2015年高考数学第一轮复习知识点分类指导手册、高考数学复习方法技巧手册、高考数学知识点例题讲解手册
2015年高考数学高频考点_必考点复习资料
2015高考数学全套知识点(通用版)1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a aM a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
2015高考数学一轮复习4大窍门
2015年高考数学一轮复习4大窍门高考是大家学习中的重要环节,甚至可以说是每一位学生一生中的一个重要“关口”,而要顺利通过这个关口,高三一年的学习是至关重要的。
高考虽然是通过一次考试来选拔人才,但它绝不仅仅是一次知识上的考察,而是对学生高中三年,以至于进入学校十几年来的综合能力的检验。
高三的学习不同于高一、高二学习,他不是高一、高二的知识重复,而是基础知识的重组和提高,如何顺利完成高三一年的学习,不仅是每一位高三学生,也是学生家长迫切想知道的,现特邀北京四中、北京四中网校数学主讲名师安东明安老师给大家一些建议,希望能对各位同学在高三的学习过程中较好的处理各种困难,顺利进入高等学校。
1.关于“听话”高三学生首先要做到“听话”,这里的“听话”是全方位的。
如果你认为高三学习是第一位的,而忽视了对自己的日常行为的要求,那你就错了,学校和老师在高三一年中不会因为学习任务的加重,而放松对纪律的要求,反而会强化纪律以保证学习的正常进行。
学习上更要听话,教高三的老师都是经历了几次或十几次高考授课,非常有经验,复习的进度、复习的内容、复习的顺序,都是长期教学实践中总结出来的。
高考的变化及新要求,都会在复习中渗透进去。
而不听老师的教诲,认为自有一套很好的复习方法的学生(每年都有)最后会碰的“头破血流”的。
2.关于“上课”高考是个人行为,也是集体行为,复习中最重要的环节就是“听讲”,这就要求学生上课时紧跟老师,仔细听讲,积极思考,倾听别人的想法,提出自己的见解,在讨论中完成对知识、方法、能力的提高。
如果高三任课教师发生变化,大家应该尽快适应。
而不应该因为不适应这个老师的教学方法,就不喜欢这个老师,进而就不喜欢这门课程,这样受损失的只有学生自己。
3.关于“复习”复习每天都要进行,即使今天没有数学课,也要对知识加以复习,这就要求有一个计划,首先对时间加以计划,每天都要有数学的复习时间,四十分钟(一节课)左右,周末应有两节课的时间;其次对学科加以计划,哪个时间段看哪个学科,要做到心中有数,计划有了贵在坚持。
高考数学第一轮复习知识点分类指导
高考数学第一轮复习知识点分类指导一、集合与简易逻辑1.集合元素具有确定性、无序性和互异性.(1)设p、q为两个非空实数子集,定义子集p+q={a?b|a?p,b?q},若p?{0,2,5},(答:8)q?{1,2,6},则p+q中元素的有________个。
(2)非空集合s?{1,2,3,4,5},且满足用户“若a?s,则6?a?s”,这样的s共计_____个(答:7)22.“极端”情况否忘掉a??:子集a?{x|ax?1?0},b?x|x?3x?2?0,且a?b?b,则实数a=______.(答:a1?0,1,)23.满足用户{1,2}??m?{1,2,3,4,5}子集m存有______个。
(请问:7)4.运算性质:设全集u?{1,2,3,4,5},若a?b?{2},(cua)?b?{4},(cua)?(cub)?{1,5},则a=_____,b=___.(请问:a?{2,3},b?{2,4})x?2},集合n=?y|y?x2,x?m?,则m?n?___(请问:[4??,);(2)设立子集m?{a|a)?(1,?2?)(?3?,4r),,??n?{a|a?(2,3)??(4,5),??r},则m?n?_____(请问:{(?2,?2)})6.补集思想:已知函数f(x)?4x2?2(p?2)x?2p2?p?1在区间[?1,1]上至少存在一3个实数c,并使f(c)?0,谋实数p的值域范围。
(请问:(?3,))25.集合的代表元素:(1)设集合m?{x|y?7.复合命题真假的判断:在下列说法中:⑴“p且q”为真是“p或q”为真的充分不必要条件;⑵“p且q”为假是“p或q”为真的充分不必要条件;⑶“p或q”为真是“非p”为假的必要不充分条件;⑷“非p”为真是“p且q”为假的必要不充分条件。
其中正确的是____答:⑴⑶)8.充要条件:(1)得出以下命题:①实数a?0就是直线ax?2y?1与2ax?2y?3平行的充要条件;②若a,b?r,ab?0就是a?b?a?b设立的充要条件;③未知x,y?r,“若xy?0,则x?0或y?0”的逆否命题是“若x?0或y?0则x y?0”;④“若a和b都是偶数,则a?b是偶数”的否命题是假命题。
2015高考数学第一轮复习方法
2015高考数学第一轮复习方法
数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。
第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。
一轮复习的重点永远是基础。
要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。
第一轮复习一定要做到细且实,切不可因轻重不分而出现前紧后松,前松后紧的现象,也不可因赶进度而出现点到为止,草草了事的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实双基的目的。
运算能力是学习数学的前提。
因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。
而运算能力并不是靠难题练出来的,而是大量简单题目的积累。
其次,强大地运算能力可以弥补解题技巧上的不足。
我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。
可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。
再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。
此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。
再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题,每
道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。
2015高考数学第一轮复习方法就分享到这里了,更多相关信息请继续关注高考数学复习指导栏目!
精心整理,仅供学习参考。
2015届高考数学第一轮知识点总复习配套教案13
第二章 函数与导数第4课时 函数的奇偶性及周期性(对应学生用书(文)、(理)13~14页)1. (必修1P 45习题8改编)函数f(x)=mx 2+(2m -1)x +1是偶函数,则实数m =________.答案:12解析:由f(-x)=f(x),知m =12.2. (必修1P 43练习5改编)函数f(x)=x 3-x 的图象关于________对称.答案:原点解析:由f(-x)=(-x)3-(-x)=-x 3+x =-f(x),知f(x)是奇函数,则其图象关于原点对称.3. (原创)设函数f(x)是奇函数且周期为3,若f(1)=-1,则f(2 015)=________.答案:1解析:由条件,f(2 015)=f(671×3+2)=f(2)=f(-1)=-f(1)=1.4. (必修1P 43练习4)对于定义在R 上的函数f(x),给出下列说法: ① 若f(x)是偶函数,则f(-2)=f(2);② 若f(-2)=f(2),则函数f(x)是偶函数;③ 若f(-2)≠f(2),则函数f(x)不是偶函数;④ 若f(-2)=f(2),则函数f(x)不是奇函数.其中,正确的说法是________.(填序号)答案:①③解析:根据偶函数的定义,①正确,而③与①互为逆否命题,故③也正确,若举例奇函数f(x)=⎩⎪⎨⎪⎧x -2,x>0,x +2,x<0,由于f(-2)=f(2),所以②④都错误.5. (必修1P 54练习测试10)已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=x 3+x +1,则当x<0时,f(x)=________.答案:x 3+x -1解析:若x<0,则-x>0,f(-x)=-x 3-x +1,由于f(x)是奇函数,所以f(-x)=-f(x),所以f(x)=x 3+x -1.1. 奇函数、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.2. 判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是:(1) 考查定义域是否关于原点对称.(2) 根据定义域考查表达式f(-x)是否等于f(x)或-f(x).若f(-x)=-f(x),则f(x)为奇函数.若f(-x)=f(x),则f(x)为偶函数.若f(-x)=f(x)且f(-x)=-f(x),则f(x)既是奇函数又是偶函数.若存在x使f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶函数.3. 函数的图象与性质奇函数的图象关于原点对称,偶函数的图象关于y轴对称.4. 函数奇偶性和单调性的相关关系(1) 注意函数y=f(x)与y=kf(x)的单调性与k(k≠0)有关.(2) 注意函数y=f(x)与y=1f(x)的单调性之间的关系.(3) 奇函数在[a,b]和[-b,-a]上有相同的单调性.(4) 偶函数在[a,b]和[-b,-a]上有相反的单调性.5. 函数的周期性设函数y =f(x),x ∈D ,如果存在非零常数T ,使得对任意x ∈D ,都有f(x +T)=f(x),则称函数f(x)为周期函数,T 为函数f(x)的一个周期.(D 为定义域)题型1 判断函数的奇偶性例1 判断下列函数的奇偶性:(1) f(x)=x 3-1x ; (2) f(x)=1-x 2|x +2|-2; (3) f(x)=(x -1)1+x 1-x; (4) f(x)=3-x 2+x 2-3.解:(1) 定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2) 去掉绝对值符号,根据定义判断.由⎩⎪⎨⎪⎧1-x 2≥0,|x +2|-2≠0,得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠0且x ≠-4.故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f(x)=1-x 2x +2-2=1-x 2x , 这时有f(-x)=1-(-x )2-x=-1-x 2x =-f(x), 故f(x)为奇函数.(3) 因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4) 因为f(x)定义域为{-3,3},所以f(x)=0,则f(x)既是奇函数也是偶函数.备选变式(教师专享)判断下列函数的奇偶性:(1) f(x)=x 4+x ;(2) f(x)=⎩⎪⎨⎪⎧x 2+x (x<0),-x 2+x (x>0);(3) f(x)=lg(x +x 2+1).解:(1) 定义域为R ,f(-1)=0,f(1)=2,由于f(-1)≠f(1),f(-1)≠-f(1),所以f(x)既不是奇函数也不是偶函数;(2) 因为函数f(x)的定义域是(-∞,0)∪(0,+∞),并且当x <0时,-x >0,所以f(-x)=-(-x)2+(-x)=-(x 2+x)=-f(x)(x <0).当x >0时,-x <0,所以f(-x)=(-x)2+(-x)=-(-x 2+x)=-f(x)(x >0).故函数f(x)为奇函数.(3) 由x +x 2+1>0,得x ∈R ,由f(-x)+f(x)=lg(-x +x 2+1)+lg(x +x 2+1)=lg1=0,所以f(-x)=-f(x),所以f(x)为奇函数.题型2 函数奇偶性的应用例2 (1) 设a ∈R ,f(x)=a·2x +a -22x +1(x ∈R ),试确定a 的值,使f(x)为奇函数;(2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a -2)-f(4-a 2)<0,求实数a 的取值范围.解:(1) 要使f(x)为奇函数,∵ x ∈R ,∴ 需f(x)+f(-x)=0.∵ f(x)=a -22x +1, ∴ f(-x)=a -22-x +1=a -2x +12x +1. 由⎝ ⎛⎭⎪⎫a -22x +1+⎝⎛⎭⎪⎫a -2x +12x +1=0,得2a -2(2x +1)2x +1=0, ∴ a =1.(2) 由f(x)的定义域是()-1,1,知⎩⎪⎨⎪⎧-1<a -2<1,-1<4-a 2<1,解得3<a< 5.由f(a -2)-f(4-a 2)<0,得f(a -2)<f(4-a 2).因为函数f(x)是偶函数,所以f(|a -2|)<f(|4-a 2|).由于f(x)在(0,1)上是增函数,所以|a -2|<|4-a 2|,解得a<-3或a>-1且a ≠2.综上,实数a 的取值范围是3<a<5且a ≠2.变式训练(1) 已知函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x>0是奇函数,求a +b 的值;(2) 已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,若f(1-m)+f(1-m 2)<0,求实数m 的取值范围.解:(1) 当x>0时,-x<0,由题意得f(-x)=-f(x),所以x 2-x =-ax 2-bx.从而a =-1,b =1,所以a +b =0.(2) 由f(x)的定义域是[-2,2],知⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3. 因为函数f(x)是奇函数,所以f(1-m)<-f(1-m 2),即f(1-m)<f(m 2-1).由奇函数f(x)在区间[-2,0]内递减,所以在[-2,2]上是递减函数,所以1-m>m 2-1,解得-2<m<1.综上,实数m 的取值范围是-1≤m<1.题型3 函数奇偶性与周期性的综合应用例3 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x),当x ∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x ∈[2,4]时,求f(x)的解析式;(3) 计算f(0)+f(1)+f(2)+…+f(2 014)的值.(1) 证明:因为f(x +2)=-f(x),所以f(x +4)=-f(x +2)=f(x),所以f(x)是周期为4的周期函数.(2) 解:因为x∈[2,4],所以-x∈[-4,-2],4-x∈[0,2],所以f(4-x)=2(4-x)-(4-x)2=-x2+6x-8.又f(4-x)=f(-x)=-f(x),所以-f(x)=-x2+6x-8,即f(x)=x2-6x+8,x∈[2,4].(3) 解:因为f(0)=0,f(1)=1,f(2)=0,f(3)=-1,又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)= 0所以f(0)+f(1)+f(2)+…+f(2 014)=f(0)+f(1)+f(2)=1.备选变式(教师专享)已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-23.(1) 求证:f(x)为奇函数;(2) 求证:f(x)在R上是减函数;(3) 求f(x)在[-3,6]上的最大值与最小值.(1) 证明:令x=y=0,可得f(0)+f(0)=f(0+0),从而f(0)=0.令y=-x,可得f(x)+f(-x)=f(x-x)=0,即f(-x)=-f(x),故f(x)为奇函数.(2) 证明:设x1、x2∈R,且x1>x2,则x1-x2>0,于是f(x1-x2)<0.从而f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2) = f (x1-x2) +f(x2)-f(x2) =f (x1-x2)<0.所以f(x)为减函数.(3) 解:由(2)知,所求函数的最大值为f(-3),最小值为f(6).f(-3)=-f(3)=-[f(2)+f(1)]=-2f(1)-f(1)=-3f(1)=2,f(6)=-f(-6)=-[f(-3)+f(-3)]=-4.于是f(x)在[-3,6]上的最大值为2,最小值为-4.1. (2013·苏州期初)已知f(x)是定义在R 上的奇函数,且f(x +4)=f(x).当x ∈(0,2)时,f(x)=-x +4,则f(7)=________.答案:-3解析:f(7)=f(3+4)=f(3)=f(3-4)=f(-1)=-f(1)=-3.2. (2013·江苏)已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.答案:(-5,0)∪(5,+∞)解析:作出f(x)=x 2-4x(x>0)的图象,如图所示.由于f(x)是定义在R 上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x 表示函数y =f(x)的图象在y =x 的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞).3. (2013·天津)已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)内单调递增.若实数a 满足f(log 2a)+f(log 12a)≤2f(1),则a 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤12,2解析:因为f(log 12a)=f(-log 2a)=f(log 2a),所以原不等式可化为f(log 2a)≤f(1).又f(x)在区间[0,+∞)上单调递增,所以|log 2a|≤1,解得12≤a ≤2.4. (2013·盐城二模)设函数y =f(x)满足对任意的x ∈R ,f(x)≥0且f 2(x +1)+f 2(x)=9.已知当x ∈[0,1)时,有f(x)=2-|4x -2|,则f ⎝ ⎛⎭⎪⎫2 0136=________. 答案:5解析:由题知f ⎝ ⎛⎭⎪⎫12=2,因为f(x)≥0且f 2(x +1)+f 2(x)=9,故f ⎝ ⎛⎭⎪⎫32=5,f ⎝ ⎛⎭⎪⎫52=2,f ⎝ ⎛⎭⎪⎫72=5,如此循环得f ⎝ ⎛⎭⎪⎫6712=f ⎝ ⎛⎭⎪⎫4×168-12=5,即f ⎝ ⎛⎭⎪⎫2 0136= 5.1. 定义在R 上的函数f(x)满足f(x)=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x>0,则f(2 014)=________. 答案:1解析:由已知得f(-1)=log 22=1,f(0)=0,f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1,f(3)=f(2)-f(1)=-1-(-1)=0,f(4)=f(3)-f(2)=0-(-1)=1,f(5)=f(4)-f(3)=1,f(6)=f(5)-f(4)=0,所以函数f(x)的值以6为周期重复性出现,所以f(2 014)=f(4)=1.2. 已知f(x)是R 上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x 3-x ,则函数y =f(x)的图象在区间[0,6]上与x 轴的交点个数为________.答案:7解析:由条件,当0≤x <2时,f(x)=x(x +1)(x -1),即当0≤x <2时,f(x)=0有两个根0,1,又由周期性,当2≤x<4时,f(x)=0有两个根2,3,当4≤x<6时,f(x)=0有两个根4,5,而6也是f(x)=0的根,故y =f(x)的图象在区间[0,6]上与x 轴的交点个数为7.3. 设函数f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=x 2,若对任意的x ∈[t ,t +2],不等式f(x +t)≥2f(x)恒成立,则实数t 的取值范围是________.答案:[2,+∞)解析:∵ 当x ≥0时,f(x)=x 2且f(x)是定义在R 上的奇函数,又f(x +t)≥2f(x)=f(2x),易知f(x)在R 上是增函数,∴ x +t ≥2x ,∴ t ≥(2-1)x.∵ x ∈[t ,t +2],∴ t ≥(2-1)(t +2),∴ t ≥ 2.4. 已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x ∈⎣⎢⎡⎦⎥⎤12,1时,不等式f(1+xlog 2a)≤f(x -2)恒成立,求实数a 的取值范围.解:∵ f(x)是偶函数,当x ∈⎣⎢⎡⎦⎥⎤12,1时,不等式f(1+xlog 2a)≤f(x -2)等价于f(|1+xlog 2a|)≤f(2-x).又f(x)在[0,+∞)上是增函数,∴ |1+xlog 2a|≤2-x ,∴ x -2≤1+xlog 2a ≤2-x ,∴ 1-3x ≤log 2a ≤1x -1,上述不等式在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立, ∴ ⎝ ⎛⎭⎪⎫1-3x max ≤log 2a ≤⎝ ⎛⎭⎪⎫1x -1min , ∴ -2≤log 2a ≤0,解得14≤a ≤1.1. 函数奇偶性的判断,本质是判断f(x)与f(-x)是否具有等量关系,前提是定义域关于原点对称,运算中,也可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0或f(x)-f(-x)=0)是否成立.2. 若f(x)是偶函数,则f(-x)=f(x)=f(|x|).3. 奇偶函数的不等式求解时,要注意到:奇函数在对称的区间上有相同的单调性,偶函数在对称的区间上有相反的单调性.请使用课时训练(A )第4课时(见活页).[备课札记]。
【金版教程】2015届高考数学大一轮总复习 (抓住3个必备考点 突破3个热点考向 破译5类高考密码)9-3 变量间
第3讲 变量间的相关关系与统计案例
1.会作两个相关变量的数据的散点图,会利用散点图认识变量 间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程系数公 式建立线性回归方程.
3.了解独立性检验(只要求 2×2 列联表)的基本思想、方法及其 简单应用. 4.了解回归分析的基本思想、方法及其简单应用.
2×2 列联表
x1 x2 总计
y1 a c a+c
y2
总计
b
a+b
d
c+d
b+d a+b+c+d
随机变量 K2=a+bcn+add-ab+cc2b+d,其中 n= a+b+c+d 为样本容量.
3. 独立性检验
利用随机变量 K2 来确定在多大程度上可以认为“ 两个分类变量有关系 ”的方法称为两个分类变量的独立性检验.
[判一判] 判断下列说法是否正确(在括号内填“√”或 “× ”).
(1)相关关系与函数关系都是一种确定性的关系,也是一种因 果关系.(×)
(2)“名师出高徒”可以解释为教师的教学水平与学生的水 平成正相关关系.(√)
(3)如果散点图中的点分布几乎没有什么规则,则两个变量之 间不具有相关关系.(√)
解:(1)由于 x =16(x1+x2+x3+x4+x5+x6)=8.5, y =16(y1+y2+y3+y4+y5+y6)=80. 所以 a= y -b x =80+20×8.5=250,从而回归直线方程为^y =-20x+250. (2)设工厂获得的利润为 L 元,依题意得 L=x(-20x+250)-4(-20x+250) =-20x2+330x-1000
①y 与 x 负相关且^y=2.347x-6.423; ②y 与 x 负相关且^y=-3.476x+5.648; ③y 与 x 正相关且^y=5.437x+8.493; ④y 与 x 正相关且^y=-4.326x-4.578.
2015届高考数学第一轮知识点总复习配套教案49
第七章 推理与证明第3课时 数学归纳法(对应学生用书(理)97~98页)1. 若f(n)=1+12+13+…+12n +1(n ∈N ),则n =1时,f(n)=________.答案:1+12+13解析:当n =1时,f(1)=1+12+13.2. (选修22P 88练习题3改编)用数学归纳法证明不等式“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取为________.答案:5解析:当n ≤4时,2n ≤n 2+1;当n =5时,25=32>52+1=26,所以n 0应取为5.3. 设f(n)=1+12+13+14+…+13n -1(n ∈N *),则f(k +1)-f(k)=________.答案:13k +13k +1+13k +2解析:f(k +1)-f(k)=1+12+13+14+…+13(k +1)-1-⎝⎛⎭⎪⎫1+12+13+14+…+13k -1=13k +13k +1+13k +2. 4. 用数学归纳法证明“当n 为正偶数时x n -y n 能被x +y 整除”第一步应验证n =________时,命题成立;第二步归纳假设成立应写成____.答案:2 当n =2k(k ∈N *)时结论成立,x 2k -y 2k 能被x +y 整除解析:因为n 为正偶数,故取第一个值n =2,第二步假设n 取第k 个正偶数成立,即n =2k ,故假设当n =2k(k ∈N *)时结论成立,x 2k -y 2k 能被x +y 整除.5. 已知a 1=12,a n +1=3a na n +3,则a 2,a 3,a 4,a 5的值分别为________________,由此猜想a n =________.答案:37、38、39、310 3n +5解析:a 2=3a 1a 1+3=3×1212+3=37=32+5,同理a 3=3a 2a 2+3=38=33+5,a 4=39=34+5,a 5=310=35+5,猜想a n =3n +5.1. 由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法.2. 对某些与正整数有关的数学命题常采用下面的方法来证明它们的正确性:先证明当n 取第1个值n 0时,命题成立;然后假设当n =k(k ∈N ,k ≥n 0)时命题成立;证明当n =k +1时,命题也成立,这种证明方法叫做数学归纳法.3. 用数学归纳法证明一个与正整数有关的命题时,其步骤为: (1) 归纳奠基:证明凡取第一个自然数n 0时命题成立;(2) 归纳递推:假设n =k(k ∈N ,k ≥n 0)时命题成立,证明当n =k +1时,命题成立;(3) 由(1)(2)得出结论. [备课札记]题型1 证明等式例1 用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N ).证明:① 当n =1时,等式左边=1-12=12=右边,等式成立.② 假设当n =k(k ∈N )时,等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,那么,当n =k +1时,有1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2,上式表明当n =k +1时,等式也成立.由①②知,等式对任何n ∈N 均成立. 变式训练当n ≥1,n ∈N *时,(1) 求证:C 1n +2C 2n x +3C 3n x 2+…+(n -1)C n -1n x n -2+nC n n x n -1=n(1+x)n -1;(2) 求和:12C 1n +22C 2n +32C 3n +…+(n -1)2C n -1n+n 2C nn . (1) 证明:设f(x)=(1+x)n =C 0n +C 1n x +C 2n x 2+…+C n -1n x n -1+C nn x n ,①①式两边求导得n(1+x)n -1=C 1n +2C 2n x +3C 3n x 2+…+(n -1)C n -1n x n -2+nC n n x n -1.② ①式等于②式,故等式成立.(2) 解:②两边同乘x 得nx(1+x)n -1=C 1n x +2C 2n x 2+3C 3n x 3+…+(n -1)C n -1n x n -1+nC n n x n.③ ③式两边求导得n(1+x)n -1+n(n -1)x(1+x)n -2=C 1n +22C 2n x +32C 3n x 2+…+(n -1)2C n -1nx n -2+n 2C n n x n -1.④ 在④中令x =1,则12C 1n +22C 2n +32C 3n +…+(n -1)2C n -1n +n 2C nn =n·2n -1+n(n -1)2n -2=2n -2(2n +n 2-n)=2n -2·n(n +1).题型2 证明不等式例2 (选修2-2P 91习题6改编)设n ∈N *,f(n)=1+12+13+…+1n,试比较f(n)与n +1的大小.解:当n =1,2时f(n)<n +1; 当n ≥3时f(n)>n +1.下面用数学归纳法证明: ① 当n =3时,显然成立;② 假设当n =k(k ≥3,k ∈N )时,即f(k)>k +1,那么,当n=k +1时,f(k +1)>k +1+1k +1=k +2k +1>k +2k +2=k +2,即n=k +1时,不等式也成立.由①②知,对任何n ≥3,n ∈N 不等式成立. 备选变式(教师专享)用数学归纳法证明a n +1+(a +1)2n -1能被a 2+a +1整除(n ∈N *). 证明:① 当n =1时,a 2+(a +1)=a 2+a +1可被a 2+a +1整除. ② 假设n =k(k ∈N *)时,a k +1+(a +1)2k -1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a·a k +1+(a +1)2(a +1)2k -1=a·a k +1+a·(a +1)2k -1+(a 2+a +1)(a +1)2k -1=a[a k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1,由假设可知a[a k +1+(a +1)2k -1]能被a 2+a +1整除,(a 2+a +1)(a +1)2k -1也能被a 2+a +1整除,∴ a k +2+(a +1)2k +1能被a 2+a +1整除,即n =k +1时命题也成立,∴ 对任意n ∈N *原命题成立. 题型3 证明整除例3 用数学归纳法证明:f(n)=(2n +7)·3n +9(n ∈N *)能被36整除.证明:① 当n =1时,f(1)=(2×1+7)×3+9=36,能被36整除.② 假设n =k 时,f(k)能被36整除,则当n =k +1时,f(k +1)=[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1),由归纳假设3[(2k +7)·3k +9]能被36整除,而3k -1-1是偶数,所以18(3k -1-1)能被36整除.所以n =k +1时,f(n)能被36整除.由①②知,对任何n ∈N ,f(n)能被36整除. 备选变式(教师专享)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1) 求数列{b n }的通项公式b n ;(2) 设数列{a n }的通项a n =log a ⎝ ⎛⎭⎪⎫1+1b n (其中a >0且a ≠1).记S n是数列{a n }的前n 项和,试比较S n 与13log a b n +1的大小,并证明你的结论.解:(1) 设数列{b n }的公差为d ,由题意得⎩⎨⎧b 1=1,10b 1+10(10-1)2d =145Þ⎩⎪⎨⎪⎧b 1=1,d =3, ∴ b n =3n -2.(2) 由b n =3n -2,知S n =log a (1+1)+log a ⎝ ⎛⎭⎪⎫1+14+…+log a ⎝ ⎛⎭⎪⎫1+13n -2=log a ⎣⎢⎡⎦⎥⎤(1+1)⎝ ⎛⎭⎪⎫1+14…⎝⎛⎭⎪⎫1+13n -2 而13log a b n +1=log a 33n +1,于是,比较S n 与13log a b n +1的大小比较(1+1)⎝ ⎛⎭⎪⎫1+14…⎝ ⎛⎭⎪⎫1+13n -2与33n +1的大小 .取n =1,有1+1=38>34=33×1+1, 取n =2,有(1+1)⎝⎛⎭⎪⎫1+14>38>37=33×2+1.推测 (1+1)⎝ ⎛⎭⎪⎫1+14…⎝ ⎛⎭⎪⎫1+13n -2>33n +1,(*) ① 当n =1时,已验证(*)式成立;② 假设n =k(k ≥1)时(*)式成立,即(1+1)⎝ ⎛⎭⎪⎫1+14…⎝ ⎛⎭⎪⎫1+13k -2>33k +1,则当n =k +1时,(1+1)⎝ ⎛⎭⎪⎫1+14…⎝ ⎛⎭⎪⎫1+13k -2⎣⎢⎡⎦⎥⎤1+13(k +1)-2>33k +1⎝ ⎛⎭⎪⎫1+13k +1=3k +23k +133k +1. ∵ ⎝ ⎛⎭⎪⎪⎫3k +23k +133k +13-(33k +4)3=(3k +2)3-(3k +4)(3k +1)2(3k +1)2=9k +4(3k +1)2>0,∴ 33k +13k +1(3k+2)>33k +4=33(k +1)+1,从而(1+1)⎝ ⎛⎭⎪⎫1+14…⎝ ⎛⎭⎪⎫1+13k -2⎝ ⎛⎭⎪⎫1+13k +1>33(k +1)+1,即当n =k +1时,(*)式成立.由①②知(*)式对任意正整数n 都成立.于是,当a >1时,S n >13log a b n +1,当 0<a <1时,S n <13log a b n +1.题型4 归纳、猜想与证明 例4 已知数列{a n }满足a 1=1,且4a n +1-a n a n +1+2a n =9(n ∈N ). (1) 求a 2,a 3,a 4的值;(2) 由(1) 猜想{a n }的通项公式,并给出证明.解:(1) 由4a n +1-a n a n +1+2a n =9,得a n +1=9-2a n 4-a n =2-1a n -4,求得a 2=73,a 3=135,a 4=197.(2) 猜想a n =6n -52n -1.证明:①当n =1时,猜想成立.②设当n =k 时(k ∈N *)时,猜想成立,即a k =6k -52k -1,则当n =k +1时,有a k +1=2-1a k -4=2-16k -52k -1-4=6k +12k +1=6(k +1)-52(k +1)-1,所以当n =k +1时猜想也成立.综合①②,猜想对任何n ∈N *都成立. 备选变式(教师专享)已知f(n)=1+12+13+…+1n(n ∈N ),g(n)=2(n +1-1)(n ∈N ).(1) 当n =1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论); (2) 由(1)猜想f(n)与g(n)的大小关系,并证明你的结论. 解:(1) 当n =1时,f(1)>g(1); 当n =2时,f(2)>g(2); 当n =3时,f(3)>g(3).(2) 猜想:f(n)>g(n)(n ∈N *),即1+12+13+…+1n>2(n +1-1)(n ∈N *).下面用数学归纳法证明:①当n =1时,f(1)=1,g(1)=2(2-1),f(1)>g(1).②假设当n =k 时,猜想成立,即1+12+13+…+1k>2(k +1-1).则当n =k +1时,f(k +1)=1+12+13+…+1k +1k +1>2(k +1-1)+1k +1=2k +1+1k +1-2,而g(k +1)=2(k +2-1)=2k +2-2,下面转化为证明:2k +1+1k +1>2k +2.只要证:2(k +1)+1=2k +3>2(k +2)(k +1), 需证:(2k +3)2>4(k +2)(k +1),即证:4k 2+12k +9>4k 2+12k +8,此式显然成立. 所以,当n =k +1时猜想也成立. 综上可知:对n ∈N *,猜想都成立,即1+12+13+…+1n>2(n +1-1)(n ∈N *)成立.1. 用数学归纳法证明1+12+13+…+12n -1<n ,其中n>1且n ∈N *,在验证n =2时,式子的左边等于________.答案:1+12+13⎝ ⎛⎭⎪⎫或116解析:当n =2时,式子的左边等于1+12+122-1=1+12+13.2. 用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步验证的表达式为________.答案:21+1≥12+1+2(或22≥4或4≥4也算对) 解析:当n =1时,21+1≥12+1+2.3. 用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”的第二步是____.答案:假设n =2k -1(k ∈N *)时正确,再推n =2k +1(k ∈N *)正确 解析:因为n 为正奇数,根据数学归纳法证题的步骤,第二步应先假设第k 个正奇数也成立,本题先假设n =2k -1(k ∈N *)正确,再推第k +1个正奇数,即n =2k +1(k ∈N *)正确.4. (2013·广东理)设数列{a n }的前n 项和为S n .已知a 1=1,2S nn =a n+1-13n2-n-23,n∈N*.(1) 求a2的值;(2) 求数列{a n}的通项公式;(3) 证明:对一切正整数n,有1a1+1a2+…+1a n<74.(1) 解:∵2S nn=a n+1-13n2-n-23,n∈N*.∴当n=1时,2a1=2S1=a2-13-1-23=a2-2.又a1=1,∴a2=4.(2) 解:∵2S nn=a n+1-13n2-n-23,n∈N*.∴2S n=na n+1-13n3-n2-23n=na n+1-n(n+1)(n+2)3,①∴当n≥2时,2S n-1=(n-1)a n-(n-1)n(n+1)3,②由①-②,得2S n-2S n-1=na n+1-(n-1)a n-n(n+1).∵2a n=2S n-2S n-1,∴2a n=na n+1-(n-1)a n-n(n+1),∴a n+1n+1-a nn=1.∴数列⎩⎨⎧⎭⎬⎫a nn是以首项为a11=1,公差为1的等差数列.∴a nn=1+1×(n-1)=n,∴a n=n2(n≥2),当n=1时,上式显然成立.∴a n=n2,n∈N* .(3) 证明:由(2)知,a n=n2,n∈N*,①当n=1时,1a1=1<74,∴原不等式成立.②当n=2时,1a1+1a2=1+14<74,∴原不等式亦成立.③当n≥3时,∵n2>(n-1)·(n+1),∴1n2<1(n-1)·(n+1),∴ 1a 1+1a 2+…+1a n =112+122+…+1n 2<1+11×3+12×4+…+1(n -2)·n +1(n -1)·(n +1)=1+12⎝ ⎛⎭⎪⎫11-13+12⎝ ⎛⎭⎪⎫12-14+12(13-15)+…+12⎝ ⎛⎭⎪⎫1n -2-1n +12⎝ ⎛⎭⎪⎫1n -1-1n +1=1+12(11-13+12-14+13-15+…+1n -2-1n +1n -1-1n +1)=1+12⎝ ⎛⎭⎪⎫11+12-1n -1n +1=74+12·⎝ ⎛⎭⎪⎫-1n -1n +1<74,∴ 当n ≥3时,原不等式亦成立.综上,对一切正整数n ,有1a 1+1a 2+…+1a n<74.1. 用数学归纳法证明“12+22+32+…+n 2=16n(n +1)(2n +1)(n ∈N *)”,当n =k +1时,应在n =k 时的等式左边添加的项是________.答案:(k +1)2解析:[12+22+…+k 2+(k +1)2]-(12+22+…+k 2)=(k +1)2.2. 用数学归纳法证明不等式:1n +1n +1+1n +2+…+1n 2>1(n ∈N *且n >1).证明:①当n =2时,左边=12+13+14=1312>1, ∴n =2时不等式成立;②假设当n =k(k ≥2)时不等式成立, 即1k +1k +1+1k +2+…+1k 2>1,那么当n =k +1时,左边=1k +1+…+1k 2+⎝ ⎛⎭⎪⎫1k 2+1+…+1(k +1)2=1k +1k +1+…+1k 2+⎝ ⎛⎭⎪⎫1k 2+1+…+1(k +1)2-1k>1+(2k +1)·1k 2+1-1k =1+k 2+k -1k (k 2+1)>1.综上,对于任意n ∈N *,n>1不等式均成立,原命题得证. 3. 设函数f(x)=x -xlnx ,数列{a n }满足0<a 1<1,a n +1=f(a n ).求证:(1) 函数f(x)在区间(0,1)是增函数; (2) a n <a n +1<1.证明:(1) f(x)=x -xlnx ,f ′(x)=-lnx ,当x ∈(0,1)时,f ′(x)=-lnx >0,故函数f(x)在区间(0,1)上是增函数.(2) (用数学归纳法)①当n =1时,0<a 1<1,a 1ln a 1<0,a 2=f(a 1)=a 1-a 1lna 1>a 1.由函数f(x)在区间(0,1)是增函数,且f(1)=1,得f(x)在区间(0,1)是增函数,a 2=f(a 1)=a 1-a 1lna 1<f(1)=1,即a 1<a 2<1成立.②假设当n =k(k ∈N *)时,a k <a k +1<1成立, 即0<a 1≤a k ≤a k +1<1,那么当n =k +1时,由f(x)在区间(0,1]上是增函数,得0<a 1≤a k ≤a k +1<1,得f(a k )<f(a k +1)<f(1),而a n +1=f(a n ),则a k +1=f(a k ),a k +2=f(a k +1),即a k +1<a k +2<1,也就是说当n =k +1时,a n <a n +1<1也成立.由①②可得对任意的正整数n ,a n <a n +1<1恒成立. 4. (2013·江苏改编)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k -1k ,…,(-1)k -1k k 个,即当(k -1)k 2<n ≤k (k +1)2(k ∈N *)时,a n =(-1)k -1k ,记S n =a 1+a 2+…+a n (n ∈N *),用数学归纳法证明S i(2i +1)=-i(2i +1)(i ∈N *).证明:①当i =1时,S i(2i +1)=S 3=-1·(2+1)=-3, 故原式成立.②假设当i =m 时,等式成立,即S m(2m +1)=-m·(2m +1). 则当i =m +1时,S (m +1)[2(m +1)+1]=S (m +1)(2m +3)=S m(2m +1)+(2m +1)2-(2m +2)2=-m(2m +1)+(2m +1)2-(2m +2)2 =-(2m 2+5m +3)=-(m +1)(2m +3),故原式成立.综合①②得:S i(2i +1)=-i(2i +1).1. 数学归纳法是专门证明与整数有关命题的一种方法,他分两步,第一步是递推的基础,第二步是递推的依据,两步缺一不可.2. 运用数学归纳法时易犯的错误①对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错;②没有利用归纳假设;③关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性和规范性.请使用课时训练(A)第3课时(见活页)[备课札记]。
2015届高考数学第一轮知识点总复习配套教案37
第五章 数列第1课时 数列的概念及其简单表示法(对应学生用书(文)、(理)70~71页)1. (必修5P 32习题1改编)一个数列的前四项为-1,12,-13,14,则它的一个通项公式是________.答案:a n =(-1)n 1n2. (必修5P 31练习2改编)已知数列{a n }的通项公式是a n =n +12n +3,则这个数列的第5项是________.答案:a 5=6133. (必修5P44习题8改编)若数列{a n}的前n项和S n=n2+3n,则a6+a7+a8=________.答案:48解析:a6+a7+a8=S8-S5=88-40=48.4. (必修5P32习题6改编)已知数列{a n}的通项公式是a n=n2-8n +5,这个数列的最小项是________.答案:-11解析:由a n=(n-4)2-11,知n=4时,a n取最小值为-11.1. 数列的概念按照一定顺序排列的一列数.2. 数列的分类项数有限的数列叫做有穷数列.项数无限的数列叫做无穷数列.3. 数列与函数的关系从函数观点看,数列可以看成是以正整数为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1,2,3,…)有意义,那么可以得到一个数列{f(n)}.4. 数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个公式a n=f(n)(n=1,2,3,…)来表示,那么这个公式叫做这个数列的通项公式.通项公式可以看成数列的函数解析式.5. 数列{a n }的前n 项和S n 与通项a n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2. [备课札记]题型1 由数列的前几项写通项公式 例1 写出下列数列的一个通项公式: (1) 1,-3,5,-7,9,… (2) 1,0,13,0,15,0,17,… (3) a ,b ,a ,b ,a ,b ,… (4) 0.9,0.99,0.999,0.9999,… (5) 1,22,12,24,14,… 解:(1) a n =(-1)n +1(2n -1). (2) a n =1-(-1)n2n. (3) a n =(-1)n +1(a -b )+a +b 2. (4) a n =1-110n . (5) a n =(2)1-n . 变式训练写出下列数列的一个通项公式: (1) -12,2,-92,8,-252,… (2) 5,55,555,5555,… (3) 1,3,6,10,15,…解:(1) a n =(-1)n n22.(2) a n =59(10n-1). (3) a n =n (n +1)2. 题型2 由a n 与S n 关系求a n例2 已知数列{a n }的前n 项和S n ,求通项a n . (1) S n =3n -1; (2) S n =n 2+3n +1.解:(1) n =1时,a 1=S 1=2. n ≥2时,a n =S n -S n -1=2·3n -1. 当n =1时,a n =1符合上式. ∴ a n =2·3n -1. (2) n =1时,a 1=S 1=5. n ≥2时,a n =S n -S n -1=2n +2. 当n =1时a 1=5不符合上式.∴ a n =⎩⎪⎨⎪⎧5,n =1,2n +2,n ≥2.备选变式(教师专享)已知函数f(x)=ax 2+bx(a ≠0)的导函数f′(x)=-2x +7,数列{a n }的前n 项和为S n ,点P n (n ,S n )(n ∈N *)均在函数y =f(x)的图象上,求数列{a n }的通项公式及S n 的最大值.解:由题意可知:∵ f(x)=ax 2+bx(a ≠0),∴ f ′(x)=2ax +b ,由f′(x)=-2x +7对应相等可得a =-1,b =7,∴ 可得f(x)=-x 2+7x.因为点P n (n ,S n )(n ∈N *)均在函数y =f(x)的图象上,所以有S n =-n 2+7n.当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=-2n +8,a 1=6适合上式, ∴ a n =-2n +8(n ∈N *).令a n =-2n +8≥0得n ≤4,当n =3或n =4时,S n 取得最大值12.综上,a n =-2n +8(n ∈N *),当n =3或n =4时,S n 取得最大值12.题型3 数列的性质 例3 如下表定义函数f(x):对于数列{a n },a 1=4,a n =f(a n -1),n =2,3,4,…,求a 2 008. 解:a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n .所以a 2008=a 4=2.备选变式(教师专享) 已知数列{}a n 的通项公式a n =n -98n -99(n ∈N *),求数列前30项中的最大项和最小项.解:∵a n =1+99-98n -99,∴当n ≤9时,a n 随着n 的增大越来越小且小于1,当10≤n ≤30时,a n 随着n 的增大越来越小且大于1,∴前30项中最大项为a 10,最小项为a 9.1. 已知a 1=1,a n =n(a n +1-a n )(n ∈N *),则数列{a n }的通项公式是________.答案:a n =n解析:由已知整理得(n +1)a n =na n +1,∴ a n +1n +1=a n n .∴ 数列⎩⎨⎧⎭⎬⎫a n n 是常数列,且a n n =a 11=1.∴ a n =n.2. 设a >0,若a n =⎩⎪⎨⎪⎧(3-a )n -3,n ≤7,a n -6,n >7,且数列{a n }是递增数列,则实数a 的范围是__________.答案:2<a <3解析:由{a n }是递增数列,得⎩⎪⎨⎪⎧3-a >0,a >1,a 8>a 7,解得⎩⎪⎨⎪⎧1<a <3,a <-9或a >2,∴ 2<a <3.3. 已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n +1,则{a n }的通项公式为__________.答案:a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2解析:由log 2(1+S n )=n +1,得S n =2n +1-1.n =1时,a 1=S 1=3. n ≥2时,a n =S n -S n -1=2n .当n =1时a 1=3不符合上式,∴ a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.4. (2013·湖南)设S n 为数列{a n }的前n 项和,若S n =(-1)n a n -12n ,n ∈N ,则a 3=________.答案:-116解析:当n =3时,S 3=a 1+a 2+a 3=-a 3-18,则a 1+a 2+2a 3=-18,当n =4时,S 4=a 1+a 2+a 3+a 4=a 4-116,两式相减得a 3=-116.5. 若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________.答案:4解析:设最大项为第k 项,则有⎩⎪⎨⎪⎧k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k +1)(k +5)⎝ ⎛⎭⎪⎫23k +1,k (k +4)⎝ ⎛⎭⎪⎫23k≥(k -1)(k +3)⎝ ⎛⎭⎪⎫23k -1,∴ ⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,解得⎩⎪⎨⎪⎧k ≥10或k ≤-10,1-10≤k ≤1+10,∴ k =4.1. 若a n =n 2+λn +3(其中λ为实常数),n ∈N *,且数列{a n }为单调递增数列,则实数λ的取值范围为________.答案:(-3,+∞)解析:解法1:(函数观点)因为{a n }为单调递增数列,所以a n +1>a n ,即(n +1)2+λ(n +1)+3>n 2+λn +3,化简为λ>-2n -1对一切n ∈N *都成立,所以λ>-3.故实数λ的取值范围为(-3,+∞).解法2:(数形结合法)因为{a n }为单调递增数列,所以a 1<a 2,要保证a 1<a 2成立,二次函数f(x)=x 2+λx +3的对称轴x =-λ2应位于1和2中点的左侧,即-λ2<32,亦即λ>-3,故实数λ的取值范围为(-3,+∞).2. 已知a n =n ×0.8n (n ∈N *). (1) 判断数列{a n }的单调性;(2) 是否存在最小正整数k ,使得数列{a n }中的任意一项均小于k ?请说明理由.解:(1) ∵a n +1-a n =4-n5×0.8n (n ∈N *),∴n <4时,a n <a n +1;n =4时,a 4=a 5;n >4时,a n >a n +1.即a 1,a 2,a 3,a 4单调递增,a 4=a 5,而a 5,a 6,…单调递减. (2) 由(1) 知,数列{a n }的第4项与第5项相等且最大,最大项是4554=1024625=1399625.故存在最小的正整数k =2,使得数列{a n }中的任意一项均小于k.3. 若数列{a n }满足a n +1=a n +a n +2(n ∈N *),则称数列{a n }为“凸数列”.(1) 设数列{a n }为“凸数列”,若a 1=1,a 2=-2,试写出该数列的前6项,并求出前6项之和;(2) 在“凸数列”{a n }中,求证:a n +3=-a n ,n ∈N *;(3) 设a 1=a ,a 2=b ,若数列{a n }为“凸数列”,求数列前2011项和S 2 011.(1) 解:a 1=1,a 2=-2,a 3=-3,a 4=-1,a 5=2,a 6=3,故S 6=0.(2) 证明:由条件得⎩⎪⎨⎪⎧a n +1=a n +a n +2,a n +2=a n +1+a n +3,所以a n +3=-a n .(3) 解:由(2) 的结论得a n +6=-a n +3=a n ,即a n +6=a n . a 1=a ,a 2=b ,a 3=b -a ,a 4=-a ,a 5=-b ,a 6=a -b , ∴S 6=0.由(2)得S 6n +k =S k ,n ∈N *,k =1,…,6, 故S 2 011=S 335×6+1=a 1=a.4. 已知数列的前n 项和为S n ,并且满足a 1=2,na n +1=S n +n(n +1).(1) 求{a n }的通项公式;(2) 令T n =⎝ ⎛⎭⎪⎫45nS n ,是否存在正整数m ,对一切正整数n ,总有T n ≤T m ?若存在,求m 的值;若不存在,说明理由.解:(1) 令n =1,由a 1=2及na n +1=S n +n(n +1),①得a 2=4,故a 2-a 1=2,当n ≥2时,有(n -1)a n =S n -1+n(n -1),②①-②,得na n +1-(n -1)a n =a n +2n.整理得a n +1-a n =2(n ≥2).当n =1时,a 2-a 1=2,所以数列{a n }是以2为首项,以2为公差的等差数列,故a n =2+(n -1)×2=2n.(2) 由(1)得S n =n(n +1),所以T n =⎝ ⎛⎭⎪⎫45n(n 2+n).故T n +1=⎝ ⎛⎭⎪⎫45n +1[(n +1)2+(n +1)],令⎩⎪⎨⎪⎧T n ≥T n +1,T n ≥T n -1,即⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫45n (n 2+n )≥⎝ ⎛⎭⎪⎫45n +1[(n +1)2+(n +1)],⎝ ⎛⎭⎪⎫45n (n 2+n )≥⎝ ⎛⎭⎪⎫45n -1[(n -1)2+(n -1)],即⎩⎪⎨⎪⎧n ≥45(n +2),45(n +1)≥n -1,解得8≤n ≤9.故T 1<T 2<…<T 8=T 9>T 10>T 11>…故存在正整数m 对一切正整数n ,总有T n ≤T m ,此时m =8或m =9.1. 数列中的数的有序性是数列定义的灵魂,要注意辨析数列的项和数集中元素的异同,数列可以看作是一个定义域为正整数集或其子集的函数,因此在研究数列问题时,既要注意函数方法的普遍性,又要注意数列方法的特殊性.2. 根据所给数列的前几项求其通项,需要仔细观察分析,抓住特征:分式中分子、分母的独立特征,相邻项变化的特征,拆项后的特征,各项的符号特征和绝对值特征,并由此进行化归、归纳、联想.3. 通项a n 与前n 项和S n 的关系是一个十分重要的考点.运用时不要忘记讨论a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).请使用课时训练(A )第1课时(见活页).[备课札记]。
2015届高考数学第一轮基础知识复习教案15
1、 函数函数是历年高考命题的重点,集合、函数的定义域、值域、图象、奇偶性、单调性、周期性、最值、反函数以及具体函数的图象及性质在高考试题中屡见不鲜.因此须注意以下几点.(1)集合是近代数学中最基本的概念之一,集合观点渗透于中学数学内容的各个方面,所以我们应弄懂集合的概念,掌握集合元素的性质,熟练地进行集合的交、并、补运算.同时,应准确地理解以集合形式出现的数学语言和符号.(2)函数是中学中最重要的内容之一,主要从定义、图象、性质三方面加以研究.在复习时要全面掌握、透彻理解每一个知识点.为了提高复习质量,我们提出下述几个问题:①掌握图象变换的常用方法(参照南师大第一学期教材图象变换一节)特别注意:凡变换均在自变量x 上进行.②求函数的最值是一种重要的题型.要掌握函数最值的求法,特别注意二次函数在定区间上的最值问题以及有些问题可能隐藏范围,因此范围问题是二次函数最值的关键.另外二次分式函数的最值亦应引起注意,它的基本解法是“∆”法,当然有一部分可以转化为函数)0,()(>+=b a xb ax x f 的形式,而后与基本不等式相联系,或用函数的单调性求解.③学会解简单的函数方程,认真对待指数或对数中含参数问题的求解方法,特别注意对数的真数必须“>0”,注意方程求解时的等价性.2、 三角三角包括两部分内容:三角函数和两角和与差的三角函数.三角函数主要考查三角函数的性质、图象变换、求函数解析式、最小正周期等. 两角和与差的三角函数中公式较多,应在掌握这些公式的内在联系及推导过程的基础上,理解并熟悉这些公式.特别注意以下几个问题:(1)和、差、倍、半角公式都是用单角的三角函数表示复角(和、差、倍、半角)的三角函数.这就决定了这些公式应用的广泛性,即这些公式可以将三角函数统一成单角的三角函数.(2)了解公式中角的取值范围,凡使公式中某个三角函数或某个式子失去意义的角,都不适合公式.例如:βαβαβαtg tg tg tg tg ⋅±=± 1)((αβα,,Z k k ∈+≠+,2ππβ)类似还有一些,请自己注意.(3)半角公式中的无理表达式前面的符号取舍,由公式左端的三角函数中角的范围决定,半角正切公式的有理表达式中,无需选择符合,但2αtg 与αsin 的符合是一致的. (4)掌握公式的正用、反用、变形用及在特定条件下用,它可以提高思维起点,缩短思维线路,从而使运算流畅自然.例如:ααcos sin ±=)4sin(2πα±;)4(11απαα±=±tg tg tg ;=±α2sin 12)cos (sin αα± αα2cos 22cos 1=+;αα2sin 22cos 1=-.(5)三角函数式的化简与求值,这是中学数学中重要内容之一,并且与解三角形相集合,有的还与复数的三角形式运算相联系,因此须注意常用方法和技巧:切割化弦、升降幂、和积互化、“1”的互化、辅助元素法等.3、不等式有关不等式的高考试题分布极为广泛,在客观题中主要考查不等式的性质、简单不等式的解法以及均值不等式的初步应用.经常以比较大小、求不等式的解集、求函数的定义域、值域、最值等形式出现.在中档题中,求解不等式与分类讨论相关联;特别是近几年来强调考查逻辑推理能力,增加了一个代数推理题,也和不等式的证明相关联.在压轴题中,无论函数题、还是解析几何题,也往往需要使用不等式的有关知识.在复习中应注意下述几个问题:(1)掌握比较大小的常用方法:作差、作商、平方作差、图象法. (2)熟练掌握用均值不等式求最值,必须注意三个条件:一正;二定;三相等.三者缺一不可.(3)把握解含参数的不等式的注意事项解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①在不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③ 当解集的边界值含参数时,则需对零值的顺序进行讨论.4、 数列本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前n 项和n S ,则其通项为⎩⎨⎧∈≥-==-).,2(),1(11N n n S S n S a n nn 若11S a =满足,121S S a -=则通项公式可写成1--=n n n S S a .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前n 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标.①函数思想:等差等比数列的通项公式求和公式都可以看作是n 的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想: 用等比数列求和公式应分为)1(1)1(1≠--=q qq a S n n 及)1(1==q na S n ; 已知n S 求n a 时,也要进行分类;计算n n q lin ∞→时,应分为1=q 时,1lim =∞→n n q ,1<q 时,0lim =∞→n n q ; 求一般数列的和时还应考虑字母的取值或项数的奇偶性.④ 整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.5、 复数高考试题中有关复数的题目的内容比较分散,有的是考查复数概念的,有的是考查复数运算的,有的是考查复数几何意义的.并且每个题目都有一定的综合性,即使是一个简单的客观题也包括3—4个知识点.从1994年以来复数题主要分布在客观题及中档解答题中.因此,我们应扎扎实实地全面复习基础知识及基本解题方法.在复习过程中应注意下述几个问题:(1)对复数的有关概念的理解要准确,不能似是而非,否则在解题过程中就会发生错误.如:在实数范围内适用的幂的运算法则),,()(+∈∈=R a R n m a a mn n m ,在复数集内不在适用,纯虚数的概念等(2)要掌握复数的模及辐角主值的最值的求法.求复数的模的最值的常用方法有:把复数化成三角形式,转求三角函数的最值问题(三角法);利用复数的代数形式,转求代数函数的最值问题(代数法);利用复数的几何意义,转成复平面上的几何问题(图象法);利用z z z =2或.212121z z z z z z +≤+≤-求有关复数的辐角或辐角主值的最值的主要方法有几何法和三角法.(3)要掌握在复数集中解一元二次方程和二项方程的方法:所有一元二次方程均可用求根公式求方程的根,并且韦达定理也成立,只有实系数一元二次方程可用 判断方程根的情况,复系数一元二次方程只能利用复数相等的条件化为方程组求解.(4)由于复数知识与中学数学中许多内容有着密切联系,这就提供了复数与实数、复数与三角函数、复数与几何的双向转化的基础,因此复习复数内容时是培养我们转化思想的极好机会.6、立体几何(1)“直线和平面”这一章的内容是立体几何的基础.在复习时要反复梳理知识系统,掌握每个概念的本质属性,理解每个判断定理和性质定理的前提条件和结论.(2)在研究线线、线面、面面的位置关系时,主要是研究平行和垂直关系.其研究方法是采取转化的方法.(3)三垂线定理及其逆定理是立体几何中应用非常广泛的定理,只要题设条件中有直线和平面垂直时,就往往需要使用三垂线定理及其逆定理.每年高考试题都要考查这个定理.三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.(4)在解答立体几何的有关问题时,应注意使用转化的思想:①利用构造矩形、直角三角形、直角梯形将有关棱柱、棱锥、棱台的问题转化成平面图形去解决.②利用轴截面将旋转体的有关问题转化成平面图形去解决.③将空间图形展开是将立体几何问题转化成为平面图形问题的一种常用方法.④由于台体是用一个平行于锥体底面的平面截得的几何体,因此有些台体的问题,常常转化成截得这个台体的锥体中去解决.⑤ 利用割补法把不规则的图形转化成规则图形,把复杂图形转化成简单图形.⑥ 利用三棱锥体积的自等性,将求点到平面的距离等问题转化成求三棱锥的高.(5)立体几何解答题一般包括“作、证、求”三个步骤,缺一不可,在证明中使用定理时,定理的条件必须写全,特别是比较明显的“线在面内”,“两直线相交”等必须交代清楚.6、 平面解析几何有关直线方程的高考试题可分成两部分,一部分是独立成题,多出在客观题中,并且每年只有一个题,难度属于基本题.考查内容除了对称问题,求直线的倾斜角及斜率外,还出现求直线方程,两条直线平行或垂直的充要条件等.另一部分是在解析几何综合题出现,例如在圆锥曲线中往往涉及到和直线的位置关系,此种情况下一般都使用直线的斜截式或点斜式.因此,我们在复习时须加强基本概念和基本方法的复习.(1)注意防止由于“零截距”和“无斜率”造成丢解(2)要学会变形使用两点间距离公式212212)()(y y x x d -+-=,当已知直线l 的斜率k 时,公式变形为1221x x k d -+=或12211y y k d -+=;当已知直线的倾斜角α时,还可以得到αsec 12⋅-=x x d 或αcsc 12⋅-=y y d(3)灵活使用定比分点公式,可以简化运算.(4)会在任何条件下求出直线方程.(5)注重运用数形结合思想研究平面图形的性质高考试题中的解析几何的分布特点是除在客观题中有4个题目外,就是在解答题中有一个压轴题.也就是解析几何没有中档题.且解析几何压轴题所考查的内容是求轨迹问题、直线和圆锥曲线的位置关系、关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系.在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判断.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,可以使用数形结合思想,画出方程所表示的曲线,通过图形求解.(3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程.(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义.(5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用.(6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将“曲线”化成“方程”,将“形”化成“数”,使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法、定义法、几何法、代入转移法、参数法、交轨法等,解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围.(7)参数方程和极坐标的内容,请大家熟练掌握公式,后用化归的思想转化到普通方程即可求解.。
2015高考数学一轮复习:数学的记忆法
2015年高考数学一轮复习:数学的记忆法
一、分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。
例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。
求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。
二、推理记忆法
许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。
例如,平行四边形的性质,我们只要记住它的定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而又推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。
三、标志记忆法
在学习某一章节知识时,先看一遍,对于重要部分用彩笔在下面画上波浪线,再记忆时,就不需要将整个章节的内容从头到尾逐字逐句的看了,只要看划重点的地方并在它的启示下就能记住本章节主要内容,这种记忆称为标志记忆。
四、回想记忆法
在重复记忆某一章节的知识时,不看具体内容,而是通过大脑回想达到重复记忆的目的,这种记忆称为回想记忆。
在实际记忆时,回
想记忆法与标志记忆法是配合使用的。
2015年高考数学一轮复习就分享到这里了,希望对您有所帮助,更多相关内容请点击查看高考数学复习指导!
精心整理,仅供学习参考。
高考第一轮复习知识点
考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.
质
(1)定义域:R
(2)值域:(0,+∞)
(3)过定点(0,1),即x=0时,y=1
(4)x>0时,y>1;x<0时,0<y<1
(4)x>0时,0<y<1;x<0时,y>1.
(5)在 R上是增函数
(5)在R上是减函数
对数函数y=logax的图象和性质:
对数运算:
(以上 )
a>1
0<a<1
图
象
性
质
(1)定义域:(0,+∞)
§02.函数知识要点
一、本章知识网络结构:
二、知识回顾:
(一)映射与函数
1.映射与一一映射
2.函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.
3.反函数
反函数的定义
设函数 的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= (y). 若对于y在C中的任何一个值,通过x= (y),x在A中都有唯一的值和它对应,那么,x= (y)就表示y是自变量,x是自变量y的函数,这样的函数x= (y) (y C)叫做函数 的反函数,记作 ,习惯上改写成
2015届高考数学第一轮知识点总复习配套教案7.doc
课堂过关第一章 集合与常用逻辑用语第1课时 集合的概念(对应学生用书(文)、(理)1~2页)1. (必修1P 10第5题改编)已知集合A ={m +2,2m 2+m},若3∈A ,则m =________.答案:-32解析:因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3满足题意.所以m =-32.2. (必修1P 7第4题改编)已知集合{a|0≤a<4,a ∈N },用列举法可以表示为________.0,1,2,3答案:{}解析:因为a∈N,且0≤a<4,由此可知实数a的取值为0,1,2,3.3. (必修1P17第6题改编)已知集合A=[1,4),B=(-∞,a),AÍB,则a∈________.答案:[4,+∞)解析:在数轴上画出A、B集合,根据图象可知.4. (原创)设集合A={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b +2,b∈R},则A、B的关系是________.答案:A=B解析:化简得A={x|x≥1},B={y|y≥1},所以A=B.5. (必修1P17第8题改编)满足条件{1}ÍMÍ{1,2,3}的集合M 的个数是________.答案:4个解析:满足条件{1}ÍMÍ{1,2,3}的集合M有{1},{1,2},{1,3},{1,2,3},共4个.1. 集合的含义及其表示(1) 集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(2) 集合中元素的特征:确定性、互异性、无序性.(3) 集合的常用表示方法:列举法、描述法、Venn图法.(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5) 常用数集及其记法:自然数集记作N;正整数集记作N 或N+;整数集记作Z;有理数集记作Q;实数集记作R;复数集记作C.2. 两类关系(1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系.(2) 集合与集合之间的关系①包含关系:如果集合A中的每一个元素都是集合B的元素,那么集合A称为集合B的子集,记为AÍB或BÊ A,读作“集合A包含于集合B”或“集合B包含集合A”.②真包含关系:如果AÍB,并且A≠B,那么集合A称为集合B的真子集,读作“集合A真包含于集合B”或“集合B真包含集合A”.③ 相等关系:如果两个集合所含的元素完全相同,即A 中的元素都是B 中的元素且B 中的元素都是A 中的元素,则称这两个集合相等.(3) 含有n 个元素的集合的子集共有2n 个,真子集共有2n -1个,非空子集共有2n -1个,非空真子集有2n -2个.题型1 正确理解和运用集合概念例1 已知集合A ={x|ax 2-3x +2=0,a ∈R }.(1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来;(3) 若A 中至多有一个元素,求a 的取值范围.解: (1) 若A 是空集,则Δ=9-8a <0,解得a >98.(2) 若A 中只有一个元素,则Δ=9-8a =0或a =0,解得a =98或a =0;当a =98时这个元素是43;当a =0时,这个元素是23.(3) 由(1)(2)知,当A 中至多有一个元素时,a 的取值范围是a ≥98或a =0.备选变式(教师专享)已知a ≤1时,集合[a ,2-a]中有且只有3个整数,则a 的取值范围是________.答案:-1<a ≤0解析:因为a ≤1,所以2-a ≥1,所以1必在集合中.若区间端点均为整数,则a =0,集合中有0,1,2三个整数,所以a =0适合题意;若区间端点不为整数,则区间长度2<2-2a<4,解得-1<a<0,此时,集合中有0,1,2三个整数,-1<a<0适合题意.综上,a 的取值范围是-1<a ≤0.变式训练设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 2+14,k ∈Z ,N ={x|x =k 4+12,k ∈Z },则M________N.答案:真包含于题型2 集合元素的互异性例2 已知a 、b ∈R ,集合A ={a ,a +b ,1},B =⎩⎨⎧⎭⎬⎫b ,b a ,0,且A ÍB ,B ÍA ,求a -b 的值.解:∵ A ÍB ,B ÍA ,∴ A =B.∵ a ≠0,∴ a +b =0,即a =-b ,∴ b a =-1,∴ b =1,a =-1,∴ a -b =-2.备选变式(教师专享)已知集合A ={a ,a +b, a +2b},B ={a ,ac, ac 2}.若A =B ,则c =________.答案:-12解析:分两种情况进行讨论.① 若a +b =ac 且a +2b =ac 2,消去b 得a +ac 2-2ac =0.当a =0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a ≠0.∴ c 2-2c +1=0,即c =1.但c =1时,B 中的三元素又相同,此时无解.② 若a +b =ac 2且a +2b =ac ,消去b 得2ac 2-ac -a =0.∵ a ≠0,∴ 2c 2-c -1=0,即(c -1)(2c +1)=0.又c ≠1,故c =-12.变式训练集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1,集合B ={a 2,a +b ,0},若A =B ,求a 2 013+b 2 014的值.解:由于a ≠0,由b a =0,得b =0,则A ={a ,0,1},B ={a 2,a ,0}.由A =B ,可得a 2=1.又a 2≠a ,则a ≠1,则a =-1.所以a 2 013+b 2 014=-1.题型3 根据集合的含义求参数范围例3 集合A ={x|-2≤x ≤5},集合B ={x|m +1≤x ≤2m -1}.(1) 若B ÍA ,求实数m 的取值范围;(2) 当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1) 当m +1>2m -1即m <2时,B =Æ满足B ÍA ;当m +1≤2m -1即m ≥2时,要使B ÍA 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,解得2≤m ≤3.综上所述,当m ≤3时有B Í A.(2) 因为x ∈R ,且A ={x|-2≤x ≤5},B ={x|m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立,则① 若B =Æ,即m +1>2m -1,得m <2时满足条件;② 若B ≠Æ,则要满足条件⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,解得m >4. 或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,无解. 综上所述,实数m 的取值范围为m <2或m >4.备选变式(教师专享)已知集合A ={y|y =-2x ,x ∈[2,3]},B ={x|x 2+3x -a 2-3a>0}.若A ÍB ,求实数a 的取值范围.解:由题意有A =[-8,-4],B ={x|(x -a)(x +a +3)>0}.① 当a =-32时,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,x ≠-32,所以A ÍB 恒成立; ② 当a<-32时,B ={x|x<a 或x>-a -3}.因为A ÍB ,所以a>-4或-a -3<-8,解得a>-4或a>5(舍去),所以-4<a<-32;③ 当a>-32时,B ={x|x<-a -3或x>a}.因为A B ,所以-a -3>-4或a<-8(舍去),解得-32<a<1.综上,当A ÍB 时,实数a 的取值范围是(-4,1).1. 设集合A ={x|x <2},B ={x|x <a},且满足A 真包含于B ,则实数a 的取值范围是____________.答案:(2,+∞)解析:利用数轴可得实数a 的取值范围是(2,+∞).2. 已知集合A ={1,2,3,4,5},B ={(x ,y)|x ∈A ,y ∈A ,x -y ∈A},则B 中元素的个数为________.答案:10解析:B 中所含元素有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4).3. 若x ∈A ,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.答案:3解析:具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 4. 已知全集U =R ,集合M ={x|-2≤x -1≤2}和N ={x|x =2k -1,k =1,2,…}的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有________个.答案:2解析:由题图示可以看出阴影部分表示集合M 和N 的交集,所以由M ={x|-1≤x ≤3},得M ∩N ={1,3},有2个.5. 设P 、Q 为两个非空实数集合,定义集合P +Q ={a +b|a ∈P ,b ∈Q},若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数为________.答案:8解析:(1) ∵ P +Q ={a +b|a ∈P ,b ∈Q},P ={0,2,5},Q ={1,2,6},∴ 当a =0时,a +b 的值为1,2,6;当a =2时,a +b 的值为3,4,8;当a =5时,a +b 的值为6,7,11,∴ P +Q ={1,2,3,4,6,7,8,11},∴ P +Q 中有8个元素.1. 已知A ={x|x 2-2x -3≤0},若实数a ∈A ,则a 的取值范围是________.答案:[-1,3]解析:由条件,a 2-2a -3≤0,从而a ∈[-1,3].2. 现有含三个元素的集合,既可以表示为⎩⎨⎧⎭⎬⎫a ,b a ,1,也可表示为{a 2,a +b ,0},则a 2 013+b 2 013=________.答案:-1解析:由已知得b a =0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 013+b 2 013=(-1)2 013=-1.3. 已知集合A ={x|(x -2)[x -(3a +1)]<0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -a x -(a 2+1)<0. (1) 当a =2时,求A ∩B ;(2) 求使B 真包含于A 的实数a 的取值范围.解:(1) A ∩B ={x|2<x <5}.(2) B ={x|a <x <a 2+1}.①若a =13时,A =Æ,不存在a 使B ÍA ;②若a >13时,2≤a ≤3;③若a <13时,-1≤a ≤-12.故a 的取值范围是⎣⎢⎡⎦⎥⎤-1,-12∪[2,3]. 4. 已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A ,求实数a 的值. 解:由题意知:a +2=1或(a +1)2=1或a 2+3a +3=1,∴ a =-1或-2或0,根据元素的互异性排除-1,-2,∴ a =0即为所求.1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y =f(x)}、{y|y =f(x)}、{(x ,y)|y =f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A B ,则需考虑A = 和A ≠ 两种可能的情况.3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn 图帮助分析.请使用课时训练(A )第1课时(见活页).[备课札记]。
2015届高考数学第一轮知识点总复习配套教案44
第六章不等式第2课时二元一次不等式(组)与简单的线性规划(对应学生用书(文)、(理)87~88页)1. (必修5P74练习题1改编)若点P(a,3)在2x+y<3表示的区域内,则实数a的取值范围是________.答案:a<0解析:点P(a,3)在2x+y<3表示的区域内,则2a+3<3,解得a<0.2. (必修5P 77练习题2改编)不等式组⎩⎪⎨⎪⎧x -y +4≥0,x +y ≥0,x ≤3所表示的平面区域的面积是________.答案:25解析:直线x -y +4=0与直线x +y =0的交点为A(-2,2),直线x -y +4=0与直线x =3的交点为B(3,7),直线x +y =0与直线x =3的交点为C(3,-3),则不等式组表示的平面区域是一个以点A(-2,2)、B(3,7)、C(3,-3)为顶点的三角形,所以其面积为S △ABC =12×5×10=25. 3. (必修5P 84习题4改编) 已知实数x 、y 满足⎩⎪⎨⎪⎧x +y ≥2,x -y ≤2,0≤y ≤3,则z =2x +y 的最小值是________.答案:1解析:如图所示作出可行域,可知当z =2x +y 过点A(-1,3)时z 最小,此时z =1.4. (必修5P 80练习题2改编)设变量x 、y 满足约束条件:⎩⎪⎨⎪⎧y ≥x ,x +2y ≤2,x ≥-2,则z =x -3y 的最小值为________. 答案:-8解析:画出可行域与目标函数线,如图可知,目标函数在点(-2,2)处取最小值-8.5. 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k =________.答案:73解析:不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A(1,1),B(0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.1. 二元一次不等式(组)表示的平面区域(1) 二元一次不等式表示的平面区域一般地,直线y=kx+b把平面分成两个区域,y>kx+b表示直线y=kx+b上方的平面区域,y<kx+b表示直线y=kx+b下方的平面区域.(2) 选点法确定二元一次不等式表示的平面区域①任选一个不在直线上的点;②检验它的坐标是否满足所给的不等式;③若适合,则该点所在的一侧区域即为不等式所表示的平面区域,否则,直线的另一侧区域为不等式所表示的平面区域.(3) 二元一次不等式组表示的平面区域不等式组中各个不等式表示平面区域的公共区域.2. 线性规划中的基本概念[备课札记]题型1 二元一次不等式表示的平面区域例1画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域.解:不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合,x +y ≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合,所以不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如下图所示.备选变式(教师专享)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y>0,x -y +4≥0,x ≤a (a 为常数),表示的平面区域的面积为9,那么实数a 的值为________.答案:1解析:不等式组⎩⎪⎨⎪⎧x +y>0,x -y +4≥0,x ≤a 表示的平面区域如图阴影部分.S =12|BC|×(a +2)=12(2a +4)×(a +2)=9. 又a>-2,∴ a =1.题型2 线性规划问题例2 设z =2x +y ,式中变量满足下列条件: ⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值. 解:变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.(如图)作一组与l 0:2x +y =0平行的直线l :2x +y =t.t ∈R 可知:当l 在l 0的右上方时,直线l 上的点(x ,y)满足2x +y >0,即t >0,而且直线l 往右平移时,t 随之增大,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A(5,2)的直线l 2所对应的t 最大,以经过点B(1,1)的直线l 1所对应的t 最小.所以z max =2×5+2=12,z min =2×1+1=3.变式训练已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0,x +y ≥0,x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________.答案:[-1,1]解析:作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴ -1≤-a ≤1,即-1≤a ≤1.题型3 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1 kg 、B 原料2 kg ;生产乙产品1桶需耗A 原料2 kg ,B 原料1 kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12 kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解:设公司每天生产甲种产品x 桶,乙种产品y 桶,公司共可获得利润为z 元/天,则由已知,得z =300x +400y ,且⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,画可行域如图所示,目标函数z =300x +400y 可变形为y =-34x +z400, 这是随z 变化的一簇平行直线,解方程组⎩⎪⎨⎪⎧2x +y =12,x +2y =12,∴ ⎩⎪⎨⎪⎧x =4,y =4,即A(4,4),∴ z max =1 200+1 600=2 800(元).故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2 800元.备选变式(教师专享)某公司计划2013年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元.由题意,得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90000,x ≥0,y ≥0.目标函数为z =3000x +2000y.二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域. 作直线l :3000x +2000y =0,即3x +2y =0.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.记点M 的坐标为(100,200).平移直线l ,易知,当直线l 过M 点时,目标函数取得最大值. ∴z max =3000x +2000y =700000(元).答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.1. (2013·南通模拟)已知0<a <1,log a (2x -y +1)>log a (3y -x +2),且λ<x +y ,则λ的最大值为________.答案:-2解析:2x -y +1<3y -x +2,即⎩⎪⎨⎪⎧3x -4y -1<0,2x -y +1>0,作出可行域,则z =x +y 经过点(-1,-1)时最小,故x +y>-2,所以λ的最大值为-2.2. 若直线y =2x 上存在点(x ,y)满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________.答案:1解析:可行域如下:所以,若直线y =2x 上存在点(x ,y)满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则3-m ≥2m ,即m ≤1.3. 设变量x 、y满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值是________.答案:55解析:由⎩⎪⎨⎪⎧x +y =20,y =15得A(5,15),且A 为最大解,∴ z max =2×5+3×15=55.4. 某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:为使一年的种植的总利润最大,那么黄瓜和韭菜的种植面积分别为________.答案:30亩、20亩解析:设黄瓜、韭菜的种植面积分别为x 、y ,则总利润z =(4×0.55-1.2)x +(6×0.3-0.9)y =x +0.9y ,此时x 、y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0,画出可行域知,最优解为(30,20).5. 直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案:1解析:画出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的可行域,如图阴影部分所示(含边界).因为直线2x +y -10=0过点A(5,0),且其斜率为-2,小于直线4x +3y =20的斜率-43,故只有一个公共点(5,0).1. 设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0 表示的平面区域为D ,若指数函数y =a x 的图象存在区域D 上的点,则a 的取值范围是________.答案:1<a ≤3解析:先画出如图所示的可行域,当函数a x 的图象过点A(2,9)时,有a 2=9,∴a =3.又a >1,∴1<a ≤3.2. 设z =2y -2x +4,其中x 、y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,求z 的最大值和最小值.解:作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域,如图所示作直线l :2y -2x =t.当l 过点A(0,2)时,z max =2×2-2×0+4=8, 当l 过点B(1,1)时,z min =2×1-2×1+4=4.3. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥1,试求解下列问题.(1) z =x 2+y 2的最大值和最小值; (2) z =yx +2的最大值和最小值;(3) z =|3x +4y +3|的最大值和最小值.解:(1) z =x 2+y 2表示的几何意义是区域中的点(x ,y)到原点(0,0)的距离,则z max =5,z min =12.(2) z =yx +2表示区域中的点(x ,y)与点(-2,0)连线的斜率,则z max =1,z min =14.(3) z =|3x +4y +3|=5·|3x +4y +3|5,而|3x +4y +3|5表示区域中的点(x ,y)到直线3x +4y +3=0的距离,则z max =14,z min =5.4. 某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解: 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得z =2.5x +4y ,且x 、y 满足⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出线性约束条件所表示的可行域,如图中阴影部分的整数点.让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.1. 确定不等式Ax+By+C>0(<0,≥0,≤0)表示直线Ax+By +C=0的哪一侧区域,常用两种方法:一是在直线的某一侧取一特殊点;二是将不等式化为y>kx+b(<,≥,≤).2. 在线性约束条件下,当b>0时,求目标函数z=ax+by+c的最值的求解步骤①作出可行域;②作出直线l0:ax+by=0;③平移直线l0:ax+by=0,依可行域判断取得最值的最优解的点;④解相关方程组,求出最优解,从而得出目标函数的最值.3. 常见的非线性目标函数的几何意义:①x2+y2表示点(x,y)与原点(0,0)的距离;②(x-a)2+(y-b)2表示点(x,y)与点(a,b)的距离;③yx表示点(x,y)与原点(0,0)连线的斜率值;④y-bx-a表示点(x,y)与点(a,b)连线的斜率值.请使用课时训练(B)第2课时(见活页).。
2015届高考数学第一轮知识点总复习配套教案80.doc
选修4-1 几何证明选讲第2课时 圆的进一步认识(对应学生用书(理)182~185页)1. 如图,点P 在圆O 直径AB 的延长线上,且PB =OB =2,PC 切圆O 于C 点,CD ⊥AB 于D 点,求PC 和CD 的长.解:由切割线定理得PC 2=PB·PA =12,∴ PC =23,连结OC ,则OC =12OP ,∴ ∠P =30°, ∴ CD =12PC = 3.2. 如图,AC 为圆O 的直径,弦BD ⊥AC 于点P ,PC =2,PA =8,求tan ∠ACD 的值.解:由相交弦定理和垂径定理得BP 2=PC·PA =16,BP =4.∵ ∠ACD =∠ABP ,∴ tan ∠ACD =tan ∠ABP =AP BP =84=2.3. 如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,求圆O 的面积.解:(解法1)连结OA 、OB ,则∠AOB =90°. ∵ AB =4,OA =OB ,∴ OA =22,则S 圆=π×(22)2=8π.(解法2)2R =4sin45°=42 R =22,则S 圆=π×(22)2=8π.4. 如图,点B 在圆O 上, M 为直径AC 上一点,BM 的延长线交圆O 于N ,∠BNA =45°,若圆O 的半径为2 3,OA =3OM ,求MN 的长.解:∵ ∠BNA =45°,∴ ∠BOA =90°.∵ OM =2,BO =23,∴ BM =4.∵ BM·MN =CM·MA =(23+2)(23-2)=8,∴ MN =2.5. 如图,已知P 是圆O 外一点,PD 为圆O 的切线,D 为切点,割线PEF 经过圆心O ,若PF =12,PD =4 3,求圆O 的半径长和∠EFD 的大小.解:由切割线定理,得PD 2=PE·PF PE =PD 2PF =16×312=4EF =8,OD =4.∵ OD ⊥PD ,OD =12PO ,∴ ∠P =30°,∠POD =60°,∴∠PDE =∠EFD =30°.1. 圆周角定理(1) 圆周角定理:圆周角的度数等于其所对弧度数的一半.(2) 推论1:同弧(或等弧)上的圆周角相等.同圆或等圆中,相等的圆周角所对的弧相等.(3) 半圆(或直径)上的圆周角等于90°.反之,90°的圆周角所对的弦为直径.2. 圆的切线(1) 圆的切线的性质与判定①切线的定义:当直线与圆有2个公共点时,直线与圆相交;当直线与圆有且只有1个公共点时,直线与圆相切,此时直线是圆的切线,公共点称为切点;当直线与圆没有公共点时,直线与圆相离.②切线的判定定理:过半径外端且与这条半径垂直的直线是圆的切线.③切线的性质定理:圆的切线垂直于经过切点的半径.④切线长定理:从圆外一点引圆的两条切线长相等.(2) 弦切角①弦切角的定义:顶点在圆上,一边与圆相切,另一边与圆相交的角称为弦切角.②弦切角定理:弦切角的度数等于所夹弧的度数的一半.③推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.3. 相交弦定理相交弦定理:圆的两条相交弦,被交点分成的两段的积相等.4. 切割线定理(1) 割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆的交点的两条线段的积相等.(2) 切割线定理:从圆外一点引圆的一条割线与一条切线,切线长是这点到割线与圆的两个交点的线段的等比中项.5. 圆内接四边形(1) 圆内接四边形性质定理:圆内接四边形对角互补.(2) 圆内接四边形判定定理:如果四边形的对角互补,则此四边形内接于圆.[备课札记]题型1探求角的关系例1如图,AB是圆O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:∠DEA=∠DFA.证明:连结AD,因为AB为圆的直径,所以∠ADB=90°.又EF⊥AB,∠EFA=90°,所以A、D、E、F四点共圆.所以∠DEA =∠DFA.备选变式(教师专享)(2011·南通三模)如图,圆O的直径AB的延长线与弦CD的延长线相交于点P,E为圆O上一点,AE=AC,求证:∠PDE=∠POC.证明:因为AE=AC,AB为直径,故∠OAC=∠OCA=∠OAE.所以∠POC=∠OAC+∠OCA=∠OAC+∠OAE=∠EAC.又∠EAC =∠PDE,所以∠PDE=∠POC.题型2求线段长度例2如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.(1) 求证:△DEF∽△EFA;(2) 如果FG=1,求EF的长.(1) 证明:因为EF∥CB,所以∠BCE=∠FED.又∠BAD=∠BCD,所以∠BAD=∠FED.又∠EFD=∠EFD,所以△DEF∽△EFA.(2) 解:由(1)得EFFA=FDEF,即EF2=FA·FD.因为FG是切线,所以FG2=FD·FA,所以EF=FG=1.变式训练如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC 到点D,使CD=AC,连结AD交圆O于点E,连结BE与AC交于点F.(1) 判断BE是否平分∠ABC,并说明理由;(2) 若AE=6,BE=8,求EF的长.解:(1) BE平分∠ABC.∵CD=AC,∴∠D=∠CAD.∵AB=AC,∴∠ABC=∠ACB.∵∠EBC=∠CAD,∴∠EBC=∠D=∠CAD.∵∠ABC=∠ABE+∠EBC,∠ACB=∠D+∠CAD,∴∠ABE=∠EBC,即BE平分∠ABC.(2) 由(1)知∠CAD=∠EBC=∠ABE.∵∠AFE=∠ABE,∴△AEF∽△BEA.∴AEBE=EFAE.∵AE=6,BE=8,∴ EF =AE 2BE =368=92. 题型3 证明线段相等例3 如图,在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N.若AC =12AB ,求证:BN =2AM.证明: 在△ABC 中,因为CM 是∠ACB 的角平分线,所以ACBC =AM BM .又已知AC =12AB ,所以AB BC =2AMBM .① 又BA 与BC 是圆O 过同一点B 的割线, 所以BM·BA =BN·BC ,即BA BC =BNBM .② 由①②可知,2AM BM =BNBM ,所以BN =2AM. 备选变式(教师专享)如图,圆O 的直径AB =25,C 是圆O 外一点,AC 交圆O 于点E ,BC 交圆O 于点D ,已知AC =AB ,BC =4,求△ADE 的周长.解:∵ AB 是圆O 的直径,∴ AD ⊥BC.又AC =AB ,∴ AD 是△ABC 的中线. 又BC =4,∴ BD =DC =2, ∴ AD =AB 2-BD 2=4. 由CE·CA =CD·CB ,得CE =455. ∴ AE =25-455=65 5.由∠DEC =∠B =∠C ,所以DE =DC =2. 则△ADE 的周长为6+655. 题型4 证明线段成比例例4 如图,在△ABC 中,∠B =90°,以AB 为直径的圆O 交AC 于D ,过点D 作圆O 的切线交BC 于E ,AE 交圆O 于点F.求证:(1) E 是BC 的中点; (2) AD·AC =AE·AF.证明:(1) 连结BD ,因为AB 为圆O 的直径,所以BD ⊥AC.又∠B =90°,所以CB 切圆O 于点B 且ED 切圆O 于点D ,因此EB =ED ,所以∠EBD =∠EDB ,∠CDE +∠EDB =90°=∠EBD +∠C ,所以∠CDE =∠C ,得ED =EC ,因此EB =EC ,即E 是BC 的中点.(2) 连结BF ,显然BF 是Rt △ABE 斜边上的高,可得△ABE ∽△AFB ,于是有AB AF =AEAB ,即AB 2=AE·AF ,同理可得AB 2=AD·AC , 所以AD·AC =AE·AF. 备选变式(教师专享)如图,PA 切圆O 于点A ,割线PBC 交圆O 于点B 、C ,∠APC 的角平分线分别与AB 、AC 相交于点D 、E ,求证:(1) AD =AE ; (2) AD 2=DB·EC.证明:(1) ∠AED =∠EPC +∠C ,∠ADE =∠APD +∠PAB.因为PE 是∠APC 的角平分线,所以∠EPC =∠APD.又PA 是圆O 的切线,故∠C =∠PAB.所以∠AED =∠ADE.所以AD =AE.(2)⎭⎪⎬⎪⎫∠PCE =∠PAD ,∠CPE =∠APDÞ△PCE ∽△PAD ÞECAD =PC PA .⎭⎪⎬⎪⎫∠PEA =PDB ,∠APE =∠BPD Þ△PAE ∽△PBD ÞAE DB =PA PB .又PA 是切线,PBC 是割线ÞPA 2=PB·PC PA PB =PC PA .故EC AD =AE DB .又AD =AE ,所以AD 2=DB·EC.1. (2013·广东)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E.若AB =6,ED =2,求BC 的值.解:依题意易知△ABC ∽△CDE ,所以AB CD =BC DE ,又BC =CD ,所以BC 2=AB·DE =12,从而BC =2 3.2. (2013·重庆)如图,在△ABC 中,∠C =90°,∠A =60°,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,求DE 的长.解:延长BA 交切线CD 于M.因为∠C =90°,所以AB 为直径,所以半径为10.连结OC ,则OC ⊥CD ,且OC ∥BD.因为∠OAC =60°,所以∠AOC =60°,∠OBE =60°,即BE =OB =10且∠M =30°.所以OM =2OC =20,所以AM =10.所以BD =12(AM +AB)=10+202=15,即DE =BD -BE =15-10=5.3. (2013·江苏)如图,AB和BC分别与圆O相切于点D、C,AC 经过圆心O,且BC=2OC.求证:AC=2AD.证明:连结OD,∵AB、BC分别与圆O相切于点D、C,∴∠ADO=∠ACB=90°.∵∠A=∠A,∴Rt△ADO∽Rt△ACB.∴BCOD=ACAD.∵BC=2OC=2OD,∴AC=2AD.4. (2013·新课标Ⅰ)如图,直线AB为圆的切线,切点为B,点C 在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(1) 证明:DB=DC;(2) 设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF 外接圆的半径.(1) 证明:连结DE,交BC与点G.由弦切角定理得,∠ABE=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.∵DB⊥BE,∴DE是直径,∠DCE=90°.由勾股定理可得DB=DC.(2) 解:由(1)知,∠CDE=∠BDE,BD=DC,故DG是BC的中垂线,∴BG=3 2.设DE中点为O,连结BO,则∠BOG=60°,∠ABE=∠BCE=∠CBE=30°,∴CF⊥BF,∴Rt△BCF的外接圆半径等于3 2.1. 如图,圆O 与圆O′内切于点T ,点P 为外圆O 上任意一点,PM 与内圆O′切于点M.求证:PM ∶PT 为定值.证明:设外圆半径为R ,内圆半径为r ,作两圆的公切线TQ. 设PT 交内圆于C ,连结OP ,O ′C ,则PM 2=PC·PT ,所以PM 2PT 2=PC·PT PT 2=PC PT .由弦切角定理知∠POT =2∠PTQ ,∠CO ′T =2∠PTQ ,则∠POT =∠CO′T ,所以PO ∥CO′,所以PC PT =OO′OT =R -r R ,即PM PT =R -rR ,为定值.2. 如图, 弦AB 与CD 相交于⊙O 内一点E ,过E 作BC 的平行线与AD 的延长线相交于点P.已知PD =2DA =2, 求PE.解:∵ BC//PE ∴ ∠BCD =∠PED.且在圆中∠BCD =∠BAD∠PED =∠BAD. △EPD ∽△APE PE PA =PD PE PE 2=PA·PD =3·2=6.所以PE = 6.3. 如图,正三角形ABC 外接圆的半径为1,点M 、N 分别是边AB 、AC 的中点,延长MN 与△ABC 的外接圆交于点P ,求线段NP 的长.解:设正三角形ABC 的边长为x ,由正弦定理,得x sin60°=2,所以x = 3.延长PN 交圆于Q ,则NA·NC =NP·NQ.设NP =t ,则t·⎝⎛⎭⎪⎫t +32=⎝ ⎛⎭⎪⎫322.所以t =15-34,即NP =15-34.4. 如图,在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,圆O 是△BDE 的外接圆.(1) 求证:AC 是圆O 的切线;(2) 如果AD =6,AE =62,求BC 的长.(1) 证明:连OE ,∵BE ⊥DE ,∴O 点为BD 的中点.∵OB =OE ,∴∠OEB =∠OBE.∵∠OEC =∠OEB +∠CEB =∠OBE +∠CEB =∠CEB +∠CBE =90°,即OE ⊥AC.又E 是AC 与圆O 的公共点,∴AC 是圆O 的切线.(2) 解:∵AE 是圆的切线,∴∠AED =∠ABE.又∠A 共用,∴△ADE ∽△AEB ,∴AD AE =AE AB ,即662=62AB,解得AB =12, ∴圆O 的半径为3.又∵OE∥BC,∴OEBC=AOAB,即3BC=912,解得BC=4.几个重要定理的符号语言及图形(1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等.符号语言:∵在圆O中,弦AB、CD相交于点P,∴PA·PB=PC·PD.(图①)图形语言:推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.符号语言:∵在圆O中,直径AB⊥CD,垂足为E,∴CE2=AE·BE.(图②)(2) 割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等.符号语言:∵在圆O中,PB、PE是割线,∴PC·PB=PD·PE.(图③)(3) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.符号语言:∵在圆O中,PA是切线,PB是割线,∴PA2=PC·PB.(图③)请使用课时训练(B)第2课时(见活页).[备课札记]。
2015高考数学一轮复习知识点:几何
2015年高考数学一轮复习知识点:几何刚升入高三,新高三学生们会面临比以往更繁重的学习任务,学习和生活节奏将变得更快。
小编整理了2015年高考数学第一轮复习解析几何专题,希望为大家提供服务。
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。
(2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
①求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。
加大与相关知识的联系(如向量、函数、方程、
不等式等),凸现教材中研究性学习的能力要求。
加大探索性题型的分量。
精心整理,仅供学习参考。
2015届高考数学第一轮复习指导
2015届高考数学第一轮复习指导一、重视计算能力在高三总复习的第一阶段,我们的主要任务是:吃透教材,全面,系统的掌握高中的数学基本知识深刻理解基本概念,正确掌握定理、原理、法则、公式,并形成记忆、形成技能;把相关的知识相连结,融会贯通、着眼联系、互相渗透、灵活应用。
这是我们一轮复习在知识上的要求和目标,但我们发现,最后到高考前,好多同学知识上都达到了这个要求,但分数仍然不是很高,为什么呢,就是因为这些同学老师把会的东西算错,细节的关注不够,比如说答题的基本步骤不是很清楚,书写不够规范等等,就是拿不到全分。
所以新东方一对一刘亮老师建议同学们在高三复习的整个过程中注重计算能力,只有具有良好的计算能力才保证高考中把我们百分之百的实力都发挥出来,都会但是得不到分是个很痛苦的过程,不要以为,我因为计算错了许多还比其他同学分数高,你就比他学的好,比他聪明,这个是很愚蠢的想法,由不会到会的过程还是很轻松的,尤其在我们高考难度要求越来越低的情况下,一个人的习惯是最不好改变的,而且没有老师在很短时间内帮你解决习惯问题。
所以重视计算吧,这是考取高分的保障。
二、回归课本,注重基础,重视预习数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是高考数学第一轮复习的重中之重。
回归课本,自己先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。
复习课的容量大、内容多、时间紧。
要提高复习效率,必须使自己的思维与老师的思维同步。
而预习则是达到这一目的的重要途径。
没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。
预习还可以培养自己的自学能力。
三、区别对待不同的知识点之难易程度知识有难有易,根据自身情况找准发力点,比如我们在复习函数时,知识点比较难,而且比较乱,考题也小题居多,灵活性大,有些同学只能掌握的六七成,我认为这个水平还是可以的,我们只需要保持住所会的部分就可以了,对于函数我认为就复习成功了,但三角就不一样了,本身难度就不大,而且大题的考法还很固定,所以我们复习这块知识时就需要跟他死磕,高考题,模拟题应该9成一场都会做,基本上就是来一个会一个,达不到要求就去练,要有练不死就要往死里练的架势,因为像三角这类知识点是保证我们基础得分的,如果一轮结束你这些东西还不会,你就跟已经掌握的同学拉开一个档次了,因为别人去学别的稍难一些的知识了,相当于去提高了你还在挣扎基础,怎么去跟人家竞争啊。
2015高考数学一轮复习总体方案
2015年高考数学一轮复习总体方案一、全力夯实双基,保证驾轻就熟目前高考数学试卷,基础知识和基本方法的考查占80%左右的份量,即使是创新题或能力题也是建立在双基之上,只有脚踏实地、一丝不苟地巩固双基,才能占领高考阵地。
教材是精品,把握了教材,也就切中了要害。
不仅要深刻理解教材中的知识,更要关注教材中解决问题的思想方法,还要全面把握知识体系,保证:⑴不掌握不放过。
对照《考试说明》,确定考试范围,认真阅读和理解教材中相关内容,包括每个概念、每个例题、每个注释、每个图形,准确理解和记忆知识点,不留空白和隐患。
⑵胸无全书不放过,在掌握知识点的基础上,根据知识的内在联系,构建知识网络,把书学得“由厚变薄”。
不防从课本的章节目录入手,进行串联,形成体系。
⑶有疑难不放过。
为巩固复习效果,发展思维能力,适量的练习是必要的,练习中遇到困难也在所难免,必须找到问题的症结在那里,对照教材,彻底扫除障碍。
回归教材、吃透课本,千万不能眼高手低哟。
二、重视错题病例,实时忘羊补牢错题病例也是财富,它有时暴露我们的知识缺陷,有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了,也就有治疗的方向,提供了纠错的机会。
由于题海战术的影响,许多同学,拼命做题,期望以多取胜,但常常事与愿违,不见提高,走访了一些同学,普遍觉得困惑他们的是有些错误很顽固,订正过了,评讲过了,还是重蹈覆辙。
原因是没有重视错误,或没有诊断出错因,没有收到纠错的效果。
建议:建立错题集,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常翻阅,常常提醒,警钟长鸣,以绝后患。
注意收集错题也有个度的问题,对于那些一时粗心的偶然失误,或一时情绪波动而产生的失误应另作他论。
三、加强毅力训练,做到持之以恒毅力比热情更重要。
进入高三,同学们都雄心勃勃。
但由于各种因素的影响,有的同学能够坚持不懈,平步青云。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、集合与简易逻辑1.集合元素具有确定性、无序性和互异性.(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8) (2)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个(答:7)2. “极端”情况否忘记∅=A :集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =______.(答:10,1,2a =)3.满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
(答:7)4.运算性质:设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =)5.集合的代表元素:(1)设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则MN =___(答:[4,)+∞);(2)设集合{|(1,2)(3,4),M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____(答:)}2,2{(--) 6.补集思想:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。
(答:3(3,)2-)7.复合命题真假的判断:在下列说法中:⑴“p 且q ”为真是“p 或q ”为真的充分不必要条件;⑵“p 且q ”为假是“p 或q ”为真的充分不必要条件;⑶“p 或q ”为真是“非p ”为假的必要不充分条件;⑷“非p ”为真是“p 且q ”为假的必要不充分条件。
其中正确的是____答:⑴⑶)8.充要条件:(1)给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 。
其中正确命题的序号是_______(答:①④);(2)设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x 。
若┐p 是┐q的必要而不充分的条件,则实数a 的取值范围是 (答:1[0,]2)9. 一元一次不等式的解法:已知关于x 的不等式0)32()(<-++b a x b a 的解集为)31,(--∞,则关于x 的不等式0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)10. 一元二次不等式的解集:解关于x 的不等式:01)1(2<++-x a ax 。
(答:当0a =时,1x >;当0a <时,1x >或1x a <;当01a <<时,11x a<<;当1a =时,x ∈∅;当1a >时,11x a<<)11. 对于方程02=++c bx ax 有实数解的问题。
(1)()()222210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]);(2)若在[0,]2π内有两个不等的实根满足等式cos221x x k =+,则实数k 的范围是_______.(答:[0,1))12.一元二次方程根的分布理论。
(1)实系数方程220x ax b ++=的一根大于0且小于1,另一根大于1且小于2,则12--a b 的取值范围是_________(答:(41,1)) (2)不等式23210x bx -+≤对[1,2]x ∈-恒成立,则实数b 的取值范围是____(答:∅)。
二、函 数1.映射f : A →B 的概念。
(1)设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合(答:A );(2)点),(b a 在映射f 的作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点________(答:(2,-1));(3)若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,A 到B 的函数有 个(答:81,64,81);(4)设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有____个(答:12)2.函数f : A →B 是特殊的映射。
若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2)3.若解析式相同,值域相同,但其定义域不同的函数,则称这些函数为“天一函数”,那么解析式为2y x =,值域为{4,1}的“天一函数”共有__个(答:9)4.研究函数问题时要树立定义域优先的原则):(1)函数lg 3y x =-的定义域是____(答:(0,2)(2,3)(3,4));(2)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围;②若()f x 的值域是R ,求实数a 的取值范围(答:①1a >;②01a ≤≤)(2)复合函数的定义域:(1)若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为__________(答:{}42|≤≤x x );(2)若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________(答:[1,5]).5.求函数值域(最值)的方法:(1)配方法―(1)当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:21-≥a );(2)换元法(1)22sin 3cos 1y x x =--的值域为_____(答:17[4,]8-);(2)21y x =++的值域为_____(答:(3,)+∞)t =,0t ≥。
运用换元法时,要特别要注意新元t 的范围);3)s i n c o s s i n c o s y x x x x =++的值域为____(答:1[1,2-+);(4)4y x =++____(答:[14]);(3)函数有界性法―求函数2sin 11sin y θθ-=+,313xxy =+,2sin 11cos y θθ-=+的值域(答:1(,]2-∞、(0,1)、3(,]2-∞);(4)单调性法――求1(19)y x x x =-<<,229sin 1sin y x x=++的值域为______(答:80(0,)9、11[,9]2);(5)数形结合法――已知点(,)P x y 在圆221x y +=上,求2yx +及2y x -的取值范围(答:[、[); (6)不等式法―设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.(答:(,0][4,)-∞+∞)。
(7)导数法―求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。
(答:-48)6.分段函数的概念。
(1)设函数2(1).(1)()41)x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是____(答:(,2][0,10]-∞-);(2)已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是___(答:3(,]2-∞)7.求函数解析式的常用方法: (1)待定系数法―已知()f x 为二次函数,且 )2()2(--=-x f x f ,且f(0)=1,图象在x 轴上截得的线段长为22,求()f x 的解析式 。
(答:21()212f x x x =++)(2)配凑法―(1)已知,sin )co s 1(2x x f =-求()2x f 的解析式___(答:242()2,[]f x x x x =-+∈);(2)若221)1(xx x x f +=-,则函数)1(-x f =___(答:223x x -+);(3)方程的思想―已知()2()32f x f x x +-=-,求()f x 的解析式(答:2()33f x x =--);8. 反函数:(1)函数223y x ax =--在区间[1, 2]上存在反函数的充要条件是A 、(],1a ∈-∞B 、[)2,a ∈+∞C 、[1,2]a ∈D 、(],1a ∈-∞[)2,+∞(答:D )(2)设)0()1()(2>+=x xx x f .求)(x f 的反函数)(1x f -(答:1()1)f x x -=>). (3)反函数的性质:①单调递增函数)(x f 满足条件)3(+ax f = x ,其中a ≠ 0 ,若)(x f 的反函数)(1x f -的定义域为⎥⎦⎤⎢⎣⎡a a 4,1 ,则)(x f 的定义域是____________(答:[4,7]).②已知函数132)(-+=x x x f ,若函数()y g x =与)1(1+=-x f y 的图象关于直线x y =对称,求(3)g 的值(答:72);③(1)已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x ______(答:1); ④已知()f x 是R 上的增函数,点()()1,1,1,3A B -在它的图象上,()1f x -是它的反函数,那么不等式()12log 1f x -<的解集为________(答:(2,8));9.函数的奇偶性。
(1)①定义法:判断函数y =____(答:奇函数)。
②等价形式:判断11()()212xf x x =+-的奇偶性___.(答:偶函数) ③图像法:奇函数的图象关于原点对称;偶函数的图象关于y 轴对称。
(2)函数奇偶性的性质:若()f x 为偶函数,则()()(||)f x f x f x -==.若定义在R 上的偶函数()f x 在(,0)-∞上是减函数,且)31(f =2,则不等式2)(log 81>x f 的解集为______.(答:(0,0.5)(2,)+∞) ④(0)0f =若22()21x xa a f x +-=+·为奇函数,则实数a =____(答:1). ⑤设)(x f 是定义域为R 的任一函数, ()()()2f x f x F x +-=,()()()2f x f x G x --=。