北师大版高中数学(必修2)1.4《空间图形的基本关系与公理》word教案

合集下载

高中数学 解析几何初步《空间图形的基本关系与公理》参考教案 北师大版必修2

高中数学 解析几何初步《空间图形的基本关系与公理》参考教案 北师大版必修2

空间图形的基本关系与公理一. 教学内容:空间图形的基本关系与公理二. 学习目标:1、学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握空间图形的有关概念和有关定理;掌握平面的基本性质、公理4和等角定理;2、培养和发展自己的空间想象能力、运用图形语言进行交流的能力、几何直观能力、通过典型例子的学习和自主探索活动,理解数学概念和结论,体会蕴涵在其中的数学思想方法;3、培养严谨的思维习惯与严肃的科学态度;体会推理论证中反映出的辩证思维的价值观。

三、知识要点(一)空间位置关系:I、空间点与线的关系空间点与直线的位置关系有两种:点P在直线上:;点P在直线外:;II、空间点与平面的关系空间点与平面的位置关系有两种:点P在平面上:点P在平面外:;III、空间直线与直线的位置关系:IV、空间直线与平面的位置关系:V、空间平面与平面的位置关系:平行;相交说明:本模块中所说的“两个平面”“两条直线”等均指不重合的情形。

(二)异面直线的判定1、定义法:采取反证法的思路,否定平行与相交两种情形即可;2、判定定理:已知P点在平面上,则平面上不经过该点的直线与平面外经过该点的直线是异面直线。

(三)平面的基本性质公理1、公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内,或曰平面经过这条直线)。

2、公理2 经过不在同一条直线上的三点,有且只有一个平面(即确定一个平面)。

3、公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条通过该点的公共直线。

4、平面的基本性质公理的三个推论经过直线和直线外一点,有且只有一个平面;经过两条相交直线,有且只有一个平面;经过两条平行直线,有且只有一个平面思考:公理是公认为正确而不需要证明的命题,那么推论呢?平面的基本性质公理是如何刻画平面的性质的?(四)平行公理(公理4):平行于同一条直线的两条直线平行。

(五)等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

高中北师大版数学必修二同步教案:1.3.1空间图形的基本关系与公理

高中北师大版数学必修二同步教案:1.3.1空间图形的基本关系与公理

第六课时§1.3.1空间图形的基本关系与公理一、教学目标:1、知识与技能:(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图;(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力。

2、过程与方法:(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识。

3、情感与价值:使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。

二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。

难点:平面基本性质的掌握与运用。

三、学法与教法1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。

2、教法:思考交流讨论法四、教学过程(一)实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?引导学生观察、思考、举例和互相交流。

与此同时,教师对学生的活动给予评价。

师:那么,平面的含义是什么呢?这就是我们这节课所要学习的内容。

(二)研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。

2、平面的画法及表示师:在平面几何中,怎样画直线?(一学生上黑板画)之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)D CαAB平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)课本P41 图 2.1-4 说明平面内有无数个点,平面可以看成点的集合。

4.1空间图形基本关系的认识-北师大版必修2教案

4.1空间图形基本关系的认识-北师大版必修2教案

4.1 空间图形基本关系的认识-北师大版必修2教案一、课时目标1.了解 3D 空间图形的基本概念和特点。

2.掌握空间图形常见的细分法。

3.学会如何通过图像来描述球面、圆锥面和圆柱面等空间图形。

二、课堂导入空间图形,在我们的生活中到处可见,例如建筑物、飞船、汽车等。

在开展此课程的时候,老师可以先引导学生们想象身边的物品,来提高他们对于空间图形的认知。

然后,老师可以以一个球体为例子,介绍球体这种空间图形的特点和一些基本概念,比如半径、直径、球心等,来引出本节课的主题。

三、教学内容1. 3D 空间图形的基本概念和特点3D 空间图形指的是三维立体空间中的图形,在此,我们以球体为例说明。

球体是一种最常见的球面几何体,具有以下几个特点:•独立性:球体内任意一点与外界没有直接连接,极大地增加了其独立性。

•球心:球体内任意一点到球心的距离都是相等的,球心是球体中心点的名词统称。

•半径:球体中心点到球体表面上某一点的距离,通常用字母 r 表示,我们也可以通过半径来确定一个球体的大小和表面积。

•直径:穿过球心,线段两端恰好在球面上的直线段,直径长度等于 2r。

•球面:球体表面。

•球缺:截取球体的一个样本后,保留的部分形成的空间图形。

2. 空间图形常见的细分法为了更好的理解和分析空间图形,我们通常可以采用以下两种细分方法:1) 沿截面分离将一些图形按截平面,如水平面、垂直面等截断,然后分离能识别的简单几何图形,如:圆、矩形等。

2) 穿切法穿切一个图形可以使其表面展开,让三维形状变成二维图形,如纸片穿过一个球体后展开为圆形。

3. 如何通过图像来描述球面、圆锥面和圆柱面等空间图形我们可以使用二维平面的图形来描述空间中的球体、圆锥面和圆柱面等图形。

其中,球体可以使用等高线图来描述,圆锥面和圆柱面则可以使用矩形来进行表达。

同样以球体为例,我们可以使用等高线图来描绘它的模样。

具体来说,我们可以使用颜色的深浅区分球体表面上不同的高度区间。

1.4空间图形的基本关系与公理(北师大必修2)

1.4空间图形的基本关系与公理(北师大必修2)

§1.4空间图形的基本关系与公理 【学习目标】 了解异面直线,公理4、及等角定理及它们的应用 【学习重点】公理4、及等角定理的理解及应用 【学习难点】公理4、及等角定理的理解及应用 【知识链接】 公理1 公理2 公理3 1.提出问题:同一平面上的两条直线位置关系有哪几种? 2. 按符号画出图形:a ⊂α,b ∩α=A ,A ∉a 3. 探究:教室内的哪些直线实例?有什么位置关系? 【学法指导】归纳推理 【知识链接】 一.两条直线的位置关系: 实例探究异面直线:①讨论:分别在两个平面内的两条直线,是不是异面直线?②讨论:空间两条直线的位置关系:二、平行公理:① 提出问题:平行于同一条直线的两条直线互相平行?结论:用数学符号表示为 【典型例题】 例1:在空间四边形AB CD 中,E,F,G,H 分别是边AB ,BC ,CD ,DA 的中点,求证:四边形EFGH 是平行四边形。

三、等角定理:① 讨论:平面几何中,两角对边分别平行,则两角有何关系?立体几何中呢?② 定理:如果一个角的两边和另一个角的两条边分别对应平行,那么这两角 。

改写成:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两角 。

③ 推广:直线a 、b 是异面直线,经过空间任意一点O ,分别引直线a ’∥a ,b ’∥b ,则把直线a ’和b ’所成的锐角(或直角)叫做异面直线a 和b 所成的角。

图形表示讨论:与点O 的位置是否有关?为什么?最简单的取法如何取? 什么叫两条直线 垂直探究:给出正方体和几条面、体的对角线,找出几对异面直线,并指出所成角 【总结提升】 【目标检测】 1若直线a//b, b c A = ,则a 与c 的位置关系是( )A 异面B 相交C 平行D 异面平行2在空间中下列说法中正确的个数为( )① 平行于同一条直线的两条直线互相平行;②两角的两边分别平行,那么这两角相等 ③有一组对边平行的四边形平行四边形;④异面直线所成的角的范围是0,2π⎛⎤ ⎥⎝⎦A 1B 2C 3D 43.已知AB // MQ ,BC // QN ,若ABC ∠150=︒则MQN ∠=( )A 150︒B 30︒C 30︒ 或150︒D 以上结论都不对4在正方体1111ABCD A BC D -中,面对角线中与A 1D 成60︒的有 条5在正方体1111ABCD A B C D -中,,,,,,E F G H M M 分别是所在边的中点,求证:E F G M N H ∠=∠【作业布置】1.空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF CB =CG CD =13,求证:EFGH 是梯形。

1.4.2空间图形的公理 教案 (高中数学必修二北师大版)

1.4.2空间图形的公理 教案 (高中数学必修二北师大版)

第2课时空间图形的公理(公理4,定理)(教师用书独具)●三维目标1.知识与技能(1)了解公理4及等角定理,会用公理4和等角定理进行简单的推理论证.(2)了解异面直线所成的角的定义,会求异面直线所成的角.2.过程与方法通过学习公理4及等角定理培养学生的空间想象能力,通过异面直线所成的角让学生体会数学的转化、化归方法.3.情感、态度与价值观培养学生严谨的思维习惯与严肃的科学态度.●重点难点重点:公理4与等角定理.难点:异面直线所成的角.公理4表明了平行的传递性,可以作判断两条直平行的依据,其直接作用是证明等角定理,为研究异面直线所成角打基础.等角定理是定义异面直线所成角的理论基础.(教师用书独具)●教学建议本节知识是上节课的继续,上节课讲了3个公理、异面直线的概念,本节课解决异面直线所成角及它的理论基础公理4、定角定理,因此教学时宜采用探究式模式,让学生以长方体为载体,通过“观察”引入公理4,通过画平行线的方式,使两条异面直线移到同一平面的位置上,是研究异面直线所成的角时经常要使用的方法,这种把立体图形的问题转化为平面图形问题的思想方法很重要,要让学生在学习中认真体会.●教学流程通过问题引出公理4,等角定理及异面直线所成的角⇒通过例1及变式训练,使学生掌握公理4的应用⇒通过例2及互动探究,使学生掌握等角定理的应用⇒通过例3及变式训练,使学生掌握如何求异面直线所成的角⇒归纳整理,进行课堂小结,整体认识本节知识⇒完成当堂双基达标,巩固所学知识并进行矫正1.把一张长方形的纸对折两次,打开以后,这些折痕之间有什么关系呢?2.在空间中有两条直线都与第三条直线平行,那么这两条直线互相平行吗?3.在平面上,“如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补”.那么在空间中,结论是否仍然成立呢?【提示】 1.平行.2.平行.3.仍成立.1.公理4空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.在四棱柱ABCD—A′B′C′D′中,棱AB与棱B′C′什么关系?在平面内我们是如何定量的研究两条相交直线的位置关系的?那么在空间中又如何定量的确定棱AB与棱B ′C ′的相对位置关系?【提示】 棱AB 与棱B ′C ′是异面直线;在平面内我们通过两条直线的“夹角”来定量的确定两条相交直线的位置关系,类似的,我们可以用两条棱“所成的角”来定量的确定异面直线的相对位置关系.已知棱长为a 的正方体ABCD -A ′B ′C ′D ′中,M ,N 分别为CD 、AD 的中点.求证:四边形MNA ′C ′是梯形.【思路探究】【自主解答】 如图,连接AC .∵M 、N 分别为CD 、AD 的中点,∴MN 綊12AC .由正方体的性质可知AC 綊A ′C ′,∴MN 綊12A ′C ′,∴四边形MNA′C′是梯形.1.解答本题易出现“只证MN∥A′C′”,而忽视“证明MN≠A′C′”的错误.2.公理4是证明两直线平行的重要方法,应用的关键在于寻找与所证直线平行的“中间直线”.图1-4-10已知在正方体ABCD-A1B1C1D1中,E、F分别为AA1、CC1的中点,如图1-4-10所示.求证:BF綊ED1.【证明】如图所示,取BB1的中点G.连接GC1、GE.∵F为CC1的中点,∴BG綊C1F.∴四边形BGC1F为平行四边形.∴BF綊GC1.又∵EG綊A1B1,A1B1綊C1D1,∴EG綊C1D1,∴四边形EGC1D1为平行四边形,。

1.4.2空间图形的公理 教案 2017-2018学年 高中数学 北师大版 必修二

1.4.2空间图形的公理 教案 2017-2018学年 高中数学 北师大版 必修二

空间图形的公理教案一、教材的地位与作用本节课为北师大版《必修2》第一章4.2节的第一课时,是在学习了简单几何体、直观图、三视图和空间图形基本关系的基础上,来进一步研究空间四个公理和等角定理,属“概念分类型课”,培养学生归纳能力、三种数学语言的转换能力和空间想象能力,对学生学习立体几何意义很大,是对前面所学内容的延续,同时为后面具体研究空间线面、面面的平行和垂直等做好铺垫,具有承前启后的作用。

二、教学目标:1.知识与技能:①通过学生动手实验、动态图片演示,使学生了解空间图形的四个公理和等角定理的概念②让学生在探究的过程理解三个公理,并能将文字语言、符号语言和图形语言的相互转化2.过程与方法:让学生体会从整体到局部,具体到抽象、抽象到具体的过程,培养学生类比归纳的能力3.情感态度与价值观:使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,提高学生的观察能力三、教学重难点教学重点:①空间四个公理和等角定理概念的生成与理解②空间四个公理和等角定理概念的应用教学难点:空间四个公理和等角定理概念的应用四、教法与学法教学用具:投影仪、正(长)方形模型、直尺、棉线五、教学过程一、追溯1. 回顾平面的两个特征:①无限延展②平直的(没有厚度)2.平面的画法:通常画平行四边形来表示平面3. 用文字语言、符号语言和图形语言表述空间点线面的位置关系几种情况4. 公理概念:就是经过人们长期实践检验、不需要证明同时也无法去证明的客观规律设计意图:复习平面的概念及其表示方法(符号语言、图形语言),和空间点、线、面位置关系及表示,为讲解四个公理和定理作铺垫,承上启下。

二、讲解新课创设情景、导入课题探究问题一:①用一段较长拉直的棉线的两个端点固定在教室弧形黑板的上,让学生观察棉线与黑板的置关系②把一把直尺边缘紧贴在桌面上,观察直尺的整个边缘与桌面的位置关系设计意图:通过两个具体的实验,让学生直观感受棉线、直尺与两种面的位置关系,比较两种情况,引导学生过渡到抽象的线面位置关系,让学生体会具体到抽象的过程,培养学生类比归纳的能力,引导学生归纳出公理1公理 1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内符号语言:A AB B αα∈⎫⇒⎬∈⎭⇒ α. 图形语言:或者:∵,A B αα∈∈,∴AB ⇒α新知提炼:公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.探究问题二 ①给出一只四条不是一样长腿的小凳子和一只三条腿的小凳子,让两个学生来观察那种凳子摆放平稳?②让学生观察以下三张生活中常见的图片,为什么这样设计?实例:(1) 自行车的撑脚; (2)摄像机的三角支架; (3)三轮车 设计意图:用身边常见的现象和具体的模型给学生直观印象,动手比较两种凳子摇摆的情况,以及比较第二组图片中常见的设计,从具体物体摆放平稳过渡到抽象的点面的关系,使学生在课堂上有动脑思索和探究和数学思维活动,培养学生的抽象思维能力和归纳概括能力,引导学生归纳出公理2。

北师大版高中数学必修2教案备课空间图形的公理

北师大版高中数学必修2教案备课空间图形的公理

§4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理第1课时空间图形的公理(公理1、2、3)学习目标核心素养1.通过长方体这一常见的空间图形,了解空间图形的基本构成——点、线、面的基本位置关系.2.理解异面直线的概念,以及空间图形的基本关系.(重点、易错点)3.掌握空间图形的公理1、2、3.(重点、难点)1.通过了解空间图形的基本构成,培养直观想象素养.2.通过学习空间图形的公理1、2、3提升逻辑推理素养.1.空间图形的基本关系位置关系图形表示符号表示点与线的位置关系点A不在直线a上A∉a点B在直线α上B∈a点与面的位置关系点A在平面α内A∈α点A在平面α内B∉α直线与直线的位置关系平行相交a∥b异面平行a∩b=O相交a与b异面位置关系直线线在面内aα与平面的位置关系线面相交a∩α=A线面平行a∥α平面与平面的位置关系面面平行α∥β面面相交α∩β=a对于长方体有12条棱和6个面.思考1:12条棱中,棱与棱有几种位置关系?提示:相交,平行,既不平行也不相交.思考2:棱所在直线与面之间有几种位置关系?提示:棱在平面内,棱所在直线与平面平行和棱所在直线与平面相交.思考3:六个面之间有哪几种位置关系.提示:平行和相交.2.空间图形的公理(1)三个公理:名称内容图形表示符号表示公理1过不在一条直线上的三点,有且只有一个平面(即可以确定一个平面)若A,B,C三点不共线,则点A,B,C确定一个平面α使A∈α,B∈α,C∈α公理2如果一条直线上的两点在一个平面内,那么这条直线在此平面内(即直线在平面内)若A∈l,B∈l,A∈α,B∈α,则lα公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线若A∈α,A∈β,且α与β不重合,则α∩β=l,且A∈l推论1:一条直线和直线外一点确定一个平面.推论2:两条相交直线确定一个平面.推论3:两条平行直线确定一个平面.公理1及其推论给出了确定平面的依据.思考4:两个平面的交线可能是一条线段吗?提示:不可能.由公理3知两平面的交线是一条直线.思考5:经过空间任意三点能确定一个平面吗?提示:不一定.只有经过空间不共线的三点才能确定一个平面.1.“直线a经过平面α外一点P”用符号表示为()A.P∈a,a∥αB.a∩α=PC.P∈a,P∉αD.P∈a,aα[答案]C2.两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对C[若三个点在同一条直线上,则两平面可能相交;若这三个点不在同一直线上,则这两个平面重合.]3.如下所示是表示两个相交平面,其中画法正确的是()D[画空间图形时,被遮挡部分应画成虚线,故选D.]4.据图填入相应的符号:A________平面ABC,A________平面BCD,BD________平面ABC,平面ABC________平面ACD=AC.[答案]∈∉∩三种语言的相互转换(1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B;(2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.[解](1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.(2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.[跟进训练]1.(1)如果aα,bα,l∩a=A,l∩b=B,那么l与α的位置关系是________.(2)如图,在正方体ABCD-A′B′C′D′中,哪几条棱所在的直线与直线BC′是异面直线?(1)直线l在平面α内[如图,l上有两点A,B在α内,根据公理2,lα.](2)解:棱DC,A′B′,AA′,DD′,AD,A′D′所在的直线与直线BC′是异面直线.点线共面问题[思路探究]先说明两条相交直线确定一个平面,然后证明另外一条直线也在该平面内.或利用公理1的推论,说明三条相交直线分别确定两个平面α,β,然后证明α,β重合.[解]已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1,l2,l3在同一平面内.法一:∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2又l2α,∴B∈α.同理可证C∈α,又B∈l3,C∈l3,∴l3α.∴直线l1,l2,l3在同一平面内.法二:∵l1∩l2=A,∴l1,l2确定一个平面α.∵l2∩l3=B,∴l2,l3确定一个平面β.∵A∈l2,l2α,∴A∈α.∵A∈l2,l2β,∴A∈β.同理可证,B∈α,B∈β,C∈α,C∈β.∵不共线的三个点A,B,C既在平面α内,又在平面β内,∴平面α和平面β重合,即直线l1,l2,l3在同一平面内.证明点、线共面问题的理论依据是公理1和公理2常用方法有:(1)先由部分点、线确定一个面,再证其余的点、线都在这个平面内,即用“纳入法”;(2)先由其中一部分点、线确定一个平面α,其余点、线确定另一个平面β,再证平面α与β重合,即用“同一法”;(3)假设不共面,结合题设推出矛盾,即用“反证法”.[跟进训练]2.已知A∈l,B∈l,C∈l,D∉l(如图),求证:直线AD,BD,CD共面.[证明]因为D∉l,所以D和l可确定一平面,设为α.因为A∈l,所以A∈α.又D∈α,所以ADα.同理BDα,CDα,所以AD,BD,CD都在平面α内,即它们共面.点共线与线共点问题1.如图所示,在空间四边形各边AD,AB,BC,CD上分别取E,F,G,H 四点,如果EF,GH交于一点P,那么点P,B,D共线吗?请说明理由.提示:连接BD(图略).∵EF,HG相交于一点P,且EF平面ABD,GH平面CBD,∴P∈平面ABD且P∈平面CBD.又平面ABD∩平面BCD=BD,∴P∈BD,∴点P,B,D共线.2.如图,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,能否判断B,Q,D1三点共线?提示:∵D1∈平面ABC1D1,D1∈平面A1D1CB,B∈平面ABC1D1,B∈平面A1D1CB,∴平面ABC1D1∩平面A1D1CB=BD1.∵A1C∩平面ABC1D1=Q,且A1C平面A1D1CB,∴Q∈平面A1D1CB,Q∈平面ABC1D1,∴Q在两平面的交线BD1上,∴B,Q,D1三点共线.【例3】已知△ABC在平面α外,它的三边所在的直线分别交平面α于P,Q,R(如图).求证:P,Q,R三点共线.[思路探究]解答本题可以先选两点确定一条直线,再证明第三点也在这条直线上.[证明]法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB平面ABC,∴P∈平面ABC.∴由公理3可知,点P在平面ABC与平面α的交线上.同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC平面APR.又∵Q∈直线BC,∴Q∈平面APR.又Q∈α,∴Q∈PR,∴P,Q,R三点共线.1.证明多点共线主要采用如下两种方法:一是首先确定两个平面,然后证明这些点是这两个平面的公共点,再根据公理3,这些点都在这两个平面的交线上;二是选择其中两点确定一条直线,然后再证明其他的点都在这条直线上.2.证明三线共点问题的方法主要是:先确定两条直线交于一点,再证明该点是这两条直线所在平面的公共点,第三条直线是这两个平面的交线.[跟进训练]3.如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE,D1F,DA三线交于一点.[解]如图,连接EF,D1C,A1B.∵E为AB的中点,F为AA1的中点,∴EF綊12A1B.又∵A1B∥D1C,∴EF∥D1C,∴E,F,D1,C四点共面,且EF=12D1C,∴D1F与CE相交于点P.又D1F平面A1D1DA,CE平面ABCD,∴P为平面A1D1DA与平面ABCD的公共点.又平面A1D1DA∩平面ABCD=DA,根据公理3,可得P∈DA,即CE,D1F,DA三线交于一点.1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.在处理点线共面、三点共线及三线共点问题时初步体会三个公理的作用,突出先部分再整体的思想.1.思考辨析(1)不平行的两条直线的位置关系为相交.()(2)两个平面的交线可以是一条线段.()(3)直线l在平面α内,可以表示为“lα”.()(4)平面内的直线与不在该平面内的直线互为异面直线.()[解析](1)×,不平行的两条直线的位置关系为相交或异面,故(1)错.(2)×,两个平面的交线是直线,故(2)错.(3)√,正确.(4)×,可能相交或平行,故(4)错.[答案](1)×(2)×(3)√(4)×2.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.C[∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.]3.若a,b是异面直线,b,c是异面直线,则直线a与直线c的位置关系是________.平行、相交或异面[两条直线a,c都与同一条直线b是异面直线,则这两条直线平行、相交或异面都有可能.]4.已知直线a∥b,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.[解]如图所示.∵a∥b,∴直线a,b确定一个平面,设这个平面为α.设a∩l=A,b∩l=B,∴A∈α,B∈α,且A∈l,B∈l,∴lα.即过a,b,l有且只有一个平面.。

空间图形的基本关系与公理 教案 2017-2018学年 高中数学 北师大版 必修2

空间图形的基本关系与公理 教案 2017-2018学年 高中数学 北师大版 必修2

教学设计整体设计教学分析教材从简单、熟知的几何体——长方体出发,将它上面某些不同位置的点、线、面用不同色彩来区分,让学生仔细地观察,具有很强的可读性.教材举出实例,并给出了两幅实物图片,旨在激发学生学习的兴趣,让学生觉得四个公理确实是显而易见的.本节的等角定理没有给出证明,而是通过从平面到空间的类比得到和理解这个定理,显得直观且可信.三维目标1.掌握五类位置关系的分类及其有关概念,掌握平面的基本性质,即公理1,2,3.提高学生的归纳、类比能力.2.掌握公理4和等角定理,并会运用它们解决问题,培养学生发展空间想象能力、运用图形语言进行交流的能力、几何直观能力.重点难点教学重点:4个公理和等角定理的应用.教学难点:空间图形的位置关系和公理的归纳.课时安排1课时教学过程导入新课思路1.(情境导入)大家都看过电视剧《西游记》吧,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心.”结果孙悟空真没有跑出如来佛的手掌心,孙悟空可以看作是一个点,他的运动成为一条直线,大家说如来佛的手掌像什么?对,像一个平面,今天我们开始认识数学中的平面.图1思路2.(事例导入)观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.推进新课新知探究提出问题①为了直观地了解点、线、面的位置关系,我们先观察一个长方体,如图2.该长方体中有几个顶点?几条棱?几个面?图2②观察图2所示的长方体,归纳空间点与直线的位置关系.③观察图2所示的长方体,归纳空间点与平面的位置关系.④观察图2所示的长方体,归纳空间两条直线的位置关系.⑤观察图2所示的长方体,归纳空间直线与平面的位置关系.⑥观察图2所示的长方体,归纳空间平面与平面的位置关系.讨论结果:①长方体有8个顶点、12条棱、6个面.12条棱对应12条棱所在的直线,6个面对应6个面所在的平面.②空间点与直线的位置关系有两种:点在直线上和点在直线外.如图2(1)中的点B在直线b上,但在直线a外.③空间点与平面的位置关系有两种:点在平面内和点在平面外.如图2(1)中的点B在平面α内,但点A在平面α外.④空间两条直线的位置关系有三种:1°图2(1)中直线a和b在同一个平面内,而且没有公共点,这样的两条直线叫作平行直线.2°图2(1)中直线b和c只有一个公共点B,这样的两条直线叫作相交直线.3°图2(1)中直线a和c不同在任何一个平面内,这样的两条直线叫作异面直线.⑤空间直线与平面的位置关系有三种:1°图2(1)中直线b和平面α有无数个公共点,我们称这条直线在这个平面内.2°图2(2)中直线b和平面α只有一个公共点A,我们称这条直线与这个平面相交.3°图2(2)中直线a和平面α没有公共点,我们称这条直线和这个平面平行.⑥空间平面与平面的位置关系有两种:1°图2(2)中平面α和平面β没有公共点,这样的两个平面叫作平行平面.2°图2(3)中平面α和平面β不重合,并且有公共点,这样的两个平面叫作相交平面.提出问题①把一根直尺边缘上的任意两点放在平整的桌面上,可以看到直尺边缘与桌面重合,这是显而易见的事实,请用公理的形式把它表示出来.②在日常生活中,照相机的脚架,施工用的撑脚架,天文望远镜的脚架等都制成三个脚,这样,可以使这些物体放置得很平稳.我们知道,两点确定一条直线.那么怎样确定一个平面呢?归纳出公理.③1°经过一条直线和这条直线外一点,可以确定一个平面吗?2°经过两条相交直线,可以确定一个平面吗?3°经过两条平行直线,可以确定一个平面吗?④长方体表面中的任意两个面,要么平行,要么交于一条直线.其实空间任意两个不重合的平面都有这样的性质.那么,两个平面在什么情况下相交?并归纳出公理.⑤在平面内,平行于同一条直线的两条直线平行,那么在空间中呢?⑥在平面内,如果两个角的两条边分别对应平行,那么这两个角相等或互补.(如图3,AO∥A′O′,BC∥B′O′,∠AOB和∠A′O′B′相等,∠AOC和∠A′O′B′互补.)在空间中呢?图3讨论结果:①公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).如图4,直线AB在平面α内,记作直线ABα.图4②公理2经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).如图5,经过不在同一条直线上的三点A,B,C的平面α,又可记作“平面ABC”.图5③1°2°3°三种情况都可以确定一个平面,把这三个结论通常看成平面的性质.④公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.通常将平面α与平面β的公共直线即交线a 记作α∩β=a .⑤公理4 平行于同一条直线的两条直线平行.在图6的长方体中,a ∥b ,b ∥c ,不难看出a ∥c .图6⑥在空间亦有:定理 空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 应用示例思路1例1 在空间四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.活动:只需证明FG ∥EH 且FG =EH 即可.图7证明:如图7,连接BD .因为FG 是△CBD 的中位线,所以FG ∥BD ,FG =12BD . 又因为EH 是△ABD 的中位线,所以EH ∥BD ,EH =12BD . 根据公理4,FG ∥EH ,且FG =EH .所以,四边形EFGH 是平行四边形.点评:证明平行四边形常用方法:对边平行且相等;对边分别平行;对角线相交且平分.要注意:对边相等的四边形不一定是平行四边形.变式训练如图7,在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,且AC =BD .求证:四边形EFGH 是菱形.证明:连接EH .因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH =12BD . 同理,FG ∥BD ,EF ∥AC ,且FG =12BD ,EF =12AC . 所以EH ∥FG ,且EH =FG .所以四边形EFGH 为平行四边形.因为AC =BD ,所以EF =EH .所以四边形EFGH 为菱形.例2 如图8(1),将无盖正方体纸盒展开,直线AB ,CD 在原正方体中的位置关系是…( )图8A .平行B .相交且垂直C .异面直线D .相交成60° 分析:如图8(2),将上面的展开图还原成正方体,点B 与点D 重合.容易知道AB =BC =CA ,从而△ABC 是等边三角形,所以选D.答案:D点评:解决立体几何中的翻折问题时,要明确在翻折前后,哪些量发生了变化,哪些量没有变化.变式训练图9表示一个正方体表面的一种展开图,图中的四条线段AB ,CD ,EF 和GH 在原正方体中相互异面的有__________对.图9答案:三思路2例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出答案(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在图10(1)中,α∩β=l,a∩α=A,a∩β=B.在图10(2)中,α∩β=l,aα,bβ,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,B∉α,A∈l,B∈l;(2)aα,bβ,a∥c,b∩c=P,α∩β=c.答案:如图11.图112.根据下列条件画出图形.(1)平面α∩平面β=l,直线ABα,AB∥l,E∈AB,直线EF∩β=F,F∉l;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,B∉a,C∈β,C∉a.答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2 已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A,B,C有一个平面α,因为A,B在平面α内,根据公理1,直线a在平面α内.同理,直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A,B在a上,A,C在b上,所以经过直线a和直线b的平面一定经过点A,B,C.于是根据公理2,经过不共线的三点A,B,C的平面有且只有一个.所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.图14证明:如图14,直线a,b,c,d两两相交,交点分别为A,B,C,D,E,F,∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,bα.∵B,C∈a,E,F∈b,∴B,C,E,F∈α.而B,F∈c,C,E∈d,∴c,dα,即a,b,c,d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点;(2)两条相交直线;(3)两条平行直线.知能训练1.画一个正方体ABCD—A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.图15解:如图15,∵F∈CD′,∴F∈平面ACD′.∵E∈AC,∴E∈平面ACD′.∵E∈BD,∴E∈平面BDC′.∵F∈DC′,∴F∈平面BDC′.∴EF为所求.2.已知△ABC三边所在直线分别与平面α交于P,Q,R三点,求证:P,Q,R三点共线.证明:如图16,∵A,B,C是不在同一直线上的三点,图16∴过A,B,C有一个平面β.又∵AB∩α=P,且ABβ,∴点P既在β内又在α内.设α∩β=l,则P∈l,同理可证:Q∈l,R∈l.∴P,Q,R三点共线.3.O1是正方体ABCD—A1B1C1D1的上底面的中心,过D1,B1,A作一个截面,求证:此截面与对角线A1C的交点P一定在AO1上.图17证明:如图17,连接A1C1,AC.因AA1∥CC1,则AA1与CC1可确定一个平面AC1.易知截面AD1B1与平面AC1有公共点A,O1,所以截面AD1B1与平面AC1的交线为AO1.又P∈A1C,得P∈平面AC1.而P∈截面AB1D1,故P在两平面的交线上,即P∈AO1.。

北师大版高中数学必修二空间图形的基本关系与公理导学案

北师大版高中数学必修二空间图形的基本关系与公理导学案
【课后作业】
【自我反思】
空间图形的基本关系与公理“导学案”
课题:§4空间图形的基本关系与公理课时安排:两课时
年级科目:高一
【学习目标】1通过长方形这一常见的空间图形,了解空间图形的基本构成----点、线、面的基本位置关系;
2理解异面面直线的概念
3掌握空间图形的三个基本公理
【重点难点】4个公理和等角定理及应用,难点是空间图形的位置关系4个公理的归纳
两平面之间的位置关系要么要么
两平面之间若有一个交点,则它们之间就有个交点,并且它们都在上,
这条直线是经过这个交点的唯一直线,称之为这个平面的交线.
公理3的内容是,
若平面α与β的公共直线为α∩β=l
知识应用1下面图形,三角形三边的延长线与平面分别与平面相交于三点,试说明这三点共线吗?并证明这个结论
2课本24页练习1
②观察多面体归纳一下,空间图形通常由、、组成
2观察并归纳点、线、面之间的关系有哪些,并填空
(1)空间中点与线的位置关系共有(记作)和(记作)两种
(2)空间中点与面的位置关系共有(记作)和(记作)两种
(3)空间中直线与直线的位置关系共有和及三种
它们的定义:如下①这样的两直线称为平行直线
②这样的两直线称为相交直线
【回顾小结】1知识要点
2类型问题及方法
【课堂检测】1判定图形是平面图形的方法有①,②
③,④
2下面图形是平面的是哪些?为什么?
①菱形是平面图形吗?②三角形的中位线在该三角形所在的平面内吗?③梯形的中位线在这个梯形所在的平面内吗?④顺次连接四边形的四边的中点的四边形是平行四边形吗?
3如图中△ABC,AB和BC在平面α内,是判断AC是否也在平面α内?
③这样的两直线称为异面直线

1.4 空间图形的基本关系与公理第1课时 教案高中数学必修2北师大版

1.4 空间图形的基本关系与公理第1课时 教案高中数学必修2北师大版

§4空间图形的基本关系与公理第1课时空间图形的基本关系与公理1~公理3 问题导学1.公理1的应用活动与探究1如图,在正方体ABCD-A′B′C′D′中,M,N分别是所在棱的中点,连接D′M,交C′B′的延长线于点E,连接C′N,交CB的延长线于点F.求证:直线EF平面BCC′B′.迁移与应用如图,在△ABC中,若AB,BC在平面α内,试判断AC是否在平面α内.公理1的作用:(1)用直线检验平面;(2)判断直线是否在平面内,要证明直线在平面内,我们需要在直线上找到两个点,这两个点都在这个平面内,那么直线就在这个平面内.解决问题的关键就在于寻找这样的点.2.公理2的应用活动与探究2已知a∥b,a∩c=A,b∩c=B,求证:a,b,c三条直线在同一平面内.迁移与应用1.经过同一直线上的三个点的平面( ).A.有且只有一个B.有且只有三个C.有无数个 D.不存在2.已知A∈l,B∈l,C∈l,D l(如图),求证:直线AD,BD,CD共面.公理2的作用:(1)确定一个平面;(2)证明点、线的共面问题;(3)判断一图形是否为平面图形.对于平面的确定问题,务必分清它们的条件,对于证明几点(或几条直线)共面问题,可先由其中几个点(或直线)确定一个平面后,再证明其他点 (或直线)也在该平面内即可.3.公理3的应用活动与探究3已知△ABC在平面α外,它的三边所在的直线分别交平面α于P,Q,R三点(如图),求证:P,Q,R三点共线.迁移与应用如图,在三棱锥S-ABC的边SA,SC,AB,BC上分别取点E,F,G,H,若EF∩GH=P,求证:EF,GH,AC三条直线交于一点.1.公理3的作用:(1)判断两平面是否相交;(2)证明点在直线上;(3)证明共线问题;(4)证明共点问题.证明三点共线问题的常用方法有:方法一是首先找出两个平面,然后证明这三个点都是这两个平面的公共点,根据公理3,这些点都在交线上.方法二是选择其中两点确定一条直线,然后证明另一点在其上.2.证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.当堂检测1.点P在直线l上,而直线l在平面α内,用符号表示为( ).A.P l,lα B.P∈l,l∈αC.P l,l∈α D.P∈l,lα2.如图所示是表示两个相交平面,其中画法正确的是( ).3.下列说法正确的是( ).A.线段AB在平面α内,直线AB不会在α内B.平面α和β有时只有一个公共点C.三点确定一个平面D.过一条直线可以作无数个平面4.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱A1B1,BB1的中点,则D1E与CF的延长线交于一点,此点在直线( ).A.AD上 B.B1C1上C.A1D1上 D.BC上5.如图,O1是正方体ABCD-A1B1C1D1的上底面A1B1C1D1的中心,M是对角线A1C和截面B1D1A 的交点.求证:O1,M,A三点共线.答案:课前预习导学预习导引1.(1)点在直线上点在直线外A∈l B l(2)点在平面内点在平面外(3)同一平面没有公共点a∥b只有一个公共点a∩b=P不同在任何一个平面内(4)有无数个公共点只有一个公共点l∩α=P没有公共点l∥α(5)没有公共点α∥β不重合但有公共点预习交流1 提示:不能.如图所示,a在平面α内,b在平面β内,但是a与b平行.预习交流2 提示:当两直线在同一平面内时,没有公共点就一定平行;在空间中,当两直线不同在任何一个平面内时,没有公共点,是异面直线.2.两点所有的点在平面内lα不在同一条直线上有且只有确定有且只有一个平面α有一个公共点有且只有α∩β=l且A∈l预习交流3 提示:“有”是说图形存在,“只有一个”是说图形唯一.“有且只有”强调的是存在性和唯一性两个方面,确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和唯一性这两个方面.预习交流4 提示:(1)能;(2)能;(3)能.课堂合作探究问题导学活动与探究1 思路分析:要证明直线在平面内,只需证明直线上有两个点在这个平面内.证明:∵B∈平面BCC′B′,C∈平面BCC′B′,∴直线BC平面BCC′B′.又∵C′N∩CB=F,∴F∈CB,∴F∈平面BCC′B′.同理可得E∈平面BCC′B′.∴直线EF平面BCC′B′.迁移与应用解:AC在平面α内,证明如下:∵AB在平面α内,∴A点一定在平面α内.∵BC在平面α内,∴C点一定在平面α内.∴A点、C点都在平面α内.∴直线AC 在平面α内.活动与探究2 思路分析:依题意,可先证a与b确定一个平面,再证明c在这个平面内,从而可证a,b,c在同一平面内.证明:∵a∥b,∴a与b确定一个平面α,∵a∩c=A,∴A∈a,从而A∈α;∵b∩c=B,∴B∈b,从而B∈α.于是ABα,即cα,故a,b,c三条直线在同一平面内.迁移与应用1.C2.证明:因为直线l与点D可以确定平面α,所以只需证明AD,BD,CD都在平面α内即可.因为A∈l,所以A∈α.又D∈α,所以ADα.同理BDα,CDα.所以AD,BD,CD都在平面α内,即它们共面.活动与探究3 思路分析:只需证明P,Q,R三点在平面ABC内,又在平面α内,再利用公理3推得结论.证明:方法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB平面ABC,∴P∈平面ABC.∴由公理3可知,点P在平面ABC与平面α的交线上.同理可证Q,R也在平面ABC与平面α的交线上,∴P,Q,R三点共线.方法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.又B∈平面APR,C∈平面APR,∴BC平面APR.又∵Q∈直线BC,∴Q∈平面APR.又Q∈α,∴Q∈PR.∴P,Q,R三点共线.迁移与应用证明:∵E∈SA,SA平面SAC,F∈SC,SC平面SAC,∴E∈平面SAC,F∈平面SAC,∴EF平面SAC.同理可得GH平面ABC.又∵EF∩GH=P,∴P∈平面SAC,P∈平面ABC.∵平面SAC∩平面ABC=AC,∴P∈AC,即直线EF,GH,AC共点于P.当堂检测1.D 2.D 3. D 4.B。

北师大版高中数学必修二—学同步教学案 立体几何初步§ 空间图形的基本关系与公理

北师大版高中数学必修二—学同步教学案 立体几何初步§ 空间图形的基本关系与公理

§4 空间图形的基本关系与公理4.1空间图形基本关系的认识【课时目标】学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握五类位置关系的分类及其有关概念.1.空间点与直线的位置关系有两种:______________________________.2.空间点与平面的位置关系有两种:________________________________.3.空间两条直线的位置关系有三种(1)________直线——在同一平面内,没有公共点;(2)________直线——在同一平面内,只有一个公共点;(3)________直线——不同在任何一个平面内.4.空间直线与平面的位置关系有三种(1)直线在平面内——直线和平面有无数个公共点;(2)直线和平面相交——直线和平面只有一个公共点;(3)直线和平面平行——直线和平面没有公共点.5.空间平面与平面的位置关系(1)两个平面平行——两个平面没有公共点;(2)两个平面相交——两平面不重合且有公共点.一、选择题1.已知直线a∥平面α,直线bα,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.若有两条直线a,b,平面α满足a∥b,a∥α,则b与α的位置关系是()A.相交B.b∥αC.bα D.b∥α或bα3.若直线m不平行于平面α,且m α,则下列结论成立的是()A.α内的所有直线与m异面B.α内不存在与m平行的直线C.α内存在唯一的直线与m平行D.α内的直线与m都相交4.三个互不重合的平面把空间分成6部分时,它们的交线有()A.1条B.2条C.3条D.1条或2条5.平面α∥β,且aα,下列四个结论:①a和β内的所有直线平行;②a和β内的无数条直线平行;③a和β内的任何直线都不平行;④a和β无公共点.其中正确的个数为()A.0 B.1 C.2 D.36.若一直线上有一点在已知平面外,则下列命题正确的是()A.直线上所有的点都在平面外B.直线上有无数多个点都在平面外C.直线上有无数多个点都在平面内D.直线上至少有一个点在平面内二、填空题7.正方体ABCD-A1B1C1D1中,E、F分别为AA1和BB1的中点,则该正方体的六个表面中与EF平行的有______个.8.若a、b是两条异面直线,且a∥平行α,则b与α的位置关系是__________________.9.三个不重合的平面,能把空间分成n部分,则n的所有可能值为______________.三、解答题10.指出图中的图形画法是否正确,如不正确,请改正.(1)如图1,直线a在平面α内.(2)如图2,直线a和平面α相交.(3)如图3,直线a和平面α平行.11.在正方体ABCD-A1B1C1D1中,指出与AB平行的棱、相交的棱、异面的棱.能力提升12.如图所示的是一个正方体表面的一种展开图,图中的四条线段AB、CD、EF、GH在原正方体中相互异面的有______对.13.如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.正方体或长方体是一个特殊的图形,当点、线、面关系比较复杂时,可以寻找正方体或长方体作为载体,将它们置于其中,立体几何的直线与平面的位置关系都可以在这个模型中得到反映.因而人们给它以“百宝箱”之称.§4空间图形的基本关系与公理4.1空间图形基本关系的认识答案知识梳理1.点在直线上和点在直线外2.点在平面内和点在平面外3.(1)平行(2)相交(3)异面作业设计1.D2.D3.B4.D5.C6.B7.38.bα,b∥α或b与α相交9.4,6,7,810.解(1)(2)(3)的图形画法都不正确.正确画法如下图:(1)直线a在平面α内:(2)直线a与平面α相交:(3)直线a与平面α平行:11.解如图所示.与AB平行的棱CD,A1B1,C1D1;与AB相交的棱A1A,B1B,AD,BC;与AB异面的棱为棱A1D1,B1C1,D1D,C1C.12.3解析将正方体恢复后,由图观察即可得.即为EF,GH;CD,AB;AB,GH.13.解由α∩γ=a知aα且aγ,由β∩γ=b知bβ且bγ,∵α∥β,aα,bβ,∴a、b无公共点.又∵aγ且bγ,∴a∥b.∵α∥β,∴α与β无公共点,又aα,∴a与β无公共点,∴a∥β.4.2空间图形的公理(一)【课时目标】掌握文字、符号、图形语言之间的转化,理解公理1、公理2、公理3,并能运用它们解决点共线、线共面、线共点等问题.符号:A∈l,B∈l,且A∈α,B∈α⇒lα.2.公理2:经过________________________的三点,____________一个平面(即可以确定一个平面).3.公理3:如果两个不重合的平面有________公共点,那么它们有且只有________通过这个点的公共直线.符号:P∈α,且P∈β⇒α∩β=l,且P∈l.4.用符号语言表示下列语句:(1)点A在平面α内但在平面β外:________________________________________________________________________.(2)直线l经过面α内一点A,α外一点B:________________.(3)直线l在面α内也在面β内:____________.(4)平面α内的两条直线m、n相交于A:________________________________________________________________________.一、选择题1.两平面重合的条件是()A.有两个公共点B.有无数个公共点C.有不共线的三个公共点D.有一条公共直线2.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈bβC.M bβ D.M b∈β3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有()A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒aβB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合5.空间中可以确定一个平面的条件是()A.两条直线B.一点和一直线C.一个三角形D.三个点6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有()A.2个或3个B.4个或3个C.1个或3个D.1个或4个二、填空题7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.(1)A∉α,.(2)α∩β=a,P∉α且P∉β________.(3)a⊆α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.8.已知α∩β=m,aα,bβ,a∩b=A,则直线m与A的位置关系用集合符号表示为________.9.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.三、解答题10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.能力提升12.若空间中三个平面两两相交于三条直线,这三条直线两两不平行,求证此三条直线必相交于一点.13.如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD 交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面;(3)CE、D1F、DA三线共点.1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.4.2空间图形的公理(一) 答案知识梳理1.两点2.不在同一条直线上有且只有3.一个一条4.(1)A∈α,A∉β(2)A∈α,B∉α且A∈l,B∈l(3)lα且lβ(4)mα,nα且m∩n=A作业设计1.C[根据公理2,不共线的三点确定一个平面,若两个平面同过不共线的三点,则两平面必重合.]2.B3.D4.C[∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.]5.C6.D[四点共面时有1个平面,四点不共面时有4个平面.]7.(1)C(2)D(3)A(4)B8.A∈m解析因为α∩β=m,A∈,所以A∈α,同理A∈β,故A在α与β的交线m上.9.③10.解由题意知,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.11.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.12.证明∵l1β,l2β,l1P l2,∴l1∩l2交于一点,记交点为P.∵P∈l1β,P∈l2γ,∴P∈β∩γ=l3,∴l1,l2,l3交于一点.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.(3)由(2)可知:四点E、C、D1、F共面.又∵EF=12A1B=12D1C.∴D1F,CE为相交直线,记交点为P.则P∈D1F平面ADD1A1,P∈CE平面ADCB.∴P∈平面ADD1A1∩平面ADCB=AD.∴CE、D1F、DA三线共点.4.2空间图形的公理(二)【课时目标】1.理解异面直线所成角的定义;2.能用公理4及定理解决一些简单的相关问题.1.公理4:平行于同一条直线的两条直线________.2.定理:空间中,如果两个角的两边分别对应________,那么这两个角________或________.3.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使a′∥a,b′∥b,我们把a′与b′所成的____________叫做异面直线a与b所成的角.如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角的取值范围是____________.一、选择题1.若a 和b 是异面直线,b 和c 是异面直线,则a 和c 的位置关系是( ) A .异面或平行 B .异面或相交C .异面D .相交、平行或异面 2.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面 D .相交或异面3.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( )A .OB ∥O 1B 1且方向相同 B .OB ∥O 1B 1C .OB 与O 1B 1不平行D .OB 与O 1B 1不一定平行 4.给出下列四个命题:①垂直于同一直线的两条直线互相平行; ②平行于同一直线的两直线平行;③若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ;④若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是( )A .1B .2C .3D .45.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD)B .MN ≤12(AC +BD)C .MN =12(AC +BD)D .MN<12(AC +BD)二、填空题6.空间两个角α、β,且α与β的两边对应平行且α=60°,则β为________. 7.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.8.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确结论的序号为________.三、解答题9.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.10.如图所示,在空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F 分别是BC、AD的中点,求EF与AB所成角的大小.能力提升11.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).12.如图所示,正方体AC1中,E、F分别是面A1B1C1D1和AA1D1D的中心,则EF和CD所成的角是()A.60°B.45°C.30°D.90°在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角的范围为(0°,90°],解题时经常结合这一点去求异面直线所成的角的大小.作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).4.2空间图形的公理(二) 答案知识梳理1.平行2.平行相等互补3.锐角(或直角)直角(0°,90°]作业设计1.D[异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.]2.D3.D[等角定理的实质是角的平移,其逆命题不一定成立,OB与O1B1有可能平行,也可能不在同一平面内,位置关系不确定.]4.B[①④均为假命题.①可举反例,如a、b、c三线两两垂直.④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.]5.D[如图所示,取BC的中点E,连接ME、NE,则ME =12AC ,NE =12BD ,所以ME +NE =12(AC +BD).在△MNE 中,有ME +NE>MN ,所以MN<12(AC +BD).]6.60°或120° 7.(1)60° (2)45° 解析连接BA ′,则BA ′∥CD ′,连接A ′C ′,则∠A ′BC ′就是BC ′与CD ′所成的角. 由△A ′BC ′为正三角形, 知∠A ′BC ′=60°,由AD ∥BC ,知AD 与BC ′所成的角就是∠C ′BC . 易知∠C ′BC =45°. 8.①③解析 把正方体平面展开图还原到原来的正方体,如图所示,AB ⊥EF ,EF 与MN 是异面直线,AB ∥CM ,MN ⊥CD ,只有①③正确.9.证明 (1)如图,连接AC , 在△ACD 中,∵M 、N 分别是CD 、AD 的中点, ∴MN 是三角形的中位线,∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1, 又因为ND ∥A 1D 1,∴∠DNM与∠D1A1C1相等或互补.而∠DNM与∠D1A1C1均是直角三角形的锐角,∴∠DNM=∠D1A1C1.10.解取AC的中点G,连接EG、FG,则EG∥AB,GF∥CD,且由AB=CD知EG=FG,∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.∵AB与CD所成的角为30°,∴∠EGF=30°或150°.由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.11.②④解析①中HG∥MN.③中GM∥HN且GM≠HN,∴HG、MN必相交.12.B[连接B1D1,则E为B1D1中点,连接AB1,EF∥AB1,又CD∥AB,∴∠B1AB为异面直线EF与CD所成的角,即∠B1AB=45°.]。

空间图形的基本关系教学设计

空间图形的基本关系教学设计

《空间图形的基本关系》教学设计本节选自普通高中北师大版必修2第一章第四节第一课时【教材分析】空间图形的基本关系与公理是学习平行关系与垂直关系的基础。

教材依托长方体,表述了空间点、线、面间的基本位置关系。

教材先引导学生对“实例分析”中的长方体进行仔细的观察,然后讨论长方体的顶点、棱、面之间的关系。

在此基础上,在进入“抽象概括”,总结出空间点、线、面的五类位置关系。

这样处理的目的是让学生通过长方体这个具体模型对位置关系有直观地认识。

注意三种语言即文字语言、符号语言、图形语言的互译,让学生熟练掌握点、线、面的符号表示,及“∈”和“≠⊂”符号的正确使用。

【三维目标】1.知识与技能(1)了解构成空间图形的基本元素:点、直线、平面。

(2)借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上抽象出点、线、面的位置关系的定义。

(3)正确使用用图形语言、符号语言进行表述点、线、面的位置关系。

2.过程与方法学生在“立体几何初步”起始课中从对空间几何体的整体观察入手,遵循从整体到局部,从具体到抽象的原则,认识空间中点、线、面之间的位置关系。

3.情感、态度与价值观通过对空间图形的认识,使学生知道我们生活的三维空间是丰富多彩的,结合三种语言的互相转换,体会数学图形的直观美以及数学语言的简洁美。

【教学重点】在以长方体为载体,直观认识和理解空间点、线、面的位置关系的基础上进一步培养学生符号语言的运用能力。

【教学难点】异面直线的理解。

【教学问题诊断】在以长方体为载体,直观认识和理解空间点、线、面的位置关系,学生在直观认识上很容易理解,但是对异面直线的理解上学生很可能存在很大的困难,对于这一问题本节课利用下面的思考交流让学生再一次体会异面直线的定义,教师从旁引导学生理解。

【教法特点】为了实现本节课的教学目标,突出重点,本节课将按照以学生为主体的原则促进学生的自主学习;并将通过教师适时引导使学生的认识由整体到局部、由具体到抽象,由直观感知到抽象概括的目标。

北师大版高中必修24空间图形的基本关系与公理课程设计

北师大版高中必修24空间图形的基本关系与公理课程设计

北师大版高中必修24空间图形的基本关系与公理课程设计一、课程设计背景高中数学是学生学习数学的重要阶段,也是全面了解数学知识的关键时期。

高中数学教学应该注重培养学生的逻辑思维能力和解决实际问题的能力。

而空间图形的基本关系与公理是高中数学中的一个重要内容。

本课程设计旨在通过北师大版本高中必修24的空间图形起点建设与拓展,系统介绍空间图形的基本关系与公理,旨在提高学生的数学思维和空间想象能力。

二、教学目标1.了解空间图形的基本概念和基本特征;2.熟悉空间图形实体间的基本关系及其性质;3.掌握空间图形中的公理并能运用公理求解与证明问题;4.培养学生的几何思维能力和创新精神。

三、教学内容第一章:空间图形的基本概念1.空间的基本概念2.空间图形的基本性质第二章:空间图形的基本关系1.点、直线、面的基本关系2.简单立体图形间的基本关系3.复杂立体图形间的基本关系第三章:空间图形公理1.空间图形公理的基本概念2.空间图形公理的性质3.空间图形公理的应用第四章:空间图形的实际应用1.空间图形与曲面的关系2.空间图形与立体几何的关系3.空间图形的实际应用举例四、教学方法在本次课程教学过程中,采用以下教学方法:1.讲授法。

让学生了解空间图形的基本概念、基本关系和公理等知识。

2.实践法。

通过各种实际问题,引导学生探究空间图形关系的性质与规律。

3.互动法。

通过互动和讨论,激发学生的兴趣和创造活力。

五、教学塑造通过引导和指导,帮助学生发挥自己的想象和创造能力,培养他们的创造观念和思维方式,同时加强学生对数学的感性认识和理论体系的建立。

六、教学评估通过教学过程中的课堂作业、小测验、课程论文等形式,对学生的学习程度进行全面考核和评估,及时发现学生的差距和问题,加强个性化教育,提高教学质量。

七、小结以上是本次北师大版高中必修24空间图形的基本关系与公理课程设计的主要内容,通过本课程的教学,希望能够加强学生对空间图形的学习和理解,提高数学学科的应用能力和创造能力,为学生的未来发展打下更加坚实的基础。

北师大版高中数学必修2课件1.4【教学设计】空间图形基本关系的认识课件(数学北师大必修二)

北师大版高中数学必修2课件1.4【教学设计】空间图形基本关系的认识课件(数学北师大必修二)

p
a
b
表示为直线 a b P
一、新课讲授: ⑷直线与直线的位置关系: ③异面:同在任何一个平面内的两条直线.
b
a
一、新课讲授: ⑸ 平面与平面的位置关系: ① 平行:没有公共点的两个平面.
表示为直线 ∥
一、新课讲授: ⑸ 平面与平面的位置关系: ② 相交:有公共点且不重合的两个平面.
l
表示为直线 l
⑵ 点与面的位置关系:
·B
·A
α
① 点在线上: 表示为 点 A 平面 .
② 点在线外: 表示为 点 B 平面 .
一、新课讲授: ⑶ 线与面的位置关系: ① 直线在平面内:直线与平面有无数个公共点.又叫平面经过直线.
a
表示为直线 a 平面 .
一、新课讲授: ⑶ 线与面的位置关系: ② 直线在平面外:直线与平面只有一个公共点.
b
B
表示为直线 b =B .
一、新课讲授: ⑶ 线与面的位置关系: ③直线与平面平行:直线与平面没有公共点.
c
表示为直线 c ∥ .
一、新课讲授: ⑷直线与直线的位置关系: ① 平行:同一平面内没有公共点的两条直线.
ab
表示为直线 a ∥ b
一、新课讲授: ⑷直线与直线的位置关系: ② 相交:只有一个公共点的两条直线.
限延展的.
⑵ 平面的画法及字母表示:
D
C
α
A
B
表示为:平面 ABCD 、平面 AC 、平面 等.
一、新课讲授: 2. 点、线、面间的位置关系及表示:
⑴ 点与线的位置关系:
B
A
·
· l
① 点在线上: 表示为 点 Al . ② 点在线外: 表示为 点 B l .

北师大版高中数学必修二—学同步教学案 立体几何初步§ 空间图形的基本关系与公理

北师大版高中数学必修二—学同步教学案 立体几何初步§ 空间图形的基本关系与公理

§4 空间图形的基本关系与公理4.1空间图形基本关系的认识【课时目标】学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握五类位置关系的分类及其有关概念.1.空间点与直线的位置关系有两种:______________________________.2.空间点与平面的位置关系有两种:________________________________.3.空间两条直线的位置关系有三种(1)________直线——在同一平面内,没有公共点;(2)________直线——在同一平面内,只有一个公共点;(3)________直线——不同在任何一个平面内.4.空间直线与平面的位置关系有三种(1)直线在平面内——直线和平面有无数个公共点;(2)直线和平面相交——直线和平面只有一个公共点;(3)直线和平面平行——直线和平面没有公共点.5.空间平面与平面的位置关系(1)两个平面平行——两个平面没有公共点;(2)两个平面相交——两平面不重合且有公共点.一、选择题1.已知直线a∥平面α,直线bα,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.若有两条直线a,b,平面α满足a∥b,a∥α,则b与α的位置关系是()A.相交B.b∥αC.bα D.b∥α或bα3.若直线m不平行于平面α,且m α,则下列结论成立的是()A.α内的所有直线与m异面B.α内不存在与m平行的直线C.α内存在唯一的直线与m平行D.α内的直线与m都相交4.三个互不重合的平面把空间分成6部分时,它们的交线有()A.1条B.2条C.3条D.1条或2条5.平面α∥β,且aα,下列四个结论:①a和β内的所有直线平行;②a和β内的无数条直线平行;③a和β内的任何直线都不平行;④a和β无公共点.其中正确的个数为()A.0 B.1 C.2 D.36.若一直线上有一点在已知平面外,则下列命题正确的是()A.直线上所有的点都在平面外B.直线上有无数多个点都在平面外C.直线上有无数多个点都在平面内D.直线上至少有一个点在平面内二、填空题7.正方体ABCD-A1B1C1D1中,E、F分别为AA1和BB1的中点,则该正方体的六个表面中与EF平行的有______个.8.若a、b是两条异面直线,且a∥平行α,则b与α的位置关系是__________________.9.三个不重合的平面,能把空间分成n部分,则n的所有可能值为______________.三、解答题10.指出图中的图形画法是否正确,如不正确,请改正.(1)如图1,直线a在平面α内.(2)如图2,直线a和平面α相交.(3)如图3,直线a和平面α平行.11.在正方体ABCD-A1B1C1D1中,指出与AB平行的棱、相交的棱、异面的棱.能力提升12.如图所示的是一个正方体表面的一种展开图,图中的四条线段AB、CD、EF、GH在原正方体中相互异面的有______对.13.如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.正方体或长方体是一个特殊的图形,当点、线、面关系比较复杂时,可以寻找正方体或长方体作为载体,将它们置于其中,立体几何的直线与平面的位置关系都可以在这个模型中得到反映.因而人们给它以“百宝箱”之称.§4空间图形的基本关系与公理4.1空间图形基本关系的认识答案知识梳理1.点在直线上和点在直线外2.点在平面内和点在平面外3.(1)平行(2)相交(3)异面作业设计1.D2.D3.B4.D5.C6.B7.38.bα,b∥α或b与α相交9.4,6,7,810.解(1)(2)(3)的图形画法都不正确.正确画法如下图:(1)直线a在平面α内:(2)直线a与平面α相交:(3)直线a与平面α平行:11.解如图所示.与AB平行的棱CD,A1B1,C1D1;与AB相交的棱A1A,B1B,AD,BC;与AB异面的棱为棱A1D1,B1C1,D1D,C1C.12.3解析将正方体恢复后,由图观察即可得.即为EF,GH;CD,AB;AB,GH.13.解由α∩γ=a知aα且aγ,由β∩γ=b知bβ且bγ,∵α∥β,aα,bβ,∴a、b无公共点.又∵aγ且bγ,∴a∥b.∵α∥β,∴α与β无公共点,又aα,∴a与β无公共点,∴a∥β.4.2空间图形的公理(一)【课时目标】掌握文字、符号、图形语言之间的转化,理解公理1、公理2、公理3,并能运用它们解决点共线、线共面、线共点等问题.符号:A∈l,B∈l,且A∈α,B∈α⇒lα.2.公理2:经过________________________的三点,____________一个平面(即可以确定一个平面).3.公理3:如果两个不重合的平面有________公共点,那么它们有且只有________通过这个点的公共直线.符号:P∈α,且P∈β⇒α∩β=l,且P∈l.4.用符号语言表示下列语句:(1)点A在平面α内但在平面β外:________________________________________________________________________.(2)直线l经过面α内一点A,α外一点B:________________.(3)直线l在面α内也在面β内:____________.(4)平面α内的两条直线m、n相交于A:________________________________________________________________________.一、选择题1.两平面重合的条件是()A.有两个公共点B.有无数个公共点C.有不共线的三个公共点D.有一条公共直线2.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈bβC.M bβ D.M b∈β3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有()A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒aβB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合5.空间中可以确定一个平面的条件是()A.两条直线B.一点和一直线C.一个三角形D.三个点6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有()A.2个或3个B.4个或3个C.1个或3个D.1个或4个二、填空题7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.(1)A∉α,.(2)α∩β=a,P∉α且P∉β________.(3)a⊆α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.8.已知α∩β=m,aα,bβ,a∩b=A,则直线m与A的位置关系用集合符号表示为________.9.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.三、解答题10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.能力提升12.若空间中三个平面两两相交于三条直线,这三条直线两两不平行,求证此三条直线必相交于一点.13.如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD 交于点M,E为AB的中点,F为AA1的中点.求证:(1)C1、O、M三点共线;(2)E、C、D1、F四点共面;(3)CE、D1F、DA三线共点.1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.4.2空间图形的公理(一) 答案知识梳理1.两点2.不在同一条直线上有且只有3.一个一条4.(1)A∈α,A∉β(2)A∈α,B∉α且A∈l,B∈l(3)lα且lβ(4)mα,nα且m∩n=A作业设计1.C[根据公理2,不共线的三点确定一个平面,若两个平面同过不共线的三点,则两平面必重合.]2.B3.D4.C[∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.]5.C6.D[四点共面时有1个平面,四点不共面时有4个平面.]7.(1)C(2)D(3)A(4)B8.A∈m解析因为α∩β=m,A∈,所以A∈α,同理A∈β,故A在α与β的交线m上.9.③10.解由题意知,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的交线.11.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.12.证明∵l1β,l2β,l1P l2,∴l1∩l2交于一点,记交点为P.∵P∈l1β,P∈l2γ,∴P∈β∩γ=l3,∴l1,l2,l3交于一点.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.(3)由(2)可知:四点E、C、D1、F共面.又∵EF=12A1B=12D1C.∴D1F,CE为相交直线,记交点为P.则P∈D1F平面ADD1A1,P∈CE平面ADCB.∴P∈平面ADD1A1∩平面ADCB=AD.∴CE、D1F、DA三线共点.4.2空间图形的公理(二)【课时目标】1.理解异面直线所成角的定义;2.能用公理4及定理解决一些简单的相关问题.1.公理4:平行于同一条直线的两条直线________.2.定理:空间中,如果两个角的两边分别对应________,那么这两个角________或________.3.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使a′∥a,b′∥b,我们把a′与b′所成的____________叫做异面直线a与b所成的角.如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角的取值范围是____________.一、选择题1.若a 和b 是异面直线,b 和c 是异面直线,则a 和c 的位置关系是( ) A .异面或平行 B .异面或相交C .异面D .相交、平行或异面 2.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面 D .相交或异面3.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( )A .OB ∥O 1B 1且方向相同 B .OB ∥O 1B 1C .OB 与O 1B 1不平行D .OB 与O 1B 1不一定平行 4.给出下列四个命题:①垂直于同一直线的两条直线互相平行; ②平行于同一直线的两直线平行;③若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ;④若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是( )A .1B .2C .3D .45.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD)B .MN ≤12(AC +BD)C .MN =12(AC +BD)D .MN<12(AC +BD)二、填空题6.空间两个角α、β,且α与β的两边对应平行且α=60°,则β为________. 7.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.8.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确结论的序号为________.三、解答题9.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.10.如图所示,在空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F 分别是BC、AD的中点,求EF与AB所成角的大小.能力提升11.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).12.如图所示,正方体AC1中,E、F分别是面A1B1C1D1和AA1D1D的中心,则EF和CD所成的角是()A.60°B.45°C.30°D.90°在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角的范围为(0°,90°],解题时经常结合这一点去求异面直线所成的角的大小.作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).4.2空间图形的公理(二) 答案知识梳理1.平行2.平行相等互补3.锐角(或直角)直角(0°,90°]作业设计1.D[异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.]2.D3.D[等角定理的实质是角的平移,其逆命题不一定成立,OB与O1B1有可能平行,也可能不在同一平面内,位置关系不确定.]4.B[①④均为假命题.①可举反例,如a、b、c三线两两垂直.④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.]5.D[如图所示,取BC的中点E,连接ME、NE,则ME =12AC ,NE =12BD ,所以ME +NE =12(AC +BD).在△MNE 中,有ME +NE>MN ,所以MN<12(AC +BD).]6.60°或120° 7.(1)60° (2)45° 解析连接BA ′,则BA ′∥CD ′,连接A ′C ′,则∠A ′BC ′就是BC ′与CD ′所成的角. 由△A ′BC ′为正三角形, 知∠A ′BC ′=60°,由AD ∥BC ,知AD 与BC ′所成的角就是∠C ′BC . 易知∠C ′BC =45°. 8.①③解析 把正方体平面展开图还原到原来的正方体,如图所示,AB ⊥EF ,EF 与MN 是异面直线,AB ∥CM ,MN ⊥CD ,只有①③正确.9.证明 (1)如图,连接AC , 在△ACD 中,∵M 、N 分别是CD 、AD 的中点, ∴MN 是三角形的中位线,∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1, 又因为ND ∥A 1D 1,∴∠DNM与∠D1A1C1相等或互补.而∠DNM与∠D1A1C1均是直角三角形的锐角,∴∠DNM=∠D1A1C1.10.解取AC的中点G,连接EG、FG,则EG∥AB,GF∥CD,且由AB=CD知EG=FG,∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.∵AB与CD所成的角为30°,∴∠EGF=30°或150°.由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.11.②④解析①中HG∥MN.③中GM∥HN且GM≠HN,∴HG、MN必相交.12.B[连接B1D1,则E为B1D1中点,连接AB1,EF∥AB1,又CD∥AB,∴∠B1AB为异面直线EF与CD所成的角,即∠B1AB=45°.]。

【北师大版】高中数学必修2精品讲学案:1.4-空间图形的基本关系与公理(含答案)

【北师大版】高中数学必修2精品讲学案:1.4-空间图形的基本关系与公理(含答案)

第1课时 空间图形基本关系的认识与公理1~3[核心必知]1.空间图形的基本位置关系点⎩⎨⎧点与直线⎩⎪⎨⎪⎧ 点在直线上点在直线外点与平面⎩⎪⎨⎪⎧点在平面内点在平面外2.空间图形的3条公理文字语言图形语言符号语言公理1过不在一条直线上的三点,有且只有一个平面(即可以确定一个平面)若A 、B 、C 三点不共线,则存在唯一一个平面α使A∈α,B ∈α,C ∈α续表文字语言图形语言 符号语言公理2如果一条直线上的两点在一个平面内,那么这条直线在此平面内(即直线在平面内)若A ∈l ,B ∈l ,且A ∈α,B∈α,则公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线若A ∈α,A ∈β,且α与β不重合,则α∩β=l ,且A ∈l[问题思考]1.三点确定一个平面吗?提示:当三点在一条直线上时,不能确定一个平面,当三点不在同一条直线上时,确定一个平面.2.三条两两相交的直线,可以确定几个平面?提示:若三条直线两两相交于一点时,则可以确定一个或三个平面;若相交于三个交点时,则可以确定一个平面.讲一讲1.如图所示,已知一直线a分别与两平行直线b,c相交.求证:a,b,c三线共面.[尝试解答]证明:∵b∥c,∴直线b与c确定一个平面α.如图,令a∩b=A,a∩c=B,∴A∈α,B∈α,∴ABα.即aα,∴a,b,c三线共面.证明点线共面的常用方法:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内.②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.练一练1.已知a∥b∥c,l∩a=A,l∩b=B,l∩c=C,求证:直线a,b,c和l共面.证明:∵a∥b,∴直线a与b确定一个平面,设为α,如图.∵l∩a=A,l∩b=B,∴A∈a,B∈b,则A∈α,B∈α.而A∈l,B∈l,∴由公理2可知:lα.∵b∥c,∴直线b与c确定一个平面,设为β,同理可知lβ.∴平面α和平面β都包含直线b与l,且l∩b=B,又∵经过两条相交直线,有且只有一个平面,∴平面α与平面β重合,∴直线a,b,c和l共面.讲一讲2.已知△ABC在平面α外,它的三边所在的直线分别交平面α于P,Q,R(如图),求证:P,Q,R三点共线.[尝试解答]证明:法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB平面ABC,∴P∈平面ABC.∴由公理3可知,点P在平面ABC与平面α的交线上.同理可证Q,R也在平面ABC与平面α的交线上,∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∴B∈平面APR,C∈平面APR,∴BC平面APR.又∵Q∈直线BC,∴Q∈平面APR.又Q∈α,∴Q∈PR.∴P,Q,R三点共线.证明点共线问题的常用方法有:法一是首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3,这些点都在交线上.法二是选择其中两点确定一条直线,然后证明另外的点在其上.练一练2.如图,在正方体ABCD­A1B1C1D1中,设线段A1C与平面ABC1D1交于Q,求证:B,Q,D1三点共线.证明:∵D1∈平面ABC1D1,D1∈平面A1D1CB,B∈平面ABC1D1,B∈平面A1D1CB,∴平面ABC1D1∩平面A1D1CB=BD1.∵A1C∩平面ABC1D1=Q,且A1C在平面A1D1CB内,∴Q∈平面A1D1CB,Q∈平面ABC1D1,∴Q在两平面的交线BD1上,∴B,Q,D1三点共线.讲一讲3.已知:平面α,β,γ两两相交于三条直线l1,l2,l3,且l1,l2,l3不平行.求证:l1,l2,l3相交于一点.[尝试解答]证明:如图,α∩β=l1,β∩γ=l2,α∩γ=l3.∵l1β,l2β,且l1,l2不平行,∴l1与l2必相交.设l1∩l2=P,则P∈l1α,P∈l2γ,∴P∈α∩γ=l3,∴l1,l2,l3相交于一点P.证明三线共点常用的方法是先说明其中两条直线共面且相交于一点,然后说明这个点在两个平面上,并且这两个平面相交(交线是第三条直线),于是得到交线也过此点,从而得到三线共点.练一练3.已知在正方体ABCD­A′B′C′D′中,如图,E,F分别为AA′,AB上的点(E,F不与A′,B重合)且EF∥CD′,求证:CF,D′E,DA三线共点于P.证明:由EF∥CD′知E,F,C,D′四点共面.因为E,F不与A′,B重合,所以EF≠CD′,即四边形EFCD′为梯形.设D′E∩CF=P,∵D′E平面AA′D′D,P∈D′E,∴P∈平面AA′D′D.又∵CF平面ABCD,P∈FC,∴P∈平面ABCD,即P是平面ABCD与平面AA′D′D的公共点.又∵平面ABCD∩平面AA′D′D=AD,∴P∈AD,即CF,D′E,DA三线共点于P.已知:空间中A,B,C,D,E五点,A,B,C,D共面,B,C,D,E共面,则A,B,C,D,E五点一定共面吗?[错解]∵A,B,C,D共面,∴点A在点B,C,D所确定的平面内.∵点B,C,D,E四点共面,∴点E也在点B,C,D所确定的平面内,∴点A,E都在点B,C,D所确定的平面内,即点A,B,C,D,E一定共面.[错因]在证明共面问题时,必须注意平面是确定的.上述错解中,由于没有注意到B,C,D三点不一定确定平面,即默认了B,C,D三点一定不共线,因而出错.也即题知条件由B,C,D三点不一定确定平面,因此就使得五点的共面失去了基础.[正解]A,B,C,D,E五点不一定共面.(1)当B,C,D三点不共线时,由公理可知B,C,D三点确定一个平面α,由题设知A ∈α,E∈α,故A,B,C,D,E五点共面于α;(2)当B,C,D三点共线时,设共线于l,若A∈l,E∈l,则A,B,C,D,E五点共面;若A,E有且只有一点在l上,则A,B,C,D,E五点共面;若A,E都不在l上,则A,B,C,D,E五点可能不共面.综上所述,在题设条件下,A,B,C,D,E五点不一定共面.1.下列图形中不一定是平面图形的是( ) A .三角形 B .菱形C .梯形D .四边相等的四边形解析:选D 四边相等不具有共面的条件,这样的四边形可以是空间四边形. 2.(重庆高考)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是 ( )A .(0,2)B .(0,3)C .(1,2)D .(1,3)解析:选A 如图所示的四面体ABCD 中,设AB =a ,则由题意可得CD =2,其他边的长都为1,故三角形ACD 及三角形BCD 都是以CD 为斜边的等腰直角三角形,显然a >0.取CD 中点E ,连接AE ,BE ,则AE ⊥CD ,BE ⊥CD 且AE =BE =1-⎝⎛⎭⎫222=22,显然A 、B 、E 三点能构成三角形,应满足任意两边之和大于第三边,可得2×22>a ,解得0<a < 2. ①如果两个平面有三个公共点,那么这两个平面重合 ②两条直线可以确定一个平面 ③若M ∈α,M ∈β,α∩β=l ,则M ∈l④空间中,相交于同一点的三条直线在同一平面内 A .1 B .2 C .3 D .4解析:选A 两个平面有三个公共点时,两平面相交或重合,①错;两条直线异面时不能确定一个平面,②错;空间中,相交于同一点的三条直线不一定在同一平面内,④错.∴只有③对.4.如图所示,在长方体ABCD ­A 1B 1C 1D 1中,判断下列直线的位置关系:(1)直线A1B与D1C的位置关系是__________;(2)直线A1B与B1C的位置关系是__________;(3)直线D1D与D1C的位置关系是__________;(4)直线AB与B1C的位置关系是__________.答案:(1)平行(2)异面(3)相交(4)异面5.若a,b是异面直线,b,c是异面直线,则直线a与直线c的位置关系是________.解析:两条直线a,c都与同一条直线b是异面直线,则这两条直线平行、相交或异面都有可能.答案:平行、相交或异面6.证明:两两相交且不共点的三条直线确定一个平面.证明:设这两两相交且不共点的三条直线分别为l1,l2,l3,且l1∩l2=A,l2∩l3=B,l1∩l3=C(如图所示).∵l1与l2相交,∴l1与l2确定一平面α.∵B∈l2,C∈l1,∴B∈α,C∈α,又B∈l3,C∈l3,∴l3α,即两两相交且不共点的三条直线确定一个平面.一、选择题1.如果空间四点A,B,C,D不共面,那么下列判断中正确的是()A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行解析:选B若A,B,C,D四点中有三点共线,则A,B,C,D四点共面,若AB与CD相交(或平行),则AB与CD共面,即得A,B,C,D四点共面.2.若点A在直线b上,b在平面β内,则A,b,β之间的关系可以记作()A.A∈b,b∈βB.A∈b,bβC.A b,bβD.A b,b∈β解析:选B∵点A在直线b上,∴A∈b,又∵直线b在平面β内,∴bβ,∴A∈b,bβ.3.如图,平面α∩平面β=l,点A∈α,点B∈α,且点C∈β,点C∉l.又AB∩l=R,设A,B,C三点确定的平面为γ,则β∩γ是()A.直线AC B.直线BCC.直线CR D.直线AR解析:选C∵C∈平面ABC,AB平面ABC,而R∈AB,∴R∈平面ABC.而C∈β,lβ,R∈l,∴R∈β,∴点C,点R为两平面ABC与β的公共点,∴β∩γ=CR.4.平行六面体ABCD­A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为() A.3 B.4 C.5 D.6解析:选C与AB共面也与CC1共面的棱有CD,BC,BB1,AA1,C1D1,共5条.5.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则()A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上解析:选A因为E,F,G,H分别是四面体ABCD的棱AB,BC,CD,DA上的点,EF与HG交于点M,所以点M为平面ABC与平面ACD的公共点,而两个平面的交线为AC,所以M一定在直线AC上.二、填空题6.空间四点A,B,C,D,其中任何三点都不在同一直线上,它们一共可以确定平面的个数为________.解析:四点共面时,确定1个平面,任何三点不共线,四点不共面时,确定4个平面.答案:1或47.如图,在这个正方体中,①BM与ED平行;②CN与BM是异面直线;③CN与BE 是异面直线;④DN与BM是异面直线.解析:观察图形可知①③错误,②④正确.答案:②④8.有下面几个说法:①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;②两组对边分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④四边形有三条边在同一平面内,则第四条边也在这个平面内;⑤点A在平面α外,点A和平面α内的任意一条直线都不共面.其中正确的序号是__________(把你认为正确的序号都填上).解析:①中线段可与平面α相交;②中的四边形可以是空间四边形;③中平行的对边能确定平面,所以是平行四边形;④中三边在同一平面内,可推知第四条边的两个端点也在这个平面内,所以第四条边在这个平面内;⑤中点A与α内的任意直线都能确定一个平面.答案:③④三、解答题9.如图所示,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R.求证:P,Q,R三点共线.证明:∵AB∩α=P,CD∩α=P,∴AB∩CD=P.∴AB,CD可确定一个平面,设为β.∵A∈AB,C∈CD,B∈AB,D∈CD,∴A∈β,C∈β,B∈β,D∈β.∴ACβ,BDβ,平面α,β相交.∵AB∩α=P,AC∩α=Q,BD∩α=R,∴P,Q,R三点是平面α与平面β的公共点.∴P,Q,R都在α与β的交线上,故P,Q,R三点共线.10.已知:a,b,c,d是两两相交且不共点的四条直线.求证:a,b,c,d共面.证明:①无三线共点情况,如图所示,设a∩d=M,b∩d=N,c∩d=P,a∩b=Q,a∩c=R,b∩c=S.∵a∩d=M,∴a,d可确定一个平面α.∵N∈d,Q∈a,∴N∈α,Q∈α.∴NQα,即bα.同理cα.∴a,b,c,d共面.②有三线共点的情况,如图所示,设b,c,d三线相交于点K,与a分别交于N,P,M,且K∉a,∵K∉a,∴K与a确定一个平面,设为β.∵N∈a,aβ,∴N∈β.∴NKβ,即bβ.同理,cβ,dβ.∴a,b,c,d共面.第2课时空间图形的公理4及等角定理[核心必知]1.公理4平行于同一条直线的两条直线平行.2.定理空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.3.空间四边形四个顶点不在同一平面内的四边形叫做空间四边形.4.异面直线所成的角(1)过空间任意一点P分别引两条异面直线a,b的平行线l1,l2(a∥l1,b∥l2),这两条相交直线所成的锐角(或直角)就是异面直线a,b所成的角.(2)当异面直线a与b所成的角为直角时,a与b互相垂直.[问题思考]1.公理4及等角定理的作用是什么?提示:公理4又叫平行线的传递性.作用主要是证明两条直线平行.等角定理的主要作用是证明空间两个角相等.2.两条互相垂直的直线一定相交吗?提示:不一定.只要两直线所成的角是90°,这两直线就垂直,因此,两直线也可能异面.讲一讲1.如图所示,在棱长为a的正方体ABCD­A1B1C1D1中,M,N,P分别为线段A1B,B1D1,A1B1上的点,若B1NB1D1=BMBA1=13,且PN∥A1D1.求证:PM∥AA1.[尝试解答]证明:∵PN∥A1D1,B1NB1D1=13,得B1PB1A1=13,又BMBA1=13,∴PM∥BB1.而BB1∥AA1,∴PM∥AA1.空间中证明两直线平行的方法:(1)借助平面几何知识,如三角形的中位线性质、平行四边形的性质,成比例线段平行.(2)利用公理4,即证明两条直线都与第三条直线平行.练一练1.梯形ABCD中,AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD与C′D′的位置重合,G,H分别为AD′和BC′的中点,求证:四边形EFGH为平行四边形.证明:在梯形ABCD 中,EF ∥AB 且EF =12(AB +CD ).在梯形ABC ′D ′中,G ,H 分别是AD ′,BC ′的中点, ∴GH ∥AB 且GH =12(AB +C ′D ′).又CD =C ′D ′,∴EFGH ,∴四边形EFGH 为平行四边形.讲一讲2.如图所示,已知E ,E 1分别是正方体AC 1的棱AD ,A 1D 1的中点, 求证:∠C 1E 1B 1=∠CEB .[尝试解答] 证明:连接EE 1,∵E ,E 1分别是AD ,A 1D 1的中点, ∴A 1E 1AE ,∴四边形A 1E 1EA 为平行四边形, ∴A 1A E 1E . 又A 1AB 1B ,由基本性质4知B 1BE 1E ,∴四边形E 1EBB 1为平行四边形, ∴E 1B 1∥EB . 同理E 1C 1∥EC .又∠C 1E 1B 1与∠CEB 的对应边方向相同, ∴∠C 1E 1B 1=∠CEB .1.证明两角相等的方法①等角定理;②三角形全等;③三角形相似.2.利用等角定理证明两角相等,关键是证明角的两边分别平行,另外要注意角的方向性.练一练2.如图,在正方体ABCD­A1B1C1D1中E,F,E1,F1分别是棱AB,AD,B1C1,C1D1的中点.求证:(1)EF E1F1;(2)∠EA1F=∠E1CF1.证明:(1)连接BD,B1D1,在△ABD中,因为E,F分别为AB,AD的中点,所以EF12BD.同理,E1F112B1D1.在正方体ABCD­A1B1C1D1中,BB1DD1,所以四边形BB1D1D为平行四边形,所以BD B1D1,又EF 12BD,E1F112B1D1,所以EF E1F1.(2)分别取A1B1、A1D1的中点M、N,连接BM、DN、MF1,在正方体ABCD­A1B1C1D1中,由题意,MF1BC,A1M BE,∴四边形BCF1M,四边形A1EBM是平行四边形,∴A1E∥BM∥CF1.同理可证A1F∥DN∥CE1.又A1E、A1F、CF1、CE1,分别为∠EA1F、∠E1CF1的对应两边,且方向相反,∴∠EA1F =∠E1CF1.在空间中有三条线段AB、BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A.AB∥CDB.AB与CD是异面直线C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交[错解]如图,∠ABC=∠BCD,∴AB∥CD.故选A.[错因]错解的原因在于,认为线段AB,BC,CD在同一个平面内.[正解]构造图形:(1)在同一个平面内∠ABC=∠BCD(如图(1));(2)在同一个平面内∠ABC=∠BCD(如图(2));(3)将图(2)中直线CD绕着BC旋转,使∠ABC=∠BCD.由(1)知AB∥CD,由(2)知AB与CD相交,由(3)知AB与CD是异面直线.[答案]D1.下列结论正确的是()①在空间中,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,可以异面.②正确,公理4.③错误,和另一条可以异面.④正确,由平行直线的传递性可知.①若a∥b,a⊥c,则b⊥c;②若a∥b,a和c相交,则b和c也相交;③若a⊥b,a⊥c,则b∥c.A.0 B.1 C.2 D.3解析:选B①项正确;②项不正确,有可能相交也有可能异面;③项不正确.可能平行,可能相交也可能异面.3.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行解析:选C如图所示的长方体ABCD­A1B1C1D1中,直线AA1与直线B1C1是异面直线,与B1C1平行的直线有A1D1,AD,BC,显然直线AA1与A1D1相交,与BC异面.4.如图,夹在两平行平面间的两条线段AB,CD交于点O,已知AO=4,BO=2,CD =9.则线段CO,DO的长分别为________,________.解析:∵AB,CD相交于O点,∴AC,BD共面.又AC与BD不相交,∴AC∥BD.∴CODO=AOBO,又DC=9,AO=4,BO=2.∴CO=6,DO=3.答案:635.已知E,F,G,H为空间中的四个点,且E,F,G,H不共面,则直线EF和GH 的位置关系是________.解析:假设共面,则E,F,G,H共面,与已知矛盾,∴EF与GH不共面,即异面.答案:异面6.如图所示,不共面的三条射线OA ,OB ,OC ,点A 1,B 1,C 1分别是OA ,OB ,OC 上的点,且OA 1OA =OB 1OB =OC 1OC成立.求证:△A 1B 1C 1∽△ABC .证明:在△OAB 中,∵OA 1OA =OB 1OB ,∴A 1B 1∥AB .同理可证A 1C 1∥AC ,B 1C 1∥BC .∴∠C 1A 1B 1=∠CAB ,∠A 1B 1C 1=∠ABC .∴△A 1B 1C 1∽△ABC .一、选择题1.若直线a ∥b ,b ∩c =A ,则a 与c 的位置关系是( ) A .异面 B .相交 C .平行 D .异面或相交解析:选D a 与c 不可能平行,若a ∥c ,又因为a ∥b ,所以b ∥c ,这与b ∩c =A 矛盾,而a 与c 异面、相交都有可能.2.如图所示,在三棱锥P ­ABC 的六条棱所在的直线中,异面直线共有( )A .2对B .3对C .4对D .6对解析:选B 据异面直线的定义可知共有3对.AP 与BC ,CP 与AB ,BP 与AC . 3.如图所示,在长方体木块AC 1中,E ,F 分别是B 1O 和C 1O 的中点,则长方体的各棱中与EF 平行的有( )A .3条B .4条C.5条D.6条解析:选B由于E、F分别是B1O、C1O的中点,故EF∥B1C1,因为和棱B1C1平行的棱还有3条:AD、BC、A1D1,所以共有4条.4.已知E,F,G,H分别为空间四边形ABCD的各边AB,BC,CD,DA的中点,若对角线BD=2,AC=4,则EG2+HF2的值是()A.5 B.10 C.12 D.不能确定解析:选B如图所示,由三角形中位线的性质可得EH 12BD,FG12BD,再根据公理4可得四边形EFGH是平行四边形,那么所求的是平行四边形的对角线的平方和,所以EG2+HF2=2×(12+22)=10.5.异面直线a,b,有aα,bβ且α∩β=c,则直线c与a,b的关系是() A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交解析:选D若c与a、b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由基本性质4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.二、填空题6.如图,在正方体ABCD­A1B1C1D1中,BD和B1D1是正方形ABCD和A1B1C1D1的对角线,(1)∠DBC的两边与________的两边分别平行且方向相同;(2)∠DBC的两边与________的两边分别平行且方向相反.解析:(1)B1D1∥BD,B1C1∥BC并且方向相同,所以∠DBC的两边与∠D1B1C1的两边分别平行且方向相同;(2)B1D1∥BD,D1A1∥BC且方向相反,所以∠DBC的两边与∠B1D1A1的两边分别平行且方向相反.答案:(1)∠D1B1C1(2)∠B1D1A17.若a,b是异面直线,b,c是异面直线,则直线a与直线c的位置关系是________.解析:如图,可借助长方体理解,令a=CC1,b=A1B1,则BC,AD,DD1均满足题目条件,故直线a和直线c的位置关系是平行、相交或异面.答案:平行、相交或异面8.如图,正方体ABCD­A1B1C1D1中,M,N分别是棱C1D1,C1C的中点.有以下四个结论:①直线AM与CC1是相交直线②直线AM与BN是平行直线③直线BN与MB1是异面直线④直线AM与DD1是异面直线其中正确的结论为________(注:把你认为正确结论的序号都填上).解析:由异面直线的定义知③④正确.答案:③④三、解答题9.长方体ABCD­A1B1C1D1中,E,F分别为棱AA1,CC1的中点.(1)求证:D1E∥BF;(2)求证:∠B1BF=∠D1EA1.证明:(1)取BB 1的中点M ,连接EM ,C 1M .在矩形ABB 1A 1中,易得EM A 1B 1,∵A 1B 1C 1D 1,∴EMC 1D 1,∴四边形EMC 1D 1为平行四边形, ∴D 1E ∥C 1M .在矩形BCC 1B 1中,易得MBC 1F ,∴四边形BFC 1M 为平行四边形, ∴BF ∥C 1M ,∴D 1E ∥BF . (2)∵ED 1∥BF ,BB 1∥EA 1,又∠B 1BF 与∠D 1EA 1的对应边方向相同, ∴∠B 1BF =∠D 1EA 1.10.如图,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且AE AB =AH AD =λ,CF CB =CGCD=μ.(1)当λ=μ时,求证:四边形EFGH 是平行四边形;(2)当λ≠μ时,求证:①四边形EFGH 是梯形;②三条直线EF ,HG ,AC 交于一点. 证明:在△ABD 中,AE AB =AHAD =λ,故EHλBD .同理FGμBD .由公理4得EH ∥FG ,又可得FG =μλEH .(1)若λ=μ,则FG =EH ,故EFGH 是平行四边形. (2)①若λ≠μ,则EH ≠FG ,故EFGH 是梯形. ②在平面EFGH 中EF 、HG 不平行,必然相交. 设EF ∩HG =O ,则由O ∈EF ,EF 平面ABC ,得O ∈平面ABC .同理有O ∈HG平面ACD .而平面ABC ∩平面ACD =AC ,所以O ∈AC ,即EF 、HG 、AC 交于点O .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间图形的基本关系与公理一. 教学内容:空间图形的基本关系与公理二. 学习目标:1、学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握空间图形的有关概念和有关定理;掌握平面的基本性质、公理4和等角定理;2、培养和发展自己的空间想象能力、运用图形语言进行交流的能力、几何直观能力、通过典型例子的学习和自主探索活动,理解数学概念和结论,体会蕴涵在其中的数学思想方法;3、培养严谨的思维习惯与严肃的科学态度;体会推理论证中反映出的辩证思维的价值观。

三、知识要点(一)空间位置关系:I、空间点与线的关系空间点与直线的位置关系有两种:①点P在直线上:;②点P在直线外:;II、空间点与平面的关系空间点与平面的位置关系有两种:①点P在平面上:②点P在平面外:;III、空间直线与直线的位置关系:IV、空间直线与平面的位置关系:V、空间平面与平面的位置关系:①平行;②相交说明:本模块中所说的“两个平面”“两条直线”等均指不重合的情形。

(二)异面直线的判定1、定义法:采取反证法的思路,否定平行与相交两种情形即可;2、判定定理:已知P点在平面上,则平面上不经过该点的直线与平面外经过该点的直线是异面直线。

(三)平面的基本性质公理1、公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内,或曰平面经过这条直线)。

2、公理2 经过不在同一条直线上的三点,有且只有一个平面(即确定一个平面)。

3、公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条通过该点的公共直线4、平面的基本性质公理的三个推论①经过直线和直线外一点,有且只有一个平面;②经过两条相交直线,有且只有一个平面;③经过两条平行直线,有且只有一个平面思考:①公理是公认为正确而不需要证明的命题,那么推论呢?②平面的基本性质公理是如何刻画平面的性质的?(四)平行公理(公理4):平行于同一条直线的两条直线平行。

(五)等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

(六)空间四边形:顺次连接不共面的四点构成的图形称为空间四边形。

【典型例题】考点一空间点线面位置关系的判断:主要判断依据是平面的基本性质公理及其推论,平行公理、等角定理等相关结论。

例1.下列命题:①空间不同的三点可以确定一个平面;②有三个公共点的两个平面必定重合;③空间中两两相交的三条直线可以确定一个平面;④平行四边形、梯形等所有的四边形都是平面图形;⑤两组对边分别相等的四边形是平行四边形;⑥一条直线和两平行线中的一条相交,必定和另一条也相交。

其中正确的命题是。

解:⑥。

例2.空间中三条直线可以确定几个平面?试画出示意图说明。

解:0个、1个、2个或3个。

分别如图(图中所画平面为辅助平面):考点二异面直线的判断:主要依据是异面直线的定义及判定定理。

例3.如图是一个正方体的展开图,如果将它还原为正方体,那么AB、CD、EF、GH这四条线段所在的直线是异面直线的有__________对,分别是____________________?解:3对,分别是AB、GH;AB、CD;GH、EF。

考点三“有且只有一个”的证明:一般地,此类题型的证明需要分为两个步骤,分别证明“有”即存在性和“只有一个”即唯一性。

例4.求证:过两条平行直线有且只有一个平面。

已知:直线a∥b。

求证:过a,b有且只有一个平面。

证明: 存在性:由平行线的定义可知,过平行直线a,b有一个平面。

唯一性(反证法):假设过a,b有两个平面。

在直线上任取两点A、B,在直线b 上任取一点C,则A、B、C三点不共线。

由于这两个平面都过直线a,b,因此由公理1可知:都过点A、B、C。

由平面的基本性质公理2,过不共线三点的平面唯一存在,因此重合,与假设矛盾。

矛盾表明:过平行直线a,b只有一个平面。

综上所述:过a,b有且只有一个平面。

考点四共点的判断与证明:此类题型主要有三线共点和三面共点。

例5.三个平面两两相交有三条交线,求证:三条交线或平行,或交于一点。

已知:平面,求证:a∥b∥c或者a,b,c交于一点P。

证明:因为,故a,b共面I、若a∥b:由于,故,因直线,故a,c无公共点。

又a,c都在平面内,故a∥b;故a∥b∥c。

II、若,则,故知综上所述:命题成立。

说明:证明三点共线的问题的常用思路是先证两条直线相交,然后再证该交点在第三条直线上;证明交点在第三条直线上常证明该点是两个相交平面的公共点,从而在这两个平面的交线上即在第三条直线上。

考点五共线的判断与证明:常见题型是三点共线。

例6.如图,O1是正方体ABCD-A1B1C1D1的面A1B1C1D1的中心,M是对角线A1C和截面B1D1A的交点,求证:O1、M、A三点共线。

证明:连结AC.因为A1C1∩B1D1=O1,B1D1平面B1D1A,A1C1AA1C1C,所以O1∈平面B1D1A且O1∈AA1C1C。

同理可知,M∈平面B1D1A且M∈AA1C1C;A∈平面B1D1A 且A∈AA1C1C。

所以,O1、M、A三点在平面B1D1A和AA1C1C的交线上,故O1、M、A 三点共线。

说明:证明三线共点问题的常见思路是证明第三点在前两点所确定的直线上;或者证明三点是两相交平面的公共点,从而在这两个平面的交线上。

考点六共面问题的判断与证明:此类题型常见的是四点共面或三线共面,如证明某个图形是平面图形。

例7.如图,在空间四边形ABCD中,E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC/3,CH=DC/3。

求证:①E、F、G、H四点共面;②直线FH、EG、AC共点。

证明:①如图,连结HG,EF。

在△ABD中,E、F分别为AB、AD中点,故EF是△ABD的中位线,故EF∥BD。

在△CBD中,CG=BC/3,CH=DC/3,故GH∥BD,故EF ∥GH,从而GH、EF可确定一个平面,即G、H、E、F四点共面②由于E、F、G、H四点共面,且FH与EG不平行,故相交,记交点为M,则M∈FH,FH面ACD,故M∈面ACD;M∈EG,EG面ABC,故M∈面ABC。

从而M是面ACD和面ABC的公共点,由公理3可知,M在这两个平面的交线AC上,从而FH、EG、AC三线共点。

说明:共面问题的常用的处理方法是利用平面的基本性质公理2及三个推论,先证明部分元素确定一个平面,再证剩下的元素也在此平面上;有时也可先证部分元素共面,剩下的元素共面,然后证明这两个平面重合(此时也可用反证法)。

[本讲涉及的主要数学思想方法]1、数学语言是数学表述和数学思维不可缺少的重要工具,必须能将这三种语言即文字语言、符号语言和图形语言进行准确的互译和表达,这在空间关系的证明与判断中显得十分重要;2、空间观念和空间想象能力:高考中立体几何题的题型功能最重要的一点就是考查考生的空间观念和空间想象能力,因为我们是通过平面图形(直观图)去研究空间关系,所以同学们在学习过程中一定要多观察、多思考,动手做一些空间模型或通过电脑动画模拟一些空间图形,培养空间概念,提高空间想象能力。

【模拟试题】一、选择题1、在空间内,可以确定一个平面的条件是()A. 两两相交的三条直线B. 三条直线,其中的一条与另两条分别相交C. 三个点D. 三条直线,它们两两相交,但不交于同一点2、(2008辽宁卷)在正方体ABCD A1B1C1D1中,E、F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A. 不存在B. 有且只有两条C. 有且只有三条D. 有无数条*3、已知平面外一点P和平面内不共线的三点A、B、C。

A'、B'、C'分别在PA、PB、PC上,若延长A'B'、B'C'、A'C'与平面分别交于D、E、F三点,则D、E、F三点()A. 成钝角三角形B. 成锐角三角形C. 成直角三角形D. 在一条直线上4、空间中有三条线段AB、BC、CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A. 平行B. 异面C. 相交D. 平行或异面或相交均有可能5、下列叙述中正确的是()A. 因为P∈α,Q∈α,所以PQ∈α。

B. 因为P∈α,Q∈β,所以α∩β=PQ。

C. 因为,C∈AB,D∈AB,因此CD∈α。

D. 因为,所以A∈(α∩β)且B∈(α∩β)。

6、已知异面直线a,b分别在平面α,β内且α∩β=c,那么c()A. 至少与a,b中的一条相交;B. 至多与a,b中的一条相交;C. 至少与a,b中的一条平行;D. 与a,b中的一条平行,与另一条相交7、已知空间四边形ABCD中,M、N分别为AB、CD的中点,则下列判断正确的是()二、填空题8、在空间四边形ABCD中,M、N分别是BC、AD的中点,则2MN与AB+CD的大小关系是。

9、对于空间中的三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交。

其中,能推出三条直线共面的有。

三、解答题10、正方体ABCD-A1B1C1D1中,E、F分别是AB、AA1的中点。

①求证:CE、D1F、DA三线共点;②求证:E、C、D1、F四点共面;11、在正方体ABCD-A1B1C1D1中,若Q是A1C与平面ABC1D1的交点,求证:B、Q、D1三点共线。

12、如图,已知α∩β=a,bα,cβ,b∩a=A,c//a.求证:b与c是异面直线。

*13、(2005高考题改编)正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、C1B1的中点,试作出正方体过P、Q、R三点的截面。

相关文档
最新文档