等边三角形的典型例题及分析,历年中考试题分类汇编等腰三角形和等边三角形真题及答案解析

合集下载

2019年中考数学真题分类汇编—等腰三角形、等边三角形综合运用

2019年中考数学真题分类汇编—等腰三角形、等边三角形综合运用
【解后反思】如图所示,本题是含有 60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有 助于我们解决此题.
【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题 3. ( 湖南省怀化市,8,4 分)等腰三角形的两边长分别为 4cm 和 8cm,则它的周长为( ) A. 16cm B. 17cm C. 20cm D. 16cm 或 20cm 【答案】C. 【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确
BC,CE,EG,GI 在同一直线上,且 AB=2,BC=1,连接 AI,交 FG 于点 Q,则 QI= 。
4 【答案】 3
【逐步提示】本题考查了三角形相似的判定和性质,解题的关键就是掌握三角形相似的判定方法,并能运用三 QI GI
角形相似的性质求线段的长。由四个三角形全等可知∠ACB=∠FGE,则 GQ∥AC,所以 AI CI ,GI 和 CI 的长度
2
又∵AB=AC, ∴∠ABC=∠ACB=350.
,故答案为 350 .
【解后反思】圆周角定理能有效地把圆心角与圆周角联系起来,即在同圆或等圆中圆周角的度数等于同弧或等
弧所对的圆心角的一半.
【关键词】圆周角定理;等腰三角形的性质。 4. ( 湖 北 省 黄 冈 市 , 14, 3 分 ) 如 图 , 已 知 ΔABC,ΔDCE,ΔFEG,ΔHGI 是 四 个 全 等 的 等 腰 三 角 形 , 底 边
分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.
【详细解答】解:如图所示,剩余三角形的面积为 24— 1 ´ 4´ 4 — 1 ´ 3 2 ´ 3 2 — 1 ´ 3´ 3 =2.5,故选择

中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

解析)一.选择题(共5小题)1.(xx•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(xx•宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,解析)当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(xx•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(xx•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()解析)A.4 B.6 C. D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(xx•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,解析)∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(xx•成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(xx•长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,解析)∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(xx•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(xx•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.解析)【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(xx•淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(xx•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC 于点F,DE=3cm,则BF= 6 cm.解析)【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(xx•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,解析)∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:313.(xx•徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14.(xx•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= ()n.解析)【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(xx•湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.解析)【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(xx•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,解析)∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(xx•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(xx•绍兴)数学课上,张老师举了下面的例题:解析)例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.解析)19.(xx•徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.解析)【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。

中考数学真题分类汇编之第二十三章等腰三角形及参考答案

中考数学真题分类汇编之第二十三章等腰三角形及参考答案

第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MECA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有 (第7题)A BCD EA .1个B .2个C .3个D .4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75 【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF 的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4 【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cm ABCDEF GC .17cmD .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( )A .1013 B .1513 C .6013 D .7513【答案】C二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

等腰、等边三角形经典例题练习

等腰、等边三角形经典例题练习

等腰(等边)三角形经典题目 济宁附中李涛例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

求证:M 是BE 的中点。

A DB MC E说明:1. 见等腰三角形、想性质。

性质在解题中发挥着重要的作用。

例2. 如图,已知:AB C ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。

A B CD 说明:1. 注意“等边对等角”是对同一个三角形而言的。

2.不好直接求时,利用方程思想解几何计算题,是解决这类题目的常用方法。

例3. 已知:如图,AB C ∆中,AB CD AC AB ⊥=,于D 。

求证:DCB 2B AC ∠=∠。

A D B C说明:1. 作等腰三角形的三线合一,构造基本图形; 2. 对线段之间的倍半关系,常采用“截长补短”或“倍长中线”等辅助线的添加方法, 对角间的倍半关系也同理,或构造“半”,或构造“倍”。

常考题型: 1.如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有( )A. 6个B. 7个C. 8个D. 9个2.已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。

求证:AE =AF 。

A 36° E D FBC A E F B DCE D C AF 21E DCA B 练一练1.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为()A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对 2. 如图,AB C ∆是等边三角形,BC BD 90CBD ==∠, ,则1∠的度数是________。

3.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( )A .60°B .90°C .120°D .150° 4.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③ B .①②④ C .①③ D .①②③④5.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形6.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm7.如上图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准确的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 8.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______.9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,则CD 的长度是_______.10.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC 于点D ,求证: BC=3AD.D CAB11.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.(18分)ED C AH FC A 1 DB 2 3。

2019中考数学真题分类汇编解析版29 等腰三角形与等边三角形

2019中考数学真题分类汇编解析版29  等腰三角形与等边三角形

一、选择题1.(2019山东潍坊,8,3分)如图已知∠AOB ,按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE . ③连接OE 交CD 于点M .下列结论中错误的是( )A .∠CEO =∠DEOB .CM =MDC .∠OCD =∠ECD D .S 四边形OCED =12CD ·OE 【答案】C【解析】由作图可知OC =OD ,CE =DE ,OE =OE ,所以△OCE ≌ODE ,∴∠CEO =∠DEO ,选项A 正确,根据“三线合一”可知,CM =MD ,CD ⊥OE ,所以选项B 、D 正确;选项C 错误;故答案选择C. 【知识点】尺规作图,全等三角形的判定和性质,等腰三角形的性质2.(2019浙江衢州,7,3分)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角。

这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动。

C 点固定,OC =CD =DE ,点D ,E 可在槽中滑动,若∠BDE =75°,则∠CDE 的度数是( ) A .60° B .65° C .75° D .80°【答案】D【解析】本题考查等腰三角形及三角形外角的性质,因为OC =CD =DE ,所以∠O=∠CDO,∠DCE=∠CED.所以∠DCE=2∠O ,∠EDB=3∠O=75°,所以∠O=25°,∠CED=∠ECD=50°,所以∠CDE =180°-∠CED-∠ECD=180°-50°-50°=80°,故选D 。

【知识点】等腰三角形的判定等腰三角形的判定三角形内角和三角形外角的性质3.(2019重庆A 卷,12,4分)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC ′沿BD 翻折,得到△BDC',DC '与AB 交于点E ,连结AC',若AD =AC '=2,BD =3,则点D 到BC '的距离为( ) A .233 B .7213 C .7 D .13【答案】B .【解析】如答图,过点D 作DM ⊥BC '于点M ,过点B 作BN ⊥DC '于点N ,由翻折可知DC '=DC =AD =2,∠BDC =∠B DC '.∵AD =AC '=2,∴△ADC'是等边三角形,从而∠ADC '=∠B DC '=∠BDC =60°.在Rt △BDN 中,DN =12BD =32,BN,从而C N '=12.于是,BC '=.∵BDC S '∆=1122DC BN BC DM ''⋅=⋅,∴DM =DC BNBC'⋅'2=7.故选B .【知识点】翻折;等边三角形的判定与性质;勾股定理;解直角三角形;面积桥法.4.(2019山东聊城,11,3分)如图在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC 分别交于点E,F 时,下列结论中错误的是( )A.AE+AF =ACB.∠BEO+∠OFC =180°C.OE+OFBC D.S 四边形AEOF =12S △ABC第11题图 【答案】C【解析】连接AO,易得△AEO ≌△CFO,∴AE+AF =CF+AF =AC,故A 正确;∠BEO+∠OFC =∠BEO+∠AEO =180°,故B 正确;随着三角形的转动,OE 和OF 的长度会变化,故C 错误;S 四边形AEOF =S △AEO +S △AFO =S △CFO +S △AFO =12S △ABC ,故D 正确;故选 C. 第12题图第12题答图第11题答图【知识点】旋转,三角形全等 二、填空题1.(2019湖南怀化,14,4分)若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为 【答案】36°.【解析】解:∵等腰三角形的一个底角为72°, ∴这个等腰三角形的顶角为180°-72°×2=36°. 故答案为36°.【知识点】等腰三角形的性质,三角形内角和定理2.(2019四川南充,14,4分)在ABC ∆中,AB AC =,40A ∠=︒,则B ∠= ︒. 【答案】70 【解析】解:AB AC =,B C ∴∠=∠,180A B C ∠+∠+∠=︒,1(18040)702B ∴∠=︒-︒=︒.故答案为70.【知识点】等腰三角形的性质3.(2019甘肃武威,17,4分)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰ABC ∆中,80A ∠=︒,则它的特征值k = . 【答案】85或14【解析】解:①当A ∠为顶角时,等腰三角形两底角的度数为:18080502︒-︒=︒, ∴特征值808505k ︒==︒ ②当A ∠为底角时,顶角的度数为:180808020︒-︒-︒=︒ ∴特征值201804k ︒==︒ 故答案为85或14【知识点】等腰三角形的性质4.(2019贵州黔东南,13,3分)如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的大小为 .【答案】34°【解析】解:∵∠B =40°,∠C =36°, ∴∠BAC =180°﹣∠B ﹣∠C =104° ∵AB =BD∴∠BAD =∠ADB =(180°﹣∠B )÷2=70°, ∴∠DAC =∠BAC ﹣∠BAD =34° 故答案为:34°.【知识点】等腰三角形的性质 三、解答题1.(2019重庆A 卷,20,10分)如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC交AC 于点E ,过点E 作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数;(2)求证:FB =FE .【思路分析】(1)先利用“等边对等角”求出∠ABC 的度数,然后利用三角形内角和定理,得到∠BAC 的度数,最后利用“三线合一”性质,即可求出∠BAD 的度数;(2)由角平分线定义,得∠ABE =∠CBE ,再由平行线性质,得到∠FEB =∠CBE ,从而∠ABE =∠FEB ,于是FB =FE . 【解题过程】(1)解:∵AB =AC ,∴∠B =∠C =36°.∴∠BAC =180°-∠B -∠C =108°. ∵AB =AC ,D 是BC 边上的中点, ∴AD 平分∠BAC .∴∠BAD =12∠BAC =54°. (2)证明:∵BE 平分∠ABC ,∴∠ABE =∠CBE . ∵EF ∥BC ,∴∠FEB =∠CBE . ∴∠ABE =∠FEB . ∴FB =FE .【知识点】等腰三角形的性质与判定;角平分线定义;平行线的性质;三角形内角和定理.2.(2019重庆市B 卷,20,10分)如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D . (1) 若∠C=42°,求∠BAD 的度数;(2) 若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE=FE第20题图FECBA【思路分析】(1)根据∠C=42°,AB=AC结合等腰三角形的性质及内角和180°可得顶角度数.由AD⊥BC根据三线合一推出∠BAD的度数为顶角一半.(2)根据EF∥AC可以得出内错角∠F=∠BAF,利用等角对等边得出结果.(3)考虑到△ABD为直角三角形,也可以结合内角和算出∠BAD.【解题过程】(1)证明:(方法一):∵AB=AC,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B-∠C=180°-42°-42°=96°∵AD⊥BC∴∠BAD=12∠BAC=12×96°=48°(方法二):∵AB=AC∠C=42°∴∠B=∠C=42°∵AD⊥BC于点D∴∠ADB=90°∴∠BAD=180°-90°-42°=48°(2)证明:∵EF∥AC∴∠CAF=∠F∵AB=AC,AD⊥BC∴∠CAF=∠BAF∴∠F=∠BAF∴AE=FE【知识点】等腰三角形的性质,平行线性质,三线合一,等边对等角,等角对等边.3.(2019四川眉山,21,8分)如图,在四边形ABCD中AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.【思路分析】根据AE=BE,求出∠EAB=∠EBA,根据平行线的性质,可证∠DEA=∠CEB,进而利用三角形全等的判定和性质即可得证.【解题过程】证明:∵AE=BE,∴∠EAB=∠EBA,∵DC∥AB,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB,在△EDA和△CEB中,DE CEDEA CEBAE BE=⎧⎪∠=∠⎨⎪=⎩,∴△EDA≌△CEB(SAS),∴∠D=∠C.【知识点】等腰三角形的性质,平行线的性质,全等三角形的性质和判定4.(2019江苏无锡,21,8分)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O;求证:(1)△DBC≌△ECB;(2)OCOB=.B第21题图【思路分析】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识.(1)利用边角边证明全等即可;(2)由全等得到等角,再得到等边.【解题过程】解:(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中,BD = CE,∠DBC =∠ECB,BC = CB,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.【知识点】考查全等三角形的判定和性质;等腰三角形的判定和性质。

精品2019中考数学试题分类汇编考点20等腰三角形、等边三角形和直角三角形(含解析)

精品2019中考数学试题分类汇编考点20等腰三角形、等边三角形和直角三角形(含解析)

考点20 等腰三角形、等边三角形和直角三角形一.选择题(共5小题)1.(2019?湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(2019?宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(2019?扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(2019?淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(2019?黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(2019?成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(2019?长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(2019?哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC 的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(2019?吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(2019?淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(2019?娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= 6 cm.,又S△ABC=AC?BF,将AC=AB 【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,,∴S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB∵S△ABC=AC?BF,∴AC?BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(2019?桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为: 313.(2019?徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a?a=a2.14.(2019?黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= ()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(2019?湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(2019?天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,※精品试卷※∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(2019?福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(2019?绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)※精品试卷※例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(2019?徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.※精品试卷※【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.推荐下载。

中考数学必考考点专题17等腰、等边三角形问题含解析

中考数学必考考点专题17等腰、等边三角形问题含解析

专题17 等腰、等边三角形问题专题知识回忆一、等腰三角形1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角.2. 等腰三角形的性质性质1:等腰三角形的两个底角相等〔简称“等边同等角〞〕.性质2:等腰三角形的顶角均分线、底边上的高、底边上的中线互相重合〔简称“三线合一〞〕.3. 等腰三角形的性质的作用性质 1 证明同一个三角形中的两角相等. 是证明角相等的一个重要依照.性质 2 用来证明线段相等,角相等,垂直关系等.4. 等腰三角形是轴对称图形等腰三角形底边上的高〔顶角均分线或底边上的中线〕所在直线是它的对称轴,平时情况只有一条对称轴.5. 等腰三角形的判断若是一个三角形中有两个角相等,那么这两个角所对的边也相等〔简称“等角同等边〞〕 .要点讲解:等腰三角形的判断是证明两条线段相等的重要定理,是将三角形中的角的相等关系转变成边的相等关系的重要依照. 等腰三角形的性质定理和判判定理是互逆定理.二、等边三角形1. 定义:三边都相等的三角形叫等边三角形.2. 性质性质1:等边三角形的三个内角都相等,并且每一个角都等于60°;性质2:等边三角形是轴对称图形,并且有三条对称轴,分别为三边的垂直均分线。

3. 判断〔1〕三个角都相等的三角形是等边三角形;〔2〕有一个角是60°的等腰三角形是等边三角形;〔3〕有两个角是60°的三角形是等边三角形。

1三、含30的直角三角形的性质在直角三角形中,若是有一个锐角等于30°,那么它对的等于的一半.四、解题方法要领1. 等腰〔边〕三角形是一个特其他三角形,拥有很多的特别性质,有时几何图形中不存在等腰〔边〕三角形,可依照条件和图形特色,合适增加辅助线,使之组成等腰〔边〕三角形,尔后利用其定义和有关性质,快捷地证出结论。

2. 常用的辅助线有:〔1〕作顶角的均分线、底边上的高线、中线。

八年级上册数学《等腰三角形、等边三角形》例题

八年级上册数学《等腰三角形、等边三角形》例题

等腰三角形、等边三角形一、知识回顾1、等腰三角形:有两条边相等的三角形是等腰三角形。

2、等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、等边三角形三条边都相等的三角形叫做等边三角形,也叫做正三角形。

4、等边三角形的性质等边三角形的三个内角都相等,•并且每一个内角都等于60°二、典型例题例1:(2010•江津区)如图,△ABC中,已知AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>6分析:根据三角形的三边关系定理来确定腰长x的取值范围.解答:若△ABC是等腰三角形,需满足的条件是:6-x<x<6+x,解得x>3;故选B.例2:有两边相等的三角形的两边长为3cm,7cm,则它的周长为()A.15cm B.17cm C.13cm D.17cm或13cm分析:分情况考虑:相等的两边是3cm时或相等的两边是7cm时.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断能否组成三角形后,再进一步计算其周长.解答:当相等的两边是3cm时,此时3+3<7,不能组成三角形,应舍去;当相等的两边是7cm时,此时能够组成三角形,则其周长是7+7+3=17(cm).故选B.例3:(2010•宁波)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个 C.7个D.8个分析:由已知条件,根据等腰三角形的性质和判定,角的平分线的性质,三角形内角和等于180°得到各个角的度数,应用度数进行判断,答案可得.解答:设CE与BD的交点为点O,∵AB=AC,∠A=36°,∴∠ABC=∠ACB,再根据三角形内角和定理知,∠ABC=∠ACB=(180°-36°)/2 =72°,∵BD是∠ABC的角的平分线,∴∠ABD=∠DBC=1/2 ∠ABC=36°=∠A,∴AD=BD,同理,∠A=∠ACE=∠BCE=36°,AE=CE,∵∠DBC=36°,∠ACD=72°,根据三角形内角和定理知,∠BDC=180°-72°-36°=72°∴BD=BC,同理CE=BC,∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°,∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC都是等腰三角形,共8个.故选D.例4:已知:如图,△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°,那么△ADC≌△AEB的根据是()A.边边边 B.边角边 C.角边角 D.角角边分析:根据判定方法寻找条件判断.解答:∵△ABD和△ACE均为等边三角形,∴DA=BA,AC=AE,∠DAB+∠BAC=∠CAE+∠BAC.∴△ADC≌△AEB.(SAS)故选B.例5:如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45° C.120°D.15°分析:根据直角三角形的判定得△ABE是直角三角形,再根据等腰三角形的性质、三角形的内角和定理求解.解答:设∠B=x∵BD=AD则∠B=∠BAD=x,∠ADE=2x,∵AD=AE∴∠AED=∠ADE=2x,∵AE=EC,∠AED=∠EAC+∠C∴∠EAC=∠C=x又BD=DE=AD,由直角三角形斜边的中线等于斜边的一半,知∠BAE=90°,则∠B+∠AED=x+2x=90°得x=30°∴∠BAC=180°-2x=120°故选C.例6:已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=()A.3cm B.4cm C.5cm D.6cm分析:由△ABC≌△DEF,∠F=90°,DE=6cm,根据全等三角形的性质,即可求得∠C=90°,AB=6cm,又由∠A=60°,根据三角形内角和定理,即可求得∠B=30°,然后根据在直角三角形中,30°角所对的直角边等于斜边的一半,即可求得AC的长.解答:∵△ABC≌△DEF,∠F=90°,DE=6cm,∴∠C=∠F=90°,AB=DE=6cm,∵∠A=60°,∴∠B=30°,∴AC=1/2 AB=3cm.故选A.例7:如图,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,那么下列式子不能成立的是()A.DE=AC B.DE⊥AC C.∠CAB=30°D.∠EAF=∠ADF分析:已知EA=AB=2BC,且D是AB中点,那么AD=BC,进而可证得△AED、△BAC全等,可根据这个条件进行判断.解答:∵EA=AB=2BC,AB=2AD,∴AD=BC;又∵EA⊥AB,BC∥EA,即∠EAD=∠B=90°,∴Rt△EAD≌Rt△ABC,∴DE=AC;又∠EAF、∠ADF同为∠FAD的余角,∴∠EAF=∠ADE;故A、B、D的结论都正确;Rt△CAB中,AB=2BC,显然sin∠CAB≠1/2 ,所以∠CAB≠30°,因此C的结论是错误的;故选C.三、解题经验我们要牢牢记住等腰三角形的性质和判定,在以后的几何题目中经常考到。

(人教版)2020中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

(人教版)2020中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

考点20 等腰三角形、等边三角形和直角三角形一.选择题(共5小题)1.(2019•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(2019•宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(2019•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(2019•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(2019•黄冈)如图,在Rt△ABC中,∠A CB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(2019•成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(2019•长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(2019•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(2019•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(2019•淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(2019•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= 6 cm.【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB 代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(2019•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:313.(2019•徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14.(2019•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= ()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(2019•湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(2019•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(2019•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(2019•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(2019•徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.※精品※试卷※【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.※推荐※下载※。

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。

2021年全国中考数学真题分类汇编: 等腰三角形与等边三角形(含解析)

2021年全国中考数学真题分类汇编:  等腰三角形与等边三角形(含解析)

一、选择题7.(2021·益阳)如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于()A.40°B.30°C.20°D.15°C解析:∵AB∥CD,∴∠DCA+∠CAB=180°,即∠DCE+∠ECA+∠EAC+∠EAB=180°,∵△ACE为等边三角形,∴∠ECA=∠EAC=60°,∴∠EAB=180°﹣40°﹣60°﹣60°=20°.故选:C.8.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D 停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形C【解析】∵∠B=60°,故菱形由两个等边三角形组合而成,当AP⊥BC时,此时△ABP为等腰三角形;当点P到达点C处时,此时△ABP为等边三角形;当点P在CD上且位于AB的中垂线时,则△ABP为等腰三角形;当点P与点D重合时,此时△ABP为等腰三角形.6.(2021•扬州)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC 是等腰直角三角形,满足条件的格点C的个数是()A.2 B.3 C.4 D.5B【解析】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有3个.故共有3个点.7.(2021•陕西)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD ⊥BC,则线段CE的长度是()A .6cmB .7cmC .6√2cmD .8cmD 【解析】由题意知,AB =BC =CD =DE =5cm ,AC =6cm ,过B 作BM ⊥AC 于M ,过D 作DN ⊥CE 于N , 则∠BMC =∠CND =90°,AM =CM =12AC =12×6=3,CN =EN ,∵CD ⊥BC ,∴∠BCD =90°,∴∠BCM +∠CBM =∠BCM +∠DCN =90°,∴∠CBM =∠DCN , 在△BCM 和△CDN 中,{∠CBM =∠DCN∠BMC =∠CND BC =DC ,∴△BCM ≌△CDN (AAS ),∴BM =CN ,在Rt △BCM 中,∵BM =5,CM =3,∴BM =√BC 2−CM 2=√52−32=4,∴CN =4, ∴CE =2CN =2×4=8.3.(2021•青海)已知a ,b 是等腰三角形的两边长,且a ,b 满足√2a −3b +5+(2a +3b ﹣13)2=0,则此等腰三角形的周长为( ) A .8B .6或8C .7D .7或8D 【解析】∵√2a −3b +5+(2a +3b ﹣13)2=0, ∴{2a −3b +5=02a +3b −13=0,解得{a =2b =3,当b 为底时,三角形的三边长为2,2,3,周长为7; 当a 为底时,三角形的三边长为2,3,3,则周长为8, ∴等腰三角形的周长为7或8.10.(2021•广元)如图,在△ABC 中,∠ACB =90°,AC =BC =4,点D 是BC 边的中点,点P 是AC 边上一个动点,连接PD ,以PD 为边在PD 的下方作等边三角形PDQ ,连接CQ .则CQ 的最小值是( )A .√32B .1C .√2D .32B 【解析】如图在CD 的下方作等边△CDT ,作射线TQ .∵∠CDT =∠QDP =60°,DP =DQ ,DC =DT ,∴∠CDP =∠QDT , 在△CDP 和△TDQ 中,{DP =DQ∠CDP =∠TDQ DC =DT,∴△CDP ≌△TDQ (SAS ),∴∠DCP =∠DTQ =90°, ∴∠CTD =60°,∴∠CTQ =30°,∴点Q 在射线TQ 上运动,当CQ ⊥TQ 时,CQ 的值最小,最小值=CT •sin30°=12CT =12CD =14BC =1.10.(2021·东营) 如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:①ABCS =;②当点D 与点C 重合时,12FH =;③AE CD +=;④当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A. ①②③B. ①②④C. ①②③④D. ②③④B【解析】①过点A 作BC AP ⊥于点P ,如图1:∵ABC ∆是边长为1的等边三角形,BC AP ⊥,∴2121==BC BP , ∴2322=-=BP AB AP ,∴432312121=⨯⨯=⋅=∆BC AP S ABC .故①正确;②当点D 与点C 重合时,点H ,D ,C 重合,如图2:∵︒=∠30DBE ,︒=∠60ABC ,∴BE 是ABC ∠的平分线. ∵BC AB =,∴2121===EC EC AE , ∴AB CF //,∴︒=∠=∠60A FCA ,∴BC GF //, ∴︒=∠=∠60ACB FEC ,∴︒=∠=∠60FEC FCE , ∴︒=∠=∠=∠60F FEC FCE ,∴EFC ∆为等边三角形, ∴21==EC FC ,∴21=FH ,故②正确; ③如图3所示将△CBD 绕点B 逆时针旋转60°,得到△ABN ,连接NE ,过点N 作AC NP ⊥,交CA 的延长线于点P ,∴AN CD BN BD ==,,∴ABN CBD ∠=∠.∵︒=∠30DBE ,∴EBN ABN ABE ABE CBD ∠=∠+∠=︒=∠+∠30, ∴︒=∠=∠30DBE EBN .又∵BE BE BD BN ==,,∴)(SAS NBE DBE ∆≅∆,∴NE DE =, ∴︒=∠-∠-︒=∠60180NAB BAC NAP , ∴AN AP 21=,CD AN AP NP 23233===.∵222NE PE NP =+,∴222)41(43DE CD AE CD =++, ∴222DE CD AE CD AE =⋅+,故③错误;④∵ABC ∆是等边三角形,∴︒=∠=∠=∠60C ABC A , ∵HF BG BH GF //,//,∴四边形BHFG 是平行四边形,∵HF BG BH GF //,//,∴︒=∠=∠60ABC AGE ,︒=∠=∠60ABC DHC , ∴AGE ∆,DCH ∆都是等边三角形,∴AE AG =,CD CH =,∴CD AE =,∴CH AG =,∴BG BH =∴四边形BHFG 是菱形.故④正确. 故答案为①②④.二、填空题 16.(2021•绍兴)已知△ABC 与△ABD 在同一平面内,点C ,D 不重合,∠ABC =∠ABD =30°,AB =4,AC =AD =2√2,则CD 长为 . 2√3±2或4或2√6【解析】如图,当C ,D 同侧时,过点A 作AE ⊥CD 于E .在Rt △AEB 中,∠AEB =90°,AB =4,∠ABE =30°, ∴AE =12AB =2, ∵AD =AC =2√2,∴DE =√(2√2)2−22=2,EC =√(2√2)2−22=2, ∴DE =EC =AE ,∴△ADC 是等腰直角三角形,∴CD =4, 当C ,D 异侧时,过C ′作C ′H ⊥CD 于H ,∵△BCC ′是等边三角形,BC =BE ﹣EC =2√3−2, ∴CH =BH =√3−1,C ′H =√3CH =6﹣2√3,在Rt △DC ′H 中,DC ′=√DH 2+C′H 2=√(3+√3)2+(6−2√3)2=2√6,∵△DBD ′是等边三角形,∴DD ′=2√3+2,∴CD 的长为2√3±2或4或2√6.15.(2021•株洲)如图所示,线段BC 为等腰△ABC 的底边,矩形ADBE 的对角线AB 与DE 交于点O ,若OD =2,则AC = .4 【解析】∵四边形ADBE 是矩形,∴AB =DE ,AO =BO ,DO =OE ,∴AB =DE =2OD =4, ∵AB =AC ,∴AC =4.17.(2021·枣庄) 若等腰三角形的一边长是4,另两边的长是关于x 的方程260x x n -+=的两个根,则n 的值为 . 8或9{解析}当底边为4时,则另两边长度一样,则方程式△=36-4n=0即n=9,当腰为4时,则方程式两根之一为4,将x=4代入方程是得x=5,即n=8.在上述两种情况下,455,446,三角形均成立.三、解答题23.(2021·仙桃)已知△ABC 和△DEC 都为等腰三角形,AB =AC ,DE =DC ,∠BAC =∠EDC =n °. (1)当n =60时,①如图1,当点D 在AC 上时,请直接写出BE 与AD 的数量关系: ; ②如图2,当点D 不在AC 上时,判断线段BE 与AD 的数量关系,并说明理由; (2)当n =90时,①如图3,探究线段BE 与AD 的数量关系,并说明理由; ②当BE ∥AC ,AB =23,AD =1时,请直接写出DC 的长.解:(1)当n =60°时①∵AB =AC ,DE =DC ,∠BAC =∠EDC =60°,∴△ABC 和△DEC 为等边三角形,∴AC =BC ,CE =CD ,∴BE =AD.②∵△ABC 和△DEC 为等边三角形,∴∠ACB =∠DCE=60°,∴∠ACD =∠BCE.在△ACD 和△BCE 中,{AB =AC∠ACD =∠BCE CE =CD,∴△AC D ≅△BCE ,∴BE =AD.(2)当n =90°时,①∵AB =AC ,DE =DC ,∠BAC =∠EDC =90°,∴△ABC 和△DEC 为等腰直角三角形,∴EC BC=DC AC,∠ACB =∠DCE=45°,∴∠ACD =∠BCE ,∴△AC D~△BCE ,∴BE AD=EC DC=√2.②如图,记AB 与CE 相交于点G , ∵BE ∥AC ,∴△CAG ∽△EBG ,∴BE AC=BG GA=EG GC.∵AB =3√2,AD =1,2=ADBE,∴AC =3√2,2=BE ,BC =6,BG +GA =3√2, ∴31==AC BE GA BG ,∴429=AG ,423=BG . ∵∠GAC =90°,∴CG 421522=+=AG AC ,同理,可得GE =5√24,∴CE =5√2,∴DC =5.23.(2021•长沙23题)如图,在△ABC 中,AD ⊥BC ,垂足为D ,BD =CD ,延长BC 至E ,使得CE =CA ,连接AE .(1)求证:∠B =∠ACB ;(2)若AB =5,AD =4,求△ABE 的周长和面积.解:(1)证明:在△ADB 和△ADC 中,,∴△ADB ≌△ADC (SAS ),∴∠B =∠ACB . (2)在Rt △ADB 中,BD ===3,∴BD =CD =3,AC =AB =CE =5, ∴BE =2BD +CE =2×3+5=11, 在Rt △ADE 中,AE ===4,∴C △ABE =AB +BE +AE =5+11+4=16+4,S △ABE ===22.21.(2021•绍兴)如图,在△ABC 中,∠A =40°,点D ,E 分别在边AB ,AC 上,BD =BC =CE ,连结CD ,BE . (1)若∠ABC =80°,求∠BDC ,∠ABE 的度数;(2)写出∠BEC 与∠BDC 之间的关系,并说明理由.解:(1)∵∠ABC =80°,BD =BC , ∴∠BDC =∠BCD =12(180°﹣80°)=50°,∵∠A +∠ABC +∠ACB =180°,∠A =40°, ∴∠ACB =180°﹣40°﹣50°=60°, ∵CE =BC ,∴△BCE 是等边三角形, ∴∠EBC =60°,∴∠ABE =∠ABC ﹣∠EBC =20°.(2)∠BEC 与∠BDC 之间的关系:∠BEC +∠BDC =110°, 理由:设∠BEC =α,∠BDC =β, 在△ABE 中,α=∠A +∠ABE =40°+∠ABE , ∵CE =BC ,∴∠CBE =∠BEC =α,∴∠ABC =∠ABE +∠CBE =∠A +2∠ABE =40°+∠ABE , ∵CE =BC ,∴∠CBE =∠BEC =α,∴∠ABC =∠ABE +∠CBE =∠A +2∠ABE =40°+2∠ABE , 在△BDC 中,BD =BC ,∴∠BDC +∠BCD +∠DBC =2β+40°+2∠ABE =180°, ∴β=70°﹣∠ABE , ∴α+β=40°+∠ABE +70°﹣∠ABE =110°, ∴∠BEC +∠BDC =110°. 26.(2021•重庆B 卷)在等边△ABC 中,AB =6,BD ⊥AC ,垂足为D ,点E 为AB 边上一点,点F 为直线BD 上一点,连接EF .(1)将线段EF 绕点E 逆时针旋转60°得到线段EG ,连接FG .①如图1,当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;②如图2,点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:BE +BH =√3BF ;(2)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且DN =2NC ,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60°得到线段EP ,连接FP ,当NP +12MP 最小时,直接写出△DPN的面积.解:(1)①过D 作DH ⊥GC 于H ,如图:∵线段EF 绕点E 逆时针旋转60°得到线段EG ,点E 与点B 重合,且GF 的延长线过点C , ∴BG =BF ,∠FBG =60°,∴△BGF 是等边三角形, ∴∠BFG =∠DFC =60°,BF =GF , ∵等边△ABC ,AB =6,BD ⊥AC ,∴∠DCF =180°﹣∠BDC ﹣∠DFC =30°,∠DBC =12∠ABC =30°,CD =12AC =12AB =3,∴∠BCG =∠ACB ﹣∠DCF =30°,∴∠BCG =∠DBC ,∴BF =CF ,∴GF =CF , Rt △BDC 中,CF =CC CCC ∠CCC=3CCC 30°=2√3,∴GF =2√3,Rt △CDH 中,DH =CD •sin30°=32,CH =CD •cos30°=3√32, ∴FH =CF ﹣CH =√32,∴GH =GF +FH =5√32, Rt △GHD 中,DG =√CC 2+CC 2=√21;②过E 作EP ⊥AB 交BD 于P ,过H 作MH ⊥BC 交BD 于M ,连接PG ,作BP 中点N ,连接EN ,如图: ∵EF 绕点E 逆时针旋转60°得到线段EG , ∴△EGF 是等边三角形,∴∠EFG =∠EGF =∠GEF =60°,∠EFH =120°,EF =GF , ∵△ABC 是等边三角形,∴∠ABC =60°, ∴∠ABC +∠EFH =180°,∴B 、E 、F 、H 共圆,∴∠FBH =∠FEH , 而△ABC 是等边三角形,BD ⊥AC , ∴∠DBC =∠ABD =30°,即∠FBH =30°, ∴∠FEH =30°, ∴∠FHE =180°﹣∠EFH ﹣∠FEH =30°, ∴EF =HF =GF ①,∵EP ⊥AB ,∠ABD =30°, ∴∠EPB =60°,∠EPF =120°, ∴∠EPF +∠EGF =180°,∴E 、P 、F 、G 共圆,∴∠GPF =∠GEF =60°, ∵MH ⊥BC ,∠DBC =30°, ∴∠BMH =60°,∴∠BMH =∠GPF ②, 而∠GFP =∠HFM ③,由①②③得△GFP ≌△HFM (AAS ), ∴PF =FM ,∵EP ⊥AB ,BP 中点N ,∠ABD =30°, ∴EP =12BP =BN =NP , ∴PF +NP =FM +BN ,∴NF =12BM ,Rt △MHB 中,MH =12BM ,∴NF =MH ,∴NF +BN =MH +EP ,即BF =MH +EP , Rt △BEP 中,EP =BE •tan30°=√33BE , Rt △MHB 中,MH =BH •tan30°=√33BH ,∴BF =√33BE +√33BH ,∴BE +BH =√3BF ;(2)以M 为顶点,MP 为一边,作∠PML =30°,ML 交BD 于G ,过P 作PH ⊥ML 于H ,设MP 交BD 于K ,如图:Rt △PMH 中,HP =12MP ,∴NP +12MP 最小即是NP +HP 最小,此时N 、P 、H 共线,∵将线段EF 绕点E 顺时针旋转60°得到线段EP , ∴F 在射线QF 上运动,则P 在射线MP 上运动,根据“瓜豆原理”,F 为主动点,P 是从动点,E 为定点,∠FEP =60°,则F 、P 轨迹的夹角∠QKP =∠FEP =60°, ∴∠BKM =60°, ∵∠ABD =30°,∴∠BMK =90°, ∵∠PML =30°,∴∠BML =60°,∴∠BML =∠A ,∴ML ∥AC ,∴∠HNA =180°﹣∠PHM =90°, 而BD ⊥AC ,∴∠BDC =∠HNA =∠PHM =90°, ∴四边形GHND 是矩形,∴DN =GH , ∵边△ABC 中,AB =6,BD ⊥AC , ∴CD =3,又DN =2NC ,∴DN =GH =2,∵等边△ABC 中,AB =6,点E 为AB 中点时,点M 为BE 中点, ∴BM =32,BD =AB •sin A =6×sin60°=3√3,Rt △BGM 中,MG =12BM =34,BG =BM •cos30°=3√34, ∴MH =MG +GH =114,GD =BD ﹣BG =9√34,Rt △MHP 中,HP =MH •tan30°=11√312,∴PN =HN ﹣HP =GD ﹣HP =4√33, ∴S △DPN =12PN •DN =4√33.25.(2021•乐山)在等腰△ABC 中,AB =AC ,点D 是BC 边上一点(不与点B 、C 重合),连结AD . (1)如图1,若∠C =60°,点D 关于直线AB 的对称点为点E ,连结AE ,DE ,则∠BDE = ; (2)若∠C =60°,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连结BE . ①在图2中补全图形;②探究CD 与BE 的数量关系,并证明; (3)如图3,若AB BC=AD DE=k ,且∠ADE =∠C .试探究BE 、BD 、AC 之间满足的数量关系,并证明.解:(1)30°【解析】∵AB =AC ,∠C =60°, ∴△ABC 是等边三角形,∴∠B =60°, ∵点D 关于直线AB 的对称点为点E , ∴DE ⊥AB ,∴∠BDE =180°﹣60°﹣90°=30°. (2)①补全图形如下:②CD =BE ,证明如下: ∵AB =AC ,∠C =60°,∴△ABC 是等边三角形, ∴AB =AC ,∠BAC =60°,∵线段AD 绕点A 顺时针旋转60°得到线段AE , ∴AD =AE ,∠EAD =60°,∴∠BAC =∠EAD =60°,∴∠BAC ﹣∠BAD =∠EAD ﹣∠BAD ,即∠EAB =∠DAC ,在△EAB 和△DAC 中,{AB =AC∠EAB =∠DAC AE =AD,∴△EAB ≌△DAC (SAS ),∴CD =BE ;(3)AC=k(BD+BE),证明如下:连接AE,如图:∵AB=AC,∴∠C=∠ABC,∵∠ADE=∠C,∴∠ABC=∠ADE,∵ABBC =ADDE,∴△ABC∽△ADE,∴∠DAE=∠BAC,ABAD =ACAE,∴∠DAE﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠DAC,∵AB=AC,∴AE=AD,在△EAB和△DAC中,{AB=AC∠EAB=∠DAC AE=AD,∴△EAB≌△DAC(SAS),∴CD=BE,∴BC=BD+CD=BD+BE,而ABBC =ACBC=k,∴ACBD+BE=k,即AC=k(BD+BE).25.(2021·包头25题)如图,已知△ABC是等边三角形,P是△ABC内部的一点,连接BP,CP.(1)如图1,以BC为直径的半圆O交AB于点Q,交AC于点R,当点P在QR上时,连接AP,在BC边的下方作∠BCD=∠BAP,CD=AP,连接DP,求∠CPD的度数;(2)如图2,E是BC边上一点,且EC=3BE,当BP=CP时,连接EP并延长,交AC于点F,=4BP,求证:4EF=3AB;(3)如图3,M是AC边上一点,当AM=2MC时,连接MP.若∠CMP=150°,AB=6a,MP,△ABC 的面积为S1,△BCP的面积为S2,求S1-S2的值(用含a的代数式表示).第25题解:(1)如图,连接BD.∵ABC是等边三角形,∴∠ABC=60°,AB=CB.又∵∠BAP=∠BCD,AP=CD,∴ABP≌CBD,∴BP=BD,∠ABP=∠CBD,∴∠ABP+∠PBC=∠CBD+∠PBC,即∠ABC=∠PBD,∴∠PBD=60°.又∵BP=BD,∴PBD是等边三角形,∴∠BPD=60°.∵BC是直径,∴∠BPC=90°,∴∠CPD=∠BPC-∠BPD=90°-60°=30°.(2)如图,连接AP 并延长交BC 于点H .∵ABC 是等边三角形,∴AB =AC ,∴点A 在线段BC 的垂直平分线上.PB =PC ,∴点P 在线段BC 的垂直平分线上,∴AP 垂直平分线段BC ,∴AH ⊥BC ,BH =CH .设BE =x ,∵CE =3BE ,∴CE =3x ,∴BC =4x ,∴BH =CH =2x ,∴BE =EH =x .∵ABC 是等边三角形,∴AB =BC =4x =4BP ×4x =4BP ,∴BP x.在Rt BPH 中,PH .在Rt ABH 中,AH .∴PH =12AH ,∴点P 为AH 的中点. 又∵BE =EH ,即E 为BH 的中点,∴PE ∥AB ,∴∠PEH =∠ABC .∵ABC 是等边三角形,∴∠ABC =∠ACB =60°,∴∠PEH =∠ACB =60°,∴CEF 是等边三角形,∴EF =CE =3x .∵AB =4x ,∴4EF =3AB .(2)如图,延长MP 交AB 于点D ,过点P 作PE ⊥AC 于点E .∵∠CMP =150°,∴∠PME =30°.又∵∠A =60°,∠PME +∠A =90°,∴∠ADM =∠BDP =90°.∵BC =AC =AB =6a ,AM =2MC ,∴AM =4a ,MC =2a .在Rt ADM 中,∵∠PME =30°,AM =4a ,∴AD =2a ,DM =,∴BD =4a .∵PM ,∴PD =DM -PM =a .在Rt PEM 中,∵∠PME =30°,PM ,∴PE a .∵AB =6a ,∴S 1=S ABC ×(6a )2=2,S 2=S ABC -S ADM -S BDP -S MCP =2-12×2a ×-12×4a -12×2a a 2.。

等腰三角形与等边三角形(优选真题60道)(解析版)--三年(2021-2023)中考数学真题分项汇编

等腰三角形与等边三角形(优选真题60道)(解析版)--三年(2021-2023)中考数学真题分项汇编

三年(2021-2023)中考数学真题分项汇编(全国通用)等腰三角形与等边三角形(优选真题60道)一.选择题(共30小题)1.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A.4m B.6m C.10m D.12m【分析】作AD⊥BC于点D,根据等腰三角形的性质和三角形内角和定理可得∠B=∠C=12(180°﹣∠BAC)=30°,再根据含30度角的直角三角形的性质即可得出答案.【解答】解:如图,作AD⊥BC于点D,在△ABC中,∠BAC=120°,AB=AC,∴∠B=∠C=12(180°﹣∠BAC30°,又∵AD⊥BC,∴AD=12AB=12×12=6(m),故选:B.【点评】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题关键是掌握30度角所对的直角边是斜边的一半.2.(2023•内蒙古)如图,直线a∥b,直线l与直线a,b分别相交于点A,B,点C在直线b上,且CA=CB.若∠1=32°,则∠2的度数为()A.32°B.58°C.74°D.75°【分析】由CA =CB 可得△ABC 是等腰三角形,从而可求∠CBA 的大小,再结合平行线的性质即可解答.【解答】解:∵CA =CB ,∴△ABC 是等腰三角形,∴∠CBA =∠CAB =(180°﹣32°)÷2=74°,∵a ∥b ,∴∠2=∠CBA =74°.故选:C .【点评】本题考查等腰三角形的性质和平行线的性质,熟练掌握性质是解题关键.3.(2023•菏泽)△ABC 的三边长a ,b ,c 满足(a ﹣b )2+√2a −b −3+|c ﹣3√2|=0,则△ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由 a 2+b 2=c 2 的关系,可推导得到△ABC 为直角三角形.【解答】解:由题意得{a −b =02a −b −3=0c −3√2=0,解得{a =3b =3c =3√2,∵a 2+b 2=c 2,且a =b ,∴△ABC 为等腰直角三角形,故选:D .【点评】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负 数均为0,和勾股定理逆定理.4.(2023•河北)在△ABC 和△A 'B 'C ′中,∠B =∠B '=30°,AB =A 'B '=6,AC =A 'C ′=4,已知∠C =n °,则∠C ′=( )A .30°B .n °C .n °或180°﹣n °D .30°或150°【分析】分两种情况讨论,当BC =B ′C ′时,则△ABC ≌△A ′B ′C ′,得出∠C ′=∠C =n °,当BC ≠B ′C ′时,如图,利用等腰三角形的性质求得∠A ′C ″C ′=∠C ′=n °,从而求得∠A ′C ″B ′=180°﹣n °.【解答】解:当BC =B ′C ′时,△ABC ≌△A ′B ′C ′(SSS ),∴∠C ′=∠C =n °,当BC≠B′C′时,如图,∵A′C′=A′C″,∴∠A′C″C′=∠C′=n°,∴∠A′C″B′=180°﹣n°,∴∠C′=n°或180°﹣n°,故选:C.【点评】本题考查了等腰三角形的性质,三角形全等的性质,熟练掌握等腰三角形两底角相等是解题的关键.5.(2023•滨州)已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP 为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°【分析】过点P作PD∥AB交AC于点D,过点PE∥AC交AB于点E,四边形AEPD为平行四边形,根据平行线的性质易得△CDP为等边三角形,△BEP为等边三角形,则CP=DP=AE,BP=EP,因此△AEP 就是以线段AP,BP,CP AEP的三个内角即可求解.【解答】解:如图,过点P作PD∥AB交AC于点D,过点PE∥AC交AB于点E,则四边形AEPD为平行四边形,∴DP=AE,∵△ABC为等边三角形,∴∠B=∠C=∠BAC=60°,∵PD∥AB,∴∠CPD=∠B=60°,∠CDP=∠BAC=60°,∴△CDP为等边三角形,∴CP=DP=CD,∴CP=DP=AE,∵PE∥AC,∴∠BEP=∠BAC=60°,∠BPE=∠C=60°,∴△BEP为等边三角形,∴BP=EP=BE,∴△AEP就是以线段AP,BP,CP为边的三角形,∵∠APC=104°,∴∠APB=180°﹣∠APC=76°,∴∠APE=∠APB﹣∠BPE=16°,∠P AE=∠APC﹣∠B=44°,∠AEP=180°﹣∠BEP=120°,∴以线段AP,BP,CP为边的三角形的三个内角分别为16°、44°、120°,∴最小内角的大小为16°.故选:B.角性质,根据题意正确画出图形,推理论证得到△AEP就是以线段AP,BP,CP为边的三角形是解题关键.6.(2023•河北)四边形ABCD的边长如图所示,对角线AC的长度随四边形形状的改变而变化.当△ABC 为等腰三角形时,对角线AC的长为()A.2B.3C.4D.5【分析】分两种情况,由三角形的三边关系定理:三角形两边的和大于第三边,即可解决问题.【解答】解:∵△ABC为等腰三角形,∴AB=AC或AC=BC,当AC=BC=4时,AD+CD=AC=4,此时不满足三角形三边关系定理,当AC=AB=3时.满足三角形三边关系定理,∴AC=3.故选:B.【点评】本题考查等腰三角形的性质,三角形的三边关系定理,关键是掌握三角形的三边关系定理.7.(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°【分析】根据等边三角形的性质可得∠ABC=60°,根据等边三角形三线合一可得∠CBD=30°,再根据作图可知BD=ED,进一步可得∠DEC的度数.【解答】解:在等边△ABC中,∠ABC=60°,∵BD是AC边上的高,∴BD平分∠ABC,∴∠CBD=12∠ABC=30°,∵BD=ED,∴∠DEC=∠CBD=30°,故选:C.【点评】本题考查了等边三角形的性质,等腰三角形的性质,熟练掌握这些性质是解题的关键.8.(2023•眉山)如图,△ABC中,AB=AC,∠A=40°,则∠ACD的度数为()A.70°B.100°C.110°D.140°【分析】根据等边对等角得到∠B=∠ACB,利用三角形内角和定理求出∠B的度数,再根据三角形外角的性质即可求出∠ACD的度数.【解答】解:∵AB=AC,∴∠B=∠ACB,∵∠A=40°,∴∠B=∠ACB=180°−∠A2=180°−40°2=70°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=40°+70°=110°,故选:C.【点评】本题主要考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,掌握等腰三角形的性质:等边对等角.9.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解答】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.【点评】本题考查了等腰三角形的性质,平行线的性质以及三角形外角的性质,解决问题的关键是注意运用两直线平行,同旁内角互补.10.(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°【分析】先根据平行线的性质,由AB∥CD得到∠DFE=∠BAE=50°,根据等腰三角形的性质得出∠C =∠E,再根据三角形外角性质计算∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=12∠DFE=12×50°=25°,故选:B.【点评】本题考查了等腰三角形的性质、平行线的性质,熟记等腰三角形的性质、平行线的性质是解题的关键.11.(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.本题的关键.12.(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°【分析】过点C作CD∥l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB =∠ABC,从而可求解.【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=12(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.【点评】本题主要考查等腰三角形的性质,平行线的性质,解答的关键是由平行线的性质得∠1+∠2=∠ACB.13.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.【点评】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB =6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=12AB=3,由勾股定理得:OC=√OA2−AC2=√52−32=4,∴点A的坐标为(4,3),故选:D.【点评】本题考查的是等腰三角形的性质、坐标与图形性质,掌握等腰三角形的三线合一是解题的关键.15.(2022•海南)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°【分析】先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.【解答】解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.【点评】本题主要考查了等边三角形的性质,平行线的性质,三角形外角的性质,题目比较基础,熟练掌握性质是解题的关键.16.(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°【分析】利用等边对等角求得∠B=∠ACB=78°,然后利用三角形外角的性质求得答案即可.【解答】解:∵AB=AC,∠BAC=24°,∴∠B=∠ACB=78°.∵CD=AC,∠ACB=78°,∠ACB=∠D+∠CAD,∴∠D=∠CAD=12∠ACB=39°.故选:A.【点评】本题考查了等腰三角形的性质,解题的关键是了解“等边对等角”的性质,难度不大.17.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是( )A .30°B .40°C .50°D .60°【分析】设底角的度数是x °,则顶角的度数为(2x +20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解答】解:设底角的度数是x °,则顶角的度数为(2x +20)°,根据题意得:x +x +2x +20=180,解得:x =40,故选:B .【点评】本题考查了等腰三角形的性质,考查了方程思想,掌握等腰三角形两个底角相等是解题的关键.18.(2021•青海)已知a ,b 是等腰三角形的两边长,且a ,b 满足√2a −3b +5+(2a +3b ﹣13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或8【分析】首先根据√2a −3b +5+(2a +3b ﹣13)2=0,并根据非负数的性质列方程组求得a 、b 的值,然后求得等腰三角形的周长即可.【解答】解:∵√2a −3b +5+(2a +3b ﹣13)2=0,∴{2a −3b +5=02a +3b −13=0,解得:{a =2b =3, 当b ,2,3,周长为7;当a 为底时,三角形的三边长为2,3,3,则周长为8,∴等腰三角形的周长为7或8.故选:D .【点评】本题考查了等腰三角形的性质,三角形三边关系定理、二元一次方程方程组,关键是根据2,3分别作为腰,由三边关系定理,分类讨论.19.(2021•赤峰)如图,AB ∥CD ,点E 在线段BC 上,CD =CE .若∠ABC =30°,则∠D 的度数为( )A .85°B .75°C .65°D .30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.20.(2021•广西)如图,⊙O的半径OB为4,OC⊥AB于点D,∠BAC=30°,则OD的长是()A.√2B.√3C.2D.3【分析】连接OA,证明△AOC【解答】解:连接OA,∵OC⊥AB,∴∠ADC=90°,∴∠DAC+∠ACD=90°,∵∠BAC=30°,∴∠ACO=60°,∵OA=OC,∴△AOC为等边三角形,∵OC⊥AB,∴OD=12OC=2,故选:C.【点评】本题考查的是垂径定理、等边三角形的判定和性质,掌握等腰三角形的三线合一是解题的关键.21.(2021•辽宁)如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为()A.√3+1B.√5+3C.√5+1D.4【分析】由题意得BE是∠ABC的平分线,再由等腰三角形的性质得BE⊥AC,AE=CE=12AC=1,由勾股定理得BC=√5,然后由直角三角形斜边上的中线性质得EF=12BC=BF=CF,求解即可.【解答】解:由图中的尺规作图得:BE是∠ABC的平分线,∵AB=BC,∴BE⊥AC,AE=CE=12AC=1,∴∠BEC=90°,∴BC=√BE2+CE2=√22+12=√5,∵点F为BC的中点,∴EF=12BC=BF=CF,∴△CEF的周长=CF+EF+CE=CF+BF+CE=BC+CE=√5+1,故选:C.【点评】本题考查了等腰三角形的性质、直角三角形斜边上的中线性质、勾股定理、尺规作图等知识;熟练掌握尺规作图和等腰三角形的性质,证出EF=12BC=BF=CF是解题的关键.22.(2021•益阳)如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于()A.40°B.30°C.20°D.15°【分析】根据平行线的性质可得∠DCA+∠CAB=180°,即∠DCE+∠ECA+∠EAC+∠EAB=180°,由△ACE为等边三角形得∠ECA=∠EAC=60°,即可得出∠EAB的度数.【解答】解:∵AB∥CD,∴∠DCA+∠CAB=180°,即∠DCE+∠ECA+∠EAC+∠EAB=180°,∵△ACE为等边三角形,∴∠ECA=∠EAC=60°,∴∠EAB=180°﹣40°﹣60°﹣60°=20°.故选:C.【点评】本题考查等边三角形的性质,平行线的性质,根据等边三角形的性质得出∠ECA=∠EAC=60°是解题的关键.23.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°【分析】先根据等边三角形的性质得到∠A=60°,再根据三角形内角和定理计算出∠3=80°,然后根据平行线的性质得到∠1的度数.【解答】解:∵△ABC为等边三角形,∴∠A=60°,∵∠A+∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.【点评】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了平行线的性质.24.(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合【分析】根据等边三角形的性质,轴对称图形的定义,中心对称图形的定义进行判断即可.【解答】解:等边三角形是轴对称图形,每条边的高线所在的直线是其对称轴,故A选项不符合题意;三条高线的交点为等边三角形的重心,∴对称轴的交点是其重心,故B选项不符合题意;等边三角形不是中心对称图形,故C选项符合题意;等边三角形绕重心顺时针旋转120°能与自身重合,故D选项不符合题意,故选:C.【点评】本题考查了等边三角形的性质,轴对称图形,中心对称图形等,熟练掌握这些知识是解题的关键.25.(2023•台湾)如图,△ABC 中,D 点在BC 上,且BD 的中垂线与AB 相交于E 点,CD 的中垂线与AC 相交于F 点,已知△ABC 的三个内角皆不相等,根据图中标示的角,判断下列叙述何者正确( )A .∠1=∠3,∠2=∠4B .∠1=∠3,∠2≠∠4C .∠1≠∠3,∠2=∠4D .∠1≠∠3,∠2≠∠4【分析】根据线段的垂直平分线的性质得到EB =ED ,FD =FC ,得到∠B =∠EDB ,∠FDC =∠C ,根据三角形的外角性质、三角形内角和定理计算即可.【解答】解:∵BD 的中垂线与AB 相交于E 点,CD 的中垂线与AC 相交于F 点,∴EB =ED ,FD =FC ,∴∠B =∠EDB ,∠FDC =∠C ,∵∠1=∠B +∠EDB ,∠3=∠FDC +∠C ,∠B ≠∠C ,∴∠1≠∠3,∵∠4=180°﹣∠B ﹣∠C ,∠2=180°﹣∠EDB +∠FDC ,∴∠2=∠4,综上所述:∠1≠∠3,∠2=∠故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.26.(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为( )A .25B .22C .19D .18【分析】根据题意可知MN 垂直平分BC ,即可得到DB =DC ,然后即可得到AB +BD +AD =AB +DC +AD =AB +AC ,从而可以求得△ABD 的周长.【解答】解:由题意可得,MN 垂直平分BC ,∴DB =DC ,∵△ABD 的周长是AB +BD +AD ,∴AB +BD +AD =AB +DC +AD =AB +AC ,∵AB =7,AC =12,∴AB +AC =19,∴△ABD 的周长是19,故选:C .【点评】本题考查线段垂直平分线的性质,三角形的周长,解答本题的关键是明确题意,利用数形结合的思想解答.27.(2022•湖北)如图,在矩形ABCD 中,AB <BC ,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F .下列结论:①四边形AECF 是菱形;②∠AFB =2∠ACB ;③AC •EF =CF •CD ;④若AF 平分∠BAC ,则CF =2BF .其中正确结论的个数是( )A .4B .3C .2D .1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF 垂直平分AC ,在△AOE 和△COF 中,{∠EAO =∠FCOAO =CO ∠AOE =∠COF =90°,∴△AOE ≌△COF (ASA ),∴OE =OF ,∴AE =AF =CF =CE ,即四边形AECF 是菱形,故①结论正确;∵∠AFB =∠F AO +∠ACB ,AF =FC ,∴∠F AO =∠ACB ,∴∠AFB =2∠ACB ,故②结论正确;∵S 四边形AECF =CF •CD =12AC •OE ×2=12AC •EF ,故③结论不正确;若AF 平分∠BAC ,则∠BAF =∠F AC =∠CAD =13×90°=30°,∴AF =2BF ,∵CF =AF ,∴CF =2BF ,故④结论正确;故选:B .【点评】本题主要考查长方形的综合题,熟练掌握长方形的性质,基本作图,菱形的判定和性质,全等三角形的判定和性质等知识是解题的关键.28.(2021•梧州)如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A.10.5B.12C.15D.18【分析】由DE是△ABC的边BC的垂直平分线,可得DB=DC,则所求△ACD的周长=AB+AC,再将已知代入即可.【解答】解:∵DE是△ABC的边BC的垂直平分线,∴DB=DC,∴△ACD的周长=AD+AC+CD=AD+BD+AC=AB+AC,∵AB=9,AC=6,∴△ACD的周长=9+6=15,故选:C.【点评】本题考查线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.29.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m 的对称点分别是点P1,P2,则1,P2之间的距离可能是()A.0B.5C.6D.7【分析】由对称得OP1=OP=2.8,OP=OP2=2.8,再根据三角形任意两边之和大于第三边,即可得出结果.【解答】解:连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP=OP2=2.8,OP1+OP2>P1P2,0<P 1P 2<5.6,故选:B .【点评】本题考查线段垂直平分线的性质,解本题的关键熟练掌握对称性和三角形边长的关系.30.(2021•淮安)如图,在△ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,连接AE ,若AE =4,EC =2,则BC 的长是( )A .2B .4C .6D .8【分析】根据线段的垂直平分线的性质得到EB =EA =4,结合图形计算,得到答案.【解答】解:∵DE 是AB 的垂直平分线,AE =4,∴EB =EA =4,∴BC =EB +EC =4+2=6,故选:C .【点评】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.二.填空题(共23小题)31.(2023•吉林)如图,在△ABC 中,AB =AC .分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧交于点D ,作直线AD 交BC 于点E .若∠BAC =110°,则∠BAE 的大小为 度.【分析】根据尺规作图可得AE 是BC 的垂直平分线,再根据等腰三角形三线合一的性质可得AE 是∠BAC 的角平分线,从而可求∠BAE 得大小.【解答】解:∵AB =AC .∴△ABC 是等腰三角形,∵分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧交于点D ,作直线AD 交BC 于点E . ∴AE 垂直平分BC ,∴AE 是∠BAC 的平分线,∴∠BAE =12∠BAC =55°.故答案为:55°.【点评】本题考查等腰三角形的性质和尺规作图,熟练掌握垂直平分线的作法是解题关键.32.(2023•江西)将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B ,C 表示的刻度分别为1cm ,3cm ,则线段AB 的长为 cm .【分析】先由平行线的性质可得∠ACB 的度数,根据等边三角形的判定和性质定理可得AB =BC ,则可得出AB 的长.【解答】解:∵直尺的两对边相互平行,∴∠ACB =∠α=60°,∵∠A =60°,∴∠ABC =180°﹣∠ACB ﹣∠A =180°﹣60°﹣60°=60°,∴∠A =∠ABC =∠ACB ,∴△ABC 是等边三角形,∴AB =BC =3﹣1=2(cm ).故答案为:2.【点评】此题主要是考查了等边三角形的判定和性质,平行线的性质,能够得出AB=BC是解答此题的关键.33.(2023•新疆)如图,在△ABC中,若AB=AC,AD=BD,∠CAD=24°,则∠C=°.【分析】由等腰三角形的性质可知∠C=∠B=∠BAD,利用三角形内角和定理得出180°﹣2∠C=24°+∠C,解得∠C=52°.【解答】解:∵AB=AC,AD=BD,∴∠B=∠C,∠B=∠BAD,∴∠BAC=180°﹣∠B﹣∠C=∠CAD+∠BAD,∴180°﹣2∠C=24°+∠C,∴∠C=52°,故答案为:52.【点评】本题考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.34.(2023•重庆)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.【分析】根据等腰三角形的性质可得AD⊥BC,在Rt△ABD中,根据勾股定理即可求出AD的长.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD=√AB2−BD2=√52−32=4,故答案为:4.【点评】本题考查了等腰三角形的性质,涉及勾股定理,熟练掌握等腰三角形的性质是解题的关键.35.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.【分析】取AB的中点D,连接OD及DC,根据三角形的三边关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,由等边三角形的边长为2,根据D为AB中点,得到BD为1,根据三线合一得到CD垂直于AB,在直角三角形BCD中,根据勾股定理求出CD的长,在直角三角形AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD 等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值.【解答】解:取AB中点D,连OD,DC,∴OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为AB中点,∴BD=1,BC=2,∴CD=√BC2−BD2=√3,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12AB=1,∴OD +CD =1+√3,即OC 的最大值为1+√3.故答案为:1+√3.【点评】本题考查了等边三角形的性质,涉及直角三角形斜边上的中线等于斜边的一半,勾股定理,其中找出OC 最大时的长为CD +OD 是解本题的关键.36.(2023•沙依巴克区模拟)已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.【解答】解:解方程组 {2x −y =33x +2y =8得 {x =2y =1. 所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以这个等腰三角形的周长为5.故答案为:5.【点评】本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.37.(2022•云南)已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是 .【分析】分∠A 是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A 是顶角时,△ABC 的顶角度数是40°;当∠A 是底角时,则△ABC 的顶角度数为180°﹣2×40°=100°;综上,△ABC 的顶角度数是40°或100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论.38.(2022•广安)若(a ﹣3)2+√b −5=0,则以a 、b 为边长的等腰三角形的周长为 .【分析】先求a ,b .再求第三边c 即可.【解答】解:∵(a ﹣3)2+√b −5=0,(a ﹣3)2≥0,√b −5≥0,∴a ﹣3=0,b ﹣5=0,∴a =3,b =5,设三角形的第三边为c ,当a=c=3时,三角形的周长=a+b+c=3+5+3=11,当b=c=5时,三角形的周长=3+5+5=13,故答案为:11或13.【点评】本题考查等腰三角形周长计算,求出a,b后确定腰和底是求解本题的关键.39.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解答】解:∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.的和大于第三边.40.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=12(180°﹣∠BAC)=12×60°=30°.故答案为:30°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的两个底角相等的性质是解题的关键.41.(2022•鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 .【分析】根据SAS 证△ABD ≌△BCE ,得出∠APB =120°,在CB 上取一点F 使CF =CE =2,则BF =BC ﹣CF =4,证△APB ∽△BFE ,根据比例关系设BP =x ,则AP =2x ,作BH ⊥AD 延长线于H ,利用勾股定理列方程求解即可得出BP 和AP 的长.【解答】解:∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠C =60°,在△ABD 和△BCE 中,{AB =BC∠ABD =∠C BD =CE∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∴∠APE =∠ABP +∠BAD =∠ABP +∠CBE =∠ABD =60°,∴∠APB =120°,在CB 上取一点F 使CF =CE =2,则BF =BC ﹣CF =4,∴∠C =60°,∴△CEF 是等边三角形,∴∠BFE =120°,即∠APB =∠BFE ,∴△APB ∽△BFE ,∴AP BP =BF EF =42=2,设BP =x ,则AP =2x ,作BH ⊥AD 延长线于H ,∵∠BPD=∠APE=60°,∴∠PBH=30°,∴PH=x2,BH=√32x,∴AH=AP+PH=2x+x2=52x,在Rt△ABH中,AH2+BH2=AB2,即(52x)2+(√32x)2=62,解得x=6√77或−6√77(舍去),∴AP=12√77,BP=6√77,∴△ABP的周长为AB+AP+BP=6+12√77+6√77=6+18√77=42+18√77,故答案为:42+18√77.【点评】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形等知识,熟练掌握这些基础知识是解题的关键.42.(2021•苏州)如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=°.【分析】根据等边对等角可得∠A=∠AEF,再根据∠A+∠AEF=∠CFE=72°,求出∠A的度数,最后根据在Rt△ABC中,∠C=90°,即可求出∠B的度数.【解答】解:∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12×72°=36°,在Rt△ABC中,∠A=36°,∴∠B=90°﹣36°=54°.故答案为:54.【点评】本题主要考查了等腰三角形的性质.解题的关键是熟练掌握等腰三角形的性质:等腰三角形的两个底角相等,即:等边对等角.43.(2021•绍兴)如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是.【分析】根据等腰三角形的性质可以得到△ABC各内角的关系,然后根据题意,画出图形,利用分类讨论的方法求出∠BAP的度数即可.【解答】解:如右图所示,当点P在点B的左侧时,∵AB=AC,∠ABC=70°,∴∠ACB=∠ABC=70°,∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣70°﹣70°=40°,∵CA=CP1,∴∠CAP1=∠CP1A=180°−∠ACP12=180°−70°2=55°,∴∠BAP1=∠CAP1﹣∠CAB=55°﹣40°=15°;当点P在点C的右侧时,∵AB=AC,∠ABC=70°,∴∠ACB=∠ABC=70°,∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣70°﹣70°=40°,∵CA=CP2,∴∠CAP2=∠CP2A=∠ACB2=70°2=35°,∴∠BAP2=∠CAP2+∠CAB=35°+40°=75°;由上可得,∠BAP的度数是15°或75°,故答案为:15°或75°.【点评】本题考查等腰三角形的性质、圆的性质,解答本题的关键是画出合适的辅助线,利用分类讨论的方法解答.44.(2021•朝阳)如图,在平面直角坐标系中,点A的坐标为(5,0),点M的坐标为(0,4),过点M作MN∥x轴,点P在射线MN MAP为等腰三角形,则点P的坐标为.【分析】分三种情况:①PM=P A,②MP=MA,③AM=AP,分别画图,根据等腰三角形的性质和两点的距离公式,即可求解.【解答】解:设点P的坐标为(x,4),分三种情况:①PM=P A,∵点A 的坐标为(5,0),点M 的坐标为(0,4),∴PM =x ,P A =√42+(5−x)2,∵PM =P A ,∴x =√42+(5−x)2,解得:x =4110, ∴点P 的坐标为(4110,4); ②MP =MA ,∵点A 的坐标为(5,0),点M 的坐标为(0,4),∴MP =x ,MA =√42+52=√41,∵MP =MA ,∴x =√41,∴点P 的坐标为(√41,4);③AM =AP ,∵点A 的坐标为(5,0),点M 的坐标为(0,4),∴AP =√42+(x −5)2,MA =√42+52=√41,∵AM =AP ,∴√42+(x −5)2=√41,解得:x 1=10,x 2=0(舍去),∴点P 的坐标为(10,4);综上,点P 的坐标为(4110,4)或(√41,4)或(10,4). 故答案为:(4110,4)或(√41,4)或(10,4).【点评】本题考查了等腰三角形的性质和坐标与图形的性质,熟练掌握坐标与图形特征,利用坐标特征和勾股定理求线段的长是解题的关键.45.(2021•陕西)如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8.若E 、F 是BC 边上的两个动点,以EF 为边的等边△EFP 的顶点P 在△ABC 内部或边上,则等边△EFP 的周长的最大值为 .【分析】当点F 与C 重合时,△EFP 的边长最长,周长也最长,根据30°角所对的直角边是斜边的一半可得AC =4,AP =2,再由勾股定理可得答案.【解答】解:如图,当点F 与C 重合时,△EFP 的边长最长,周长也最长,∵∠ACB =90°,∠PFE =60°,∴∠PCA =30°,∵∠A =60°,∴∠APC =90°,△ABC 中,AC =12AB =4,△ACP 中,AP =12AC =2,∴PC =√AC 2−AP 2=√42−22=2√3,∴周长为2√3×3=6√3.故答案为:6√3.【点评】本题考查含30°角的直角三角形的性质,运用勾股定理是解题关键.46.(2021•牡丹江)过等腰三角形顶角顶点的一条直线,将该等腰三角形分成的两个三角形均为等腰三角形,则原等腰三角形的底角度数为.【分析】首先根据题意画出符合题意的所有图形,然后利用等腰三角形求解即可求得答案.【解答】解:(1)如图.∵AB=AC,BD=AD,AC=CD,∴∠ABC=∠C=∠BAD,∠CDA=∠CAD,∵∠CDA=2∠ABC,∴∠CAB=3∠ABC,∵∠BAC+∠B+∠C=180°,∴5∠ABC=180°,∴∠ABC=36°,(2)如图.∵AB=AC,AD=BD=CD,∴∠B=∠C=∠DAC=∠DAB∴∠BAC=2∠ABC,∵∠BAC+∠B+∠C=180°,∴4∠ABC=180°,∴∠ABC=45°,故答案为:36°或45°.【点评】此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.注意分类讨论思想的应用是解此题的关键.。

等腰三角形试题含解析-中考数学真题分类汇编第一辑

等腰三角形试题含解析-中考数学真题分类汇编第一辑

等腰三角形一、选择题1.(2018?山东枣庄?3 分)如图是由8 个全等的矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PA、PB,那么使△ ABP为等腰直角三角形的点P 的个数是()A.2 个B.3 个C.4 个D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P 的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P 是解题的关键.2 (2018?山东枣庄?3 分)如图,在Rt △ABC中,∠ ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点 F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=9°0,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF 平分∠ CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF 平分∠ CAB,∠ ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△ BAC,∴= ,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴= ,∵FC=FG,∴= ,解得:FC= ,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.3.(2018?山东淄博?4 分)如图,P 为等边三角形ABC内的一点,且P 到三个顶点A,B,C 的距离分别为3,4,5,则△ABC的面积为()2A .B .C .D .【考点】 R2:旋转的性质; KK :等边三角形的性质; KS :勾股定理的逆定理.【分析】 将△ BPC 绕点 B 逆时针旋转 60°得△ BEA ,根据旋转的性质得 BE=BP=4, AE=PC=5, ∠PBE=60°,则△ BPE 为等边三角形,得到 PE=PB=4,∠ BPE=60°,在△ AEP 中, AE=5,延长 BP ,作 AF ⊥ BP 于点 FAP=3, PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠ APE=90°,即可得到∠ APB 的度数,在直角△ APF 中利用三角函数求得 AF 和 PF 的长,则在直角△ ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】 解:∵△ ABC 为等边三角形, ∴BA=BC ,可将△ BPC 绕点 B 逆时针旋转 60°得△ BEA ,连 EP ,且延长 BP ,作 AF ⊥ BP 于点 F .如图,∴BE=BP=4, AE=PC=5,∠ PBE=60°, ∴△ BPE 为等边三角形, ∴PE=PB=4,∠ BPE=60°,在△ AEP 中, AE=5,AP=3, PE=4,2 2 2∴AE =PE+PA ,∴△ APE 为直角三角形,且∠ APE=90°, ∴∠ APB=90° +60°=150°. ∴∠ APF=30°,∴在直角△ APF 中, AF= AP= , PF=AP=.22222∴在直角△ ABF 中, AB =BF +AF =( 4+) +( ) =25+12 .则△ ABC 的面积是 ?AB = ?( 25+12 )=. 故选: A .22【点评】 本题考查了等边三角形的判定与性质、 勾股定理的逆定理以及旋转的性质: 旋转前后的两个图形全等, 对应点与旋转中心的连线段的夹角等于旋转角, 对应点到旋转中心的距离相等.4.(2018?江苏扬州? 3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰 Rt △ ABC 和等腰 Rt △ ADE , CD 与 B E 、AE 分别交于点 P , M .对于下列结论: ①△ BAE ∽△ CAD ;② MP?MD=MA?;M ③E 2CB=CP?C .M 其中正确的是()A .①②③B .①C .①②D .②③【分析】( 1)由等腰 Rt △ ABC 和等腰 Rt △ ADE 三边份数关系可证;(2) 通过等积式倒推可知,证明△PAM ∽△ EMD 即可;(3)2CB 转化为 AC2,证明△ ACP ∽△ MCA ,问题可证.【解答】 解:由已知: AC=AB , AD=AE∴∵∠ BAC=∠EAD ∴∠ BAE=∠CAD ∴△ BAE ∽△ CAD 所以①正确 ∵△ BAE ∽△ CAD ∴∠ BEA=∠CDA ∵∠ PME=∠AMD ∴△ PME ∽△ AMD∴∴MP?MD=MA?ME 所以②正确 ∵∠ BEA=∠CDA ∠PME=∠ AMD∴P 、E 、D 、 A 四点共圆 ∴∠ APD=∠EAD=90°22 ∵∠ CAE=18°0 ﹣∠ BAC ﹣∠ EAD=90°∴△ CAP ∽△ CMA ∴AC=CP?CM ∵AC=AB∴2CB=CP?CM 所以③正确故选: A .【点评】 本题考查了相似三角形的性质和判断. 在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.( 2018 ·湖南省常德 ·3 分) 如图, 已知 BD 是△ ABC 的角平分线, ED 是 BC 的垂直平分线, ∠BAC=90°, AD=3,则 CE 的长为()A . 6B . 5C . 4D . 3【分析】 根据线段垂直平分线的性质得到DB=DC ,根据角平分线的定义、三角形内角和定理求出∠ C=∠DBC=∠ABD=30°,根据直角三角形的性质解答. 【解答】 解:∵ ED 是 BC 的垂直平分线, ∴DB=DC , ∴∠ C=∠ DBC ,∵BD 是△ ABC 的角平分线, ∴∠ ABD=∠DBC ,∴∠ C=∠ DBC=∠ABD=30°, ∴BD=2AD=6, ∴CE=CD × cos ∠ C=3 ,故选: D .【点评】 本题考查的是线段垂直平分线的性质、 直角三角形的性质, 掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.( 2018·台湾·分)如图,锐角三角形ABC 中, BC > AB > AC ,甲、乙两人想找一点P ,使得∠ BPC 与∠ A 互补,其作法分别如下:(甲)以 A 为圆心, AC 长为半径画弧交 AB 于 P 点,则 P 即为所求;(乙)作过 B 点且与 AB 垂直的直线 l ,作过 C 点且与 AC 垂直的直线,交 l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=18°0,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=18°0∴∠BPC+∠ACP=18°0,∴甲错误;乙:如图2,∵ AB⊥ PB,AC⊥ PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018?湖北荆门?3 分)如图,等腰Rt △ABC中,斜边AB 的长为2,O 为AB 的中点,P 为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P 从点 A 运动到点 C 时,点M 所经过的路线长为()A.B.C.1 D.2【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB 于F,如图,利用等腰直角三角形的性质得AC=BC= ,∠A=∠B=45°,OC⊥AB,OC=OA=OB=,1∠OCB=4°5 ,再证明Rt△AOP ≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE= AP= CQ,QF= BQ,所以PE+QF= BC=1,然后证明MH为梯形PEFQ的中位线得到MH= ,即可判定点M到AB 的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ ACB为到等腰直角三角形,∴AC=BC= AB= ,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ ACB,OC=OA=OB=,1∴∠OCB=4°5 ,∵∠POQ=9°0 ,∠COA=9°0 ,∴∠AOP=∠COQ,在Rt △ AOP和△ COQ中,∴Rt △AOP≌△COQ,∴AP=CQ,易得△ APE和△ BFQ都为等腰直角三角形,∴PE= AP= C Q,QF= BQ,∴PE+QF= (CQ+BQ)= BC= ×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH= (PE+QF)= ,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P 从点A 运动到点 C 时,点M所经过的路线长=AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018?河北?3 分)已知:如图4,点P 在线段AB 外,且PA PB . 求证:点P 在线段AB 的垂直平分线上. 在证明该结论时,需添加辅助线,则作法不.正确的是()A.作APB 的平分线PC 交AB 于点CB.过点P 作PC AB 于点C 且AC BCC.取AB 中点C ,连接PCD.过点P 作PC AB ,垂足为C9.(2018 四川省绵阳市) 如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD的斜边DE 上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】 D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作CH⊥DE,∵△ ACB和△ ECD都是等腰直角三角形,∴∠ACB=∠ECD=9°0 , ∠ADC=∠CAB=45°,即∠ ACD+∠DCB=∠ACD+∠ACE=90°,∴∠DCB=∠ACE,在△ DCB和△ ECA中,,∴△DCB≌△ECA,∴DB=EA= , ∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt △ ABD中,∴AB= =2 ,在Rt △ ABC中,2 2∴2AC=AB=8,∴AC=BC=,2在Rt △ ECD中,2 2∴2CD=DE= ,∴CD=CE= +1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴又∵:== CE = DE·=CH,=4-2 ,∴CH= = ,∴∴= AD·CH= ×=(4-2 )××=3-=.,即两个三角形重叠部分的面积为3- . 故答案为: D.【分析】解:连接BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=9°0 , ∠ADC= ∠CAB=45°, 再由同角的余角相等可得∠DCB=∠ACE;由SAS得△DCB≌△ECA,根据全等三角形的性质知DB=EA= , ∠CDB=∠E=45°, 从而得∠ADB=90°,在Rt △ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=,2 CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积. 二. 填空题1.(2018 四川省泸州市 3 分)如图,等腰△ABC的底边BC=20,面积为120,点 F 在边BC 上,且BF=3FC,EG是腰AC的垂直平分线,若点 D 在EG上运动,则△CDF周长的最小值为18.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+D,F 可得当A、D、F 共线时,DF+DC的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+D,F∴当A、D、F 共线时,DF+DC的值最小,最小值就是线段AF的长,∵?BC?AH=12,0∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=1,0∵BF=3FC,∴CF=FH=5,∴AF= = =13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018?广西桂林?3 分)如图,在ΔABC中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】 3详解:∵ AB=AC,∴△ ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD平分∠ ABC交AC于D,∴∠ABD=∠DBC=3°6,∵∠A=∠ABD=36°,∴△ ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△ BDC是等腰三角形.∴共有 3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团· 5 分)如图,△ABC 是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ ABC 是等边三角形,∴∠C=60°,根据圆周角定理可得∠ AOB=∠2 C=120°,∴阴影部分的面积是= π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾· 3 分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM= ,∴AB= ,∴S=6S△ABO=6×××1=2 .故答案为: 2 .【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5.(2018·天津·3 分)如图,在边长为 4 的等边中,,分别为,的中点,于点,为的中点,连接,则的长为.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E 分别是AB、BC的中点,∴DE∥AC,DE= AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠F EC=30°,EF=∴∠DEG=180°-60 °-30 °=90°∵G是EF的中点,∴EG= .在Rt ΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉·3 分)如图.在△ABC中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=C,A 连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE= AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ ABC的周长,∴ME=EB,又AD=DB,∴DE= AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=6°0,AN=M,N∴AN=AC?sin∠ACN= ,∴AM= ,∴DE= ,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018?北京?2 分)右图所示的网格是正方形网格,BACDAE .(填“”,“”或“”)【答案】【解析】如下图所示,EBG E DBD C AFC A△ AFG 是等腰直角三角形,∴FAG BAC 45 ,∴BAC DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018?江苏盐城? 3 分)如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则.16. 【答案】或【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△ BPQ是直角三角形时,有两种情况:∠ BPQ=90度,∠BQP=90度。

中考数学复习----《等边三角形》知识点总结与练习题(含答案解)

中考数学复习----《等边三角形》知识点总结与练习题(含答案解)

中考数学复习----《等边三角形》知识点总结与练习题(含答案解) 知识点总结1. 等边三角形的概念:三条边都相等的三角形是等边三角形。

2. 等边三角形的性质:①等边三角形的三条边都相等,三个角也相等,且三个角都等于60°。

②等边三角形三条边都存在“三线合一”③等腰三角形是一个轴对称图形,有三条对称轴。

④等腰三角形的面积等于243a (a 为等腰三角形的边长)。

3. 等腰三角形的判定:①三条边都相等的三角形是等边三角形。

②三个角都相等(两个角是60°)的三角形是等腰三角形。

③底和腰相等的等腰三角形是等边三角形。

④有一个角是60°的等腰三角形是等边三角形。

练习题1、(2022•鞍山)如图,直线a ∥b ,等边三角形ABC 的顶点C 在直线b 上,∠2=40°,则∠1的度数为( )A .80°B .70°C .60°D .50°【分析】先根据等边三角形的性质得到∠A =60°,再根据三角形内角和定理计算出∠3=80°,然后根据平行线的性质得到∠1的度数.【解答】解:∵△ABC 为等边三角形,∴∠A =60°,∵∠A +∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2、(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合【分析】根据等边三角形的性质,轴对称图形的定义,中心对称图形的定义进行判断即可.【解答】解:等边三角形是轴对称图形,每条边的高线所在的直线是其对称轴,故A选项不符合题意;三条高线的交点为等边三角形的重心,∴对称轴的交点是其重心,故B选项不符合题意;等边三角形不是中心对称图形,故C选项符合题意;等边三角形绕重心顺时针旋转120°能与自身重合,故D选项不符合题意,故选:C.3、(2022•海南)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°【分析】先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.【解答】解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.4、(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=3,则△AOB与△BOC的面积之和为()A .43B .23C .433D .3【分析】将△AOB 绕点B 顺时针旋转60°得△CDB ,连接OD ,可得△BOD 是等边三角形,再利用勾股定理的逆定理可得∠COD =90°,从而解决问题.【解答】解:将△AOB 绕点B 顺时针旋转60°得△CDB ,连接OD ,∴OB =BD ,∠OBD =60°,CD =OA =2,∴△BOD 是等边三角形,∴OD =OB =1,∵OD 2+OC 2=12+()2=4,CD 2=22=4,∴OD 2+OC 2=CD 2,∴∠DOC =90°,∴△AOB 与△BOC 的面积之和为S △BOC +S △BCD =S △BOD +S △COD =×12+=, 故选:C .。

【人教版】2020中考数学试题分类汇编 知识点29 等腰三角形与等边三角形

【人教版】2020中考数学试题分类汇编 知识点29 等腰三角形与等边三角形

知识点29 等腰三角形与等边三角形一、选择题1. (2018四川绵阳,11,3分) 如图,△ACB 和△ECD 都是等腰直角三角形,CA=CB ,CE=CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE=2,AD=6,则两个三角形重叠部分的面积为A.2B.23-C.13-D.33-【答案】D【解析】解:过A 点作AF ⊥CE 于点F ,设AB 与CD 的交点为M ,过M 点作MN ⊥AC 于点N ,如图所示. ∵△ECD 为等腰直角三角形, ∴∠E=45°.∵AE=2,AD=6,∴AF=EF=1,CE=CD=2DE=31+, ∴CF=3,∴AC=22CF AF +=2,∠ACF=30°∴∠ACD=60°. 设MN =x ,∵△ABC 为等腰直角三角形, ∴∠CAB=45°,∴AN=MN =x ,CN=3MN =33x , ∴AC=AN+CN=x +33x =2, 解得x=3-3,∴S △ACM =21×AC ×MN=3-3. 故选D.【知识点】等腰直角三角形的性质,含30°角的直角三角形性质,勾股定理,三角形面积计算2. (2018山东临沂,11,3分)如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D ,E .AD =3,BE =1.则DE 的长是( )第11题图A .32B .2C .D【答案】B【解析】∵AD ⊥CE ,BE ⊥CE ,∴∠ADC =∠CEB =90°,∠DAC +∠DCA =90°,∵∠ACB =90°,∴∠ECB +∠DCA =90°,∴∠DCA =∠ECB ,∵AC =CB ,∴△ACD ≌△CBE ,∴AD =CE =3,CD =BE =1,∴DE =CE -CD =3-1=2,故选B. 【知识点】等腰直角三角形 全等三角形的判定和性质3. (2018山东省淄博市,11,4分)如图,在Rt△ABC 中,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,若AN =1,则BC 的长为(A )4 (B ) 6 (C )(D )8(第11题图)B【答案】B【思路分析】由已知MN ∥BC 和CM 平分∠ACB 可证MN =NC ,∠ANM =∠ACB ,∠NMC =∠MCB ,再由MN 平分∠AMC 可得∠ANM =∠ACB ,从而得到∠ANM =2∠AMN ,可得∠AMN =30°,再利用直角三角形中30°角所对的直角边等于斜边的一半求出MN ,进而得到NC ,求得AC ,从而求出BC .【解题过程】∵MN ∥BC ,∴∠ANM =∠ACB ,∠NMC =∠MCB ,∵CM 平分∠ACB ,∴∠MCB =∠MCN =12∠ACB ,∴∠NMC =∠NCM ,∴MN =NC ,∵MN 平分∠AMC ,∴∠AMN =∠NMC =12∠AMC ,∴∠AMN =12∠ACB =12∠ANM ,∵∠A =90°,∴∠AMN =30°,∵AN =1,∴MN =2,∴NC =2,∴AC =3,∵∠B =∠AMN =30°,∴BC =2AC =6,故选B. 【知识点】平行线的性质;等腰三角形判定;解直角三角形4. (2018浙江湖州,5,3)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则 ∠ACE 的度数是( )A .20°B .35°C .40°D .70°【答案】B【解析】∵AB=AC,AD是△ABC的中线,∴AD⊥BC.∵∠CAD=20°,∴∠ACD=70°.∵CE是∠ABC的平分线,∴∠ACE=35°.故选B.【知识点】等腰三角形,角平分线,中线1. (2018福建A卷,5,4)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C. 45° D. 60°【答案】A【解析】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD,AD是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠ECA=-60°-45°=15°.【知识点】等边三角形性质,三线合一2. (2018福建B卷,5,4)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C. 45° D. 60°【答案】A【解析】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD,AD是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠ECA=-60°-45°=15°.【知识点】等边三角形性质,三线合一3. (2018四川雅安,10题,3分)已知:如图,在△ABC中,AB=AC,∠C=72°,B为圆心,BC为半径画弧,交AC与点D,则线段AD的长为第10题图A.【答案】C【解析】在△ABC中,AB=AC,∠C=72°,所以∠B=72°,∠A=36°,因为BC=BD,所以∠BDC=72°,所以∠ABD=36°,所以 C【知识点】等腰三角形4. (2018四川凉山州,4,4分)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于D,连结AD.若AD=AC,∠B=25°,则∠C=()A.70°B.60°C.50°D.40°【答案】C【解析】由作图可知MN为线段AB的垂直平分线,∴AD=BD,∠DAB=∠B=25°,∵∠CDA为△ABD的一个外角,∴∠CDA=∠DAB+∠B=50°.∵AD=AC,∴∠C=∠CDA=50°.故选择C.【知识点】尺规作图——线段的垂直平分线,线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质.5. (2018广西玉林,9题,3分)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是A.平行B.相交C.垂直D.平行、相交或垂直第9题图【答案】A【解析】由已知得△AOB为等边三角形.所以∠O=∠OAB=60°.易证△AOC≌△ABD,得∠ABD=60°.所以∠OAB=∠ABD,所以BD∥OA.故选A.【知识点】等边三角形的判定;全等三角形的判定;平行线的判定二、填空题1. (2018四川省成都市,11,4)等腰三角形的一个底角为50°,则它的顶角的度数为.【答案】80°【解析】解:∵等腰三角形的一个底角为50°,且两个底角相等,∴顶角为180°-2×50°=80°.【知识点】等腰三角形性质,三角形的内角和1. (2018贵州遵义,14题,4分)如图,△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点,若∠CAE=16°,则∠B为_______度第14题图【答案】37【解析】因为AD=AC ,E 为CD 的中点,所以∠DAC=2∠CAE=32°,所以∠ADC=12(180°-∠DAC)=74°,因为BD=AD ,所以∠B=12∠ADC=37° 【知识点】等腰三角形三线合一,外角2. (2018湖南省湘潭市,12,3分)如图,在等边三角形ABC 中,点D 是边BC 的中点,则∠BAD________.【答案】30°【解析】∵△ABC 是等边三角形,∴∠BAC=60°,AB=AC ,∵D 是BC 中点,∴AD 平分∠BAC ,∴∠BAD=30°. 【知识点】等边三角形的性质;等腰三角形的性质3. (2018江苏淮安,13,3) 若一个等腰三角形的顶角等于50°,则它的底角等于 .【答案】65°【解析】分析:本题考查等腰三角形性质,根据三角形内角和定理和等腰三角形性质可得结果. 解:由题意得,等腰三角形的底角=(180°-顶角)÷2=(180°-50°)÷2=65°. 故答案为65°【知识点】等腰三角形;等腰三角形性质;三角形内角和定理4. (2018 湖南张家界,12,3分)如图,将ABC ∆绕点A 逆时针旋转︒150,得到ADE ∆,这时点D C B 、、恰好在同一直线上,则B ∠的度数为______.【答案】15【解析】解:∵ABC ∆绕点A 逆时针旋转︒150,得到ADE ∆,∴∠BAD=150°,ABC ∆≌ADE ∆. ∴AB=AD.∴△BAD 是等腰三角形. ∴∠B=∠ADB=1°-2BAD (180∠)=15°.【知识点】旋转的性质,等腰三角形的性质. 三、解答题1. (2018浙江绍兴,22,12分)数学课上,张老师举了下面的例题: 例1 等腰三角形ABC 中,110A ∠=,求B ∠的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B ∠的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下一题: 变式 等腰三角形ABC 中,80A ∠=,求B ∠的度数. (1)请你解答以上的变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B ∠有三个不同的度数时,请你探索x 的取值范围.【思路分析】(1)可分当A ∠为顶角、当A ∠为底角两种情况讨论,当A ∠为顶角时,B ∠只能为底角;当A ∠为底角时,B ∠既可以为顶角,也可以为底角所以B ∠的度数有三种情况。

中考真题分类整理:等腰三角形与等边三角形(附答案)

中考真题分类整理:等腰三角形与等边三角形(附答案)

一、选择题 12.(2020·烟台)如图,AB 是O 的直径,直线DE 与O 相切于点C ,过点A ,B 分别作AD DE ⊥,BE DE ⊥,垂足为点D ,E ,连接AC ,BC.若AD =3CE =,则AC 的长为( ).ABCD【答案】D【解题过程】连接OC ,因为AD DE ⊥,BE DE ⊥,所以90ADC CEB ∠=∠=︒ 所以90DAC ACD ∠+∠=︒ 因为AB 是O 的直径,所以90ACB ∠=︒,所以90BCE ACD ∠+∠=︒, 所以BCE DAC ∠=∠, 在△ADC 与△CED ,因为90ADC CEB ∠=∠=︒,BCE DAC ∠=∠ 所以△ADC ∽△CED ,所以BC CE AC AD ===在Rt △ACB中,sin BCBAC AC∠== 所以60BAC ∠=︒, 又因为OA OC =,所以△AOC 是等边三角形, 所以60ACO ∠=︒,因为直线DE 与 O 相切于点C , 所以OC DE ⊥,因为AD DE ⊥,OC DE ⊥, 所以AD//OC ,所以60DAC ACO ∠=∠=︒,所以9030ACD DAC ∠=︒-∠=︒,所以2AC AD ==, 所以△AOC 是等边三角形,ODEBA所以23OA AC ==,60AOC ∠=︒,所以AC 的长为602323ππ⨯⨯=.8.(2020·娄底)如图(2),边长为23的等边△ABC 的内切圆的半径为( )A. 1 B .3 C . 2 D . 23【答案】A【分析】由等边三角形的内心即为中线,底边高,角平分线的交点,则在直角三角形OCD 中,从而解得.如图(2-1),设D 为⊙O 与AC 的切点,连接OA 和OD ,∵等边三角形的内心即为中线,底边高,角平分线的交点,∴OD ⊥AC ,∠OAD =30°,OD 即为圆的半径. 又∵23AC =,∴1123322AD AC ==⨯= ∴在直角三角形OAD 中,3tan tan 303OD OAD AD ∠=︒===, 代入解得:OD =1.故答案为 1.1.(2020·潍坊)如图已知∠AOB ,按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE . ③连接OE 交CD 于点M .下列结论中错误的是()A .∠CEO =∠DEOB .CM =MDC .∠OCD =∠ECD D .S 四边形OCED =12CD ·OE 【答案】C【分析】由作图可知OC =OD ,CE =DE ,OE =OE ,所以△OCE ≌ODE ,∴∠CEO =∠DEO ,选项A 正确,根据“三线合一”可知,CM =MD ,CD ⊥OE ,所以选项B 、D 正确;选项C 错误;故选C.2.(2020·衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角。

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。

2)、“角平分线+垂线”构造等腰三角形。

3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。

2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档