)=logaM +logaN . (2)loga M N=logaM -logaN . (3)logaMn =nlogaM(n ∈R).4.换底公式(1)logab =logcb logca(a >0,且a ≠1;c >0,且c ≠1,b >0).(2) 5.对数函数的定义一般地,我们把函数y =logax(a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).6.对数函数的图象和性质a >1 0<a <1图象性质定义域(0,+∞) 值域R 过定点(1,0),即当x =1时,y =0 单调性在(0,+∞)上是增函数 在(0,+∞)上是减函数 奇偶性非奇非偶函数 7.反函数对数函数y =logax(a >0且a ≠1)和指数函数y =ax(a >0且a ≠1)互为反函数.例1.求下列函数的定义域:(1)y =lg (2-x ); (2)y =1log3(3x -2); (3)y =log(2x -1)(-4x +8).例2.比较下列各组中两个值的大小:(1)ln 0.3,ln 2; (2)loga3.1,loga5.2(a>0,且a ≠1);(3)log30.2,log40.2; (4)log3π,log π3.。

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

知识点3、集合间的基本关系知识梳理1、子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集图示(1)任何一个集合是它本身的子集,即A⊆A.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.3、真子集的概念(1)A⊂B且B⊂C,则A⊂C;(2)A⊆B且A≠B,则A⊂B常考题型题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}A.1B.2 C.3 D.4①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.判断集合间关系的方法(1)用定义判断.首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断.对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.变式训练能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()A. B. C. D.题型二、有限集合子集的确定例2、(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}⊂≠M⊆{1,2,3,4,5}的集合M有________个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.变式训练非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.变式训练已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.课时小测1、给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有()A.0个B.1个C.2个D.3个2、已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆C C.A⊂≠B⊆C D.A=B⊆C3、已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.4、集合A={x|0≤x<3且x∈N}的真子集的个数为________.5、已知集合A={x|1≤x≤2},B={x|1≤x≤a}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.同步练习一、选择题1.已知集合A,B,若A不是B的子集,则下列命题中正确的是A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∉A2.如果{}|1A x x =>-,那么A .0A ⊆B .{}0A ∈C .A ∅∈D .{}0A ⊆ 3.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)∅⊆{0,1,2}. A .0 B .1 C .2 D .3 4.若集合{}|0A x x =≥,且B A ⊆,则集合B 可能是A .{}1,2B .{}|1x x ≤C .{}1,0,1-D .R 5.若2{|,}x x a a ⊂∅≤∈≠R ,则实数a 的取值范围是A .B .C .D . 6.已知全集U =R ,则正确表示集合{}1,0,1M =-和{}2|0N x x x =+=关系的韦恩(Venn)图是A B C D7.设集合{1,2}M =,2{}N a =,那么 A .若1a =,则N M ⊆B .若N M ⊆,则1a =C .若1a =,则N M ⊆,反之也成立D .1a =和N M ⊆成立没有关系8.已知集合{}4,5,6P =,,定义{},,P Q x x p q p P q Q ⊕==-∈∈,则集合P Q ⊕的所有非空真子集的个数为A .32B .31C .30D .以上都不对二、填空题9.设P ={x |x <4},Q ={x |-2<x <2},则P Q .10.已知集合,,则满足条件的集合C 的个数为_____.三、解答题11.写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集. (0,)+∞[0,)+∞(,0]-∞(,0)-∞{}1,2,3Q =2{|320,}A x x x x =-+=∈R {|05,}B x x x =<<∈N A C B ⊆⊆12.已知集合{}{}2,4,6,8,9,1,2,3,5,8A B ==,又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减去2后,则变为B 的一个子集,求集合C .13.已知集合A ={x|2a −1<x <3a +1},集合B ={x|−1<x <4}.(1)若A ⊆B ,求实数a 的取值范围;(2)是否存在实数a ,使A =B ?若存在,求出a 的值;若不存在,说明理由.知识点4、集合的并集、交集知识梳理1、并集的概念、并集的性质(1)A ∪B =B ∪A ,即两个集合的并集满足交换律.(2)A ∪A =A ,即任何集合与其本身的并集等于这个集合本身. (3)A ∪∅=∅∪A =A ,即任何集合与空集的并集等于这个集合本身.(4)A ⊆(A ∪B),B ⊆ (A ∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A ⊆B ,则A ∪B =B ,反之也成立,即任何集合同它的子集的并集,等于这个集合本身. 3、交集的概念4、交集的性质(1)A∩B=B∩A,即两个集合的交集满足交换律.(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.(3)A∩∅=∅∩A=∅,即任何集合与空集的交集等于空集.(4)A∩B⊆A,A∩B⊆B,即两个集合的交集是其中任一集合的子集.(5)若A⊆B,则A∩B=A,反之也成立,即若A是B的子集,则A,B的公共部分是A.常考题型题型一、并集的运算例1、(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8} C.{3,5,7,8} D.{4,5,6,8} (2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2}变式训练若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个题型二、交集的运算例2、(1)若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B等于()A.{1,2} B.{0,1} C.{0,3} D.{3}(2)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4} D.{x|1≤x≤4}求交集运算应关注两点(1)求交集就是求两集合的所有公共元素形成的集合.(2)利用集合的并、交求参数的值时,要检验集合元素的互异性.变式训练已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.题型三、交集、并集的性质及应用例3、已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.变式训练已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∩B=A,试求k的取值范围.课时小测1、设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2、已知S={(x,y)|y=1,x∈R},T={(x,y)|x=1,y∈R},则S∩T=()A.空集B.{1}C.(1,1) D.{(1,1)}3、若集合A={x|-1<x<5},B={x|x≤-1,或x≥4},则A∪B=________,A∩B=________.4、已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.5、设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.知识点5、补集及综合应用知识梳理1、全集的定义及表示(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2、补集的概念及性质的补集,记作U=∅,U∅U U(U(U U常考题型题型一、补集的运算例1、(1)设全集U=R,集合A={x|2<x≤5},则U A=________.(2)设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则U A=________,U B=________.变式训练设全集U={1,3,5,7,9},A={1,|a-5|,9),U A={5,7},则a的值为________.题型二、集合的交、并、补的综合运算例2、已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(U A)∪B,A∩(U B),U(A∪B).变式训练已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求U(A∪B),U(A∩B),(U A)∩(U B),(U A)∪(U B).题型三、补集的综合应用例3、设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M⊂≠U P,求实数a的取值范围.变式训练已知集合A={x|x<a},B={x<-1,或x>0},若A∩(R B)=∅,求实数a的取值范围.课时小测2、已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1,或x >4},那么集合A ∩(U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3,或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3、已知集合A ={3,4,m },集合B ={3,4},若A B ={5},则实数m =________. 4、已知全集U =R ,M ={x |-1<x <1},U N ={x |0<x <2},那么集合M ∪N =________.5、设U =R ,已知集合A ={x|-5<x<5},B ={x|0≤x<7},求(1)A∩B ;(2)A ∪B ;(3)A ∪(U B);(4)B∩(U A);(5)(U A )∩(U B ).同步练习一、选择题1、已知集合{1,2,3,4,5,6}U =,{1,3,4}A =,则UA =A .{5,6}B .{1,2,3,4}C .{2,5,6}D .{2,3,4,5,6} 2、已知集合{}|1A x x =>,{|1}B x x =≤,则 A .AB ≠∅ B .A B =RC .B A ⊆D .A B ⊆3、若集合{}{}1,2,3,4,2A B x x ==∈≤N ,则AB 中的元素个数是A .4B .6C .2D .34、已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}5、设集合{},A a b =,集合{}1,5B a =+,若{}2A B =,则A B =A .{}1,2B .{}1,5C .{}2,5D .{}1,2,5 6、若集合AB BC =,则集合A,B,C 的关系下列表示正确的是。

讲义高一数学必修一函数复习

讲义高一数学必修一函数复习

函数的有关概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.2.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(5)指数、对数式的底必须大于零且不等于1. (6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3. 相同函数的判断方法:(满足以下两个条件) ①定义域一致 (化简前)②表达式相同(与表示自变量和函数值的字母无关);4.值域: 先考虑其定义域(1)图像观察法(掌握一次函数、二次函数、指数函数、对数函数、幂函数、)0,(>+=b a xbax y 三角函数等的图像,利用函数单调性) (2)基本不等式 (3)换元法 (4)判别式法5. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P(x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y)均在C 上 . (2) 画法 描点法图象变换法:常用变换方法有三种:平移变换 伸缩变换 对称变换6.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间(3)区间的数轴表示.7.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

2024年新高一数学讲义(人教A版2019必修第一册)函数不等式恒成立与能成立(解析版)

2024年新高一数学讲义(人教A版2019必修第一册)函数不等式恒成立与能成立(解析版)

专题拓展:函数不等式恒成立与能成立一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x 2、∀∈x D ,()()max ≥⇔≥m f x m f x 3、∃∈x D ,()()max ≤⇔≤m f x m f x 4、∃∈x D ,()()min≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;考点一:单变量不等式恒成立例1.(23-24高一上·广东湛江·月考)若不等式10x a -++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦成立,则a 的最小值为()A .0B .2-C .52-D .12-【答案】D【解析】若不等式10x a -++≥对一切10,2x ⎛⎤∈ ⎝⎦成立,则max (1)a x ≥-+,当12x =时,1x -+取最大值12-,故12a ≥-,故a 的最小值是12-.故选:D .【变式1-1】(23-24高一上·河南·月考)若对于任意的0x >,不等式()2310x a x +-+≥恒成立,则实数a的取值范围为()A .[)5,+∞B .()5,+∞C .(],5-∞D .(),5-∞【答案】C【解析】不等式()2310x a x +-+≥可化为,231x x a x++≥,令()231x x f x x++=,由题意可得()min a f x ≤,()1335f x x x =++≥=,当且仅当1x x =,即1x =时等号成立,()min 5a f x ≤=,所以实数a 的取值范围为(],5-∞.故选:C.【变式1-2】(23-24高一下·贵州遵义·月考)已知函数()()lg 31kf x x =+,若不等式()1f x <在()0,33x ∈上恒成立,则k 的取值范围为()A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C .()0,2D .1,22⎡⎫⎪⎢⎣⎭【答案】A【解析】因为033x <<,所以131100x <+<,所以()20lg 31x <+<,由()1f x <,得()1lg 31kx <+,即()lg 311k x <+,因为不等式()1f x <在()0,33x ∈上恒成立,所以()min lg 311k x ⎡⎤⎢⎥⎢⎥⎣<+⎦,()0,33x ∈即可.由()20lg 31x <+<,得()21g 31l 1x >+,即12k ≤,所以k 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A.【变式1-3】(23-24高一下·黑龙江大庆·开学考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()e x f x g x +=,且()2e 0x f x m ->-≥在[]1,2x ∈上恒成立,则实数m 的取值范围为.【答案】(2e ,0-⎤-⎦【解析】因为()()e xf xg x +=,①得()()e xf xg x --+-=,又()f x 和()g x 分别为偶函数和奇函数,所以()()e xf xg x --=,②由①②相加得()2e e x xf x -=+,又()2e 0xf x m ->-≥在[]1,2x ∈上恒成立即e 0x m --<≤在[]1,2x ∈上恒成立,设()e xh x -=-,则只需()max m h x >,易知()h x 在[]1,2上为增函数,()()2max 2e h x h -==-,所以2e 0m --<≤,故答案为:(2e ,0-⎤-⎦.考点二:单变量不等式能成立例2.(23-24高一上·重庆·期末)已知函数()22f x x x =-,若存在[]2,4x ∈,使得不等式()23f x a a≤+成立,则实数a 的取值范围为.【答案】][(),30,∞∞--⋃+【解析】因为函数()22f x x x =-的对称轴为1x =,所以当[]24x ,∈时,该二次函数单调递增,所以()()min 20f x f ==,因为存在[]24x ,∈,使得不等式()23f x a a ≤+成立,所以有2300a a a +≥⇒≥,或3a ≤-,因此实数a 的取值范围为][(),30,∞∞--⋃+,故答案为:][(),30,∞∞--⋃+【变式2-1】(22-23高一上·四川南充·月考)已知函数()142f x x x =+-.若存在()2,x ∈+∞,使得()2f x a a ≤-成立,则实数a 的取值范围是.【答案】(][),34,-∞-⋃+∞【解析】因为()2,x ∈+∞,所以20x ->,所以()1144(2)822f x x x x x =+=-++--812≥+=,当且仅当14(2)2x x -=-,即52x =时取等号,所以min ()12f x =,因为存在()2,x ∈+∞,使得()2f x a a ≤-成立,所以只要()2min f x a a ≤-,即212a a ≤-,得3a ≤-或4a ≥,所以a 的取值范围为(][),34,-∞-⋃+∞.【变式2-2】(22-23高一上·山东枣庄·月考)设函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦,若1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则实数a 的取值范围是.【答案】(][),12,-∞-⋃+∞【解析】因为函数1()f x x x =+,1,32x ⎡⎤∈⎢⎥⎣⎦,而函数()f x 在1,12⎡⎤⎢⎥⎣⎦为减函数,在[]1,3为增函数,所以min ()(1)112f x f ==+=,即函数的最小值为2,又1,32x ⎡⎤∃∈⎢⎥⎣⎦,使得2()a a f x -≥成立,则2min ()a a f x -≥,即22a a -≥,解得:2a ≥或1a ≤-,即实数a 的取值范围是2a ≥或1a ≤-,故答案为:(][),12,-∞-⋃+∞【变式2-3】(23-24高一下·河北张家口·开学考试)已知函数()22(0)g x ax ax b a =++>在区间[]0,2上有最大值11和最小值3,且()()g x f x x=.(1)求a b 、的值;(2)若不等式()220x xk f ⋅-≤在[]1,2x ∈-上有解,求实数k 的取值范围.【答案】(1)1,3a b ==;(2)17k ≤.【解析】(1)函数()22(0)g x ax ax b a =++>图象的对称轴为=1x -,显然函数()g x 在[]0,2上单调递增,因此min ()(0)3g x g b ===,max ()(2)811g x g a b ==+=,解得1a =,所以1,3a b ==.(2)由(1)知,2()23g x x x =++,()3()2g x f x x x x==++,因此不等式2332)2)012(202(22()22x x x xx x xk f k k ⋅-⋅++≤≤-⇔≤⇔++,令12x t =,由[]1,2x ∈-,得124t ≤≤,则22321321(22)x xt t ++=++,显然函数2321y t t =++在1[,2]4t ∈上单调递增,当2t =时,max 17y =,由不等式()220x xk f ⋅-≤在[]1,2x ∈-上有解,得17k ≤,所以实数k 的取值范围是17k ≤.考点三:任意-任意型不等式成立例3.(21-22高二下·北京·月考)已知()()21,2xf x xg x m ⎛⎫==- ⎪⎝⎭,若对任意[]10,2x ∈,任意[]21,2x ∈,使得()()12f x g x ≥,则实数m 的取值范围是()A .14m ≥B .14m ≤C .12m ≥D .12m ≤【答案】C【解析】由[]10,2x ∈,2()f x x =,所以1()[0,4]f x ∈,对任意的[]10,2x ∈,要使()()12f x g x ≥成立,即要2()0g x ≤,对任意[]21,2x ∈上成立,所以任意[1,2]x ∈,使得1()2x m ≤成立,即max 11()22x m ≥=.故选:C.【变式3-1】(22-23高一上·湖北鄂州·期中)已知()f x 是定义在[]31,3D a a =++上的奇函数,且当(]0,3x a ∈+时,()22f x x ax =+.(1)求函数()f x 的解析式;(2)设()g x x b =-+,对任意12,x x D ∈,均有()()12f x g x ≥,求实数b 的取值范围.【答案】(1)()222,020,02,20x x x f x x x x x ⎧-<≤⎪==⎨⎪---≤<⎩;(2)(,3]-∞-【解析】(1)因为()f x 是定义在[]313a a ++,上的奇函数,所以3130a a ++=+,解得1a =-,所以()f x 是定义在[]22-,上的奇函数,可得()00f =,当2(]0,x ∈时,()22f x x x =-.当[2,0)x ∈-时,则(0,2]x -∈,所以()()()2222f x x x x x -=---=+,因为()f x 是奇函数,所以()()22f x f x x x -=-=+,所以()22f x x x =--,所以()222,020,02,20x x x f x x x x x ⎧-<≤⎪==⎨⎪---≤<⎩.(2)对任意12,x x D ∈,均有()12()f x g x ≥,只需min max ()()f x g x ≥,由(1)知,当2(]0,x ∈时,()222(1)1f x x x x =-=--,当1x =时,()min 1f x =-;当[2,0)x ∈-时,()222(1)1f x x x x =--=-++,当2x =-时,()min 0f x =,又由()00f =,所以函数min ()(1)1f x f ==-,因为()g x x b =-+在[2,-上为单调递减函数,所以()()max 22g x g b =-=+,所以12b -≥+,解得3b ≤-,故实数b 的取值范围为(,3]-∞-.【变式3-2】(23-24高一上·湖南永州·期末)已知函数()lg f x x =,()2e e x xg x a =-.(1)若对[]11,10x ∀∈,[)20,x ∀∈+∞都有()()12f x g x ≤,求实数a 的取值范围;(2)若函数()()()h x g x g x =+-,求函数()h x 的零点个数.【答案】(1)2a ≥;(2)答案见解析.【解析】(1)对[]11,10x ∀∈,[)20,x ∀∈+∞都有()()12f x g x ≤,只需()()12max min f x g x ≤,由()11lg f x x =在[]11,10x ∈上递增,故()1max (10)1f x f ==,由()2222ee x x g x a =-,在[)20,x ∈+∞上有2[1,)e x t ∈=+∞,所以()22g x y at t ==-且[1,)t ∈+∞,故有21at t -≥在[1,)t ∈+∞上恒成立,所以2max max 211111()[()24a t t t ≥+=+-,而1(0,1]t∈,即2a ≥.(2)由题设()2222e e e )e e e e ()(e x x x x x x x xh a x a a ----=--=+-++,令2e e x x μ-=≥+,当且仅当0x =时等号成立,则2222()2e e e e x x x x μ--+=+=+,即2222e e x x μ-+=-,所以()2()2a a h x ϕμμμ==--且[2,)μ∈+∞,令2()20a a ϕμμμ=--=,则问题等价于2122a μμμμ==--在[2,)μ∈+∞上解的个数,又12y μμ=-在[2,)μ∈+∞上递减,故(0,1]y ∈,当1a >或0a ≤时,22a μμ=-在[2,)μ∈+∞上无解,即()h x 无零点;当1a =时,22(1)(2)0μμμμ--=+-=在[2,)μ∈+∞上有2μ=,所以2e e x x μ-+==,即0x =,故()h x 有1个零点;当01a <<时,220a a μμ--=在[2,)μ∈+∞上有122aμ+=>(负值舍),又e e x x μ-=+为偶函数,此时()h x 有2个零点;综上,1a >或0a ≤时,()h x 无零点;1a =时,()h x 有1个零点;01a <<时,()h x 有2个零点;【变式3-3】(23-24高一上·北京·月考)已知函数()()()()()21122log 1log 1,6R f x x x g x x ax a =++-=-+∈.(1)求函数()f x 的定义域.(2)判断函数()f x 的奇偶性,并说明理由.(3)对)[]12,1,2x x ∀∈+∞∈,不等式()()12f x g x ≤恒成立,求实数a 的取值范围.【答案】(1)()1,+∞;(2)函数()f x 为非奇非偶函数,理由见解析;(3)11,2⎛⎤-∞ ⎥⎝⎦【解析】(1)由函数()()()1122log 1log 1f x x x =++-有意义,则满足1010x x +>⎧⎨->⎩,解得1x >,所以函数()f x 的定义域为()1,+∞.(2)因为()f x 的定义域为()1,+∞,不关于原点对称,所以函数()f x 为非奇非偶函数.(3)由“对)[]12,2,4x x ∀∈+∞∈-,不等式()()12f x g x ≤恒成立”,可得max min ()()f x g x ≤,当x ()()()()2111222log 1log 1log 1f x x x x =++-=-由()f x 在)+∞上单调递减,max ()1f x f==-,根据题意得,对[]21,2,70x x ax ∀∈-+≥法一:可转化为[]71,2,x a x x∀∈≤+,令()7h x x x =+,由()h x 在[]1,2上单调递减得,可得()min 711()2222h x h ==+=,实数a 的取值范围为11,2⎛⎤-∞ ⎥⎝⎦.法二:设函数()27g x x ax =-+,①当22a≥,即4a ≥时,()g x 在[]1,2上单调递减,可得()min ()21021g x g a ==-≥-,解得112a ≤,则1142a ≤≤;②当12a≤,即2a ≤时,()g x 在[]1,2上单调递增,可得()min ()171g x g a ==-≥-,解得8a ≤,则2a ≤;③当122a<<,即24a <<时,()g x 在[]1,2先减后增,可得()2min ()7122a ag x a =-⨯+≥-,解得a -≤≤24a <<,综上,实数a 的取值范围为11,2⎛⎤-∞ ⎥⎝⎦.考点四:任意-存在型不等式成立例4.(23-24高一下·山东淄博·期中)已知函数()3f x x =+,[]0,2x ∈,()ag x x x=+,[]1,2x ∈.对[]10,2x ∀∈,都[]21,2x ∃∈,使得()()12f x g x ≥成立,则a 的范围是.【答案】9,4⎛⎤-∞ ⎥⎝⎦【解析】函数()3f x x =+,在[]0,2x ∈上单调递增,所以min ()(0)3f x f ==,当a<0时,()ag x x x=+在区间[]1,2上单调递增,min ()1g x a =+,所以31a ≥+,解得2a ≤,又因为a<0,所以031a a <⎧⎨≥+⎩,解得a<0;当01a ≤≤时,()ag x x x=+在区间[]1,2上单调递增,其最小值为(1)1g a =+,所以有0131a a ≤≤⎧⎨≥+⎩,解得01a ≤≤,当14a <<时,()ag x x x=+在区间上单调减,在上单调增,其最小值为g =,所以有143a <≤⎧⎪⎨≥⎪⎩,解得914a <≤,当4a >时,()ag x x x =+在区间[]1,2上单调减,()min ()222a g x g ==+,此时4322a a >⎧⎪⎨≥+⎪⎩,无解;所以a 的取值范围是9,4⎛⎤-∞ ⎥⎝⎦,故答案为:9,4⎛⎤-∞ ⎥⎝⎦.【变式4-1】(23-24高一上·重庆·月考)已知函数()()4,2xf x xg x a x=+=+.若[][]121,3,2,3x x ∀∈∃∈,使得()()12f x g x ≥成立,则实数a 的范围是()A .4a ≤B .3a ≤C .0a ≤D .1a ≤【答案】C【解析】因为()44f x x x =+≥=,当且仅当4x x =,且0,x >即2x =时等号成立,所以()min 4f x =,又函数()2x g x a =+在[]2,3上单调递增,所以()2min 24g x a a =+=+,由题意可知()()min min f x g x ≥,即44a ≥+,所以0a ≤,故选:C.【变式4-2】(23-24高一上·广东佛山·期中)已知()221f x x x =--,()log a g x x =(0a >且1a ≠),若对任意的[]11,2x ∈-,都存在[]22,4x ∈,使得()()12f x g x <成立,则实数a 的取值范围是()A .,12⎛⎫ ⎪ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .(D .()1,2【答案】D【解析】由题意可知:()()12max max <⎡⎤⎡⎤⎣⎦⎣⎦f x g x ,因为()221f x x x =--的图象开口向上,对称轴为1x =,且[]1,2x ∈-,可知当=1x -时,()f x 取到最大值()12f -=,由题意可得:()22<g x ,可知存在[]22,4x ∈,使得()22<g x 成立,当01a <<,可知()log a g x x =在()0,∞+上单调递减,可得()()2102<=<g x g ,不合题意;当1a >,可知()log a g x x =在()0,∞+上单调递增,可得()2g x 的最大值为()4g ,则()24log 42log =>=a a g a ,即24a <又1a >,解得12a <<;综上所述:实数a 的取值范围是()1,2.故选:D.【变式4-3】(23-24高一上·广东茂名·期中)已知函数()()()2222410,2log 123x f x x x g x x m m =-+=+++-,若对任意[]10,4x ∈,总存在[]2x ∈,使()()12f x g x ≥成立,则实数m 的取值范围为.【答案】[1,2]【解析】对任意[]10,4x ∈,总存在[]22,4x ∈,使()()12f x g x ≥成立,∴对[][]()()1212min min 0,4,2,4,x x f x g x ∈∈≥成立()22410(2)6,f x x x x =-+=-+∴ 当[]10,4x ∈时,()()1min 26f x f ==,()()2222log 123x g x x m m =+++- 在[]2,4上是增函数,∴当[]22,4x ∈时,()()()222222min 22log 212338g x g m m m m ==+++-=-+,()()22638,320,120,12m m m m m m m ∴≥-+∴-+≤∴--≤∴≤≤,故实数m 的取值范围为[1,2].故答案为:[1,2].考点五:存在-存在性不等式成立例5.(22-23高一上·北京丰台·期中)已知函数()f x ax =和221()8g x x a =+(其中0a >),若存在12,(1,1)x x ∈-使得()()12f x g x ≥成立,则实数a 的取值范围是()A .(0,1)B .(0,1]C .22,44⎛-+ ⎝⎭D .22,44⎡+⎢⎣⎦【答案】A【解析】存在12,(1,1)x x ∈-使得()()12f x g x ≥成立,等价于()()max min f x g x ≥在()1,1x ∈-上恒成立,由0a >得,()f x a <,()2min ()0g x g a ==,所以2a a >,解得01a <<,所以实数a 的取值范围是(0,1).故选:A.【变式5-1】(23-24高一上·河北·月考)已知()()[]()()212121,22,,0,1,f x ax g x x x a x x f x g x =+=-+∃∈>,则a 的取值范围是()A .(),2-∞B .()2,+∞C .(),1-∞D .()1,+∞【答案】A【解析】[]12,0,1x x ∃∈,()()12f x g x >,所以,()()12max min f x g x >,()()2222121g x x x a x a =-+=-+-在[]0,1上单调递减,所以()2min 21g x a =-,当0a =时,())2122212f x g x x =>=-,即22212x x >-,取210x x ==成立.当a<0时,()1max 1f x =,即211a -<,得1a <,所以a<0当0a >时,()1max 1f x a =+,即121a a +>-,得2a <,所以02a <<,综上:a 的取值范围是(),2-∞.故选:A【变式5-2】(22-23高一上·辽宁营口·期末)已知函数()4f x x x =+,()2x g x a =+,若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,则实数a 的取值范围是()A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[)3,∞-+D .[)1,+∞【答案】C【解析】若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,故只需()()min max f x g x ≤,其中()4f x x x =+在1,12x ⎡⎤∈⎢⎥⎣⎦上单调递减,故()()min 5114f x f ==+=,()2x g x a =+在[]2,3x ∈上单调递增,故()()max 38g x g a ==+,所以58a ≤+,解得:3a ≥-,实数a 的取值范围是[)3,∞-+.故选:C【变式5-3】(23-24高一上·全国·期末)已知2()21,()log (0a f x x x g x x a =--=>且0)a ≠,若存在[]11,2x ∈-,存在[]22,4x ∈,使得12()()f x g x <成立,则实数a 的取值范围是.【答案】()1,2∞⎛⎫⋃+ ⎪ ⎪⎝⎭【解析】因为22()21(1)2f x x x x =--=--,当[]1,2x ∈-时,max min ()(1)2,()(1)2f x f f x f =-===-,因为存在[]11,2x ∈-,存在[]22,4x ∈,使得12()()f x g x <成立,所以函数()f x 在[]1,2-上的最小值小于函数()g x 在[]2,4上的最大值.当01a <<时,函数()log a g x x =在[]2,4上单调递减,则2log 2a -<,解得02a <<;当1a >时,函数()log a g x x =在[]2,4上单调递增,则2log 4a -<,解得1a >,综上,实数a 的取值范围是()0,1,2∞⎛⋃+ ⎪⎝⎭.故答案为:()0,1,2∞⎛⎫⋃+ ⎪ ⎪⎝⎭.考点六:任意-存在型等式成立例6.(22-23高二下·黑龙江哈尔滨·期末)已知221()2,()e 1x f x x x m g x -=-+=-,若对[]12130,3,,22x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x =,则实数m 的取值范围是()A .22,e 4⎡⎤-⎣⎦B .21,e 5⎡⎤-⎣⎦C .22,e 5⎡⎤-⎣⎦D .21,e 4⎡⎤-⎣⎦【答案】D【解析】因为22()2(1)1f x x x m x m =-+=-+-,[]0,3x ∈,所以()f x 在[0,1)上递减,在(1,3]上递增,所以()f x 的最小值为(1)1f m =-,因为(0),(3)3f m f m ==+,3m m +>,所以()f x 的最大值为3m +,所以()f x 的值域为[1,3]m m -+,因为21()e 1x g x -=-在13,22x ⎡⎤∈⎢⎥⎣⎦上递增,所以()g x 的值域为2[0,e 1]-,因为对[]12130,3,,22x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x =,所以[1,3]m m -+是2[0,e 1]-的子集,所以2103e 1m m -≥⎧⎨+≤-⎩,解得21e 4m ≤≤-,即m 的取值范围21e 4m ≤≤-故选:D 【变式6-1】(23-24高一上·甘肃酒泉·期末)已知函数()2f x ax =-,()122,13,1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩对1[3,3]x ∀∈-,2[3,3]x ∃∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A .[1,1]-B .[]0,4C .[]1,3D .[2,2]-【答案】D【解析】因为()122,13,1,31,x x g x x x -⎧≤≤=⎨-+-≤<⎩所以[)23,1x ∈-时,()[]22218,1g x x =-+∈-,[]21,3x ∈时,()[]21221,4x g x -=∈,综上()[]28,4g x ∈-.当0a >时,1[3,3]x ∀∈-,[]1()32,32f x a a ∈---,由题意,[][]32,328,4a a ---⊆-,即328324a a --≥-⎧⎨-≤⎩,解得02a <≤;当0a =时,1()2f x =-,符合题意;当0a <时,1[3,3]x ∀∈-,[]1()32,32f x a a ∈---,由题意,[][]32,328,4a a ---⊆-,即328324a a -≥-⎧⎨--≤⎩,解得20a -≤<;综上可得[]2,2a ∈-.故选:D.【变式6-2】(23-24高一上·江苏南通·期中)已知函数()f x 为偶函数,且[]2,0x ∈-时,()f x x =-.(1)求(]0,2x ∈时,()f x 的解析式;(2)若函数()()20g x ax a a =+-≠,对[][]122,2,2,2x x ∀∈-∃∈-,使得()()21g x f x =成立,求实数a 的取值范围.【答案】(1)()f x x =--,(]0,2x ∈;(2)6a ≤-或2a ≥.【解析】(1)(]0,2x ∈时,[)2,0x -∈-,所以()f x x x -=--=--,因为()f x 为偶函数,所以()()f x f x -=,则()f x x =--(]0,2x ∈;(2)因为()f x 为偶函数,所以()f x 在[]2,0-和[]0,2上的值域相同,当(]0,2x ∈时,()f x x =--,令t 23x t =-,t ⎡∈⎣,所以函数化为()222314y t t t =--=--,t ⎡∈⎣,所以1t =时,min 4y =-;t =max y =-即()f x 在[]22-,上的值域为4,⎡--⎣.又对[]12,2x ∀∈-,[]22,2x ∃∈-,使得()()21g x f x =成立,所以()f x 的值域是()g x 的值域的子集,①当0a >时,()g x 在[]22-,上的值域为[]23,2a a -+则4232aa -≥-⎧⎪⎨-≤+⎪⎩,解得2a ≥②当a<0时,()g x 在[]22-,上的值域为[]2,23a a +-,则4223a a -≥+⎧⎪⎨-≤-⎪⎩,解得6a ≤-综上所述,实数a 的取值范围为6a ≤-或2a ≥.【变式6-3】(21-22高一下·上海黄浦·月考)已知函数2()f x x x k =-+,若2log ()2f a =,2(log )f a k =,1a ≠.(1)求,a k 的值,并求函数(log )a f x 的最小值及此时x 的值;(2)函数()42g x mx m =+-,若对任意的1[1,3]x ∈,总存在2[1,3]x ∈,使得()()12f x g x =成立,求实数m 的取值范围.【答案】(1)2a =,2k =,x (log )a f x 有最小值74;(2)(,4][4,)-∞-+∞【解析】(1)因为2()f x x x k =-+,所以2()f a a a k =-+,所以()2222log 2log 44a a k a a k -+==⇒-+=,①因为2(log )f a k =,所以()2222log log l )og (f k a a a k =-+=,②由②得,()2222log log log 00a a a -=⇒=或21log a =,解得1a =或2a =因为0a >,且1a ≠,所以2a =,代入①得22242k k -+=⇒=,所以2,2a k ==,所以2()2f x x x =-+所以22222217(log )(log )(log )log 2(log )24a f x f x x x x ==-+=-+.所以当21log 2x =,即x =(log )a f x 有最小值74.(2)2()2f x x x =-+,当1[1,3]x ∈时,1()[2,8]f x ∈,因为对任意的1[1,3]x ∈,总存在2[1,3]x ∈,使得()()12f x g x =成立,所以1()f x 的值域是2()g x 值域的子集,当0m =时,()4g x =,舍去;当0m >时,因为2[1,3]x ∈,所以2()[4,4]g x m m ∈-++,所以4248m m -+≤⎧⎨+≥⎩,所以4m ≥;当0m <时,因为2[1,3]x ∈,所以2()[4,4]g x m m ∈+-+,所以4248m m +≤⎧⎨-+≥⎩,所以4m -;综上,实数m 的取值范围是(,4][4,)-∞-+∞ .一、单选题1.(23-24高一上·河北石家庄·期中)已知函数2()224x x f x a =-⋅+,若()0f x ≥恒成立,则实数a 的取值范围为()A .(,4]-∞B .(,2]-∞C .[4,)+∞D .[2,)+∞【答案】A【解析】因为()0f x ≥恒成立,即22240x x a -⋅+≥恒成立,所以422xx a ≤+恒成立,又由4242x x +≥=(当且仅当1x =时取等号),所以4a ≤.故选:A .2.(23-24高一上·吉林长春·期中)设函数()221(1)f x x x =-+-,不等式()()3f ax f x ≤+在(]1,2x ∈上恒成立,则实数a 的取值范围是()A .5,2⎛⎤-∞ ⎥⎝⎦B .(],2-∞C .51,2⎡⎤-⎢⎥⎣⎦D .35,22⎡⎤-⎢⎥⎣⎦【答案】D【解析】因为()212f x x x +=+,()212f x x x -=+,所以()()11f x f x +=-,所以函数()221(1)f x x x =-+-关于直线1x =对称,当1x ≥时,()()2221(1)1f x x x x =-+-=-,则函数()f x 在[)1,+∞上单调递增,所以在(),1-∞上单调递减,又不等式()()3f ax f x ≤+在(]1,2x ∈上恒成立,所以12ax x -≤+在(]1,2x ∈上恒成立,即12ax x -≤+在(]1,2x ∈上恒成立,所以212--≤-≤+x ax x 在(]1,2x ∈上恒成立,所以1311--≤≤+a x x 在(]1,2x ∈上恒成立,所以max min1311⎛⎫⎛⎫--≤≤+ ⎪ ⎪⎝⎭⎝⎭a x x ,因为函数11y x =--在(]1,2x ∈上单调递增,所以max 1131122x ⎛⎫--=--=- ⎪⎝⎭,因为函数31=+y x 在(]1,2x ∈上单调递减,所以min3351122x ⎛⎫+=+= ⎪⎝⎭,所以3522a -≤≤,即35,22⎡⎤-⎢⎥⎣⎦.故选:D3.(22-23高一上·海南·期中)已知函数()24a x x x f =-+,()5g x ax a =+-,若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()1f x g x =成立,则实数a 的取值范围是()A .(],9-∞-B .[]9,3-C .[)3,+∞D .(][),93,-∞-+∞ 【答案】D【解析】要使对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,即()f x 在[]1,3-上值域是()g x 在[]1,3-上值域的子集,2()(2)4f x x a =-+-开口向上且对称轴为2x =,则[]1,3-上值域为[4,5]a a -+;对于()5g x ax a =+-:当a<0时()g x 在[]1,3-上值域为[25,52]a a +-,此时,0254525a a a a a <⎧⎪+≤-⎨⎪-≥+⎩,可得9a ≤-;当0a =时()g x 在[]1,3-上值域为{5},不满足要求;当0a >时()g x 在[]1,3-上值域为[52,25]a a -+;此时,0255524a a a a a >⎧⎪+≥+⎨⎪-≤-⎩,可得3a ≥;综上,a 的取值范围(][),93,-∞-+∞ .故选:D4.(23-24高一上·江西南昌·月考)已知函数()4f x x x=+,()2xg x a =+.若[]11,3x ∀∈,[]22,3x ∃∈,使得()()12f x g x ≥成立,则实数a 的取值范围是()A .4a ≤-B .3a ≤-C .0a ≤D .1a ≤【答案】C【解析】设()4f x x x=+在[]1,3上的最小值为()min f x ,()2xg x a =+在[]2,3上的最小值为()min g x .因为44x x +≥=,当且仅当4x x =,且0x >,即2x =时等号成立,所以,()min 4f x =.()2x g x a =+在[]2,3上单调递增,所以()()min 24g x g a ==+.由[]11,3x ∀∈,[]22,3x ∃∈,使得()()12f x g x ≥成立,可得()()min min f x g x ≥,即44a ≥+,所以0a ≤.故选:C.5.(22-23高二上·陕西西安·期中)已知()()()21ln 12xf x xg x m ⎛⎫=+=- ⎪⎝⎭,,若对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则实数m 的取值范围是()A .14⎡⎫+∞⎪⎢⎣⎭,B .14⎛-∞⎤ ⎝,C .12⎡⎫+∞⎪⎢⎣⎭D .12⎛⎤-∞- ⎥⎝⎦,【答案】C【解析】易知()2(ln 1)f x x =+在[0,3]上单调递增,()()min 00f x f ==,()1()2x g x m =-在[1,2]上单调递减,()()max 112g x g m ==-,对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则()()min maxf xg x ≥所以102m -≤,即12m ≥.故选:C.6.(21-22高一上·福建泉州·期中)已知函数()3f x ax =,0a >,223()2g x x a =+,若存在1x ,211,22x ⎡⎤∈-⎢⎥⎣⎦使得()()12f x g x ≥成立,则a 的取值范围为()A .25a <<B .02a <<C.52a <<或2a <-D .108a <≤【答案】D【解析】设任意的11,,22m n ⎡⎤∈-⎢⎥⎣⎦,且m n <,0a >,所以()()()()2233f a m n m m nm f n am a n n -=-++-=()223024n n a m n m ⎡⎤⎛⎫=-++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,即()()f m f n <,所以()3f x ax =在11,22⎡⎤-⎢⎥⎣⎦上单调递增,所以()max 128a f x f ⎛⎫== ⎪⎝⎭;因为223()2g x x a =+,其对称轴为0x =,所以根据二次函数的性质可得223()2g x x a =+在11,22⎡⎤-⎢⎥⎣⎦可得到最小值2(0)g a =,若存在1x ,211,22x ⎡⎤∈-⎢⎥⎣⎦使得()()12f x g x ≥成立,只需()()max min f x g x ≥,所以28a a ≥,解得108a ≤≤,因为0a >,所以a 的取值范围为108a <≤,故选:D 二、多选题7.(23-24高一上·辽宁丹东·月考)12x x m -++≥对于x ∀∈R 恒成立,则m 的可能取值为()A .1B .2C .3D .4【答案】ABC【解析】设()12f x x x =-++,则()21,1123,2121,2x x f x x x x x x +≥⎧⎪=-++=-<<⎨⎪--≤-⎩,则()f x的图象如下所示:由图可知当21x -≤≤时()f x 取得最小值3,即123x x -++≥当且仅当21x -≤≤时取等号,因为12x x m -++≥对于x ∀∈R 恒成立,所以3m ≤,故符合题意的有A 、B 、C.故选:ABC8.(23-24高一上·湖南株洲·月考)已知函数()21([2,2])f x x x =-+∈-,2()2([0,3])g x x x x =-∈,则下列结论正确的是()A .[2,2]x ∀∈-,()f x a >恒成立,则a 的取值范围是(,3)-∞-B .[2,2]x ∃∈-,()f x a >,则a 的取值范围是(,3)-∞-C .[0,3]x ∃∈,()g x a =,则a 的取值范围是[1,3]-D .[2,2]x ∀∈-,[0,3]t ∃∈,()()f x g t =【答案】AC【解析】对于A ,因为()21([2,2])f x x x =-+∈-单调递减,所以min ()3f x =-,又因为()f x a >恒成立,则a 的取值范围是(,3)-∞-,故A 正确;对于B ,因为()21([2,2])f x x x =-+∈-单调递减,所以max ()5f x =,又[2,2]x ∃∈-,()f x a >,则a 的取值范围是(,5)-∞,故B 错误;对于C ,2()2([0,3])g x x x x =-∈在[]0,1单调递减,(]1,3单调递增,所以min max ()(1)1,()(3)3,g x g g x g ==-==所以()[1,3]g x ∈-,因为[0,3]x ∃∈,()g x a =,所以a 的取值范围是[1,3]-,故C 正确;对于D ,由上述过程可知[]()3,5f x ∈-,()[1,3]g x ∈-,则不能保证[2,2]x ∀∈-,[0,3]t ∃∈,()()f x g t =,例如:当2x =-时,不存在[0,3]t ∈,()()f x g t =,故D 错误.故选:AC.三、填空题9.(23-24高一上·广东·月考)已知函数1()2xf x ⎛⎫= ⎪⎝⎭与2()24(0)g x x ax a =-+>,若对任意的1(0,1)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,则实数a 的取值范围是.【答案】,2⎫+∞⎪⎪⎣⎭【解析】1()2xf x ⎛⎫= ⎪⎝⎭,函数单调递减,1(0,1)x ∈,故()11,12f x ⎛⎫∈ ⎪⎝⎭,对任意的1(0,1)x ∈,都存在2[0,2]x ∈,使得()()12f x g x =,故()2g x 的值域包含1,12⎛⎫⎪⎝⎭,①当02a <<时,()()2min 142g x g a a ==-≤,解得22a ≤<,此时()()max 041g x g ==≥,成立;②当2a ≥时,函数在[]0,2上单调递减,()()max 041g x g ==≥,成立,()()min 12842g x g a ==-≤,解得158a ≥,即2a ≥;综上所述:2a ⎫∈+∞⎪⎪⎣⎭.故答案为:,2⎫+∞⎪⎪⎣⎭10.(23-24高一上·广东佛山·期中)已知函数()f x x x =,若对任意[],2x t t ∈+,不等式()()29f x t f x +≤恒成立,则实数t 的取值范围是.【答案】1⎡⎤⎣⎦【解析】因为()f x x x =,则有:当0x ≥时,()2f x x =,此时()f x 单调递增;当0x ≤时,()2f x x =-,此时()f x 单调递增,且()00f =,所以()f x 为R 上的连续函数且在R 上单调递增.又因为()()99333===f x x x x x f x ,则()()()293+≤=f x t f x f x ,可得23+≤x t x ,即23≤-t x x 对任意[],2x t t ∈+恒成立,注意到23y x x =-的图象开口向下,则()()223322t t t t t t ⎧≤-⎪⎨≤+-+⎪⎩,解得01≤≤t ,所以实数t 的取值范围为1⎡⎤⎦.故答案为:1⎡⎤⎣⎦.11.(23-24高一下·上海嘉定·月考)已知函数()()22log 1f x x =+,()12xg x m ⎛⎫=+ ⎪⎝⎭,若对于任意[]11,1x ∈-,存在[]21,1x ∈-,使得()()12f x g x ≤,则实数m 的取值范围为.【答案】[)1,-+∞【解析】因为[]11,1x ∈-,所以[]2111,2x ∈+,所以()[]221log 10,1x ∈+,即()[]10,1f x ∈,由[]21,1x ∈-,则211,222xm m m ⎡⎤+∈++⎢⎥⎛⎪⎭⎣⎫ ⎦⎝,即()21,22g x m m ⎡⎤∈++⎢⎥⎣⎦,因为对于任意[]11,1x ∈-,存在[]21,1x ∈-,使得()()12f x g x ≤,所以()()12max max f x g x ≤,则21m +≥,解得1m ≥-,即[)1,m ∈-+∞.故答案为:[)1,-+∞.四、解答题12.(22-23高一上·江西赣州·期中)函数()log a f x b x =⋅(其中a ,b 为常数,且0a >,1a ≠)的图象经过点(),4A a ,()4,8B .(1)求函数()f x 的解析式;(2)若不等式110x xm b a ⎛⎫⎛⎫--≥ ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,求实数m 的取值范围.【答案】(1)2()4log f x x =;(2)2m ≤【解析】(1)由题意得log 4log 48a a b a b ⋅=⎧⎨⋅=⎩,解之得24a b =⎧⎨=⎩,故2()4log f x x =;(2)由(1)知11042x xm ⎛⎫⎛⎫--≥ ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,即1142x x m ⎛⎫⎛⎫≤- ⎪ ⎪⎝⎭⎝⎭在区间[]1,2-上有解,所以max 1142x x m ⎡⎤⎛⎫⎛⎫≤-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,因为2211111114222224x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由于[]1,2x ∈-得11,224x ⎡⎤∈⎢⎥⎣⎦,所以当122x =即=1x -时,1142x x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭有最大值为2,因此m 的取值范围为2m ≤.13.(23-24高一上·内蒙古赤峰·期末)已知函数()()21log 212x f x x =+-.(1)解不等式()112f x x >+;(2)设()()g x f x x =+,()22h x x x m =-+,若对任意的[]10,4x ∈,存在[]20,5x ∈,使得()()12g x h x ≥,求m 的取值范围.【答案】(1)(),0∞-;(2)(,2]-∞【解析】(1)因为()112f x x >+,所以()211log 21122x x x +->+,所以()22221log 211log log 22x x xx ++->⇔>,由对数函数2log y x =的单调性可知:2122x x +>,所以21x <,由指数函数2x y =的单调性可知:0x <,所以不等式的解集为(),0∞-;(2)()()21log 212x g x x =++,因为对任意的[]10,4x ∈,存在[]20,5x ∈,使得()()12g x h x ≥,所以()g x 在[]0,4上的最小值不小于()h x 在[]0,5上的最小值;因为()21log 21,2x y y x =+=均在[]0,4上单调递增,所以()21()log 212x g x x =++在[]0,4上单调递增,所以()()min 01g x g ==,因为()()22211h x x x m x m =-+=-+-,所以()h x 在[]0,1上单调递减,在[]1,5上单调递增,所以()()min 11h x h m ==-,所以11m ≥-,解得2m ≤,所以m 的取值范围为(,2]-∞.。

高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。

【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。

一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。

【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。

以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。

医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。

高一数学(必修1)专题复习一函数的单调性和奇偶性

高一数学(必修1)专题复习一函数的单调性和奇偶性

高一数学(必修 1 )专题复习一函数的单一性和奇偶性一.基础知识复习1.函数单一性的定义:I假如函数 f ( x) 对定义域内的区间内的随意 x1 , x2,当 x1 x2时都有f x1 f x2,则 f x 在 I 内是增函数;当x1 x2时都有 f x1 f x2 ,则 f x 在I 内时减函数.2.单一性的定义①的等价形式:设x1 , x2 a,b ,那么f x1 f x20 f x 在x1 x2a,b 是增函数f x1 f x20 f x 在a,b 是减函数;;x1 x2x1 x2 f x1 f x2 0 f ( x) 在a, b是减函数.3.函数单一性的应用:利用定义都是充要性命题.即若 f ( x) 在区间I 上递加(递减)且 f (x1) f ( x2 ) x1 x2( x1, x2 I );若 f ( x) 在区间I 上递递减且 f ( x1 ) f ( x2 ) x1 x2( x1, x2 I ).① 比较函数值的大小;② 可用来解不等式;③ 求函数的值域或最值等.4.证明或判断函数单一性的方法:议论函数单一性一定在其定义域内进行,所以要研究函数单一性一定先求函数的定义域,函数的单一区间是定义域的子集.( 1)用定义.(2)用已知函数的单一性.(3)图象法.( 4)假如f (x) 在区间I上是增(减)函数,那么 f (x) 在I的任一非空子区间上也是增(减)函数(5)复合函数的单一性结论:“同增异减” .(6)奇函数在对称的单一区间内有同样的单一性,偶函数在对称的单一区间内拥有相反的单一性.( 7)在公共定义域内,增函数f (x) 增函数 g(x) 是增函数;减函数 f (x) 减函数 g(x) 是减函数;增函数 f (x) 减函数 g ( x) 是增函数;减函数 f ( x) 增函数 g(x) 是减函数.( 8 )函数y axb(a 0, b 0) 在, b 或 b , 上单一递加;在x a ab,0 或 0,b上是单一递减.a a5 .函数的奇偶性的定义:设y f ( x) ,x A ,如果对于任意 x A,都有f ( x) f ( x) ,则称函数 y f ( x) 为奇函数;如果对于任意x A,都有f ( x) f ( x) ,则称函数 y f ( x) 为偶函数.6.奇偶函数的性质:( 1)函数拥有奇偶性的必需条件是其定义域对于原点对称.( 2)f ( x)是偶函数 f ( x) 的图象对于y 轴对称; f (x)是奇函数 f ( x) 的图象关于原点对称.( 3)f (x) 为偶函数 f ( x) f ( x) f (| x |) .( 4)若奇函数 f ( x) 的定义域包括0 ,则 f (0) 0 .二.训练题目(一)选择题1.以下函数中,在区间( ,0] 上是增函数的是()A .y x2 4x 8 B.y log 1 ( x) C.y 21 D.y 1 x2 x2.若函数f ( x) x2 2(a 1)x 2 在区间,4 上是减函数,则实数 a 的取值范围是A.3, B.,3 C.,3 D.3,3.函数f (x)在递加区间是4,7 ,则 y f (x 3) 的递加区间是()A .2,3 B.1,10 C.1,7 D.4,104.已知函数f x 为 R 上的减函数,则知足 f 1f 1 的实数x的范围是()xA .1,1 B.0,1 C.1,0 0,1 D., 1 1,5.假如奇函数 f ( x) 在区间3,7 上是增函数,且最小值为 5 ,那么在区间7, 3 上是A .增函数且最小值为 5B .增函数且最大值为 5C.减函数且最小值为 5 D .减函数且最大值为 56.若函数f ( x)是定义在R上的偶函数,在( ,0] 上是减函数,且 f (2) 0 ,则使得f ( x) 0的 x 的取值范围是()A .,2 B.2, C., 2 U 2, D.2,27f (x) x2 2ax与g ( x)a 在区间1, 2上都是减函数,则 a 的取值范围是.若x 1A .1, 0 U 0,1B .1, 0 U0,1 C.0,1 D.0,18.若函数f ( x)是定义在R上的奇函数,则函数F (x) f (x) f ( x ) 的图象对于()A .x轴对称B .y轴对称C.原点对称 D .以上均不对9.设f (x)是R上的随意函数,以下表达正确的选项是()A .f ( x) f ( x) 是奇函数B.f ( x) f ( x) 是奇函数C.f ( x) f ( x) 是偶函数D.f ( x) f ( x) 是偶函数10.已知f (x)是偶函数,x R ,当 x 0 时, f ( x)为增函数,若x1 0, x2 0 ,且| x1 | | x2 |,则()A .f ( x1) f ( x2 ) B.f ( x1) f ( x2 )C. f ( x1) f ( x2 ) D. f (x1) f ( x2 )(二)填空题1.已知f (x)是R上的奇函数,且在( 0, ) 上是增函数,则 f ( x) 在 ( ,0) 上的单一性为.2.已知奇函数 f ( x) 在0, 单一递加,且 f (3) 0 ,则不等式 xf ( x) 0 的解集是 .3.已知偶函数 f (x) 在 [0,2] 内单一递减, 若 af ( 1) ,bf (log 1 1) ,c f (lg 0.5) ,2 4则 a 、 b 、 c 之间的大小关系是 _____________ .4.若函数 f ( x) a x b 2 在 0,上为增函数, 则实数 a 、b 的范围是. 5.已知 yf ( x) 为奇函数,若 f (3)f (2) 1 ,则 f ( 2)f ( 3).6.设函数 f (x)(x1)( xa)为奇函数,则 a.x7.已知函数 f ( x) ax 2 bx c , x 2a3,1 是偶函数 ,则 a b.8.已知 f ( x)ax 7 bx 5 cx 3dx 5 ,此中 a, b, c, d 为常数,若 f ( 7)7 ,则f (7) _______.9.已知函数 f ( x) 是定义在 ,上的偶函数,当x,0 时, f ( x) x x 4 ,则当 x0, 时, f ( x).10.定义在 ( 1,1) 上的函数 f ( x)x m是奇函数, 则常数 m ____ ,n_____ .x2nx 1(三)解答题1.写出以下函数的单一区间( 1)y x 2 x 1( 2)y2x 1(3)yx 3 x3x 22.判断以下各函数的奇偶性:( 1) f ( x) 2( x 1) 3 6x(x 2) 2 ( 2) f (x)x 21 x 21( 3) f ( x)1 x 2x 2 x (x0)x 2 2(4) f ( x)x( x 0)x 23.利用单一性的定义: ( 1)证明函数 f ( x)x 3 1 在( -∞, +∞)上是减函数.ax( 2)议论函数f ( x)x 2 1 ( a 0 )在(- 1,1)上的单一性.4.( 1)已知奇函数f ( x) 在定义域 ( 1,1) 内单一递减,且 f (1 m) f (1 m2 ) 0,求m的取值范围.( 2)设定义在2,2上的偶函数f ( x)在区间0,2上单一递减,若f (1 m) f (m),务实数 m 的取值范围.5 f (x)x2 1 ax,此中a 0 1 f ( x)在区间0,.设函数.求证:当 a ≥时,函数上是单一函数.6a 0,f ( x)a 是R 1 2 f (x)在(0, ).设e x 上的偶函数.()求 a 的值;()证明a e x上为增函数.7 .已知函数f ( x)的定义域是x 0 的一切实数,对定义域内的任意x1, x2都有f (x1 x2 ) f (x1) f ( x2 ) ,且当x 1时f ( x) 0, f (2) 1 ,( 1)求证:f (x)是偶函数;( 2)f ( x)在(0,) 上是增函数;( 3)解不等式f (2 x21) 2。

第三章 函数的概念与性质 章节复习知识点网络 高一上学期数学人教A版(2019)必修第一册

第三章 函数的概念与性质 章节复习知识点网络 高一上学期数学人教A版(2019)必修第一册

第三章 函数的概念与性质章节复习一、本章知识结构二、本章重难点概念知识点1、函数及三要素(定义域、对应法则、值域) 一、函数的概念2、区间一般区间、特殊区间、 端点大小关系、开闭区间 1、函数概念中强调三性:“任意性”、“存在性”、“唯一性”; 2、定义域、值域的结果写成集合或区间形式; 3、对应关系包括一对一、多对一。

一、判断对应法则或图象是否是一个函数(非空性、任意性x 、唯一确定性y )二、判断两个函数是否是相同函数(定义域、对应法则) 三、求函数定义域(写成集合或区间形式)3、分段函数概念、表示方式、定义域、值域、图象4、复合函数(定义域、值域) 二、函数的表示法5、函数的单调性、单调区间 1、三种表示方法:解析法、列表法、图像法; 2、列表法表示的函数图象是一些孤立的点,函数图象呈现形式主要有2种:连续的曲线或孤立的点; 3、画函数图象方法:描点法(列表、描点、连线)6、函数的最大值、最小值7、函数的奇偶性8、幂函数(概念、图象、性质)三、题型1、求一般函数的定义域(写成集合或区间形式)函数类型定义域举例①整式函数R f(x)=x2+2x+3②分式函数分母不为0 f(x)=1 2x+3③偶次根式函数根号中式子≥0f(x)=√x2+2x−3④奇次根式函数R f(x)=√x2+2x+33⑤绝对值函数R f(x)=|x2+2x+3|⑥0次幂函数底数不为0 f(x)=(x2+2x−3)0⑦对数函数真数大于0 f(x)=log2(2x−3)⑧实际问题考虑实际意义正方形周长公式f(x)=4x(x>0)多个使函数有意义的条件用花括号连接,写成不等式组。

2、求复合函数的定义域①已知f(x)的定义域,求f(g(x))的定义域;②已知f(g(x))的定义域,求f(x)的定义域;③已知f(g(x))的定义域,求f(g(x))的定义域;④已知f(g(x))的定义域,求F(x)=f(g(x))+f(ℎ(x))的定义域关键:定义域是指自变量x的值相同对应法则f下的整体变量取值范围相同(空间不变原理)3、求简单函数的值域(写成集合或区间形式)函数类型定义域值域一次函数R R二次函数Ra>0时,[4ac−b24a,+∞)a<0时,(-∞,4ac−b24a]配方、画图、找最高点和最低点反比例函数(−∞,0)∪(0,+∞)(−∞,0)∪(0,+∞)分式函数分母不为0 配凑法(利用基本不等式求解)4、求函数的解析式①待定系数法②换元法/配凑法③方程组法/消元法 ④赋值法最后一定要考虑定义域,定义域不是R 一定要写出来5、函数单调性的判断、证明及应用 单调递增单调递减函数f(x)在区间D 上为增函数,x 1,x 2∈D ,且x 1≠x 2,则函数f(x)在区间D 上为减函数,x 1,x 2∈D ,且x 1≠x 2,则① x 1<x 2⟺f (x 1)<f(x 2) ① x 1<x 2⟺f (x 1)>f(x 2) ② (x 1−x 2)[f (x 1)−f(x 2)]>0 ② (x 1−x 2)[f (x 1)−f(x 2)]<0 ③f (x 1)−f(x 2)x 1−x 2>0 ③f (x 1)−f(x 2)x 1−x 2<0④ x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1) ④ x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) 即x 与f(x)的变化趋势相同, 自变量增量与函数值增量同号。

高中必修一函数全章知识点整理

高中必修一函数全章知识点整理

高中必修一函数全章知识点整理函数复主要知识点一、函数的概念与表示1.映射映射是指集合A中的任意一个元素,都有唯一的元素和它在集合B中对应。

这样的对应关系(包括集合A、B以及A 到B的对应法则f)称为集合A到集合B的映射,记作f:A→B。

需要注意的是,一对多不是映射,多对一是映射。

2.函数函数由三个要素构成:定义域、对应法则和值域。

当两个函数的三要素相同时,它们是同一个函数。

二、函数的解析式与定义域1.求函数定义域的主要依据:1)分式的分母不为零;2)偶次方根的被开方数不小于零,零取零次方没有意义;3)指数函数的底数必须大于零且不等于1.2.求函数定义域的两个难点问题:1)已知f(x)的定义域是[-2,5],求f(2x+3)的定义域。

2)已知f(2x-1/x)的定义域是[-1,3],求f(x)的定义域。

变式练:已知f(2-x)=4-x^2,求f(x)的定义域。

三、函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意x∈A,都有f(-x)=f(x),则称y=f(x)为偶函数。

如果对于任意x∈A,都有f(-x)=-f(x),则称y=f(x)为奇函数。

2.性质:1)y=f(x)是偶函数,当且仅当y=f(x)的图像关于y轴对称;y=f(x)是奇函数,当且仅当y=f(x)的图像关于原点对称。

2)若函数f(x)的定义域关于原点对称,则f(0)=0.3)奇±奇=偶,偶±偶=偶,奇×奇=奇,偶×偶=偶,奇×偶=奇(两函数的定义域D1,D2,D1∩D2要关于原点对称)。

4)奇偶性的判断。

1、已知函数$f(x)$是定义在$(-\infty,+\infty)$上的偶函数。

当$x\in(-\infty,0)$时,$f(x)=x-x^4$,则当$x\in(0,+\infty)$时,$f(x)=-2x+b$。

2、已知定义域为$\mathbb{R}$的函数$f(x)=\dfrac{x+1}{2+a}$是奇函数。

第三章 函数的概念和性质(章末复习)高一数学(人教A版2019必修第一册)

第三章 函数的概念和性质(章末复习)高一数学(人教A版2019必修第一册)

练习
方法技巧:
1.利用函数的奇偶性可求函数值或参数的取值,求解的关键在于借助奇偶性转化
为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.
2.画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何
直观求解相关问题.
练习
变5.已知二次函数() = − 2 + + 2, ∈ .
D. − 2
).
练习
方法技巧:
1.对于幂函数图象的掌握只要抓住在第一象限内三条直线分第一象限为六个区域,
即=1,=1,=所分区域.根据<0,0<<1,=1,>1的取值确定位
置后,其余象限部分由奇偶性决定.
2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性
进行比较.
1

(4)方程思想:已知关于()与( )或(−)等的表达式,可根据已知条件再构造
出另外一个等式组成方程组,通过解方程组求出().
练习
变1.(1)已知()是一次函数,且满足2( + 3) − ( − 2) = 2 + 21,求()的解
析式;
(2)已知函数()满足2() + (−) = 3 + 2,求()的解析式;
(1)若()为偶函数,求的值.
(2)若()在[−1,2]上最大值为4,求.
答案:(1)0;(2) = −3或 = 2 2.
练习
题型六:幂函数
例6.若幂函数() = (2 − − 5) 在(0, +∞)单调递减,则 = (
A.3
答案:.
B.3 , − 2
C. − 3 ,2
为最大值
为最小值
知识梳理
7.函数的奇偶性:

数学必修一函数重点知识整理

数学必修一函数重点知识整理

数学必修一函数重点知识整理1. 函数的定义:函数是一种特殊的关系,它将一个自变量的值对应到一个因变量的值上。

用数学符号表示为:y = f(x),其中x为自变量,y为因变量,f为函数名。

2. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的所有可能取值的范围。

3. 函数的图像:函数的图像是函数在平面直角坐标系上的表示,用于直观地了解函数的性质和特点。

4. 函数的性质:a. 奇偶性:若对于任意x,有f(-x) = f(x),则函数为偶函数;若对于任意x,有f(-x) = -f(x),则函数为奇函数。

b. 单调性:若对于任意x1和x2,若x1<x2,则f(x1)<f(x2)或f(x1)>f(x2),则函数为单调函数。

c. 周期性:若对于任意x,有f(x+T) = f(x),则T为函数的周期。

5. 函数的运算:a. 四则运算:函数相加、相减、相乘、相除的结果仍是函数。

b. 复合函数:若函数f和g满足f的值域是g的定义域,定义h(x) = f(g(x)),则h为函数f和g的复合函数。

6. 函数的特殊类型:a. 一次函数:函数f(x) = ax + b,其中a和b为常数,且a≠0。

b. 幂函数:函数f(x) = ax^b,其中a和b为常数,且a≠0。

c. 指数函数:函数f(x) = a^x,其中a>0且a≠1。

d. 对数函数:函数f(x) = loga(x),其中a>0且a≠1。

7. 函数的极限:a. 函数在某点的极限:若对于任意给定的ε>0,存在对应的δ>0,使得当0<|x-x0|<δ时,有|f(x)-L|<ε,则称函数f在x0处的极限为L。

b. 函数的无穷大极限:若对于任意给定的M>0,存在对应的δ>0,使得当0<|x-x0|<δ时,有f(x)>M或f(x)<-M,则称函数f在x0处的极限为正无穷大或负无穷大。

高一数函数复习讲义

高一数函数复习讲义

转化为关于 x 的不等式组.
[方法总结] 研究抽象函数, 只能从函数性质入手, x, 对 y 取特殊值是常用的方法技巧.
已知函数 f(x)对任意函数都有 f(xy)=f(x)+f(y),且当 x>1 时,f(x)>0.
x (1)求证:fy=f(x)-f(y);
(2)求证:f(x)在(0,+∞)上是增函数.
x 的取值范围是(
1 2 B.3,3 1 2 D.2,3
)
5.(2011· 安徽理)设 f(x)是定义在 R 上的奇函数,当 x≤0 时,f(x)=2x2-x,则 f(1)=( A.-3 C.1 B.-1 D.3 )
二、填空题 6. (2012· 周口高一检测)函数 y=x2-3x-4 的定义域为[0, 25 m],值域为[- ,-4],则 m 的取值范围是______. 4
高一数学必修一函数复习讲义
路漫漫其修远兮 吾将上下而求索
高一数学组
张传彬
知识梳理
函数是描述客观世界变化规律的重要数学
模型.高中阶段不仅把函数看成变量之间的依赖关系,同时 还用集合与对应的语言刻画函数,函数的思想方法贯穿于高 中数学课程的始终,配方法、换元法、待定系数法等基本方 法,特殊化思想、分类讨论思想、数形结合等数学思想在本 章中有较大应用,通过学习幂函数、二次函数,体会函数思 想在数学和其他学科中的重要性,因此说函数是中学数学的 一条主线,是中学数学的重要内容,是学习数学其他知识和 分支的基础.
恒成立,求 a 的取值范围. [分析] 函数 f(x)=x2-2ax+2 是二次函数,可利用分类
讨论思想及数形结合思想解题,注意分类的全面性及画图的 准确性.
[方法总结]
1.若 f(x)≥a 恒成立,只需 a≤f(x)min 即可;

高一数学必修①第一章_集合与函数概念讲义

高一数学必修①第一章_集合与函数概念讲义

1第1讲 §1.1.1 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .第1练 §1.1.1 集合的含义与表示※基础达标1.以下元素的全体不能够构成集合的是( ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形 2.方程组{23211x y x y -=+=的解集是( ).A . {}51, B. {}15, C.(){}51, D. (){}15, 3.给出下列关系:①12R ∈;Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( ). A. 1 B. 2 C. 3 D. 4 4.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).A. 只有(1)和(4)B. 只有(2)和(3)2A BB A A B A B A . B .C .D . C. 只有(2) D. 以上四种说法都不对 5.下列各组中的两个集合M 和N, 表示同一集合的是( ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {}M π=, {,1,|N π= 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . 7.已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 . ※能力提高8.试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合; (2)函数232y x =-的自变量的值组成的集合.9.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A .※探究创新10.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3}; ②{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭且 ③{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭或 ; ④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2]≠0}. 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,-3)之外的所有点的集合”的序号有 .第2讲 §1.1.2 集合间的基本关系¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x∈+=; 0 {0}; ∅ {0}; N {0}.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).3【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.第2练 §1.1.2 集合间的基本关系※基础达标1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 之间最适合的关系是( ).A.A B ⊆B.A B ⊇C. A ≠⊂B D. A ≠⊃B2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( ). A. 0 B. 1 C. 1- D. 24.已知集合M ={x |x =2k +14,k ∈Z }, N ={x |x =4k +12, k ∈Z }. 若x 0∈M ,则x 0与N 的关系是( ). A. x 0∈N B. x 0∉N C. x 0∈N 或x 0∉N D.不能确定 5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是( ).A. 1B. -1C. 1或-1D. 0,1或-1 6.已知集合{},,,A a b c =,则集合A 的真子集的个数是 . 7.当2{1,,}{0,,}b a a a b a=+时,a =_________,b =_________.※能力提高8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3, 2610a a -+},A ⊆M ,且A ⊆N ,求实数a 的值.9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.若B A ⊆,求实数m 的取值范围.※探究创新10.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A 且x +1∉A ,则称x 为A 的一个“孤立元素”,写出S 中所有无“孤立元素”的4元子集.第3讲 §1.1.3 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4B (读作“B (读作“{|B x x ={|B x x =¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð.【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A BC ; (2)()A A BC ð.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.第3练 §1.1.3 集合的基本运算(一)※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则U A =ð( ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,7 2.若{|0{|12}A x x B x x =<<=≤<,则A B =( ).A. {|x xB. {|1}x x ≥C. {|1x x ≤<D. {|02}x x <<3.右图中阴影部分表示的集合是( ). A. U A B ð B. U A B ð C. ()U AB ð D. ()U A B ð4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB =( ).A. {}1,2B. {}0,1C. {}0,3D. {}3A55.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k -> D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = . 7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = . ※能力提高8.设全集*{|010,}U x x x N =<<∈,若{3}A B =,{1,5,7}U A B =ð,{9}U UAB =痧,求集合A 、B .9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()U A B ð、()()U UA B 痧.※探究创新10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=. (1)求A B ,A B ;(2)若A B ⊆,求实数a 的值;(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()A B ≠⊂P ≠⊂()AB ,写出所有可能的集合P .第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , AB .(教材P 14 B组题2)6【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)第4练 §1.1.3 集合的基本运算(二)※基础达标1.已知集合A = {}1,2,4, B ={}8x x 是的正约数, 则A 与B 的关系是( ).A. A = BB. A ≠⊂B C. A ≠⊃B D. A ∪B =∅2.已知,,a b c 为非零实数, 代数式||||||||a b c abc a b c abc +++的值所组成的集合为M , 则下列判断正确的是( ). A. 0M ∉ B. 4M -∉ C. 2M ∈ D. 4M ∈ 3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).A .{}4,6MN = B.MN U = C .()u C N M U = D. ()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C. 18 D. 215.设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如右图所示),则阴影部分所表示的集合为( ).A. {}|21x x -≤<B. {}|22x x -≤≤C. {}|12x x <≤D. {}|2x x <6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足AB φ=,则实数a 的取值范围是 .7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 .※能力提高8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}A B =-,求A B .9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.7※探究创新 10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为 ( )A .15B .14C .29D .-14(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( )A .AB .BC .()U A B ð∩D .()U A B ð∪(3)已知集合A ={x |2x n ≠且3x n ≠,n ∈N ,x ∈N *,x ≤100},试求出集合A 的元素之和.第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例4】已知函数22(),1x f x x R x =∈+. (1)求1()(f x f x +的值;(2)计算:111(1)(2)(3)(4)()()(234f f f f f f f ++++++.第5练 §1.2.1 函数的概念※基础达标81.下列各组函数中,表示同一函数的是( ). A. 1,xy y==B. 11,y x y =+C. ,y x y =D. 2||,y x y == 2.函数y =的定义域为( ).A. (,1]-∞B. (,2]-∞C. 11(,)(,1]22-∞-- D. 11(,)(,1]22-∞-- 3.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).4.下列四个图象中,不是函数图象的是( ).5.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)-6.已知()fx =2x +x +1,则f =______;f [(2)f ]=______. 7.已知2(21)2f x x x +=-,则(3)f = . ※能力提高 8.(1)求函数y =(2)求函数2113x y x+=-的定义域与值域.9.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.※探究创新10.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y fx f y -=+;(1)1f -=-,(0)0f =,(1)1f =,求(0),(1),(2)g g g 的值.第6讲§1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两A. B. C. D.9个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.【例2】已知f(x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.第6练 §1.2.2 函数的表示法※基础达标1.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( ).A. 1 B .2 C. 3 D. 42.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).3.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).10A . p q + B. 2p q + C. 2p q + D. 2p q +4.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ).A. f :x →y =12x B. f :x →y =13x C. f :x →y =14x D. f :x →y =16x5.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤⎧⎪=⎨+>⎪⎩给出,其中[]m 是不超过m 的最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( ).A. 3.71B. 4.24C. 4.77D. 7.956.已知函数(),mf x x x=+且此函数图象过点(1,5),实数m 的值为 . 7.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 .※能力提高8.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.9.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式※探究创新 10.(1)设集合{,,}A a b c =,{0,1}B =. 试问:从A 到B 的映射共有几个? (2)集合A 有元素m 个,集合B 有元素n 个,试问:从A 到B 的映射共有几个?第7讲 §1.3.1 函数的单调性¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.11【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.【例4】已知31()2x f x x +=+,指出()f x 的单调区间.第7练 §1.3.1 函数的单调性※基础达标1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( ).A. (,0],(,1]-∞-∞B. (,0],[1,)-∞+∞C. [0,),(,1]+∞-∞D. [0,),[1,)+∞+∞ 4.已知()f x 是R 上的增函数,令()(1)3F x f x =-+,则()F x 是R 上的( ).A .增函数B .减函数C .先减后增D .先增后减5.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( ). A. 2a ≥ B. 2b ≥ C. 4a ≤- D. 4b ≤-6.函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是 . (填“增函数”或“减函数”或“非单调函数”)7.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f之间的大小关系为 . ※能力提高8.指出下列函数的单调区间及单调性:(1)3()1x f x x +=-;(2)2|23|y x x =-++9.若2()f x x bx c =++,且(1)0,(3)0f f ==. (1)求b 与c 的值;(2)试证明函数()f x 在区间(2,)+∞上是增函数.※探究创新10.已知函数()f x 的定义域为R ,对任意实数m 、n 均有()()()1f m n f m f n +=+-,且1()22f =,又当12x >-时,有()0f x >. (1)求1()2f -的值; (2)求证:()f x 是单调递增函数.12第8讲 §1.3.1 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.【例3】求函数2y x =.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.第8练 §1.3.1 函数最大(小)值※基础达标 1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是( ). A . 1 B. 3 C. -2 D. 52.函数221y x x =-+的最大值是( ).A. 8B. 83C. 4D. 433.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( ). A .1a < B .1a ≤ C .1a > D . 1a ≥ 4.某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++则炮弹在发射几秒后13最高呢( ).A. 1.3秒B. 1.4秒C. 1.5秒 D 1.6秒5. 23()1,[0,2f x x x x =++∈已知函数的最大(小)值情况为( ).A. 有最大值34,但无最小值B. 有最小值34,有最大值1C. 有最小值1,有最大值194D. 无最大值,也无最小值6.函数3y x =的最大值是 .7.已知3()3xf x x =-,[4,6]x ∈. 则()f x 的最大值与最小值分别为 .※能力提高8.已知函数2()2f x x x =-+.(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值.9.一个星级旅馆有100个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?※探究创新10.已知函数2142a y x ax =-+-+在区间[0,1]上的最大值为2,求实数a 的值.第9讲 §1.3.2 函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系. ¤例题精讲:【例1】判别下列函数的奇偶性: (1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.14【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.第9练 §1.3.2 函数的奇偶性※基础达标1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).A .奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数2.(08年全国卷Ⅱ.理3文4)函数1()f x x x=-的图像关于( ). A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称 3.已知函数()f x 是奇函数,当0x >时,()(1)f x x x =-;当0x <时,()f x 等于( ). A. (1)x x -+ B. (1)x x + C. (1)x x - D. (1)x x --4.函数()11f x x x =+--,那么()f x 的奇偶性是( ).A .奇函数B .既不是奇函数也不是偶函数C .偶函数D .既是奇函数也是偶函数5.若奇函数()f x 在[3, 7]上是增函数,且最小值是1,则它在[7,3]--上是( ).A. 增函数且最小值是-1B. 增函数且最大值是-1C. 减函数且最大值是-1D. 减函数且最小值是-16.已知53()8f x x ax bx =++-,(2)10f -=,则(2)f = .7.已知()f x 是定义在R 上的奇函数,在(0,)+∞是增函数,且(1)0f =,则(1)0f x +<的解集为 .※能力提高8.已知函数211()()12f x x x =+-. (1)求函数()f x 的定义域; (2)判断函数()f x 的奇偶性并证明你的结论 ++9.若对于一切实数,x y ,都有()()()f x y f x f y +=+:(1)求(0)f ,并证明()f x 为奇函数; (2)若(1)3f =,求(3)f -.※探究创新 10.已知22()()1xf x x R x=∈+,讨论函数()f x 的性质,并作出图象.15第10讲 第一章 集合与函数概念 复习¤复习目标:强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用文氏图解题方法的训练,加强两种集合表示方法转换和化简训练. 深刻理解函数的有关概念.掌握对应法则、图象等有关性质. 理解掌握函数的单调性和奇偶性的概念,并掌握基本的判定方法和步骤,并会运用.¤例题精讲:【例1】已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .【例2】已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并加以证明.【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B =,求实数m 的取值范围.【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .(1)讨论()f x 的奇偶性; (2)若x ≥a ,求()f x 的最小值.第10练 第一章 集合与函数概念测试※基础达标1.已知集合{}|110,P x N x =∈≤≤ {}2|60,Q x R x x =∈+-=则P Q 等于( ).A. {}1,2,3B. {}2,3C. {}1,2D. {}22.已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()U U A B =痧( ). A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7} 3.设()f x 是R 上的任意函数,下列叙述正确的是( )A. ()()f x f x -是奇函数B. ()()f x f x -是奇函数C. ()()f x f x +-是偶函数D. ()()f x f x --是偶函数4.设集合{}12A =,,则满足{}123A B =,,的集合B 的个数是( ).A. 1B. 3C. 4D. 85.已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则f (6)的值为( ). A. -1 B. 0 C. 1 D. 26.)已知集合{1,3,21}A m =--,集合2{3,}B m =.若B ⊆A ,则实数m = .7.已知函数()f x 是定义在(,)-∞+∞上的偶函数. 当(,0)x ∈-∞时,4()f x x x =-,则当(0,)x ∈+∞时,16()f x = .※能力提高8.已知全集*{|9,}U x x x N =≤∈,两个集合A 与B 同时满足: {2,4}AB =,(){1,3,5}U AC B =,且(){7,8}U C A B =. 求集合A 、B .9.已知函数2()8f x x x =-+,求()f x 在区间[],1t t +上的最大值()h t .※探究创新10.已知定义在实数集上的函数y =f (x )满足条件:对于任意的x 、y ∈R ,f (x +y )=f (x )+f (y ). (1)求证:f (0)=0; (2)求证f (x )是奇函数,并举出两个这样的函数;(3)若当x ≥0时,f (x )<0. (i )试判断函数f (x )在R 上的单调性,并证明之;(ii )判断方程│f (x )│=a 所有可能的解的个数,并求出对应的a 的范围.。

高一数学必修一函数讲义

高一数学必修一函数讲义

第一节、函数、函数1、函数的定义: 设集合A 是一个非空的数集,对 A 中的任意数X ,按照确定的法则f ,都有唯一 确定的数y 与它对应,这种对应关系叫做集合 A 上的一个函数,记作 y =f x , x A 。

其中,x叫做自变量,自变量的取值范围叫做函数的定义域。

所有函数值构成的集合,即{ y y = f (x ),x w A}叫做这个函数的值域。

2、检验两个给定的变量之间是否具有函数关系,需检验:例2、 卜列等式中, 能表小 y 是x 的函数的是()A. y h' f xB.2y =x 1C.y - -1- x 2D3、如何判断函数的定义域:(1) 分式的分母不能为零;(2) 开偶次方根的被开方数要不小于零;(3) 多个函数经过四则运算混合得到的函数定义域是多个定义域的交集;(4)函数x 0中x 不为零。

例3、求下列函数的定义域第二章、函数(1 )定义域和对应法则是否给出; 例 A CD3 -2x 3 2x (2) f(x)»2x-1;(1) f (x)二5、区间:设a , b R ,且a v b ,x 的集合,都叫做半开半闭区间,分别记作[a,b )或(a,b ];分别满足x > a,x > a,x w a,x v a 的全体实数的集合分别记作 [a, +8) , ( a, + 8) ,(—8 ,a ], (―^ ,a )。

6、 映射:设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素 y 与之对应,那么就称对应 f : A T B 为从集合A 到集合B 的一个映射•其中x 叫做原象,y 叫做象。

注:映射可以是多对一,不可以一对多。

即A 中元素不可剩余,B 中元素可以剩余。

特别的,集合B 中的任意元素在集合 A 中有且只有一个原象的映射,叫做一一映射。

7、 映射个数的确定:若集合A 有m 个元素,集合B 中有n 个元素,则A 到B 的映射有n m 个。

2020高一数学必修一:函数的概念及其表示(1对1讲义)

2020高一数学必修一:函数的概念及其表示(1对1讲义)

函数的概念及其表示一、知识梳理1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.5.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.(1)满足不等式b x a ≤≤的实数的x 集合叫做闭区间,表示为[]b ,a ; (2)满足不等式b x a <<的实数的x 集合叫做开区间,表示为()b ,a ; (3)满足不等式b x a <≤的实数的x 集合叫做半开半闭区间,表示为[)b a ,; (4)满足不等式b x a ≤<的实数的x 集合叫做也叫半开半闭区间,表示为(]b ,a ;说明:① 对于[]b ,a ,()b ,a ,[)b a ,,(]b ,a 都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;② 引入区间概念后,以实数为元素的集合就有三种表示方法:不等式表示法:3<x<7(一般不用);区间表示法:()73,;③ 在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;④ 实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的 实数x 的集合分别表示为[a,+∞]、(a,+∞)、(-∞,b)、(-∞,b)。

3.1.1 函数的概念(解析版)高一数学同步讲义(新教材人教A版必修第一册)

3.1.1 函数的概念(解析版)高一数学同步讲义(新教材人教A版必修第一册)

10 / 103.1.1 函数的概念一、知识点归纳知识点1. 函数的有关概念 (1)函数的概念(2)同一个函数:如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.(3)函数的三要素:定义域、对应关系、值域是函数的三要素,缺一不可. 知识点2.知识点二 区间及相关概念 (1)区间的概念及记法设a ,b 是两个实数,而且a <b ,我们规定:(2)无穷大实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示二、题型分析题型一函数的定义【例1】根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;(2)A={1,2,3},B={4,5,6},对应关系如图所示;(3)A=R,B={y|y>0},f:x→y=|x|;10 / 10(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.【答案】见解析【解析】对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.【规律方法总结】(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:∈A,B必须都是非空数集;∈A中任意一个数在B中必须有并且是唯一的实数和它对应.【注意】A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.【变式1】. 下列对应或关系式中是A到B的函数的是()A.A=R,B=R,x2+y2=1 B.A={1,2,3,4},B={0,1},对应关系如图:C.A=R,B=R,f:x→y=1 x-2D.A=Z,B=Z,f:x→y=2x-1【答案】B【解析】:A错误,x2+y2=1可化为y=±1-x2,显然对任意x∈A,y值不唯一.B正确,符合函数的定义.C错误,2∈A,在B中找不到与之相对应的数.D错误,-1∈A,在B中找不到与之相对应的数.10 / 1010 / 10题型二 求函数的定义域【例2】求下列函数的定义域.(1)y =3-12x ;(2)y =(x +1)0x +2;(3)y =5-x |x |-3;(4)f (x )=x +1-x 2-3x +4. 【答案】见解析【解析】(1)函数y =3-12x 的定义域为R.(2)由于0的零次幂无意义,故x +1≠0,即x ≠-1. 又x +2>0,即x >-2,所以x >-2且x ≠-1. 所以函数y =(x +1)0x +2的定义域为{x |x >-2且x ≠-1}.(3)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,所以函数y =5-x|x |-3的定义域为{x |x ≤5且x ≠±3}. (4)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1≥0,-x 2-3x +4>0,即⎩⎪⎨⎪⎧x ≥-1,(x +4)(x -1)<0,解不等式组得-1≤x <1. 因此函数f (x )的定义域为{x |-1≤x <1}.10 / 10【规律方法总结】求函数定义域的常用方法 (1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 【变式2】.设全集为R ,函数f (x )=2-x 的定义域为M ,则∈R M 为( ) A .(2,+∞) B .(-∞,2) C .(-∞,2] D .[2,+∞)【答案】A【解析】: 由2-x ≥0解得x ≤2,所以M =(-∞,2],所以∈R M =(2,+∞). 【变式3】.函数f (x )=x x -1的定义域为________.【答案】:{x |x ≥0且x ≠1}【解析】:要使x x -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0且x ≠1,故函数f (x )的定义域为{x |x ≥0且x ≠1}.题型三 同一函数(2)两个注意点:10 / 10题型四 求函数的值、值域问题【例4】(1)f (x )=2x 2+2,g (x )=1x +2,则f (2)=________;g (f (2))=________;g (a )+g (0)(a ≠-2)=________. (2)求下列函数的值域: ∈y =x +1,x ∈{1,2,3,4,5}; ∈y =x 2-2x +3,x ∈[0,3); ∈y =2x +1x -3;∈y =2x -x -1.【答案】:10112 1a +2+12【解析】(1)因为f (x )=2x 2+2, 所以f (2)=2×22+2=10, 又因为g (x )=1x +2,10 / 10所以g (f (2))=g (10)=110+2=112,g (a )+g (0)=1a +2+12(a ≠2).(2)∈观察法:因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.∈配方法:y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6). ∈分离常数法:y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2.故函数的值域为(-∞,2)∈(2,+∞).∈换元法:设t =x -1,则t ≥0且x =t 2+1,所以y =2(t 2+1)-t =2⎝⎛⎭⎫t -142+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为⎣⎡⎭⎫158,+∞. 【规律方法总结】1.函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 2.求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;10 / 10(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 【变式5】求下列函数的值域: (1)y =2x +1+1;(2)y =1-x 21+x 2.【解析】:(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x 2,又函数的定义域为R ,所以x 2+1≥1, 所以0<21+x 2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1].三、课堂达标检测1.下列各个图形中,不可能是函数y =f (x )的图象的是( )【答案】:A【解析】:对于1个x 有无数个y 与其对应,故不是y 的函数. 2.已知函数f (x )=-1,则f (2)的值为( ) A .-2 B .-1 C .0 D .不确定 【答案】:B【解析】:因为函数f (x )=-1,4.函数y=1+2-x的定义域为()A.[1,+∞)B.(-∞,1]C.[2,+∞)D.(-∞,2]【答案】D【解析】:要使函数式有意义,需2-x≥0,解得x≤2.5.用区间表示下列数集:(1){x|x≥1}=________;(2){x|2<x≤4}=________;(3){x|x>-1,且x≠2}=________.【答案】:(1)[1,+∞)(2)(2,4](3)(-1,2)∈(2,+∞)6.已知函数f(x)=2x-3,x∈{x∈N|1≤x≤5},则函数f(x)的值域为________.【答案】:{-1,1,3,5,7}【解析】:定义域为{1,2,3,4,5},逐一代入求值可得值域为{-1,1,3,5,7}.10 / 1010 / 107.下列各组函数是同一个函数的是________.(填序号) ∈f (x )=-2x 3与g (x )=x -2x ; ∈f (x )=x 0与g (x )=1x0;∈f (x )=x 2-2x -1与g (t )=t 2-2t -1. 【答案】∈∈【解析】∈f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数; ∈f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;∈f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 8.若f (x )=1-x1+x (x ≠-1),求f (0),f (1),f (1-a )(a ≠2),f (f (2))的值.【答案】2【解析】:f (0)=1-01+0=1,f (1)=1-11+1=0,f (1-a )=1-(1-a )1+(1-a )=a2-a (a ≠2),f (f (2))=1-f (2)1+f (2)=1-1-21+21+1-21+2=2. 四、课后提升作业一、选择题1.已知f (x )=x 2+1,则f (f (-1))=( ) A .2 B .3 C .4D .510 / 10【答案】D【解析】: 因为f (-1)=(-1)2+1=2,所以f (f (-1))=f (2)=22+1=5.2.已知M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )【答案】B【解析】: A 项中函数的定义域为[-2,0],C 项中对任一x 都有两个y 值与之对应,D 项中函数的值域不是[0,2],均不是函数f (x )的图象.故选B. 3.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 【答案】C【解析】: 选项A 、B 及D 中对应关系都不同,故都不是相等函数. 4.函数f (x )=3x 21-x -23x +1的定义域是( )A.⎣⎡⎦⎤-13,1 B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 【答案】B【解析】: 由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1,从而得B 答案.10 / 105.若函数f (x )=ax 2-1,a 为一个正数,且f (f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1 D .2【答案】A【解析】: ∈f (x )=ax 2-1,∈f (-1)=a -1, f (f (-1))=f (a -1)=a ·(a -1)2-1=-1. ∈a (a -1)2=0. 又∈a 为正数,∈a =1.6.已知函数y =f (x ),则函数与直线x =a 的交点个数有( ) A .1个 B .2个 C .无数个 D .至多一个【答案】D【解析】根据函数的概念,在定义域范围内任意一个自变量x 的值都有唯一的函数值与之对应,因此直线x =a 与函数y =f (x )的图象最多只有一个交点.7.已知等腰三角形ABC 的周长为10,底边长y 关于腰长x 的函数关系式为y =10-2x ,则此函数的定义域为( ) A .RB .{x |x >0}C .{x |0<x <5} D.⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <5 【答案】 D【解析】 ∈∈ABC 的底边长显然大于0,即y =10-2x >0,∈x <5.又两边之和大于第三边,∈2x >10-2x ,∈x >52,∈此函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <5. 8.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式10 / 10为y =x 2,值域为{1,4}的“同族函数”的个数为( )A .6B .9C .12D .16 【答案】B【解析】由题意知,问题的关键在于确定函数定义域的个数.函数解析式为y =x 2,值域为{1,4},当x =±1时,y =1,当x =±2时,y =4,则定义域可以为{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{-1,2,-2},{1,-2,2},{1,-1,2,-2},因此“同族函数”共有9个.二、填空题9.设f (x )=11-x ,则f (f (a ))=________.【答案】:a -1a(a ≠0,且a ≠1)【解析】:f (f (a ))=11-11-a =11-a -11-a =a -1a (a ≠0,且a ≠1).10.函数y =2x +41-x 的值域为________(用区间表示). 【答案】:(-∞,4]【解析】:令t =1-x ,则x =1-t 2(t ≥0), y =2x +41-x =2-2t 2+4t =-2(t -1)2+4. 又∈t ≥0,∈当t =1时,y max =4. 故原函数的值域是(-∞,4].11.设常数a ∈R ,函数f (x )=|x -1|+|x 2-a |,若f (2)=1,则f (1)=________. 【答案】3【解析】由f (2)=1+|22-a |=1,可得a =4,所以f (1)=|1-1|+|1-4|=3.12.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则m 的取值范围为________.10 / 10【答案】 ⎣⎡⎦⎤32,3【解析】 ∈当x =0或x =3时,y =-4;当x =32时,y =-254,∈m ∈⎣⎡⎦⎤32,3. 13.已知函数f (x )=2kx 2-4kx +k +3的定义域为R ,则k 的取值范围是________.【答案】 0≤k <1【解析】 由题意可得kx 2-4kx +k +3>0恒成立. ∈当k =0时,3>0恒成立,所以满足题意;∈当k ≠0时,须使⎩⎪⎨⎪⎧k >0,Δ=(4k )2-4k (k +3)<0, 解得0<k <1.综上所得,k 的取值范围为0≤k <1.三、解答题14.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=5x +4x -1; (3)f (x )=x -x +1. 【答案】见解析【解析】:(1)函数的定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数的值域为{1,2,5}.(2)函数的定义域是{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(3)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域是{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),10 / 10于是f (t )=t 2-1-t =⎝⎛⎭⎫t -122-54.又t ≥0,故f (t )≥-54.所以函数的值域是⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥-54. 15.(1)已知函数f (x )的定义域为[-1,5],求函数f (x -5)的定义域; (2)已知函数f (x -1)的定义域是[0,3],求函数f (x )的定义域; (3)若f (x )的定义域为[-3,5],求φ(x )=f (-x )+f (x )的定义域. 【答案】见解析【解析】 (1)由-1≤x -5≤5,得4≤x ≤10,所以函数f (x -5)的定义域是[4,10]. (2)由0≤x ≤3,得-1≤x -1≤2,所以函数f (x )的定义域是[-1,2].(3)已知f (x )的定义域为[-3,5],则φ(x )的定义域需满足⎩⎪⎨⎪⎧ -3≤-x ≤5,-3≤x ≤5,即⎩⎪⎨⎪⎧-5≤x ≤3,-3≤x ≤5,解得-3≤x ≤3.所以函数φ(x )的定义域为[-3,3]. 16.已知函数f (x )=x 21+x 2.(1)求f (2)+⎪⎭⎫ ⎝⎛21f ,f (3)+⎪⎭⎫ ⎝⎛31f 的值;(2)由(1)中求得的结果,你发现f (x )与⎪⎭⎫⎝⎛x 1f 有什么关系?并证明你的结论; (3)求f (2)+⎪⎭⎫⎝⎛21f +f (3)+⎪⎭⎫ ⎝⎛31f +…+f (2 019)+f ⎪⎭⎫⎝⎛20191f 的值. 【答案】见解析【解析】:(1)∈f (x )=x 21+x 2,∈f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,10 / 10f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)由(1)可发现f (x )+f ⎝⎛⎭⎫1x =1.证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,∈f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2 019)+f ⎝⎛⎭⎫12 019=1. ∈f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 019)+f ⎝⎛⎭⎫12 019=2 018.。

高一数学必修一函数讲义(可编辑修改word版)

高一数学必修一函数讲义(可编辑修改word版)

yx y oo yo xyo x x 第二章、函数第一节、函数一、函数1、函数的定义:设集合 A 是一个非空的数集,对 A 中的任意数 x,按照确定的法则 f,都有唯一确定的数 y 与它对应,这种对应关系叫做集合 A 上的一个函数,记作y = f (x),x ∈A 。

其中,x 叫做自变量,自变量的取值范围叫做函数的定义域。

所有函数值构成的集合,即{y y =f (x), x ∈A}叫做这个函数的值域。

2、检验两个给定的变量之间是否具有函数关系,需检验:(1)定义域和对应法则是否给出;(2)根据给出的对应法则,自变量x 在其定义域中的每一个值,是否都能确定唯一的函数值y 。

例1、下列图形中,能表示y 是x 的函数的是()A B C D例2、下列等式中,能表示y 是x 的函数的是()A.y =±B.y2=x + 1C.y =D.y =3、如何判断函数的定义域:(1)分式的分母不能为零;(2)开偶次方根的被开方数要不小于零;(3)多个函数经过四则运算混合得到的函数定义域是多个定义域的交集;(4)函数x0中x 不为零。

例 3、求下列函数的定义域3 - 2x(1)f (x) =3 +2x ;(2)f (x) =;x-1 -x2 1 -x22x -122(3) f (x ) = (x 2 - 4)0 ; (4) f (x ) = +1x + 2例 4、求下列函数值域(1) f (x ) = 2x + 1, x ∈{1, 2, 3, 4}(2) f (x ) = x 2 - 2x - 1, x ∈[0, 3](3) f (x ) = 1, x ∈(-1,+∞) x(4) f (x ) =2x - 1x + 1, x ∈[1, +∞)4、函数的 3 要素:定义域、值域和对应法则。

判断两个函数相同的依据就是函数的三要素完全相同。

注:在函数关系式的表述中,函数的定义域有时可以省略,这时就约定这个函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x 的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(5)指数、对数式的底必须大于零且不等于1.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3. 相同函数的判断方法:(满足以下两个条件)①定义域一致 (化简前)②表达式相同(与表示自变量和函数值的字母无关);4.值域:先考虑其定义域(1)图像观察法(掌握一次函数、二次函数、指数函数、对数函数、幂函数、)0,(>+=b a xbax y 三角函数等的图像,利用函数单调性) (2)基本不等式 (3)换元法 (4)判别式法5. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P(x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y)均在C 上 . (2) 画法 描点法图象变换法:常用变换方法有三种:平移变换 伸缩变换 对称变换6.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间(3)区间的数轴表示.7.映射一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

记作“f (对应关系):A (原象)→B (象)” 对于映射f :A →B 来说,则应满足:(1)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。

8.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.9.复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间。

(2)减函数如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间。

注意:函数的单调性是函数的局部性质;(3)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(4)函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)导数法(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性相关,规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间写成其并集.2.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。

(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)= -f(x),那么f(x)叫做奇函数。

注:如果奇函数在x=0处有定义,则f(0)=0(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.(4)函数奇偶性判定方法:(A)定义法○1首先确定函数的定义域,并判断其是否关于原点对称;○2求出f(-x),与f(x)进行比较;○3作结论:若f(-x) = f(x),则f(x)是偶函数;若f(-x) = -f(x),则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,再根据定义判定。

(B)借助函数的图象判定 .3、函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法、待定系数法、换元法、构造法4、函数最大(小)值(1)一般的,设函数)(xfy=的定义域为I,如果存在实数M满足(a)对于任意的,Ix∈都有Mxf≤)(;(b)存在Ix∈0,使得Mxf=)(那么称M为)(xfy=的最大值。

(2)求函数最值的方法○1利用二次函数的性质(配方法)○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);函数的概念一、选择题1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .x y x f 21:=→B .x y x f 31:=→ C .x y x f 32:=→ D .x y x f =→:2.某物体一天中的温度是时间t 的函数:603)(3+-=t t t T ,时间单位是小时,温度单位为℃,0=t 表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃ 3.函数y =x +1+x -1的定义域是 A .(-1,1) B .[0,1] C .[-1,1] D .(-∞,-1) (1,+∞) 4.函数)(x f y =的图象与直线a x =的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上5.函数341)(2++=ax ax x f 的定义域为R ,则实数a 的取值范围是( ) A . R B . ]43,0[ C .),43[+∞ D .)43,0[二、填空题6.某种茶杯,每个元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.7.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题8.求函数y =x +1x 2-4的定义域.9.已知函数)(x f 的定义域为[0,1],求函数)()(a x f a x f -++的定义域(其中210<<a ). 10.已知函数1)(2-+=x x x f (1)求)2(f (2)求)11(+xf (3)若5)(=x f ,求x 的值.函数相等、函数的值域1.下列各题中两个函数是否表示同一函数(1)1)(=x f ,0)(x x g = ( ) (2)24)(2--=x x x f ,2)(+=x x g ( )(3)x x x f 2)(2-=,t t t g 2)(2-= ( )(4)|1|)(-=x x f ,⎩⎨⎧<-≥-=)1(1)1(1)(x x x x x g ( )2.下列函数中值域是(0,+∞)的是A .)0(12>+=x x yB .2x y =C .112-=x yD .)0(2>x x3.设函数13)(2+-=x x x f ,则=--)()(a f a fA .0B .a 6-C .222+aD .2622+-a a4.已知)(x f 满足23)()(2+=-+x x f x f ,且316)2(-=-f ,则=)2(f 5.已知函数221)(x x x f += (1)计算)2(f 与)21(f (2)计算)3(f 与)31(f (3)计算)20111(...)41()31()21()2011(...)3()2()1(f f f f f f f f +++++++++6.求下列函数的值域: (1)342+-=x x y (2))5,1[,642∈+-=x x x y (3)}2,1,0,1,2{,12--∈-=x x y7.求函数xx x f 41332)(---=的定义域和值域.(提示:设x t 413-=)函数的表示法1.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图四个图形中较符合该学生走法的是( )2.已知x x f 2)2(=,则=)(x fA .x 2B .xC .2xD .x 43.已知函数f (x )=x 2+px +q 满足f (1)=f (0)=0,则f (4)的值是( )A .5B .-5C .12D .204.已知)(x f 是一次函数,若5)1(3)2(2=-f f ,1)1()0(2=--f f ,则)(x f 的解析式为A .23)(+=x x fB .23)(-=x x fC .32)(+=x x fD .32)(-=x x f 5.定义域为R 的函数f (x )满足12)(2)(+=-+x x f x f ,则)(x f =( )A .-2x +1B .2x -13C .2x -1D .-2x +136.若x x g 21)(-=,221))((x x x g f -=,则)21(f 的值是A .1B .15C .4D .307.函数)(x f 的图象经过点(1,1),则函数)4(-x f 的图象过点 8.已知)(x f 是二次函数,1)()1(,0)0(++=+=x x f x f f ,求)(x f .9.若2627)))(((+=x x f f f ,求一次函数)(x f 的解析式.分段函数与映射1.已知f (x )=⎩⎪⎨⎪⎧x 2+3 (x >0),1(x =0),x +4(x <0).则f (f (f (-4)))=( ) A .-4B .4C .3D .-32已知函数⎩⎨⎧≥-<+-=)1(2)1(12)(2x x x x x x f ,(1)试比较))3((-f f 与))3((f f 的大小.(2)若3)(=a f ,求a 的值.3.画出下列函数的图象,并写出值域.(1)||)(x x f = (2)|2|)(2x x x f += (3)|3||5|)(++-=x x x f函数的单调性1.在区间(0,+∞)上不是增函数的是 ( )=2x-1 =3x 2-1 =x2=2x 2+x+12.设函数b x a x f +-=)12()(是(-∞,+∞)上的减函数,若a ∈R, 则 ( ) A.21≥a B.21≤a C.21->a D.21<a3.函数y=4x 2-mx+5在区间[)∞+,2上是增函数,在区间(]2,∞-上是减函数,则m=________;4.根据图象写出函数y=f(x)的单调区间:增区间 ;减区间:5.函数f(x)=ax 2-(5a-2)x-4在[)+∞,2上是增函数, 则a 的取值范围是______________.6.判断函数xx y 4+=在在[)∞+,2上的单调性,并用定义证明. 7.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围.函数的最大(小)值与值域1.当]5,0[∈x 时,函数143)(2+-=x x x f 的值域为A.)]5(),0([f fB.)]32(),0([f f C.)]5(),32([f f D.)]5(),0((f f2.函数11)(-=x x f 在区间]6,2[上的最大值和最小值分别是 A.1,51 B.51,1 C.1,71 D.71,13.函数x x x f +-=12)(的值域是A.),21[+∞B.]21,(-∞ C.),0(+∞ D.),1[+∞4.⎪⎩⎪⎨⎧≥<<≤≤=2,321,210,2)(x x x x x f 的值域是A.RB.]3,0[C.),0[+∞D.}3{]2,0[5.若410≤<t ,则代数式t t -1的最小值是A.2-B.4156.函数)(x f y =的定义域为]6,4[-,且在区间]2,4[--上递减,在区间]6,2(-上递增,且)6()4(f f <-,则函数)(x f y =的最小值是 ,最大值是7.函数*,122N x x y ∈+=的最小值为8.已知函数322+-=x x y 在区间],0[m 上有最大值3,最小值2,求m 的取值范围.函数的奇偶性1.下面说法正确的选项( )A .函数的单调区间可以是函数的定义域B .函数的多个单调增区间的并集也是其单调增区间C .具有奇偶性的函数的定义域定关于原点对称D .关于原点对称的图象一定是奇函数的图象2.函数x x x f +=2)(是A .偶函数B .奇函数C .既奇且偶函数D .非奇非偶函数3.函数px x x y +=||,R x ∈是( )A .偶函数B .奇函数C .非奇非偶函数D .与p 有关4.如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有( )A .最大值B .最小值C .没有最大值D . 没有最小值5.如果函数R x x f ∈),(是奇函数,且)2()1(f f <,则必有A .)2()1(-<-f fB .)2()1(->-f fC .)1()1(f f =-D . )2()1(-=-f f6.函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .7.(12分)判断下列函数的奇偶性①xx x f 1)(3+=; ②x x x f 2112)(-+-=;③x x x f +=4)(; ④2|2|1)(2-+-=x x x f 。

相关文档
最新文档