随机过程作业题及参考答案(第一章)

合集下载

(完整word版)随机过程试题及答案

(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。

2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。

习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。

3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。

4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。

习题三1. 试证3.1节均方收敛的性质。

2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。

(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。

解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。

(2) 同时掷三颗骰子,记录三颗骰子点数之和。

解:{}18,,4,3 =S 。

(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。

解: {}10,,4,3 =S 。

(4) 生产产品直到得到10件正品,记录生产产品的总件数。

解: {} ,11,10=S 。

(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。

解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB表示A 为正组长,B 为副组长,余类推。

(6) 甲乙二人下棋一局,观察棋赛的结果。

解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。

(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。

解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。

(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。

(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。

随机过程作业和答案第一二章

随机过程作业和答案第一二章

随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。

求X(t)的一维和二维分布。

解 先求一维分布。

当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。

这亦是随机过程X(t)的一维分布。

再求二维分布。

当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。

则其线性变换也服从正态分布。

且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。

P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。

X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

(完整word版)随机过程试题带答案

(完整word版)随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

1.为it(e-1)e λ。

2. 1(sin(t+1)-sin t)2ωω。

3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。

6.(n)nP P =。

随机过程第一、二章测验题答案(2010)

随机过程第一、二章测验题答案(2010)

随机过程测试题一答案每题10分1. 在一汽车工厂中,一辆汽车有两道工序是由机器人完成的。

其一是紧固三只螺栓,其二是焊接两处焊点。

以X 表示由机器人紧固的螺栓不良的数目,以Y 表示由机器人焊接的焊点不良的数目。

据积累资料知),(Y X 具有分布律: Y X 0 1 2 3 0 0.840 0.030 0.020 0.010 1 0.060 0.010 0.008 0.002 20.0100.0050.0040.001(1)求EX ;(2)求]|[j Y X E =,2,1,0=j ;(3)验证 ∑====2}{]|[j j Y P j Y X E EX .解: (1) X 的分布律为 X 0 1 2 3 P0.9100.0450.0320.013148.0=EX .(2) Y 的分布律为 Y 0 1 2 P0.9000.0800.0200=Y 时,X 的条件分布律为X|0=Y 0 123P0.840/0.90.030/0.90.020/0.90.010/0.991]0|[==Y X E ;1=Y 时,X 的条件分布律为X|1=Y 0 123P0.060/0.080.010/0.080.008/0.080.002/0.084.0]1|[==Y X E ;2=Y 时,X 的条件分布律为X|2=Y0 1 2 3P 0.010/0.02 0.005/0.02 0.004/0.02 0.001/0.028.0]2|[==Y X E .(3) EX j Y P j Y X E j ==⨯+⨯+⨯===∑=148.002.08.008.04.09.091}{]|[2.2.设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.,00,),(其他,y x e y x f y(1)求EX;(2)对任意0>y ,求]|[y Y X E =;(3)验证⎰+∞==0)(]|[dy y f y Y X E EX Y .解: (1)当0>x 时, X 的概率密度为x xy xX e dy e dy y x f x f -+∞-+∞===⎰⎰),()(.1)(0===⎰⎰+∞-+∞dx xe dx x xf EX x X .(2) 对任意0>y , Y 的概率密度为y yy yY ye dx e dx y x f y f --===⎰⎰0),()(.⎪⎩⎪⎨⎧<<==.,0,0,1)(),()|(|其他y x y y f y x f y x f Y Y X21)|(]|[0|ydx y xdx y x f x y Y X E yY X ====⎰⎰+∞ (3)EX dy ye y dy y f y Y X E y Y ==Γ=⋅==⎰⎰+∞-+∞1)3(212)(]|[03.写出六种常见分布(退化、二项、泊松、均匀、指数、正态)的特征函数.分布 记号 概率密度或分布律)x (f特征函数)t (ψ退化 {c} 1}{==c X Pict e0-1 b(1,p) .1,0,}{1===-x q p x X P x x q pe it +二项b(n,p) 独立同分布于b(1,p)的n 个r.v.的和..,,1,0,}{1n x q p C x X P x x x n ===-n it q pe )(+泊松 )(P λ.,2,1,0,!}{ ===-x e x x X P xλλ)1(-it e eλ均匀U(a,b))(1)(),(x I ab x f b a -=t a b i e e iatibt )(--标准正态 N(0,1)2221)(x e x f -=π22t e-正态),(N 2σμ222)(21)(σμσπ--=x e x f2)(2t t i eσμ-指数 )(E λ)()(),0(x I e x f x +∞-=λλit-λλ4.关于独立随机变量序列}{n X ,下列哪些命题是正确的. (1)若 ,2,1,||=+∞<k X E k ,则∏∏===nk k nk k EX X E 11;(2) 若 ,2,1,2=+∞<k EX k ,则∑∑===nk k n k n VarX X Var 11)(;(3) 设)(t f k 为k X 的特征函数,)(t f n S 为∑==nk k n X S 1的特征函数,则∏==nk k S t f t f n 1)()(.(4) 设)(t k φ为k X 的矩母函数,)(t n S φ为∑==nk k n X S 1的矩母函数,则∑==nk k S t t n1)()(φφ.解:(4)错,应为 ∏==nk k S t t 1)()(φφ.5.设ηξ,是相互独立,且都为均值0,方差1的随机变量,令t t X ηξ+=)(,求随机过程}0),({≥t t X 的均值函数和相关函数. 解:;0)()()]([)(=+==ηξμtE E t X E t X;1)()()()]([)(222t D t D t D t X D t x +=+=+==ηξηξσ.1)()()()()()]()([),(22ts E E s t tsE E s X t X E s t R x +=+++==ηξηξ6.X (t )=Y cos(t )+Z sin(t ), t >0,Y , Z 相互独立,且 EY =EZ =0,DY =DZ =σ2. 讨论随机过程{X (t ), t >0}的平稳性.解: 0sin cos )]([)(=+==tEZ tEY t X E t X μ;)]()([),(s X t X E s t R X =).cos(sin sin cos cos )()cos sin sin (cos sin sin cos cos 22222s t EZ s t EY s t YZ E s t s t EZ s t EY s t -=⋅+⋅=++⋅+⋅=σ因)(t X μ为常数,),(s t R X 仅与s t -=τ有关,故)}({t X 是宽平稳过程.7.在电报信号)(t X 的传输过程中,信号由不同的电流符号A A -,给出,而电流的发送又有一个任意的持续时间,电流符号的转换是随机的. 设)(t X 在],0(t 时间内的变号次数)(t N 是参数为λ的泊松过程,且可以表示为)()1)(0()(t N X t X -=,又设)0(X 与}0),({≥t t N 独立,且5.0})0({})0({=-===A X P A X P ,求}0),({≥t t X 的均值函数.解:=)]([t X E 0.8.考虑电子管中的电子发射问题,设单位时间内到达阳极的电子数目N 服从参数为λ的泊松分布. 每个电子携带的能量构成一个随机变量序列 ,,21X X 已知}{k X 与N 独立,}{k X 之间互不相关并且具有相同的均值和方差2,σμ==k k DX EX . 单位时间内阳极接收到的能量为∑==Nk kXS 1. 求S 的均值.解:∑∑+∞=====1}{]|[n Nk kn N P n N XE ES∑∑+∞====01}{][n nk k n N P X E ∑+∞===01}{n n N P nEX∑+∞===01}{n n N nP EX λμ=⋅=1EX EN .9.随机过程}0),({≥t t W 称为参数为2σ的维纳过程, 如果 (1) 0)0(=W ;(2),0t s <≤∀))(,0(~)()(2s t N s W t W --σ;(3) ,0v u t s <<<≤∀ 增量)()(s W t W -与)()(u W v W -相互独立.(1)求}0),({≥t t W 的均值函数)]([t W E 和相关函数)]()([s W t W E . (2)}0),({≥t t W 是否为宽平稳过程?证明:(1),0≥∀t ),0(~)(2t N t W σ, 故0)]([)(==t W E t W μ;又,0t s <≤∀))(,0(~)()(2s t N s W t W --σ, 且增量)()(s W t W -与)(s W 相互独立,故)]()([)]())()([()]()([),(s W s W E s W s W t W E s W t W E s t R W +-==s s W D s W E s W t W E 2)]([)]([)]()([σ=+-=从而),min(),(2s t s t R W σ=.(2)由于),(s t R W 与出发时刻),min(s t 有关,因而}0),({≥t t W 不是宽平稳过程.10. 下面四个随机过程中哪些不是宽平稳过程(A) 随机相位正弦波过程:}0),cos()({≥Φ+=t t t X λ,其中),(~ππ-ΦU ,λ是常数. (B) 白噪声序列: },1,0,{ =n X n 是一列两两互不相关(即m n X EX m n ≠=,0)的随机变量序列,且满足2,0σ==n n DX EX . (C) 移动平均序列:},2,1,0,{11 ±±==∑=-+n a X ki in i n ε,其中},2,1,0,{ ±±=n n ε为白噪声序列,k a a a ,,,21 为任意实数.(D) 强度为λ的泊松过程}0),({≥t t N ,其中)(t N 表示到时刻t 为止事件A 发生的次数. 解: D .。

《随机过程》课后习题解答

《随机过程》课后习题解答
6、证函数 f (t ) 解 (1)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2

i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)

x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )

f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt

3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n

随机过程第一章习题答案

随机过程第一章习题答案
似水年华轻轻一瞥,年华似水轻描淡写
随机过程 第一章 习题答案
1.方法一: F (t ; x) P{ X (t ) x} P{ X sin t x} 当t k 时,P{ X (t ) 0} 1,其中k为整数,
k 当t 时,
x x sin t (i)若 sin t 0, F (t ; x) P{ X } ( x) dx sin t x 1 1 1 1 x 2 f (t ; x) ( ) exp{ ( )} sin t sin t sin t 2 2 sin t x x x sin t (ii )若 sin t 0, F (t ; x) P{ X } 1 P{ X } 1 ( x)dx sin t sin t 1 1 1 x 2 f (t ; x) Fx' (t ; x) exp{ ( )} sin t 2 2 sin t 1 1 x 2 f (t ; x) exp{ ( ) }, k 为整数。 2 sin t 2 sin t

时,k为整数,有 X
一维分布密度为:f (t ; x) 当t= k

时,k为整数,有P{ X (t ) 0} 1
1 1 Xt x}=P{e } e Xt x 1 1 1 =P{Xt ln }=P{Xt ln x}=P{X ln x}=1-P{X ln x} x t t 1 11 1 1 f (t ; x) Fx' (t ; x) f ( ln x)( ) f ( ln x) t t x tx t 2.F(t;x)=P{X(t) x}=P{e Xt x}=P{
方法二: X N(0,1) EX=0,EX 2 =DX=1 EX(t)=E(Xsin t)=sin tEX 0 k N(0 , sin 2 t) 1 1 x 2 exp{ ( ) }, x 2 sin t 2 sin t DX (t ) D(Xsin t) (sin t) 2 DX sin 2 t 当t

答案-随机过程答案.doc

答案-随机过程答案.doc

F(0,x)8P{X(0)Vx} ‘031x<0;< .r < 1;M>4分P{i l0<5} = P{N(5) >10} =工it=10 e 心(12.5)*k\=i-Ek=0e"5(12.5)*V.®0.79857 (5)随机过程参考答案及评分标准一、填空(每空5分)1.才儿匚 + 2min(/] ,0)2.Vr n eT,limEIX(0-X(r n)l2 = 0 或limE I X(x + /i)-X(x) l2 = 0■ t^>t…"TO3.5at74.—24'o r二、解:(1).心0时,X(0)~ I 25 3 J(2). m * (/) = EX (/) = 1 x * + sin / x * + cos / x * = * (1 + sin / + cos t).R x (?, ,t2) = EX(/J • EX (切=1 x P { W]} + sin £ sin t2P {w2} + cos £ cos t2P {w3} = -{l + COS(r i _?2)} .......................................................................................................................Cx(t\ ,t2) = Rx(t\) —EX (G • X 律)=Rx(t[,G)-m.Y(?1)m A-(?2)= — +—008(^ -Z2)- —(sin t x +cos/] + cos t2 + sinr2)- — sinZ2(cos+sin/J.................................................................................................. 3分二、解:N⑴为何到达的顾客数,贝U N(f)~P(2.5)—2.5x5 /r\斥10 1(1)-列“⑸=吩爲诂严•(12®。

随机过程习题解答第1,2章

随机过程习题解答第1,2章

习题11. 令X(t)为二阶矩存在的随机过程,试证它是宽平稳的当且仅当EX(s)与E[X(s)X(s+t)]都不依赖s.证明:充分性:若X(t)为宽平稳的,则由定义知EX(t)=μ, EX(s)X(s+t)=r(t) 均与s 无关必要性:若EX(s)与EX(s)X(s+t)都与s 无关,说明EX(t)=常数, EX(s)X(s+t)为t 的函数2. 记1U ,...,n U 为在(0,1)中均匀分布的独立随机变量,对0 < t , x < 1定义I( t , x)=⎩⎨⎧>≤,,,,t x t x 01并记X(t)=),(11∑=nk k U t I n ,10≤≤t ,这是1U ,...,n U 的经验分布函数。

试求过程X (t )的均值和协方差函数。

解: EI ()k U t ,= P ()t U k ≤= t , D()),(k U t I = EI ()k U t ,-()2),(kU t EI= t -2t = t(1-t)j k ≠, cov ()),(),(j k U s I U t I ,=EI(t,k U )I(s,j U )-EI(t, k U )EI(s, j U ) = st -st=0k = j , cov ()),(),(j k U s I U t I ,= EI(t,k U )I(s,j U )-st = min(t,s)-stEX(t)=),(11∑=n k k U t EI n =∑=nk tn 11= tcov ())(),(s X t X =()()),(),,(cov 1),(),,(cov 1212j kjk nk k k U s I Ut I n U s I U t I n ∑∑≠=+=[]∑=nk st t s n12),min(1-=()st t s n-),min(13.令1Z ,2Z 为独立的正态分布随机变量,均值为0,方差为2σ,λ为实数,定义过程()t Sin Z t Cos Z t X λλ21+=.试求()t X 的均值函数和协方差函数,它是宽平稳的吗?Solution: ()221,0~,σN Z Z . 02221==EZ EZ .()()221σ==Z D Z D ,()0,21=Z Z Cov ,()0=t EX ,()()()()()[]s Sin Z s Cos Z t Sin Z t Cos Z E s X t X Cov λλλλ2121,+⋅+=[]t C o s S i n Z Z s t S i n C o s Z Z s t S i n S i n Z t C o s C o s Z E λλλλλλλλ12212221+++=()02++=s t S i n S i n s t C o s C o s λλλλσ =()[]λσs t Cos -2(){}t X 为宽平稳过程.4.Poisson 过程()0,≥t t X 满足(i )()00=X ;(ii)对s t >,()()s X t X -服从均值为()s t -λ的Poisson 分布;(iii )过程是有独立增量的.试求其均值函数和协方差函数.它是宽平稳的吗?Solution ()()()()t X t X E t EX λ=-=0,()()t t X D λ= ()()()()()s t s X t EX s X t X Cov λλ⋅-=,()()()()()ts s EX s X s X t X E 22λ-+-= ()()()()ts s EX s X D 220λ-++=()ts s s 22λλλ-+=()t s s λλλ-+=1 显然()t X 不是宽平稳的.5. ()t X 为第4题中的Poisson 过程,记()()()t X t X t y -+=1,试求过程()t y 的均值函数和协方差函数,并研究其平稳性. Solution ()λλ=⋅=1t Ey , ()()λ=t y DCov(y(t),y(s))=Ey(t)y(s)-Ey(t)y(s)=E(x(t+1)-x(t))(x(s+1)-x(s))-λ2(1)若s+1<t, 即s≤t-1,则Cov(y(t),y(s))=0-λ2=-λ2(2)若t<s+1≤t+1, 即t>s>t-1, 则Cov(y(t),y(s))=E[x(t+1)-x(s+1)+x(s+1)-x(t)][x(s+1)-x(t)+x(t)-x(s)] -λ2=E(x(t+1)-x(s+1))(x(s+1)-x(t))+E(x(t+1)-x(s+1))(x(t)-x(s))+E(x(s+1)-x(t))+E(x(s+1)-x(t))(x(t)-x(s))- λ2=λ(s+1-t)= λ-λ(t-s)- λ2(3) 若t<s<t+1Cov(y(t),y(s))= E [x(t+1)-x(s)+x(s)-x(t)] [x(s+1)-x(t+1)+x(t+1)-x(s)]- λ2 =(x(t+1)-x(s))(x(s+1)-x(t+1))+E(x(t+1)-x(s))(x(t+1)-x(s))+E(x(s)-x(t))(x(s+1)-x(t+1))+E(x(s)-x(t))(x(t+1)-x(s))- λ2=0+λ(t+1-s)+0-λ2=λ+λ(t-s)- λ2(4) 若s>t+1 Cov(y(t),y(s))=0-λ2=-λ2由此知,故方差只与t-s有关,与t,s无关故此过程为宽平稳的。

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (4)(1)ABBC AC 或ABC ABC ABC ABC ; (5)(2)ABBC AC (6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得,但,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例 (4)对。

证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-= ;(3)A 不发生同时B 发生可表示为:AB ,又因为A B ,不相容,于是()()0.6P A B P B == ;5解:由题知,. 因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

随机过程作业题与参考答案(第一章)

随机过程作业题与参考答案(第一章)

随机过程作业题及参考答案(第一章)第一章随机过程基本概念P391. 设随机过程 X tX cos 0t , t,其中0 是正常数,而X 是标准正态变量。

试求 X t的一维概率分布。

解:1当 cos0t0 ,0tk,即 t1 k 1( kz )时,22 X t 0,则 P X t1.2当 cos0t0,0tk,即 t1 k 1( kz )时,22X~N 0,1, E X0,D X 1.E X tE X cos 0t E X cos 0t 0 .D X tD X cos0tD X cos 20tcos 2 0t .X t ~ N 0,cos 20t .1x 2则 fx ;te 2cos 2 0t .2 cos 0t2. 利用投掷一枚硬币的试验,定义随机过程为cos ,出现正面X t,出现反面2t假定 “出现正面” 和“出现反面” 的概率各为11 。

试确定 X t 的一维分布函数F x ;22和 F x ;1 ,以及二维分布函数1 。

F x 1,x 2;,12随机过程作业题及参考答案(第一章)解:, x 0X10 11 1 12,; P Xxx 122p k1 1 2x1, 221X 112,x 11 1 ;1,1 x 2p kF x 1 P X 1 x222x2,1随机矢量X1,X 1的可能取值为0, 1 ,1,2.2而PX10,X 111,PX11,X1 2 1 .2222F x 1,x 2 1P X1 x 1,X 1 x 2;,1 22,x 1或10 x 21, 且或且 1 x 2 22 0 x 1 1 x 21 x 1x 12, 且1 1 x 23. 设随机过程X t , t总共有三条样本曲线X t ,11 X t ,2sint, X t ,3 cost,且P 1PP 31t和相关函数 R X t 1,t 2。

2。

试求数学期望 EX3随机过程作业题及参考答案(第一章)解:EX t1 1sint1cost1 1 1 sint cost .333 3,E X t 1 X t 2R X t 1 t 21 1 1 1sint 1 sint 2 1 cost 1 cost 23 331 1 sint 1 sint2 cost 1 cost 2 31 1 cos t 1 t2 .34. 设随机过程X te Xt ,( t 0),其中 X 是具有分布密度f x 的随机变量。

(完整版)随机过程习题和答案

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程第一、二章测验题答案(2010)

随机过程第一、二章测验题答案(2010)

随机过程测试题一答案每题10分1. 在一汽车工厂中,一辆汽车有两道工序是由机器人完成的。

其一是紧固三只螺栓,其二是焊接两处焊点。

以X 表示由机器人紧固的螺栓不良的数目,以Y 表示由机器人焊接的焊点不良的数目。

据积累资料知),(Y X 具有分布律: Y X 0 1 2 3 0 0.840 0.030 0.020 0.010 1 0.060 0.010 0.008 0.002 20.0100.0050.0040.001(1)求EX ;(2)求]|[j Y X E =,2,1,0=j ;(3)验证 ∑====2}{]|[j j Y P j Y X E EX .解: (1) X 的分布律为 X 0 1 2 3 P0.9100.0450.0320.013148.0=EX .(2) Y 的分布律为 Y 0 1 2 P0.9000.0800.0200=Y 时,X 的条件分布律为X|0=Y 0 123P0.840/0.90.030/0.90.020/0.90.010/0.991]0|[==Y X E ;1=Y 时,X 的条件分布律为X|1=Y 0 123P0.060/0.080.010/0.080.008/0.080.002/0.084.0]1|[==Y X E ;2=Y 时,X 的条件分布律为X|2=Y0 1 2 3P 0.010/0.02 0.005/0.02 0.004/0.02 0.001/0.028.0]2|[==Y X E .(3) EX j Y P j Y X E j ==⨯+⨯+⨯===∑=148.002.08.008.04.09.091}{]|[2.2.设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.,00,),(其他,y x e y x f y(1)求EX;(2)对任意0>y ,求]|[y Y X E =;(3)验证⎰+∞==0)(]|[dy y f y Y X E EX Y .解: (1)当0>x 时, X 的概率密度为x xy xX e dy e dy y x f x f -+∞-+∞===⎰⎰),()(.1)(0===⎰⎰+∞-+∞dx xe dx x xf EX x X .(2) 对任意0>y , Y 的概率密度为y yy yY ye dx e dx y x f y f --===⎰⎰0),()(.⎪⎩⎪⎨⎧<<==.,0,0,1)(),()|(|其他y x y y f y x f y x f Y Y X21)|(]|[0|ydx y xdx y x f x y Y X E yY X ====⎰⎰+∞ (3)EX dy ye y dy y f y Y X E y Y ==Γ=⋅==⎰⎰+∞-+∞1)3(212)(]|[03.写出六种常见分布(退化、二项、泊松、均匀、指数、正态)的特征函数.分布 记号 概率密度或分布律)x (f特征函数)t (ψ退化 {c} 1}{==c X Pict e0-1 b(1,p) .1,0,}{1===-x q p x X P x x q pe it +二项b(n,p) 独立同分布于b(1,p)的n 个r.v.的和..,,1,0,}{1n x q p C x X P x x x n ===-n it q pe )(+泊松 )(P λ.,2,1,0,!}{ ===-x e x x X P xλλ)1(-it e eλ均匀U(a,b))(1)(),(x I ab x f b a -=t a b i e e iatibt )(--标准正态 N(0,1)2221)(x e x f -=π22t e-正态),(N 2σμ222)(21)(σμσπ--=x e x f2)(2t t i eσμ-指数 )(E λ)()(),0(x I e x f x +∞-=λλit-λλ4.关于独立随机变量序列}{n X ,下列哪些命题是正确的. (1)若 ,2,1,||=+∞<k X E k ,则∏∏===nk k nk k EX X E 11;(2) 若 ,2,1,2=+∞<k EX k ,则∑∑===nk k n k n VarX X Var 11)(;(3) 设)(t f k 为k X 的特征函数,)(t f n S 为∑==nk k n X S 1的特征函数,则∏==nk k S t f t f n 1)()(.(4) 设)(t k φ为k X 的矩母函数,)(t n S φ为∑==nk k n X S 1的矩母函数,则∑==nk k S t t n1)()(φφ.解:(4)错,应为 ∏==nk k S t t 1)()(φφ.5.设ηξ,是相互独立,且都为均值0,方差1的随机变量,令t t X ηξ+=)(,求随机过程}0),({≥t t X 的均值函数和相关函数. 解:;0)()()]([)(=+==ηξμtE E t X E t X;1)()()()]([)(222t D t D t D t X D t x +=+=+==ηξηξσ.1)()()()()()]()([),(22ts E E s t tsE E s X t X E s t R x +=+++==ηξηξ6.X (t )=Y cos(t )+Z sin(t ), t >0,Y , Z 相互独立,且 EY =EZ =0,DY =DZ =σ2. 讨论随机过程{X (t ), t >0}的平稳性.解: 0sin cos )]([)(=+==tEZ tEY t X E t X μ;)]()([),(s X t X E s t R X =).cos(sin sin cos cos )()cos sin sin (cos sin sin cos cos 22222s t EZ s t EY s t YZ E s t s t EZ s t EY s t -=⋅+⋅=++⋅+⋅=σ因)(t X μ为常数,),(s t R X 仅与s t -=τ有关,故)}({t X 是宽平稳过程.7.在电报信号)(t X 的传输过程中,信号由不同的电流符号A A -,给出,而电流的发送又有一个任意的持续时间,电流符号的转换是随机的. 设)(t X 在],0(t 时间内的变号次数)(t N 是参数为λ的泊松过程,且可以表示为)()1)(0()(t N X t X -=,又设)0(X 与}0),({≥t t N 独立,且5.0})0({})0({=-===A X P A X P ,求}0),({≥t t X 的均值函数.解:=)]([t X E 0.8.考虑电子管中的电子发射问题,设单位时间内到达阳极的电子数目N 服从参数为λ的泊松分布. 每个电子携带的能量构成一个随机变量序列 ,,21X X 已知}{k X 与N 独立,}{k X 之间互不相关并且具有相同的均值和方差2,σμ==k k DX EX . 单位时间内阳极接收到的能量为∑==Nk kXS 1. 求S 的均值.解:∑∑+∞=====1}{]|[n Nk kn N P n N XE ES∑∑+∞====01}{][n nk k n N P X E ∑+∞===01}{n n N P nEX∑+∞===01}{n n N nP EX λμ=⋅=1EX EN .9.随机过程}0),({≥t t W 称为参数为2σ的维纳过程, 如果 (1) 0)0(=W ;(2),0t s <≤∀))(,0(~)()(2s t N s W t W --σ;(3) ,0v u t s <<<≤∀ 增量)()(s W t W -与)()(u W v W -相互独立.(1)求}0),({≥t t W 的均值函数)]([t W E 和相关函数)]()([s W t W E . (2)}0),({≥t t W 是否为宽平稳过程?证明:(1),0≥∀t ),0(~)(2t N t W σ, 故0)]([)(==t W E t W μ;又,0t s <≤∀))(,0(~)()(2s t N s W t W --σ, 且增量)()(s W t W -与)(s W 相互独立,故)]()([)]())()([()]()([),(s W s W E s W s W t W E s W t W E s t R W +-==s s W D s W E s W t W E 2)]([)]([)]()([σ=+-=从而),min(),(2s t s t R W σ=.(2)由于),(s t R W 与出发时刻),min(s t 有关,因而}0),({≥t t W 不是宽平稳过程.10. 下面四个随机过程中哪些不是宽平稳过程(A) 随机相位正弦波过程:}0),cos()({≥Φ+=t t t X λ,其中),(~ππ-ΦU ,λ是常数. (B) 白噪声序列: },1,0,{ =n X n 是一列两两互不相关(即m n X EX m n ≠=,0)的随机变量序列,且满足2,0σ==n n DX EX . (C) 移动平均序列:},2,1,0,{11 ±±==∑=-+n a X ki in i n ε,其中},2,1,0,{ ±±=n n ε为白噪声序列,k a a a ,,,21 为任意实数.(D) 强度为λ的泊松过程}0),({≥t t N ,其中)(t N 表示到时刻t 为止事件A 发生的次数. 解: D .。

随机过程第一章(1)

随机过程第一章(1)
研究。 气象,水文,地震预报。
通信与控制问题的研究,如信号的接收、声音与图
像的再现,运动目标的自动跟踪,导航系统的设计,工业
生产过程中的控制系统的设计等. 服务系统的研究,如电话通信,船舶装卸,机器维
修,病人候诊,存货控制,水库调度,购物排队,红绿灯
转换. 经济学领域关于价格波动,商业循环,最优决策,
P( A | Bi ) P( Bi )
P( A | B ) P( B )
j 1 j j
n
上式称为贝叶斯公式。
全概率公式和贝叶斯公式
★ 全概率公式和贝叶斯公式的应用场合 全概率公式用于在许多情况(B1,B2,…,Bn)下都可能 发生事件A,求发生A的全概率;
贝叶斯公式则用于当A已经发生的情况下,求发生事件A
则称B1,B2,…,Bn为S的一个划分。反之,若B1,B2,…,Bn是S的一个 划分,则作一次试验E,事件B1,B2,…,Bn 中必有一个且仅有一个发生。 设A为E的事件, B1,B2,…,Bn为S的一个划分,则全概率公式为
P( A) P( A | B1 ) P( B1 ) P( A | B2 ) P( B2 ) ... P( A | Bn ) P( Bn ) P( A | Bi ) P( Bi )
4、设A,B为两事件,若 A B ,则有 P( A) P( B) 。
条件概率

条件概率的定义
设A,B为试验E的两个事件,在事件A发生的条件下,事件 B发生的概率叫做条件概率,记为 P( B | A) 。

概率的乘法定理
两个事件乘积的概率等于其中一个事件的概率乘以另一事件
在此事件发生的条件下的条件概率,即
稳定增长,人口控制及预测等问题的研究.

随机过程第一章复习题及其解答预备知识

随机过程第一章复习题及其解答预备知识

第一章 一、 填空1.设{t X ,t T ∈}是一族独立的随机变量,则对于任意2n ≥和12,,...,t t ,n t T ∈12,,...,,n x x x R ∈有1212(,,...,)n t t t n P X x X x X x ≤≤≤=( )。

答案:1()int i i P X x =≤∏2.若2EX <∞,2EY <∞,则2()EXY ≤( )。

答案:22EX EY (Schwarz 不等式)3.设随机变量X 的特征函数为()X g t ,Y aX b =+,其中a ,b 为任意实数,则Y 的特征函数()Y g t =( ()itb X e g at )。

解:()()()()[][][]()it aX b i at X ibt ibt i at X ibt Y X g t E e E e e e E e e g at +====。

4.若12,,...X X 是相互独立且同分布的非负整数值随机变量,N 是与12,,...X X 独立的非负整数值随机变量,并且1,N X 的母函数分别为()G s 和()P s 。

则1Nk k Y X ==∑的母函数()H s =((())G P s )。

解:0()()kk H s P Y k s ∞===∑=0(,())kk l P Y k N l s ∞∞====∑=00()()k k l P N l P Y k s ∞∞====∑∑=00()()k l k P N l P Y k s ∞∞====∑∑=01()()lkj l k j P N l P X k s∞∞=====∑∑∑0()[()][()]ll P N l P s G P s ∞===∑。

5.设12,,...X X 为一列独立同分布的随机变量,随机变量N 只取正整数值,且N 与{}n X 独立,则1()Ni i E X ==∑(1()()E X E N )。

解:1111()[(|)](|)()N N Ni i i i i n i E X E E X N E X N n P N n +∞========∑∑∑∑1111111()()()()()()n n i n n E X P N n nE X P N n E X np N n +∞+∞+∞==========∑∑∑∑1()()E X E N =6.若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 二、解答与证明题1.设P(S)是X 的母函数,试证: (1)若E(X)存在,则()1EX P '=(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为()0kkk P s p s∞==∑,则()11k k k P s kp s∞-='=∑,令1s →,得()11kk EX P kp ∞='==∑ 。

《随机过程》第一章题目与答案

《随机过程》第一章题目与答案

第一章一. 填空题1.p(A)=0.5,p(B)=0.7,A与B相互独立,则p(AUB)= _2.若已知两点(x1,y 1),(x2,y2)有x1 < x2, y 1<y2,则概率密度p{ x1<x< x2, y 1< y < y2}=__.3.若p(A)=0.2,p(B)=0.5,p(C)=0.1,且p(A),p(B),p(C)两两相互独立,则p A(C|B)=__.4.设X,Y是相互独立的随机变量,已知EX=1 ,EY=2,DX=1 ,DY=2 则E(XY)=___,E(2X+3Y) =___, D(2X+3Y) =__.5.若X1,X2,…,X n是相互独立的随机变量,且g i(t)是X i的特征函数,i=1,2,…,n)则X=X1+X2+…X n的特征函数g(t)=__.二.证明题1.设P(S)是的母函数,试证:(1)若E(X)存在,则EX=P′(1)(2)若D(X)存在,则 DX = P"(1)+ P′(1)-[ P′(1)]22.试证明连续型随机变量的全概率公式:p(A)=dF Y(y)=f Y(y)dy三.计算题1. 通过抛掷一枚均匀硬币定义一个随机过程{X(t),-∞< t<∞},其中X(t)=试求随机过程X(t)的一维分布函数F(x;-).2.设X服从B(n,p),求X的特征函数g(t).3. 设商店在一天的顾客数N服从[900,1100]上的均匀分布,又设每位顾客所花的钱Xi服从N(100,502);求商店的日销售额Z的平均值.4. 已知随机变量X服从[0,a]上的均匀分布,且随机变量Y服从[X,a]上的均匀分布,试求:(1)E(Y|X=a),0x a (2)E(Y)参考答案一.填空题 1. 0.852. F(x 2,y 2)-F(x 1,y 2)-F(x 2,y 1)+F(x 1,y 1)3. 0.14. 2, 8, 225. g 1(t) g 2(t)…g n (t) 二.证明题1. 证明:(1)因为p (s )=s p kk k ∑∞=0,则p ′(s )=s kp k k k 11-∞=∑,令s↑1,得EX==∑∞=1k k kp p ′(1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机过程基本概念P391. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。

试求()X t 的一维概率分布。

解:1 当0cos 0t ω=,02t k πωπ=+,即0112t k πω⎛⎫=+ ⎪⎝⎭(k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02t k πωπ≠+,即0112t k πω⎛⎫≠+ ⎪⎝⎭(k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ()[]()00cos cos 0E X t E X t E X t ωω===⎡⎤⎣⎦.()[]()22000cos cos cos D X t D X t D X t t ωωω===⎡⎤⎣⎦.()()20~0cos X t N t ω∴,.则()2202cos x tf x t ω-=;.2. 利用投掷一枚硬币的试验,定义随机过程为()cos 2t X t t π⎧=⎨⎩,出现正面,出现反面假定“出现正面”和“出现反面”的概率各为12。

试确定()X t 的一维分布函数12F x ⎛⎫ ⎪⎝⎭;和()1F x ;,以及二维分布函数12112F x x ⎛⎫ ⎪⎝⎭,;,。

001110122211<⎧⎪⎧⎫⎪⎛⎫⎛⎫∴=≤=≤<⎨⎬⎨ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎪≥⎪⎩,;,,x F x P Xx x x()(){}0111112212<-⎧⎪⎪∴=≤=-≤<⎨⎪≥⎪⎩,;,,x F x P X x x x随机矢量()112⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,X X 的可能取值为()01-,,()12,. 而()1101122⎧⎫⎛⎫==-=⎨⎬⎪⎝⎭⎩⎭,P X X ,()1111222⎧⎫⎛⎫===⎨⎬ ⎪⎝⎭⎩⎭,P X X . ()1212111122⎧⎫⎛⎫⎛⎫∴=≤≤⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭,;,,F x x P X x X x1212121200110110122112<<-⎧⎪⎪=≤<≥-≥-≤<⎨⎪≥≥⎪⎩,或,且或且,且x x x x x x x x3. 设随机过程(){}X t t -∞<<+∞,总共有三条样本曲线()11X t ω=,,()2sin X t t ω=,,()3cos X t t ω=,且()()()12313P P P ωωω===。

试求数学期望()EX t 和相关函数()12X R t t ,。

()()11111sin cos 1sin cos 3333EX t t t t t =⨯+⨯+⨯=++.()()()1212X R t t E X t X t =⎡⎤⎣⎦,121211111sin sin cos cos 333t t t t =⨯⨯+⨯+⨯ ()121211sin sin cos cos 3t t t t =++ ()1211cos 3=+-⎡⎤⎣⎦t t .4. 设随机过程()XtX t e-=,(0t >),其中X 是具有分布密度()f x 的随机变量。

试求()X t 的一维分布密度。

解:()X t 的一维分布函数为:()(){}{}{}1ln ln -⎧⎫=≤=≤=-≤=≥-⎨⎬⎩⎭;Xt F x t P X t x P e x P Xt x P X x t111ln 1ln ⎧⎫⎛⎫=-<-=--⎨⎬ ⎪⎩⎭⎝⎭P X x F x t t .X 具有分布密度()f x , ()∴X t 的一维分布密度为:()()11111ln ln ⎛⎫⎛⎫⎛⎫'==--⋅⋅-=-⎡⎤ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭;;f x t F x t f x f x t xt tx t . P405. 在题4中,假定随机变量X 具有在区间()0T ,中的均匀分布。

试求随机过程的数学期望()EX t 和自相关函数()12X R t t ,。

解:由题意得,随机变量X 的密度函数为()100X x Tf x T⎧<<⎪=⎨⎪⎩,,其它由定义,()()000111TT Xt txtx tx TEX t E e e dx e d tx e T Tt Tt----⎡⎤==⋅=--=-⎣⎦⎰⎰()()1111Tt Tt e e Tt Tt--=--=-. (0t >) ()()()()12121212X t t Xt Xt X R t t E X t X t E e e E e -+--⎡⎤⎡⎤==⋅=⎡⎤⎣⎦⎣⎦⎣⎦, ()()()()1212120012111TT x t t x t t e dx e d x t t T T t t T-+-+=⋅=-⋅-+⎡⎤⎣⎦+⎰⎰ ()()()()121201212111x t t T t t T e e T t t T t t -+-+⎡⎤=-=--⎣⎦++()()121211T t t e T t t -+⎡⎤=-⎣⎦+.9. 给定随机过程(){}X t t -∞<<+∞,。

对于任意一个数x ,定义另一个随机过程()()()10X t x Y t X t x≤⎧⎪=⎨>⎪⎩,,试证:()Y t 的数学期望和相关函数分别为随机过程()X t 的一维分布和二维分布函数(两个自变量都取x )。

证明:设()1f x t ,和()21212f x x t t ,;,分别为()X t 的一维和二维概率函数,则()()()()()()111xY m t E Y t y t f x t dx f x t dx F x t +∞-∞-∞====⎡⎤⎣⎦⎰⎰,,,.()()()()1212122121212Y R t t E Y t Y t y y f x x t t dx dx +∞+∞-∞-∞==⎡⎤⎣⎦⎰⎰,,;,()()12212121221212x x f x x t t dx dx F x x t t -∞-∞==⎰⎰,;,,;,.若考虑到对任意的t T ∈,()Y t 是离散型随机变量,则有()()(){}(){}(){}()11100Y m t E Y t P Y t P Y t P X t x F x t ==⋅=+⋅==≤=⎡⎤⎣⎦,. ()()()1212Y R t t E Y t Y t =⎡⎤⎣⎦,()(){}()(){}121211111010P Y t Y t P Y t Y t =⨯⨯==+⨯⨯==,, ()(){}()(){}121201010000P Y t Y t P Y t Y t +⨯⨯==+⨯⨯==,, ()(){}()112221212P X t x X t x F x x t t =≤≤=,,;,.因此,()Y t 的数学期望和相关函数分别为随机过程()X t 的一维分布和二维分布函数。

P4114. 设随机过程()X t X Yt =+,t -∞<<+∞,而随机矢量()X Y τ,的协方差阵为2122σγγσ⎡⎤⎢⎥⎣⎦,试求()X t 的协方差函数。

解:依定义,利用数学期望的性质可得()12X C t t ,()()()(){}1122X Y X Y E X Yt m m t X Yt m m t =+-++-+⎡⎤⎡⎤⎣⎦⎣⎦ ()()()(){}1122X Y X Y E X m Yt m t X m Yt m t =-+--+-⎡⎤⎡⎤⎣⎦⎣⎦()()()()2X X X Y E X m X m E X m t Y m =--+--⎡⎤⎡⎤⎣⎦⎣⎦ ()()()()112Y X Y Y E t Y m X m E t t Y m Y m +--+--⎡⎤⎡⎤⎣⎦⎣⎦2112XX XY YX YY C t C t C t t C =+++()22112122t t t t σγσ=+++.15. 设随机过程()2X t X Yt Zt =++,t -∞<<+∞,其中X ,Y ,Z 是相互独立的随机变量,各自的数学期望为零,方差为1。

试求()X t 的协方差函数。

解:()()()()(){}121122X X X C t t E X t m t X t m t =--⎡⎤⎡⎤⎣⎦⎣⎦,()()()(){}222211112222X Y Z X Y Z E X Yt Zt m m t m t X Yt Zt m m t m t ⎡⎤⎡⎤=++-++++-++⎣⎦⎣⎦……………………… ①X ,Y ,Z 的数学期望均为0,即0X m =,0Y m =,0Z m =,将其代入①式,得:()()()22121122X C t t E X Yt Zt X Yt Zt ⎡⎤=++++⎣⎦,()222222222221121211212E X XYt XZt XYt Y t t YZt t XZt YZt t Z t t =++++++++()()()222222222121212121212E X XY t t XZ t t Y t t YZ t t t t Z t t ⎡⎤=++++++++⎣⎦ ………… ②()()()22D X E X E X =-,()()()222101E X D X E X ∴=+=+=.同理,()21E Y =,()21E Z =.X ,Y ,Z 相互独立, ()()()0E XY E X E Y ∴==.同理,()0E XZ =,()0E YZ =. 将上述结果代入②式,得()12X C t t ,()()()()()()()()()222222222121212121212E X t t E XY t t E XZ t t E Y t t t t E YZ t t E Z =++++++++2212121t t t t =++.。

相关文档
最新文档