PWM跟踪控制技术
第4章 PWM技术简介
PWM技术简介直流电机脉冲宽度调制(Pulse Width Modulation-简称PWM)调速产生于20世纪70年代中期,最早用于自动跟踪天文望远镜、自动记录仪表等的驱动,后来由于晶体管器件水平的提高及电路技术的发展, PWM 技术得到了高速发展,各式各样的脉宽调速控制器,脉宽调速模块也应运而生,许多单片机也都有了PWM输出功能。
而51系列单片机作为应用最广泛的单片机之一,却没有PWM 输出功能,可以采用定时器配合软件的方法实现MCS-51单片机的PWM输出调速功能,这对精度要求不高的场合是非常实用的。
随着社会的发展,各种智能化的产品日益走入寻常百姓家。
为了实现产品的便携性、低成品以及对电源的限制,小型直流电机应用相当广泛。
对直流电机的速度调节,我们可以采用多种办法,;例如用单片机软件实现PWM 调速的方法。
PWM控制技术一直是变频技术的核心技术之一。
1964年A.Schonung和H.stemmler首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。
从最初采用模拟电路完成三角调制波和参考正弦波比较,产生正弦脉宽调制SPWM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,可以说直到目前为止,PWM在各种应用场合仍在主导地位,并一直是人们研究的热点。
由于PWM可以同时实现变频变压反抑制谐波的特点。
由此在交流传动及至其它能量变换系统中得到广泛应用。
PWM控制技术大致可以分为正弦PWM、优化PWM及随机PWM。
正弦PWM已为人们所熟知,而旨在改善输出电压、电流波形,降低电源系统谐波的多重PWM技术在大功率变频器中有其独特的优势(如ABB ACS1000系列和美国ROBICON公司的完美无谐波系列等);而优化PWM所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,及转矩脉动最小以及其它特定优化目标。
在70年代开始至80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般最高不超过5kHz,电机绕组的电磁噪音及谐波引起的振动引起人们的关注。
电流滞环跟踪PWM(CHBPWM)控制技术的仿真
目录摘要 (1)关键词 (1)一、电流滞环跟踪控制原理 (2)二、三相电流滞环跟踪控制系统的仿真 (5)1、建立系统仿真模型 (5)2、模块参数设置 (6)3、电路封装 (8)4、作图程序设计 (10)三、仿真波形及频谱分析 (12)四、仿真结果分析与总结 (18)1、仿真波形比较 (18)2、电流频谱分析比较 (19)3、相电压、线电压频谱分析比较 (19)4、总结 (19)五、课设心得体会 (20)六、参考文献 (21)摘要:滞环控制是一种应用很广的闭环电流跟踪控制方法,通常以响应速度快和结构简单而著称。
在各种变流器控制系统中,滞环控制单元一般同时兼有两种职能,一则作为闭环电流调节器,二则起着PWM调制器的作用,将电流参考信号转换为相应的开关指令信号。
然而,滞环控制的开关频率一般具有很大的不定性,高低频率悬殊,其开关频率范围往往是人们在进行滞环控制系统设计师比较关心的重要方面,只有明确开关频率的计算方法,才便于进行开关器件、滤波参数及滞环控制参数的选择。
电流跟踪型逆变器输出电流跟随给定的电流波形变化,这也是一种PWM控制方式。
电流跟踪一般都采用滞环控制,即当逆变器输出电流与给定电流的偏差超过一定值时,改变逆变器的开关状态,使逆变器输出电流增加或减小,将输出电流与给定电流的偏差控制在一定范围内。
关键词:电流滞环跟踪PWM、闭环控制、滞环控制器HBC、环宽、电流偏差、开关频率、响应波形、频谱图一、电流滞环跟踪控制原理常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。
图1 电流滞环跟踪控制的A相原理图图中,电流控制器是带滞环的比较器,环宽为2h。
将给定电流i*a 与输出电流i a进行比较,电流偏差∆i a超过时±h,经滞环控制器HBC 控制逆变器A相上(或下)桥臂的功率器件动作。
PWM控制技术
PWM控制技术1.试说明 PWM 控制的基本原理。
答:PWM 控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。
效果基本相同是指环节的输出响应波形基本相同。
上述原理称为面积等效原理以正弦 PWM 控制为例。
把正弦半波分成N 等份,就可把其看成是N 个彼此相连的脉冲列所组成的波形。
这些脉冲宽度相等,都等于π/N,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。
如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到 PWM 波形。
各 PWM 脉冲的幅值相等而宽度是按正弦规律变化的。
根据面积等效原理,PWM 波形和正弦半波是等效的。
对于正弦波的负半周,也可以用同样的方法得到 PWM 波形。
可见,所得到的 PWM 波形和期望得到的正弦波等效2. 单极性和双极性 PWM 调制有什么区别?三相桥式 PWM 型逆变电路中,输出相电压(输出端相对于直流电源中点的电压)和线电压 SPWM 波形各有几种电平?答:三角波载波在信号波正半周期或负半周期里只有单一的极性,所得的 PWM 波形在半个周期中也只在单极性范围内变化,称为单极性 PWM 控制方式。
三角波载波始终是有正有负为双极性的,所得的 PWM 波形在半个周期中有正、有负,则称之为双极性 PWM 控制方式。
三相桥式 PWM 型逆变电路中,输出相电压有两种电平:0.5U d和-0.5 U d。
输出线电压有三种电平U d、0、- U d。
3.特定谐波消去法的基本原理是什么?设半个信号波周期内有 10 个开关时刻(不含0 和p 时刻)可以控制,可以消去的谐波有几种?答:首先尽量使波形具有对称性,为消去偶次谐波,应使波形正负两个半周期对称,为消去谐波中的余弦项,使波形在正半周期前后 1/4 周期以p /2 为轴线对称。
说明PWM控制的基本原理
说明PWM控制的基本原理PWM(Pulse Width Modulation)是一种常见的控制技术,它通过改变信号的脉冲宽度来实现对电路的控制。
在电子设备中,PWM控制被广泛应用于调节电机速度、控制LED亮度、调节电源输出等方面。
本文将从PWM控制的基本原理、工作原理和应用进行详细介绍。
PWM控制的基本原理。
PWM控制的基本原理是通过改变信号的脉冲宽度来控制输出电压或电流的大小。
在PWM控制中,信号的周期是固定的,但脉冲的宽度可以根据需要进行调节。
通常情况下,脉冲宽度越宽,输出电压或电流就越大;脉冲宽度越窄,输出电压或电流就越小。
通过不断改变脉冲宽度,可以实现对电路的精确控制。
PWM控制的工作原理。
PWM控制的工作原理是通过不断地调节脉冲宽度来控制电路的输出。
当需要控制电路输出时,控制器会根据输入信号的大小和方向来生成相应的PWM信号。
PWM信号经过功率放大器放大后,就可以驱动电路输出。
通过改变PWM信号的脉冲宽度,可以实现对电路输出的精确控制。
PWM控制的应用。
PWM控制在各种电子设备中都有广泛的应用。
在电机控制中,PWM信号可以控制电机的转速和方向;在LED调光中,PWM信号可以控制LED的亮度;在电源调节中,PWM信号可以控制电源输出的稳定性。
除此之外,PWM控制还被应用于无线通信、数字电路、电源管理等领域。
总结。
通过本文的介绍,我们了解了PWM控制的基本原理、工作原理和应用。
PWM 控制通过改变信号的脉冲宽度来实现对电路的精确控制,在电子设备中有着广泛的应用。
希望本文能够帮助读者更好地理解PWM控制,并在实际应用中发挥作用。
载波反相三角波比较电流跟踪PWM控制法
论著载波反相三角波比较电流跟踪PWM控制法王心琦 张代润(四川大学电气信息学院,四川 成都 610065) 摘 要:本文提出了一种新的电流跟踪PWM控制法,即载波反相三角波比较电流跟踪PWM控制法(CR-PWM),详细解释了 CR-PWM控制法的工作原理,并通过与传统三角波比较法及滞环控制法的比较,显示出CR-PWM控制法的优点。
通过仿真证 明了CR-PWM控制法能消除制约当前电流控制型逆变器发展的瓶颈。
关键词:PWM;载波;电流控制;电压控制 Carrier-reversed Current tracking PWM Control WANG Xin-qi,ZHANG Dai-run (Sichuan University School of Electrical Engineering and Information,Chengdu Sichuan 610065,China) Abstract:In this paper,a new tracking PWM current control method is proposed, that is, reversed-phase triangular wave carrier comparison PWM current control method (CR-PWM). Explained the operating principle of the CR-PWM control method in detail. Showed the advantages of CR-PWM control, through comparison with the traditional triangular wave method and the hysteresis control method. Proved that CR-PWM control method solved the constraints in the development of current control inverters by simulations. Key words:PWM;Carrier;Current control;Voltage control控制逆变器输出电压或电流的脉冲宽度调制(PWM)技 术的基本原理很早就已经提出,上世界80年代随着全控型电 力电子器件的出现和迅速发展,PWM控制技术得到广泛应 用。
PWM控制技术
┊
控制方法即可使电压与频率协调变化.相对于 PAM 法,该方法的优点是简化了电
┊
路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含
┊
┊
较大的谐波分量。
┊
(2)随机 PWM
┊
在上世纪 70 年代开始至上世纪 80 年代初,由于当时大功率晶体管主要为双
极性达林顿三极管,载波频率一般不超过 5kHz,电机绕组的电磁噪音及谐波造成
┊
Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的
┊
方波电压而不能调压.等脉宽 PWM 法正是为了克服 PAM 法的这个缺点发展而来的,
┊
是 PWM 法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为 PWM 波,
┊
┊
通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当
┊
电流波形,降低电源系统谐波的多重 PWM 技术在大功率变频器中有其独特的优
┊
势(如 ABB ACS1000 系列和美国 ROBICON 公司的完美无谐波系列等);而优化 PWM
┊
┊
所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,
┊
及转矩脉动最小以及其它特定优化目标。
┊
在 70 年代开始至 80 年代初,由于当时大功率晶体管主要为双极性达林顿
┊
┊
内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频
┊
率和幅值.该方法的实现有以下几种方案。
┊
(4)等面积法
┊
┊
该方案实际上就是 SPWM 法原理的直接阐释,用同样数量的等幅不等宽的矩形脉
PWM控制原理-看看就好-不要纠结
■调制法 ◆把希望输出的波形作为调制信号,把接受调制的信号作为载
波,通过信号波的调制得到所期望的PWM波形。 ◆通常采用等腰三角波或锯齿波作为载波,其中等腰三角波应用
最多。
烟台南山学院
6
第6页,共60页。
7.2.1 计算法和调制法
阻感负载
图7-4 单相桥式PWM逆变电路
■单相桥式PWM逆变电路(调制法)
信号urU、urV和urW依次相差120°。
烟台南山学院
第10页,共60页。
图7-8 三相桥式PWM逆变电路波形
10
7.2.1 计算法和调制法
图7-7 三相桥式PWM型逆变电路
◆电路工作过程(U相为例) U☞相当相urU对>u于c时直,流上电桥源臂假V1想导中通,点下N’桥臂的V输4关出断电,压则 uUN’=Ud/2。 ☞当urU<uc时,V4导通,V1关断,则uUN’=-Ud/2。 ☞也感☞V当可负1和给能载VV是4中的1(二V电驱4极)动流加管信的导V号通方D始信1向(终V号来D是时4决)互续,定补可流。的能导。是通V,1(V这4)要导由通阻, ☞uUN’、uVN’和uWN’的PWM波形都只有±Ud/2 两种电平。
2cos 72
2cos 73 )
0
这样可以消去两种特定频率的谐波,对于给定的基波幅值a1,求解上述方
程可得一组1、2和3,基波幅值a1改变时,1、2和3也相应地改变。
烟台南山学院
16
第16页,共60页。
7.2.2 异步调制和同步调制
■载波频率fc与调制信号频率fr之比N= fc/fr称为载波比,根据载波和信号波是否同步
烟台南山学院
5
第5页,共60页。
电压空间矢量PWM(SVPWM)控制技术
高压直流输电(HVDC)
适用于高压直流输电系统的电压调节 和电流控制。
电机控制
用于无刷直流电机(BLDC)、永磁 同步电机(PMSM)等电机的控制。
不间断电源(UPS)
用于不间断电源系统的电压调节和能 量转换。
智能电网
用于智能电网中的分布式电源接入和 能量调度。
电压空间矢量PWM(SVPWM)的特点
高电压输出
高效节能
易于数字化实现
降低谐波干扰
能够实现高电压的输出, 适用于高压直流输电
(HVDC)等应用场景。
通过优化PWM脉冲宽度 和角度,实现更高的电 压输出和更低的损耗。
基于数字信号处理(DSP)等 数字技术,实现SVPWM算法
的快速计算和控制。
通过优化PWM脉冲的形 状和角度,降低对电网
电磁干扰
SVPWM控制技术产生的 电磁干扰较小,对周围环 境的影响较小。
04
电压空间矢量 PWM(SVPWM)控制优 化策略
电压空间矢量分配优化
考虑电机参数
根据电机的具体参数,如电感、 电阻等,优化电压空间矢量的分 配,以提高控制精度和响应速度。
降低谐波影响
通过优化电压空间矢量的分配,降 低PWM控制过程中产生的谐波, 减小对电机和整个系统的负面影响。
电压空间矢量 PWM(SVPWM) 控制技术
目录
• 电压空间矢量PWM(SVPWM)技 术概述
• 电压空间矢量PWM(SVPWM)控 制算法
• 电压空间矢量PWM(SVPWM)控 制性能分析
目录
• 电压空间矢量PWM(SVPWM)控 制优化策略
• 电压空间矢量PWM(SVPWM)控 制技术发展趋势
电流输出精度
pwm控制的工作原理
pwm控制的工作原理
PWM(脉宽调制)是一种控制信号的技术,它通过控制信号
的脉冲宽度的长短来实现对输出信号的调节。
PWM常用于控
制电机的速度、改变LED的亮度等电子设备中。
PWM的工作原理是根据输出信号的周期和脉冲宽度比例来控
制电路的开关状态。
具体步骤如下:
1. 设定周期:首先确定输出信号的周期,即一个完整的脉冲周期的时间。
2. 设定脉冲宽度:根据需要调节输出信号的幅度,即控制电路的开关状态的时间。
3. 脉冲生成:利用计时器或特殊的PWM芯片,根据设定的周
期和脉冲宽度来生成PWM信号。
4. 输出控制:将PWM信号通过电流放大器等电路输出给目标
设备,实现对设备的控制。
在PWM信号中,脉冲宽度占整个周期的比例决定了输出信号
的强度或工作状态。
脉冲宽度比例越大,输出信号越强;脉冲宽度比例越小,输出信号越弱。
优点是PWM控制方式可以实现模拟信号的输出,而不需要使
用模数转换器。
另外,由于脉冲宽度的变化可以通过改变开关频率来实现,因此PWM可以很好地适应不同频率范围的应用。
总之,PWM控制的工作原理是根据周期和脉冲宽度比例来控制输出信号的强度或工作状态,通过改变脉冲宽度比例来实现对电子设备的精确控制。
脉宽调(PWM)技术
O
u
> ωt
冲量相等,中点重合 宽度按正弦规律变化
ωt
O
u
u
SPWM波
O
ωt
O
> ωt
6.1 PWM控制的基本思想
对于正弦波的负半周,采取同样的方法,得到PWM波形
Ud O -U d
wt
正弦波还可等效为下图中的PWM波,在实际应用中更为广泛。
U
d
等幅PWM波
O
-
wt
U
d
U
o
ωt
不等幅PWM波
6.2 PWM逆变电路及其控制方法
Uo
wt
uo
负 周 半
uo的基波分量
wt
在ur和uc的交点时刻控制IGBT的通断
ur正半周,V1保持通,V2保持断。 当ur>uc时使V4通,V3断,uo=Ud 。 当ur<uc时使V4断,V3通,uo=0 。 ur负半周,请同学们自己分析。
O -U d
单极性PWM控制方式波形
6.2.1 计算法和调制法
分析以双极性SPWM波形为准。 同步调制可看成异步调制的特殊情况,只分析异步调制 方式。 分析方法
以载波周期为基础,再利用贝塞尔函数推导出PWM波 的傅里叶级数表达式。
尽管分析过程复杂,但结论简单而直观。
6.2.4 PWM逆变电路的谐波分析
谐波分析小结 三相和单相比较,共同点是都不含低次谐波,一个较显著
6.2.6 PWM逆变电路的多重化
PWM多重化逆变电路,一般目的:提高等效开关频率、减少开关损耗、 减少和载波有关的谐波分量 PWM逆变电路多重化联结方式有变压器方式和电抗器方式
利用电抗器联接的二重PWM逆变电路(图6-20,图 6-21)
第7章 PWM控制技术
《电力电子技术》 电力电子技术》
第7章 PWM控制技术 章 控制技术
7.2.1 计算法和调制法
4)双极性PWM控制方式(三相桥逆变) 三相桥逆变)
三相的PWM控制 公用三角波载波uc 三相的调制信号urU、 urV和urW依次相差 120°
图7-7 三相桥式PWM型逆变电路
《电力电子技术》 电力电子技术》
《电力电子技术》 电力电子技术》
第7章 PWM控制技术 章 控制技术
7.1 PWM控制的基本思想 控制的基本思想
1)重要理论基础——面积等效原理 面积等效原理
冲量相等而形状不同的窄脉冲加在具有惯性的 冲量 环节上时,其效果基本相同 效果基本相同。 效果基本相同 冲量 效果基本相同
f (t) f (t)
u uc ur
O
ωt
uo Ud
uo u of
O -U d
ωt
表示uo的基波分量
图7-5 单极性PWM控制方式波形
《电力电子技术》 电力电子技术》
3)双极性PWM控制方式(单相桥逆变) (单相桥逆变) 在ur和uc的交点时刻控制IGBT的通断。
在ur的半个周期内,三角波载波有正有负, 所得PWM波也有正有负,其幅值只有±Ud ± 两种电平。 同样在调制信号ur和载波信号uc的交点时刻 控制器件的通断。
Ud O -U d
7.1 PWM控制的基本思想 控制的基本思想
ωt
根据面积等效原理,正弦波还可等效为下图中的PWM 波,而且这种方式在实际应用中更为广泛。
U
d
O
-
ωt
U
d
《电力电子技术》 电力电子技术》
第7章 PWM控制技术 章 控制技术
7.1 PWM控制的基本思想 控制的基本思想
电力电子技术第七章PWM控制技术
5
7.2.1 计算法和调制法
■计算法 ◆根据逆变电路的正弦波输出频率、幅值和半个周期内
的脉冲数,将PWM波形中各脉冲的宽度和间隔准确计算出 来,按照计算结果控制逆变电路中各开关器件的通断,就可 以得到所需要的PWM波形,这种方法称之为计算法.
负载相电压的PWM波由±2/3Ud、±1/3Ud和0 共5种电平组成.
◆为了防止上下两个臂直通而造成短路,在上 图7-8 三相桥式PWM逆变电路波形 下两臂通断切换时要留一小段上下臂都施加
关断信号的死区时间.
12
7.2.1 计算法和调制法
图7-9 特定谐波消去法的输出PWM波形
■特定谐波消去法 ◆是计算法中一种较有代表性的方法. ◆如果在输出电压半个周期内开关器件开通和关断各k次,考虑到
◆在fr低的频段采用较高的载波比,以 使fc不致过低而对负载产生不利影响.
◆为了防止fc在切换点附近的来回跳 动,在各频率切换点采用了滞后切换的方 法.
◆有的装置在低频输出时采用异步调
制方式,而在高频输出时切换到同步调制 方式,这样可以把两者的优点结合起来, 和分段同步方式的效果接近.
19
7.2.3 规则采样法
高频段略有差异. ◆实例 ☞将图7-1a、b、c、d所示的脉冲作为输入,加在图7-2a所示的R-L
电路上,设其电流it为电路的输出,图7-2b给出了不同窄脉冲时it的响应波 形.
图7-1 形状不同而冲量相同的各种窄脉冲
图7-2 冲量相同的各种窄脉冲的响应波形
3
7.1 PWM控制的基本原理
■用PWM波代替正弦半波
什么是电流跟踪型PWM变流电路?采用滞环比较方式的电流跟踪型变流器有何特点?
什么是电流跟踪型PWM变流电路?采用滞环比较方式的电流跟踪型变流器有何特点?
电流跟踪型PWM变流电路是一种通过跟踪负载电流来控制输出电流的电路。
它通常用于要求精确控制和调节负载电流的应用,如电动机驱动、电源适配器等。
采用滞环比较方式的电流跟踪型变流器具有以下特点:
1.滞环比较方式:滞环比较方式是一种在电流跟踪型PWM
变流器中常用的控制方法。
该方式通过将参考电流与实际
负载电流进行比较,并应用滞回控制算法,调整PWM信
号的占空比,使输出电流跟踪参考电流。
2.高精度电流控制:滞环比较方式的电流跟踪型变流器具有
高精度的电流控制能力。
通过将滞环比较器设置为合适的
阈值,可以实现对输出电流的精确控制和调节。
该方式适
用于对负载电流要求较高的应用,能够实现精确的负载电
流跟踪和控制。
3.快速响应性能:采用滞环比较方式的电流跟踪型变流器具
有快速的响应速度。
由于滞环比较器能够快速调整PWM
信号的占空比,以响应负载电流的变化,因此可以实时动
态调整输出电流,并具有较好的过载能力和动态响应性能。
4.抗负载波动能力强:滞环比较方式的电流跟踪型变流器通
过及时调整PWM信号的占空比来跟踪负载电流,具有较
强的抗负载波动能力。
即使在负载电流发生变化的情况下,
也能够迅速调整输出电流,使其保持稳定。
需要注意的是,滞环比较方式的电流跟踪型变流器可能存在一些不足之处,如可能引入更多谐波成分和较高的开关频率。
因此,在应用中需要综合考虑设计需求和性能要求,选择合适的控制策略和优化方法,以实现最佳的电流跟踪和控制效果。
PWM控制技术
*提高输出电压,减少开关次数
如各相迭加up =-(三相ur基波最小值)-um
--三倍次谐波+直流 基波可提高15% 使线电压幅值达Ud 线参考电压-仍为正弦 各相基波有120°为最小值 此时ur为-um 对应电源相压持续为-Ud/2 且下臂开关保持导通
--开关动作减少,损耗减小
11
7.3 PWM (闭环)跟踪控制技术 --主要是电流跟踪
SVPWM
三电平逆变器 电压向量us更多 按ΔΨ=Ψ* - Ψ --用最佳us控制 Ψ圆更准
22
7.4 PWM整流电路
晶闸管/二极管整流问题: 谐波分量大,功率因数低。 PWM整流可控制交流侧电流波形(近正弦)与相位
可调有功与无功----高功率因数整流器、无功补偿器
单相PWM整流电路
Ls=外接电感+交流源电感------交流功率缓冲 C(C1,C2) ------直流功率缓冲
/
dt
r us
r is R
由电机学:对称交流时三相合成磁场“圆转”:
(幅值=(3/2)相幅值,电角速度=ω)
因r 此s 代表r s实, ur际s , er磁s , ir场s ,都而是旋urs转, ers的, irs 是引用量
空间位置任选
常选正转方向 (ab)顺时针
SVPWM--用PWM电路有限个状态的空间向量 urn
Ud>峰值√2UAB1 = √2Es/cosδ>峰值Usm
26
电流闭环控制单相PWM整流
电流给定is* : 相位与电源us相同, 幅值可调 用i滞环控制: is<is*-δ uAB = -Ud is↑
is>is*+δ uAB = +Ud is↓ 电路简单响应快; 交流电流有波纹可滤 调节is*幅值可调节Ud
电压空间矢量PWMSVPWM控制技术或称磁链跟踪控制技术课件
电压空间矢量的线性组合
(1)线性组合公式
可根据各段磁链增量的相位求出所需的 作用时间 t1和 t2 。在上图中,可以看出
us
t1 T0
u1
t2 T0
u2
us
cos
jus
s in
(6-49)
(2)相电压合成公式 根据式(6-39)用相电压表示合成电压
空间矢量的定义,把相电压的时间函数和 空间相位分开写,得
u1 存在的时间为 /3,在这段时间以 后,工作状态转为 110,和上面的分析
B uBO’
u2 -uCO’
相似,合成空间矢
量变成图中的 u2 , 它在空间上滞后于
uAO’
A
u1 的相位为 /3 弧 度,存在的时间也
是 /3 。
C
(d)每个周期的六边形合成电压空间矢量
依此类推,随着逆
变器工作状态的切换, 电压空间矢量的幅值
• 电压空间矢量的扇区划分
为了讨论方便起见,可把逆变器的一个 工作周期用6个电压空间矢量划分成6个区 域,称为扇区(Sector),如图所示的Ⅰ、 Ⅱ、…、Ⅵ,每个扇区对应的时间均为/3 。
由于逆变器在各扇区的工作状态都是对 称的,分析一个扇区的方法可以推广到其 他扇区。
• 电压空间矢量的6个扇区
这样,根据各个开关状态的线电压表达式可以推出.代 入式(6-49), 有
us
t1 T0
u1
t2 T0
u2
t1 T0
Ud
t2 T0
Ude jπ
3
U
d
t1 T0
t2 T0
e jπ
3
Ud Tt10
t2 T0
cos π 3
第六章 PWM控制技术
6.2.1
计算法和调制法
V1 C U N'
Ud 2
双极性PWM控制方式(三相桥逆变) 控制方式 三相桥逆变) 双极性
Ud 2
+
VD1 V3 V
VD 3 V5 VD6 W V2
VD 5 N VD 2
+
C
V4 VD4 V 6
u rU u rV u rW uc
调制 电路
图6-7 三相桥式PWM型逆变电路
u
PWM控制技术 控制技术 重要理论基础
• 如何用一系列等幅不等宽的脉冲来代替一个正弦半波
O
u
> ωt
面积等效原理
O
> ωt
3
6.1
PWM控制的基本原理 PWM控制的基本原理
Ud O -U d
• 对于正弦波的负半周,采取同样的方法,得到PWM 波形,因此正弦波一个完整周期的等效PWM波为:
ωt
• 根据面积等效原理,正弦波还可等效为下图中的 PWM波,而且这种方式在实际应用中更为广泛。
21
10
20
30
40 f r /Hz
50
60
70
80
图6-11 分段同步调制 方式举例
15
6.2.3
规则采样法
Tc u uc A D B O tA tD tB t ur
自然采样法: 自然采样法: 按照SPWM控制的基本原理 按照 控制的基本原理 产生的PWM波的方法 波的方法,其求解 产生的 波的方法 复杂,难以在实时控制中在线计 算,工程应用不多 规则采样法特点 工程实用方法,效果接近自 然采样法,计算量小得多
6.2.2
异步调制和同步调制
2. 同步调制 ——载波信号和调制信号保持同步的调制方式,当变频时 使载波与信号波保持同步,即N等于常数。
第7章 脉宽调(PWM)技术
uo Ud
uo u of
O -U d
wt
表示uo的基波分量
图7-5 单极性PWM控制方式波形
7.2.1 计算法和调制法
3)双极性PWM控制方式(单相桥逆变) 在ur和uc的交点时刻控制IGBT的通断。
在ur的半个周期内,三角波载波有正有负, 所得PWM波也有正有负,其幅值只有±Ud 两种电平。 同样在调制信号ur和载波信号uc的交点时刻 控制器件的通断。
U
d
O
-
wt
U
d
7.1 PWM控制的基本思想
等幅PWM波
输入电源是恒定直流
第5章的直流斩波电路 7.2节的PWM逆变电路 7.4节的PWM整流电路
不等幅PWM波
输入电源是交流或不是 恒定的直流
6.1节的斩控式交流调压电路 6.4节的矩阵式变频电路
Ud O
- Ud
U
wt
o
ωt
7.1 PWM控制的基本思想
u (t)-电压窄脉冲, 是电路的输入 。 i (t)-输出电流,是 电路的响应。
7.1 PWM控制的基本思想
如何用一系列等幅不等宽的脉冲来代替一个正弦半波
u
SPWM波
ωt
u
O
>
O
>t ω
u
O
ωt
>
7.1 PWM控制的基本思想
如何用一系列等幅不等宽的脉冲来代替一个正弦半波
u u
SPWM波
> ωt ωt
2 d /2 Tc / 2 Tc d (1 a sin w r t D ) (7-6) 2
d
2
d
2
uo
d'
PWM跟踪控制技术
.1 滞环比较方式
参数的影响
滞环环宽对跟踪性能的影响:环宽过宽时,开关频率低, 跟踪误差大;环宽过窄时,跟踪误差小,但开关频率过高, 开关损耗增大 电抗器L的作用:L大时,i的变化率小,跟踪慢 L小时,i的变化率大,开关频率过高
Ud 2 Ud 2
VD1 i
VD2
V1 + i* - i
i
i
VD1
V1 Ls Rs us + C1
负 载
ud
VD2 VD1
V3
+
V2 V1 Ls us is V2 Rs A
C2
a)
VD3
B + ud 负
载
VD2
b) 图6-28
图6-28
单相PWM整流电路
b) 单相全桥电路
a) 单相半桥电路
VD4
V4
1 PWM整流电路的工作原理
单相全桥PWM整流电路的工作原理
14.4 PWM整流电路及其控制方法
实用的整流电路几乎都是晶闸管整流或二极管整流 晶闸管相控整流电路:输入电流滞后于电压,且其中谐波分量 大,因此功率因数很低 二极管整流电路:虽位移因数接近1,但输入电流中谐波分量很 大,所以功率因数也很低 把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM 整流电路 控制PWM整流电路,使其输入电流非常接近正弦波,且和输入 电压同相位,功率因数近似为1,也称单位功率因数变流器,或 高功率因数整流器
1 PWM整流电路的工作原理
us < 0时,(V1、VD3、VD2、Ls)和(V4、VD2、VD3、 Ls)分别组成两个升压斩波电路 由于是按升压斩波电路工作,如控制不当,直流侧 电容电压可能比交流电压峰值高出许多倍,对器件 形成威胁 另一方面,如直流侧电压过低,例如低于us的峰值, 则uAB中就得不到图6-29a中所需的足够高的基波电压 幅值,或uAB中含有较大的低次谐波,这样就不能按 需要控制is,is波形会畸变 可见,电压型 PWM整流电路是升压型整流电路,其 输出直流电压可从交流电源电压峰值附近向高调节, 如要向低调节就会使性能恶化,以至不能工作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWM跟踪控制技术
S092233谢俊虎
摘要:本文介绍了两种常用的PWM跟踪控制技术,分析了两种跟踪控制技术的的基本原理,并用MATLAB对其进行了仿真。
仿真结果和理论分析结果相符,得到了控制目的。
关键词:脉宽调制(PWM),跟踪控制技术,MATLAB仿真
1 引言
PWM跟踪控制技术——是一种生成PWM波形的方法。
把希望输出的波形作为指令信号,把实际波形作为反馈信号,通过两者的瞬时值比较来决定逆变电路各开关器件的通断,使实际的输出跟踪指令信号变化常用的有滞环比较方式和三角波比较方式。
2 滞环比较方式
2.1 电流跟踪控制技术
电流跟踪控制技术是应用最多的一种方法。
其基本原理为:把指令电流i*和实际输出电流i的偏差i*-i作为滞环比较器的输入通过比较器的输出控制器件V1和V2的通断。
V1(或VD1)通时,i增大。
V2(或VD2)通时,i减小。
通过环宽为2△I的滞环比较器的控制,i就在i*+△I和i*-△I的范围内,呈锯齿状地跟踪指令电流i*。
2.1.1参数的影响
(1)滞环环宽对跟踪性能的影响:环宽过宽时,开关频率低,跟踪误差大;环宽过窄时,跟踪误差小,但开关频率过高,开关损耗增大。
(2)电抗器L的作用:L大时,i的变化率小,跟踪慢;L小时,i 的变化率大,开关频率过高。
图2-1-1 滞环比较方式电流跟踪控制举例图2-1-2 滞环比较方式的指令电流和输出电流
图2-1-3 三相电流跟踪型PWM逆变电路图2-1-4 三相电流跟踪型PWM逆变电路输出波形2.1.2采用滞环比较方式的电流跟踪型PWM变流电路的特点
(1)硬件电路简单。
(2)实时控制,电流响应快。
(3)不用载波,输出电压波形中不含特定频率的谐波。
(4)和计算法及调制法相比,相同开关频率时输出电流中高次谐波含量多。
(5)闭环控制,是各种跟踪型PWM变流电路的共同特点。
2.2 电压跟踪控制技术
把指令电压u*和输出电压u进行比较,滤除偏差信号中的谐波,滤波器的输出送入滞环比较器,由比较器输出控制开关器件的通断,从而实现电压跟踪控制。
图2-2-1 电压跟踪控制电路举例
2.2.1采用滞环比较方式的电压跟踪型PWM变流电路的特点
(1)和电流跟踪控制电路相比,只是把指令和反馈信号从电流变为电压。
(2)输出电压PWM波形中含大量高次谐波,必须用适当的滤波器滤
(3)u*=0时,输出电压u为频率较高的矩形波,相当于一个自励振荡电路。
(4)u*为直流信号时,u产生直流偏移,变为正负脉冲宽度不等,正宽负窄或正窄负宽的矩形波。
(5)u*为交流信号时,只要其频率远低于上述自励振荡频率,从u 中滤除由器件通断产生的高次谐波后,所得的波形就几乎和u*相同,从而实现电压跟踪控制.
3 三角波比较方式
3.1基本原理
不是把指令信号和三角波直接进行比较,而是通过闭环来进行控制。
把指令电流i*U、i*V和i*W和实际输出电流i U、i V、i W进行比较,求出偏差,通过放大器A放大后,再去和三角波进行比较,产生PWM波形放大器A通常具有比例积分特性或比例特性,其系数直接影响电流跟踪特性,如图3-1-1所示。
图3-1-1 三角波比较方式电流跟踪型逆变电路
3.2特点
(1)开关频率固定,等于载波频率,高频滤波器设计方便。
(2)为改善输出电压波形,三角波载波常用三相三角波载波。
(3)和滞环比较控制方式相比,这种控制方式输出电流所含的谐波
4 定时比较方式
(1)不用滞环比较器,而是设置一个固定的时钟。
(2)以固定采样周期对指令信号和被控制变量进行采样,根据偏差的极性来控制开关器件通断。
(3)在时钟信号到来的时刻,如i < i*,V1通,V2断,使i增大。
如i > i*,V1断,V2通,使i减小。
(4)每个采样时刻的控制作用都使实际电流与指令电流的误差减小。
(5)采用定时比较方式时,器件的最高开关频率为时钟频率的1/2。
(6)和滞环比较方式相比,电流控制误差没有一定的环宽,控制的精度低一些。
5 MATLAB仿真与分析
(1)单相时:DC V1=DC V2=100V L=1mH,R=10 ohms。
滞环宽度h=2*0.05。
仿真波形:
t/s
A
/
值
幅
t/s
(2)三相时:DC =100V L=1mH,R=10 ohms。
滞环宽度h=2*0.05。
Control System :
仿真波形:
t/s a b / V
I a I b I c t/s
I。