神户制钢煤基直接还原铁生产工艺(下).

合集下载

煤基直接还原炼铁

煤基直接还原炼铁

煤基直接还原炼铁展望来源:廖建国1 前言使用天然气的直接还原炼铁法(Midrex法和HYL法等)的设备投资规模比高炉炼铁法小,且无需焦炭,因此,以盛产天然气的发展中国家为主,把使用天然气的直接还原炼铁法作为生产铁水的设备进行了建设。

最近,在发达国家出现了电炉短流程钢厂使用直接还原铁作为替代废钢的清洁铁源,因此对直接还原铁(以下简称DRI)的需求越来越高。

以天然气为基础的DRI生产厂一般建在盛产天然气的地区,但是最近利用分布范围广、储量大、且输送方便的煤生产DRI的量不断增加。

煤基直接还原炼铁法大部分使用以SL/RN 为主的回转窑进行生产。

使用回转窑生产DRI时,必须将窑温抑制在不会发生明显的回转窑结圈的温度(1000℃~1100℃)内,因此还原需要12h,每座回转窑的年产量仅为15万t~25万t,作为钢铁生产设备来说产量低,人们希望有一种替代的生产方法。

在这种情况下,神户制钢公司与Midrex在美国的子公司共同开发了使用转底炉(Rotary Hearth Furnace,以下简称RHF)的煤基炼铁法。

其工艺是在RHF炉底上全部铺上碳复合球团矿(球团矿或块矿),在静态下进行加热和还原处理,因此炉温(1300℃~1400℃)可以比回转窑的高,还原速度快、生产率高。

尤其是原料的适应性高,可以使用粉矿、粉尘和一般用烟煤等。

本文就神户制钢公司使用RHF对碳复合球团矿进行还原的煤基直接还原法的特征和开发情况进行介绍,同时根据钢铁行业面临的确保原料供应和环保的问题,对煤基直接还原法所能发挥的作用进行了展望。

2 碳复合球团矿还原法特征与受外部还原气体控制的普通球团矿和烧结矿的还原不同,碳复合球团矿的还原法是将粉矿和磨细的煤混合制成球团矿或块矿,利用高温加热后球团矿或块矿中生成的CO气体,从内部对氧化铁进行还原。

因此,还原速度比从外部进行还原的方法快。

此时发生了如下的反应。

FexOy+yC→xFe+yCO(吸热反应)(1)CO2+C→2CO(吸热反应)(2)FexOy+yCO→xFe+yCO2(放热反应)(3)即在铁矿石没有发生熔融的温度范围内,煤和焦粉等固体碳与铁矿石的直接还原反应少(反应式1),但在1000℃以上的高温下,碳复合球团矿内部会因碳素溶解损失反应而生成CO气体(反应式2)和生成的CO气体使氧化铁发生间接还原反应(反应式3)的连锁反应。

煤基直接还原铁与“两步法”铁水熔炼新工艺在铸造行业的应用

煤基直接还原铁与“两步法”铁水熔炼新工艺在铸造行业的应用

2020年第6期2020年12月!"设备与工艺FOUNDRY EQUIPMENT AND TECHNOLOGY Dec.2020 N〇6.铸造工艺•d o i:10.16666/ki.issnl004-6178.2020.06.006煤基直接还原铁与“两步法”铁水熔炼新工艺在铸造行业的应用付邦豪,周强,李建涛,汪朋,唐恩,陈泉锋(武汉科思瑞迪科技有限公司,湖北武汉430223)摘要:对直接还原铁及其在铸造行业的应用价值进行了描述,详细介绍了COSRED煤基直接还原工艺的 基本流程、技术优势和生产实践情况'对COSRED“两步法”铁水熔炼工艺进行了说明,提出COSRED“两步法”铁水熔炼工艺是铸造企业小高炉技术升级的最佳选择。

关键词:铸造;直接还原铁;COSRED煤基直接还原新工艺'COSRED两步法铁水熔炼新工艺中图分类号:TG243 文献标识码:A 文章编号%1674-6694( 2020 )06-0021-04Application and Prospect of COSRED Iron Melting Technology in Foundry Industry FU Bang-hao $ ZHOU Qiang$LI Jian-tao $ $WANG Peng $ TANG En $ CHEN Quan-feng(Wuhan COSRED Science and, Technology Co$.Ltd. $ Wuhan Hubei 430223 $China) Abstract:Direct reduced iron and its benefits used in foundry industry were introduced in this paper. Process flow $technical advantages and production practices of COSRED coal-based direct reduction process were described in detail. COSRED melting reduction process was also presented in this article $and it was suggested to be the best approach for technology upgrade of small blast furnaces in foundries.Key words:foundry $direct reduced iron $COSRED coal-based direct reduction process $COSRED melting reduction process铸造行业是我国机械制造业的重要基础产业。

直接还原铁工艺技术的对比分析论述

直接还原铁工艺技术的对比分析论述

直接还原铁工艺技术的对比分析论述张建国【期刊名称】《资源再生》【年(卷),期】2018(000)002【总页数】5页(P57-61)【作者】张建国【作者单位】北京瀚川鑫冶工程技术有限公司【正文语种】中文在低于矿石融化状态下,通过固态还原,把铁矿石炼制成铁的工艺称作直接还原法,用这种方法生产出的铁也叫作直接还原铁(DRI),由于这种铁保留了失去氧时形成的大量微小气孔,在显微镜下观察形似海绵,所以直接还原铁也称为海绵铁。

直接还原铁是精铁粉在炉内经低温还原形成的低碳多孔状物质,其化学成分稳定,杂质含量少,主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经过二次还原还可供给粉末冶金用。

从上世纪80年代末以来,我国一直宣传推广使用直接还原技术,并对直接还原技术进行了广泛的开发研究,取得了众多成果,为直接还原技术发展奠定了基础。

但是,因铁矿、煤炭、气源等原燃料条件限制,中国直接还原发展的实际成效不大,与钢材、生铁等行业相比还有相当差距。

一、直接还原铁的应用优势直接还原铁生产是指在低于熔化温度之下将铁矿石还原成海绵铁的过程,与传统高炉炼铁方法相比取消了焦炉、烧结等工序,具有流程短、污染小、消耗少,不受炼焦煤短缺影响等优点。

同时海绵铁中硫、磷、硅等有害杂质含量低,有利于电炉冶炼优质纯净钢种。

近年来,由于钢铁产品向小型轻量化、功能高级化、复合化方向发展,因此钢材产品中的非金属材料和有色金属的使用比例在增加,在废钢的破碎分拣过程中,又不能完全有效的剔除非金属和有色金属材料,况且,即使是纯粹完全的黑色废钢料,由于来源不同,化学成分波动也是较大的。

致使加工后的成品入炉废钢的质量很难掌握控制,给电炉炼钢作业带来一定的困难。

如果用一定比例的直接还原铁(30~50%)作为稀释剂与废钢搭配使用,不仅可增加钢的均匀性,还可以改善和提高钢的物理性质,从而达到生产优质钢的目的。

因此,直接还原铁不仅仅是优质废钢的替代品,还是生产优质钢必不可少的高级原料(如天津无缝钢管公司的国外产品设计中就明确要求,必须配置50%的直接还原铁)。

直接还原铁生产工艺及发展方向

直接还原铁生产工艺及发展方向

直接还原铁生产工艺及发展方向铁生产工艺的发展可以追溯到公元前2000年左右的古代。

在古代,人们首先发现了在高温条件下加热矿石可以从中提取金属。

这一过程被称为矿石冶炼,其中铜、铁和其他金属被广泛使用。

最早期的铁器使用原始的冶炼工艺,如陶瓷炉和炭火加热。

在这个时期,人们从矿石中提取铁质,并通过锻造和淬火方法制作器物。

然而,到了公元前8世纪左右,人们开始使用更高级的铁冶炼工艺。

最著名的是“低凤炉”、“高凤炉”和“方式炉”。

这些工艺的进步使得铁的生产成本大大降低,而且使得铁制品在农业、建筑和武器制造方面得到了广泛应用。

随着时间的推移,人们在铁生产工艺方面取得了更多的进步。

在18世纪,工业革命的到来带来了新的技术和设备,如高炉、转炉和开平法。

这些新技术大大提高了铁的生产效率,推动了工业化进程。

到了20世纪,铁生产工艺又迎来了一次革命。

高炉和转炉被更先进的炼铁技术所取代,如电炉和氧气顶吹转炉。

这些新技术不仅提高了生产效率,而且减少了对燃料和资源的需求。

此外,新的炼铁技术还使得对矿石种类的选择更加灵活,使得更多类型的矿石可以用于铁的生产。

在铁生产工艺的发展方向上,环保和可持续发展成为了主要的关注点。

随着环境污染和资源短缺的日益严重,铁生产已经朝着更环保和经济可行的方向发展。

一种主要的发展趋势是采用更加清洁的能源和生产方法。

例如,利用可再生能源和低碳技术来为铁生产提供能源。

此外,研究人员还在努力开发新的生产方法,如电解和高温合成气体反应,以减少对燃料的依赖和减少二氧化碳排放。

此外,优化生产效率也是一个重要的发展方向。

通过改进工艺流程、优化能源利用和降低废物产生,可以进一步提高生产效率并减少资源消耗。

金属回收和再利用也是铁生产工艺的另一个发展方向。

回收和再利用废旧金属可以减少对原始矿石的需求,降低对环境的影响。

综上所述,铁生产工艺经历了漫长的发展历程,并不断向更加环保、经济可行和高效率方向发展。

随着技术的不断更新和创新,铁生产工艺有望进一步完善,为社会的可持续发展做出更大的贡献。

直接还原铁生产工艺

直接还原铁生产工艺

直接还原铁生产工艺铁生产工艺是指将铁矿石加工成熔融的铁的工艺过程。

这个过程涉及到多个步骤,包括矿石的破碎、研磨、还原和熔炼。

在本文中,我们将详细介绍铁的生产工艺及其各个步骤。

首先是矿石的破碎和研磨。

铁矿石通常是硬质的岩石,包含铁和一些非铁物质。

为了将铁从矿石中分离出来,首先需要将矿石破碎成较小的颗粒。

这通常通过使用破碎机完成,破碎后的矿石通常有不同大小的块状或颗粒状。

接下来是还原步骤。

还原是将氧化铁还原为金属铁的过程。

铁的主要矿石是赤铁矿,其中主要包含氧化铁。

为了将氧化铁还原为金属铁,需要将矿石暴露在高温和还原性气氛中。

常用的还原剂包括焦炭和煤炭。

在高温下,焦炭中的碳会与氧化铁反应,生成一氧化碳和金属铁。

这个反应通常在高炉中进行。

高炉是一个巨大的建筑,具有特定的构造和设计,以便在高温和高压下进行还原反应。

还原反应会生成熔融的铁和一些其他非铁杂质,如硅、锰、磷等。

这个熔融的铁被称为铁水。

铁水通常含有3-4%的碳,这是因为焦炭中的碳在还原过程中溶解到铁中。

然而,为了生产不同类型的铁和钢,通常需要调整铁水中的碳含量。

这可以通过转炉等其他工艺来完成。

最后是熔炼步骤。

熔炼是将铁水转化为不同类型的铁和钢的过程。

熔炼通常包括炉外和炉内两个阶段。

在炉外阶段,铁水被倒入钢包中,并添加一些合金元素和其他调整剂,以调整铁水的化学成分。

在这个阶段,还会进行一些化学分析和实验室测试,以确保铁水达到所需的质量标准。

在炉内阶段,钢包被转移到炉内,并加热到高温。

在这个温度下,铁水会进一步净化和冶炼,以去除残留的杂质。

这通常通过吹氧的过程来完成,即将氧气从底部吹入钢包中。

氧气与铁中的碳和其他杂质反应,生成气体,从而进一步提高铁的纯度。

最后,经过一系列的处理和冷却过程,铁水被铸造成不同形状的铁和钢产品,例如铸铁管、钢板、钢筋等。

总的来说,铁的生产工艺涉及多个步骤,包括矿石的破碎和研磨、还原和熔炼。

这些步骤需要高温、特定的还原剂和合金元素等条件。

煤基直接还原铁生产技术的发展

煤基直接还原铁生产技术的发展
目前, 采用 Fastmet 工艺的商业性生产设备已在日本运 转。而 ITmk3 工艺在中试设备的开发已经完成, 已可以建设 商业性生产设备。
一、工艺流程
Fastmelt 工艺是 Fastmet 工艺和炼铁电炉的综合。来自回 转窑的直接还原铁在炼铁电炉中熔化生产铁水。
ITmk3 工艺是在回转窑中生产粒状铁。团块在回转炉中 加热到 1450℃, 在还原和熔化之后, 炉渣在回转窑中分离。铁 水和炉渣被冷却并从回转窑中排出。
0.00 GJ
2.47 GJ
4.10 GJ
燃气
( 0 kg- CO2 ) ( 141 kg- CO2 ) ( 234 kg- CO2 )
1.54 GJ
2.95 GJ
0.00 GJ
电能
( 103 kg- CO2 ) ( 198 kg- CO2 ) ( 0 kg- CO2 )
0.00 GJ
0.07 GJ
表 8 研究 A 研究结果概括
高炉( 50 万吨 / Fastmelt 工艺( 50 ITmk3 工艺( 50
年铁水) 万吨 / 年铁水) 万吨 / 年粒状铁)
消耗
31.47GJ
14.26 GJ
14.09 GJ

( 2936kg- CO2 ) ( 1330kg- CO2) ( 1314kg- CO2)
技术与装备纵横
煤基直接还原铁生产
技术的发展
□袁 文
目前, 世界炼铁生产的主流是高炉工艺, 但该工艺需要 一些原料准备设备, 如焦炉、烧结设备等, 而其会给环境带来 很大影响。气基直接还原铁如 MIDREX 工艺是高炉炼铁工艺 的替代方法之一, 然而, 该工艺受到以经济方式获得天然气 的限制。在这一背景下, 对可以使用更广泛的原料和燃料, 且 对环境更加友好的新炼铁工艺的需求日益增加。为了满足这 种 需 求 , 人 们 开 发 出 3 种 煤 基 直 接 还 原 铁 生 产 工 艺— —— Fastmet 工艺、Fastmelt 工艺和 ITmk3 工艺。采用这些工艺可以 通过粉矿和煤生产出高质量的铁, 如直接还 原 铁 、铁 水 和 粒 状铁。而且, 这 3 种工艺在能耗和环保方面可以与高炉竞争。

煤基直接还原炼铁技术及非高炉炼铁能耗分析

煤基直接还原炼铁技术及非高炉炼铁能耗分析

煤基直接还原炼铁技术及非高炉炼铁能耗分析摘要:非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。

依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。

直接还原是以非焦煤为能源,在不熔化不造渣的条件下,原料保持原有物理形态,铁的氧化物经还原获得以金属铁为主要成分的固态产品的技术方法。

直接还原炼铁工艺分为气基直接还原和煤基直接还原,气基直接还原炼铁工艺是最主要的直接还原炼铁技术,其产量占到直接还原炼铁的90%左右,煤基直接还原炼铁,目前以回转窑为主,也是最主要的煤基直接还原炼铁工艺。

关键词:非高炉炼铁;直接还原;熔融还原;煤基;气基近代高炉已有数百年历史,其工艺已达到相当完善的地步。

高炉反应器的优点是热效率高、技术完善,设备已大型化、长寿化,单座高炉年产铁最高可达400 万t左右,一代炉役的产铁量可达5000万t以上,可以说,没有现代化的大型高炉就没有现代化的钢铁工业大生产。

但是在它日益完善和大型化的同时,也带来了流程长、投资大以及污染环境等问题。

高炉工艺流程存在以下问题:一是高炉必须要用较多焦炭,而炼焦煤越来越少,焦炭越来越贵;二是环境污染严重,特别是焦炉的水污染物粉尘排放烧结的SO2粉尘排放,高炉的CO2排放很高;三是传统炼铁流程长,投资大;四是从铁、烧、焦全系统看重复加热、降温,增碳、脱碳,资源、能源循环使用率低,热能利用不合理。

高炉法虽然仍是当今炼铁生产的主体流程,但非高炉炼铁法已成为炼铁技术发展的方向。

非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。

依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。

随着世界上废钢铁积累日益减少,电炉流程迅速发展,这就要求采用直接还原新工艺,生产出的海绵铁供电炉炼钢。

此外,由于炼焦煤资源日渐短缺,焦炉逐渐老化以及人们对焦炉污染日益关注,八十年代以来,各发达国家纷纷谋求开发另外的无焦炼铁工艺——熔融还原,其中Corex流程已实现工业化生产。

我国煤基直接还原炼铁工艺发展

我国煤基直接还原炼铁工艺发展

我国煤基直接还原炼铁工艺发展摘要:对我国目前主要应用的直接还原工艺—回转窑、隧道窑、转底炉以及新发展的直接还原技术做了简要的介绍,分析了各种工艺的优缺点;针对钒钛磁铁矿冶炼,攀钢采取了转底炉—电炉联合使用的直接还原工艺,并新建一条年处理能力10万t钒钛矿的生产试验线.关键词:直接还原;转底炉;回转窑;隧道窑0 引言直接还原法是以气体燃料、液体燃料或非焦煤为能源,在铁矿石(或含铁团块)软化温度以下进行还原得到金属铁的方法.其产品呈多孔低密度海绵状结构,被称为直接还原铁(DRI)或海绵铁.直接还原实现了无焦炼铁,比高炉炼铁碳耗低、CO2排放少,有利于节省能源、保护环境.海绵铁杂质成分低,是冶炼优质钢的原料,也可作为高炉炼铁、转炉炼钢、铸铁、铁合金、粉末冶金的原料,有色冶金的置换剂、水处理的脱氧剂等,应用范围广、需求量大[1].2008年我国直接还原铁消费量为260 万t,但产量仅为60多万吨,远不能满足国内需求.随着我国电炉炼钢规模的不断扩大,废钢价格不断攀升,直接还原铁供不应求,市场潜力巨大,因此,在我国因地制宜发展直接还原工艺势在必行.直接还原按照还原剂的不同分为气基还原和煤基还原两大类,气基还原主要包括Midrex法和HYL—Ⅲ法,具有生产规模大、成本低、环境影响小等优点[2].煤基直接还原包括回转窑法、转底炉法等,与气基还原相比,生产规模较小、产量较低.虽然气基直接还原工艺占据了大部分的直接还原生产能力,但其需用天然气做燃料.在我国,由于天然气相对缺乏,使气基发展受到限制,而我国的煤炭储量却较为丰富,这一资源条件决定了现阶段我国以煤基直接还原法为主,因此,深入研讨煤基直接还原的生产工艺对我国的直接还原工业发展具有深远的意义.1 直接还原工艺简介1.1 回转窑回转窑直接还原主要有三种工艺方案,一步法:精矿配加粘结剂制成生球铺布在移动的链篦机上,利用回转窑高温废气进行干燥预热后直接进入回转窑生产DRI,所有工序在一条流水线上连续完成;二步法:先用精矿烧制成氧化球团再将其送入回转窑生产DRI,造球和还原分别独立进行,故称"二步法";冷固球团法:与一步法相似,先将精矿配加特殊粘结剂造球,在较低温度下(200 ℃)干燥固结,然后送入回转窑还原,省略了高温焙烧氧化固结的过程[3].回转窑工艺具有代表性的SL/RN法流程如图1所示.铁矿石、煤粒、熔剂等原料从窑尾加入回转窑中,窑体缓慢旋转使炉料在升温和反应的同时向出料端移动.窑头外设有烧嘴燃烧燃料,形成的废气则由窑尾排除.炉料与炉气逆向运动,炉料在预热段被加热,使水分蒸发和石灰石分解,达到800 ℃后,煤中的固体碳开始还原铁矿石中的氧化铁,直到获得海绵铁或铁料,而碳则转变成CO气体,CO在氧化区被燃烧成CO2,放出热量以满足还原反应的要求.回转窑内反应温度控制在1 100 ℃以下,经8~10 h完成还原反应后出窑.产品排出窑后进入回转冷却筒冷却得到海绵铁或粒铁,也可以送电炉直接炼钢.与高炉工艺相比较,回转窑工艺设备简单,投资少,适用于地方钢铁工业,弥补了高炉—转炉工艺的不足,此外,回转窑还适用于复合矿冶炼,冶金灰尘及各种工业废渣的回收利用,减少环境污染,降低了钢铁生产能耗.同时,回转窑工艺也存在一些缺点,包括窑内结圈、还原温度低(1 100 ℃以下)、流程长、对块矿或球团矿冷强度要求高、要求使用低硫煤等[4].我国山东鲁中矿山公司通过采取提高冷固烧结球团的冷热态强度、加强还原煤的选择和管理、优化回转窑的送风、抛煤、控温温度等措施,预防并降低回转窑结圈,取得了较好的收效.图1 SL/RN法工艺流程1.2 隧道窑隧道窑工艺即将精矿粉、煤粉、石灰石粉,按照一定的比例和装料方法,分别装入还原罐中,然后把罐放在罐车上,推入条形隧道窑中或把罐直接放到环形轮窑中,料罐经预热到1 150 ℃加热焙烧和冷却之后,得到直接还原铁.目前江苏永钢集团拥有两条260 m长煤气隧道窑,为亚洲最长隧道窑.隧道窑生产海绵铁工艺流程如图2所示.图2 隧道窑生产海绵铁工艺流程煤基隧道窑直接还原工艺具有技术成熟、作简单的特点,可因地制宜采用此工艺,利用当地小型分散的铁矿及煤矿资源优势,发展直接还原铁生产,为电炉提供优质原料.但是,总体上讲,我国隧道窑直接还原中存在生产规模较小、能耗高、污染严重、缺乏稳定的原料供应渠道等问题[5],所以,提高机械化程度、改变原料入炉方式、改进燃料及其燃烧、增设余热回收等成为各厂家不断努力改进工艺的方向.我国已建成或正在建设的隧道窑有100多座,约70多个单位规划建设产能5~30 万t/a的隧道窑直接还原铁厂,在不断总结实践经验的基础上,改进现行工艺,开发出诸如大型隧道窑直接还原、AMR—CBI隧道窑直接还原工艺、宽体球状海绵铁隧道窑、L-S快速还原工艺等多种新技术,掀开了隧道窑工艺规模扩大、产能提高、机械及自动化提升的序幕.1.3 转底炉转底炉煤基直接还原是最近几十年间发展起来的炼铁新技术,代表工艺为Fastmet,它由美国Midrex公司与日本神户制钢于20世纪60年发,是采用环形转底炉生产直接还原铁的一种方法.经过多年的半工业性试验和深入的可行性研究,现已完成工艺作参数和装置设计的优化.Fastmelt和ITmk3工艺是在此基础上增加对直接还原铁的处理.图3显示了这三种以转底炉为主体的直接还原工艺流程.图3 转底炉直接还原工艺流程煤粉与铁精粉按比例混匀制成球团,干燥后以1~3层球铺放在转底炉床面,随着炉底的旋转,炉料依次经过预热区、还原区和冷却区.还原区内球团被加热到1 250~1 350 ℃,由于煤粉与铁氧化物紧密接触,铁氧化铁被碳迅速还原成DRI,成品在800~1 000 ℃左右连续从转底炉卸出.球团矿在炉底停留8~30 min,这取决于原料特性、料层厚度及其他因素,成品可作电炉热装炉料或者转炉炉料,也可冷却或生产热压块(HBI).Fastmet工艺技术特点:①在高温敞焰下加热实现快速还原,反应时间只需10~20 min,生产效率高;②原料来源广泛,铁原料方面,除使用高品位粉矿、精矿外,还可用氧化铁皮、代油铁泥、炼钢粉尘、含En、Pb、As等有害杂质的铁矿等;还原剂方面,除煤以外焦末、沥青均可利用,不必担心出现结圈问题;③炉料相对炉底静止,对炉料强度要求不高;④废气中含有大量显热,可用作预热空气、干燥原料等[6]. Fastmelt工艺流程基本与Fastmet一致,只是在后续添加一个熔炉来生产高质量的液态铁水.Itmk3工艺是使金属化球团在转底炉中还原时熔化,生成铁块(Nuggets),同时脉石也熔化,形成渣铁分离.当然转底炉也存在着设备复杂、炉内气氛难控制、传热效率低以及对还原剂硫含量要求严格的缺点.就目前转底炉工艺开发的水平和规模而论,与高炉还有较大差距,但仍存在发展的广阔空间,天津荣程联合钢铁集团已兴建一条100万t级Fastmet生产线,建成目前世界最大的转底炉.另外,用转底炉可处理一些特殊铁矿,如含锌、铅、砷等有害杂质,或含镍、钒、钛等有用元素,均可利用转底炉的工艺优势,或高温挥发,或选择性还原,配合后续工艺,实现资源综合利用.马钢尘泥脱锌转底炉工程项目于2008年5月开工建设,2009年7月6日正式竣工投产,建成了整套转底炉(RHF)脱锌工艺技术装置,不仅解决了含锌尘泥循环利用的后顾之忧,而且将综合利用技术上升到高品质资源化水平.1.4 其他新工艺1.4.1 PF法煤基竖炉直接还原工艺中冶集团北京冶金设备研究设计总院,结合国内情况创新发明了PF法竖炉直接还原工艺.PF法是在吸收K-M法外热式竖炉煤基直接还原工艺的经验基础上,设计的以一种中国特色的罐式还原炉为主反应器的直接还原法.这种工艺技术可靠,技术经济指标在各种煤基直接还原工艺中属先进水平.PF法直接还原工艺流程如图4所示.图4 PF法直接还原工艺流程PF法直接还原工艺主要特点[1]:1)主体设备选用外热式竖炉,预热、还原、冷却三段根据不同的作用和温度选用不同材质和结构,便于传热和化学反应进行,提高热效率和设备寿命.2)原燃料适用性强,对精矿、还原剂和燃料没有特殊要求.3)采用外配碳工艺,还原剂适当过量,扩大了煤的选用范围,造球工艺也因不定量配入煤粉而简化,球团强度较高,DRI质量较好.4)多个反应罐可并列组成任意规模的还原设备,设计和组织生产灵活.1.4.2 低温快速还原新工艺2004年钢铁研究总院提出了低温快速冶金新工艺.新工艺利用纳米晶冶金技术的特点将铁矿的还原温度降低到700 ℃以下.新流程分为气基和煤基两种方法,工艺流程如图5、图6所示.图5 煤基低温快速还原新工艺图6 气基低温快速还原新工艺煤基法使用煤粉为还原剂,在700℃左右快速还原铁精矿粉;气基法使用还原性气体还原铁精矿粉,还原温度可低于600℃.新工艺具有能耗低、环境友好等特点,省去了烧结或造球工艺,缓解了钢铁行业对焦煤的依赖,符合我国国情[7].2 攀钢现状钒钛磁铁矿是攀西地区的特色资源,与普通矿相比,钒钛矿直接还原温度较高、还原时间较长,还原过程产生特有的膨胀粉化现象,因此,存在竖炉结瘤、流化床失流和黏结、回转窑结圈等技术难题.高炉流程冶炼钒钛矿,只回收了铁和钒,钛进入高炉渣没有回收,造成钛资源的大量流失.2005年以来,攀钢科研人员在充分吸收、借鉴新流程及相关研究成果的基础上,通过大量的试验研究,针对钒钛磁铁矿特点,提出并验证了钒钛磁铁矿"转底炉直接还原—电炉深还原—含钒铁水提钒—含钛炉渣提钛"工艺路线,彻底打通了钒钛矿资源综合利用新工艺流程,稳定获得了质量满足要求的低碳生铁、达到GB3283-87要求的片状V2O5和PTA121质量要求的钛白产品.依托该研究成果,攀钢集团攀枝花钢铁研究院于2008年5月4日正式启动了攀钢10 万t/a钒钛矿资源综合利用新工艺中试线工程项目,新建一条转底炉—熔分电炉联合使用,年处理能力10万t钒钛矿的试验生产线,为更深入地研究实践,实现转底炉处理钒钛矿的规模化生产提供了广阔的平台.中试线工艺流程如图7所示.本流程采用硫含量较低的白马铁精矿,还原剂采用无烟煤煤粉,粘结剂为有机粘结剂,原料混合后经高压压球机压球,生球烘干后进入转底炉系统.球团在转底炉内停留10~30 min后出料,金属化球团直接热装进入熔分电炉,在一定温度下还原后,产出含钒铁水及含钛炉渣.继续对铁水进行脱硫、提钒后,得到半钢、脱硫渣及钒渣,半钢进入铸铁机铸铁,生产出铸铁块.钛渣制取钛白,实验室条件下钛回收率达到80%以上;钒渣制取钒氧化物(V2O5),实验室条件下,钒回收率达到65%以上.与高炉流程相比,转底炉流程采用100%钒钛矿冶炼,克服了高炉流程必须配加普通矿的不足,在当前铁资源紧张的形势下,有助于充分发挥攀西地区资源优势,拉动区域经济发展.此外,转底炉流程的铁精矿不需烧结处理,不使用焦炭,从根本上避免了烧结烟气脱硫、焦煤资源采购困难以及环保压力大等问题.3 结语图7 资源综合利用中试线工艺流程煤炭资源总量丰富、焦煤短缺,铁矿资源储量大、富矿少、贫矿和共生矿多是中国钢铁工业面临的现实状况.这种能源、资源结构给煤基直接还原法生产海绵铁的发展提供了机遇.转底炉直接还原技术由于在生产率、规模化、投资费用、单位成本等方面都占有明显的优势,可作为发展直接还原技术的首选工艺.鉴于转底炉处理钒钛磁铁矿技术尚属世界首创,并无较多的经验借鉴,因此要大力开展针对钒钛磁铁矿直接还原的基础研究工作,在实践中借鉴各种直接还原方法已取得的成果,开拓创新,开创钒钛矿直接还原新纪元.参考文献[1] 陈守明,黄超,张金良.煤基竖炉直接还原工艺//2008年非高炉炼铁年会文集.中国金属学会,2008:132-135.[2] 杨婷,孙继青.世界直接还原铁发展现状及分析.世界金属导报,2006.[3] 刘国根,邱冠周,王淀佐.直接还原炼铁中的粘结剂.矿产综合利用,2001(4):27-30.[4] 韩跃新,高鹏,李艳军.白云鄂博氧化矿直接还原综合利用前景.金属矿山,2009 (5):1-6.[5] 魏国,赵庆杰,沈峰满,等.非高炉生产技术进步//2004年全国炼铁生产技术暨炼铁年会文集.2004:878-882.[6] 陶晋. 环形转底炉直接还原工艺现状及发展趋势. 冶金信息工作, 1997.6.[7] 郭培民,赵沛,张殿伟.低温快速还原炼铁新技术特点及理论研究.炼铁,2007,26(1): 57-60.来源:攀枝花钢铁研究院网站。

直接还原铁生产工艺

直接还原铁生产工艺

直接还原铁回转窑铁磷还原法生产工艺一、直接还原铁是精铁粉或氧化铁在炉内经低温还原形成的低碳多孔状物质,其化学成分稳定,杂质含量少,主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经二次还原还可供粉末冶金用。

二、直接还原铁生产工艺概述1、什么是直接还原炼铁法?直接还原炼铁法是在低于矿石熔化温度下,通过固态还原,把铁矿石炼制成铁的工艺过程。

2、常用的直接还原炼铁法有哪些?在工业上应用较多的有铁磷还原法,铁精矿粉还原法等,即将轧钢氧化铁磷或精矿粉经还原铁压块机压制成块后,装入焙烧管进窑焙烧,生产出了优质还原铁。

直接还原铁经粗破(将直接还原铁锭破成块状)中破(将块状直接还原铁破碎成0~15mm的颗粒状)后,再经过磁选,去除SiO2、、CaS和游离碳等杂质。

用户可再次使用还原铁压块机压制直接还原铁颗粒,使直接还原铁颗粒成型并达到一定的堆比重g/cm3要求。

直接还原铁破碎颗粒直接影响压块物理特性(压缩性、成型性、堆比重g/cm3)对特钢生产起到至关重要的作用。

三、铁磷还原法概述1、什么是铁磷?铁鳞又称氧化铁皮、氧化皮。

在钢材加热和轧制过程中,由于表面受到氧化而形成氧化铁层,剥落下来的鱼鳞状物。

铁鳞可用作氧化剂和制铁粉的原料。

轧钢氧化铁磷是钢材在加热炉中加热后在轧制过程中,其表面氧化层自行脱落而产生的。

2、为什么用氧化铁磷?有什么注意事项?还原海绵铁可采用热轧沸腾钢氧化铁磷作原料,因为沸腾钢氧化铁磷中的TFe、C、S、P化学成分含量,能满足还原海绵铁生产的技术要求。

在还原海绵铁中最好不要以高碳钢或合金钢氧化铁磷为原料。

3、什么是铁磷还原法?有哪些类型?铁鳞还原法就是以铁鳞为原料的直接还原法生产工艺。

铁鳞还原法生产过程可分为粗还原与精还原。

在粗还原过程中,铁氧化物被还原,铁粉颗粒烧结与渗碳。

增高还原温度或延长保温时间皆有利于铁氧化物还原、铁粉颗粒烧结,但会生产部分渗碳。

鉴于在精还原过程中脱碳困难,在粗还原过程中,控制铁氧化物还原到未渗碳的程度是必要的。

直接还原铁生产工艺标准

直接还原铁生产工艺标准

直接还原铁回转窑铁磷还原法生产工艺一、直接还原铁是精铁粉或氧化铁在炉内经低温还原形成的低碳多孔状物质,其化学成分稳定,杂质含量少,主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经二次还原还可供粉末冶金用。

二、直接还原铁生产工艺概述1、什么是直接还原炼铁法?直接还原炼铁法是在低于矿石熔化温度下,通过固态还原,把铁矿石炼制成铁的工艺过程。

2、常用的直接还原炼铁法有哪些?在工业上应用较多的有铁磷还原法,铁精矿粉还原法等,即将轧钢氧化铁磷或精矿粉经还原铁压块机压制成块后,装入焙烧管进窑焙烧,生产出了优质还原铁。

直接还原铁经粗破(将直接还原铁锭破成块状)中破(将块状直接还原铁破碎成0~15mm的颗粒状)后,再经过磁选,去除SiO2、、CaS和游离碳等杂质。

用户可再次使用还原铁压块机压制直接还原铁颗粒,使直接还原铁颗粒成型并达到一定的堆比重g/cm3要求。

直接还原铁破碎颗粒直接影响压块物理特性(压缩性、成型性、堆比重g/cm3)对特钢生产起到至关重要的作用。

三、铁磷还原法概述1、什么是铁磷?铁鳞又称氧化铁皮、氧化皮。

在钢材加热和轧制过程中,由于表面受到氧化而形成氧化铁层,剥落下来的鱼鳞状物。

铁鳞可用作氧化剂和制铁粉的原料。

轧钢氧化铁磷是钢材在加热炉中加热后在轧制过程中,其表面氧化层自行脱落而产生的。

2、为什么用氧化铁磷?有什么注意事项?还原海绵铁可采用热轧沸腾钢氧化铁磷作原料,因为沸腾钢氧化铁磷中的TFe、C、S、P化学成分含量,能满足还原海绵铁生产的技术要求。

在还原海绵铁中最好不要以高碳钢或合金钢氧化铁磷为原料。

3、什么是铁磷还原法?有哪些类型?铁鳞还原法就是以铁鳞为原料的直接还原法生产工艺。

铁鳞还原法生产过程可分为粗还原与精还原。

在粗还原过程中,铁氧化物被还原,铁粉颗粒烧结与渗碳。

增高还原温度或延长保温时间皆有利于铁氧化物还原、铁粉颗粒烧结,但会生产部分渗碳。

鉴于在精还原过程中脱碳困难,在粗还原过程中,控制铁氧化物还原到未渗碳的程度是必要的。

煤基直接还原炼铁法的能耗与环境负荷

煤基直接还原炼铁法的能耗与环境负荷

煤基直接还原炼铁法的能耗与环境负荷(表)据中国钢铁新闻网2007年2月13日报道:近年,世界粗钢产量随着亚洲的经济成长而持续增加。

现代炼铁法的主流是高炉法,但高炉法为了提高其效率而必须大型化,并且需要环境负荷大的烧结设备和炼焦炉。

作为替代高炉法的炼铁法,有MIDREX法所代表的气基还原铁冶炼法,但气基还原铁冶炼法需要大量的天然气,所以地区选定受到限制。

在上述背景下,对于今后的炼铁法而言,如下的期待正在日益高涨:1)降低能耗与环境负荷;2)减少投资费用与运行成本;3)适应宽泛的原料与能源。

为了回应这样的期待,神户制钢与Midrex技术公司共同开发了3种煤基直接还原炼铁法——FASTMET、FASTMELT和ITmk3。

这些方法可以用世界各地富存的铁矿粉和煤炭生产高质量的铁源,例如DRI(直接还原铁)、铁水和粒铁。

它们的能耗与环境负荷与当今普遍使用的大容量高炉法不相上下。

煤基还原冶炼法1 煤基还原铁冶炼法的定位作为煤基还原铁冶炼法的FASTMET、FASTMELT、ITmk3是使用世界上较为大量存在的粉矿石和煤炭的方法。

2 工艺流程铁矿石和作为还原剂的煤炭预先混合,并被成型为球团或压块状的团块化混合物。

这种团块化混合物供给RHF(转底炉),在RHF内被还原。

团块化混合物在RHF的炉床上铺一层或两层予以加热。

在FASTMET、FASTMELT法中,炉内加热到1250~1350℃,以直接还原铁的形式排至炉外,而在ITmk3法中则加热到1450℃,在炉内还原、熔融而以粒珠的形式排至炉外。

对FASTMET法来讲,可以做成高温还原铁和经冷却做成低温还原铁,或者以HBI(热压团块铁)的形式来利用制品还原铁。

FASTMELT法是将还原铁熔炼炉组合到FASTMET法中的方法,把RHF排出的高温的铁装入还原铁熔炼炉,边利用其显热边冶炼生产生铁。

ITmk3法则在RHF内生产与炉渣分离的粒铁,与炉渣一起排出的粒铁,用磁选机等分选机选出粒铁。

直接还原铁技术

直接还原铁技术

直接还原铁技术直接还原铁是铁矿在固态条件下直接还原为铁,可以用来作为冶炼优质钢、特殊钢的纯净原料,也可作为铸造、铁合金、粉末冶金等工艺的含铁原料。

这种工艺是不用焦碳炼铁,原料也是使用冷压球团不用烧结矿,所以是一种优质、低耗、低污染的炼铁新工艺,也是全世界钢铁冶金的前沿技术之一。

直接还原炼铁工艺有气基法和煤基法两种,按主体设备可分为竖炉法、回转窑法、转底炉法、反应罐法、罐式炉法和流化床法等。

目前,世界上90%以上的直接还原铁产量是用气基法生产出来的。

但是天然气资源有限、价高,使生产量增长不快。

用煤作还原剂在技术上也已过关,可以用块矿,球团矿或粉矿作铁原料(如竖炉、流化床、转底炉和回转窑等)。

但是,因为要求原燃料条件高(矿石品位要大于66%,含SiO2+Al2O3杂质要小于3%,煤中灰分要低等),规模小,设备寿命低,生产成本高和某些技术问题等原因,致使直接还原铁生产在全世界没有得到迅速发展。

因此,高炉炼铁生产工艺将在较长时间内仍将占有主导地位。

1.直接还原铁的质量要求直接还原铁是电炉冶炼优质钢种的好原料,所以要求的质量要高(包括化学成份和物理性能),且希望其产品质量要均匀、稳定。

1.1 化学成份直接还原铁的含铁量应大于90%,金属化率要>90%。

含SiO2每升高1%,要多加2%的石灰,渣量增加30Kg/t,电炉多耗电18.5kwh。

所以,要求直接还原铁所用原料含铁品位要高:赤铁矿应>66.5%,磁铁矿>67.5%,脉石(SiO2+Al2O3)量<3%~5%。

直接还原铁的金属化率每提高1%,可以节约能耗8~10度电/t。

直接还原铁含C<0.3%,P<0. 03%,S<0.03%,Pb、Sn、As、Sb、Bi等有害元素是微量。

1.2 物理性能回转窑、竖炉、旋转床等工艺生产的直接还原铁是以球团矿为原料,要求粒度在5~30mm。

隧道窑工艺生产的还原铁大多数是瓦片状或棒状,长度为250~380mm,堆密度在1.7~2. 0t/m³。

直接还原铁生产工艺及发展方向

直接还原铁生产工艺及发展方向

直接还原铁(海绵铁)生产工艺及发展方向习惯上,我们把铁矿石在高炉中先还原冶炼成含碳高的生铁,而后在炼钢炉内氧化,降低含碳量并精炼成钢,这项传统工艺,称作间接炼钢方法;在低于矿石熔化温度下,通过固态还原,把铁矿石炼制成铁的工艺,称作直接炼铁(钢)法或者直接还原法,用这种方法生产出的铁也就称作直接还原铁(即DRI)。

由于这种铁保留了失氧时形成的大量微气孔,在显微镜下观察形似海绵,所以直接还原铁也称之为海绵铁。

一、直接还原铁(海绵铁)的用途直接还原铁是精铁粉在炉内经低温还原形式的低碳多孔状物质,其化学成分稳定,杂质含量少(碳、硅含量低),主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经二次还原还可供粉末冶金用。

一次还原铁粉(海绵铁)的主要用途有:①作为粉末冶金制品的原料,耗用量约占铁粉总耗用量的60~80%;②作为电焊条的原料,在药皮中加入10~70%铁粉可改进焊条的焊接工艺并显著提高熔敷效率;③作为火焰切割的喷射剂,在切割钢制品时,向氧-乙炔焰中喷射铁粉,可改善切割性能,扩大切割钢种的范围,提高可切割厚度;④还可作为有机化学合成中的还原剂、复印机油墨载体等。

近年来由于钢铁产品朝小型轻量化、功能高级化、复合化方向发展,故钢材中非金属材料和有色金属使用比例增加,致使废钢质量不断下降。

废钢作为电炉钢原料,由于其来源不同,化学成分波动很大,而且很难掌握、控制,这给电炉炼钢作业带来了极大的困难。

如果用一定比例的直接还原铁(30~50%)作为稀释剂与废钢搭配不仅可增加钢材的均匀性,还可以改善和提高钢的物理性质,从而达到生产优质钢的目的。

因此,直接还原铁(海绵铁)不仅仅是优质废钢的替代物,还是生产优质钢材必不可少的高级原料(天津无缝钢管公司国外设计中就明确要求必须配50%的直接还原铁(海绵铁))。

根据国外报导,高功率电炉冶炼时,炉料搭配30~50%直接还原铁,生产率提高10~25%,作业率提高25~30%。

几种主要煤基直接还原冶炼工艺对比

几种主要煤基直接还原冶炼工艺对比

几种主要煤基直接还原冶炼工艺对比煤基直接还原是指直接以煤作还原剂的工艺,是相对于气基直接还工艺(以天然气或其他还原性气体作还原剂)而言。

煤基的历史可能比气基更早,但气基发展很快,无论从技术水平还是生产规模方面都远远超过了煤基。

从1975年至2005年这30年中,全世界直接还原铁(DRI)的年产量从80万吨增至5600万吨、即70倍。

其中气基占85%,而煤基只占15%。

可是,主要由于资源的因素及其相关的经济效益影响,气基的发展受到制约,业内把关注转向煤基,而且煤基直接还原不用焦煤,对环境又比较友好,因而在我国受到产业政策的支持。

世界上现有煤基直接还原工艺不少,但形成生产规模的主要有两种:一种是回转窑;另一种为转底炉。

回转窑工艺有较长历史,早先曾生产‘粒铁’,后转为生产DRI。

其主要优点是产品质量较好,能直接作为电炉炼钢原料。

出窑产品经磁选而提髙了铁的品位。

目前生产工艺己趋成熟,也达到一定规模,其产品己成为电炉冶炼优质钢的洁净铁源之一。

但回转窑工艺也有其固有缺点:1.料在窑中随窑体转动而滚动运行,易被粉碎,产生的粉末与煤灰粘在一起而形成‘结圈’,从而损坏炉衬,形成操作事故,从而使作业率下降。

2.受‘结圈’制约,还原温度偏低,一般最髙1100℃左右,影响还原速度。

3.因此生效率不髙。

4.单位投资相对较大。

5.对所用煤种有特定要求,如灰熔点必髙于1280℃,否则就要‘结圈’。

过去误以为什么煤都行,吃了不少苦头!因为这些原因,国内在过去十儿年前曾热了一阵以后,业内都不再看好回转窑工艺。

其实也不尽然,国内现有少数儿座回转窑的生产也取得进展,积累了很多经验。

尤其值得注意的是印度发展回转窑工艺的经验,现印度回转窑年产DRI数百万吨,有世界回转窑产量最大的Jindal公司年产147万吨。

而且正研发使用该国产的较贫铁矿和髙灰分煤,在回转窑生产优质DRI的新技术。

近年兴起的转底炉工艺,已引起国内业界的关注,不仅纷纷自行开发,而且有的也试图从国外引进。

直接还原铁隧道窑生产工艺介绍

直接还原铁隧道窑生产工艺介绍

直接还原铁隧道窑生产工艺介绍还原铁工艺根据使用还原剂的不同,可分为两大类:使用气体还原剂的气基直接还原法和使用固体还原剂的煤基直接还原法。

气基直接还原法,主要分布在中东、南美等天然气资源丰富的地区,这些地区以电炉短流程为主的钢铁工业也得到迅猛发展。

代表工艺为Midrex竖炉法、HYL、反应罐法和流态化法。

煤基直接还原法,主要分布在南非、印度、新西兰等地,天然气资源有限,但有优质的铁矿资源和丰富的煤炭资源。

代表工艺有SL-RN法和Krupp法。

我国从能源储量和合理利用考虑,还不能为冶金工业生产提供足够的天然气,即使有气可用,成本也太高,生产一吨海绵铁,若用天然气要400-500m3,天然气部分的成本就占600-750元;若用煤气,要1600m3,煤气成本1600元。

因此气基直接还原无法考虑。

目前在我国使用的工艺有隧道窑工艺、回转窑工艺和倒焰窑工艺三种,均为煤基还原法。

倒焰窑在我国发展较早,其特点有:投资少、上马快、成本低、规模灵活、操作简单、对原料要求低,但其产品质量差且不稳定,生产效率低、能耗高、劳动强度大、操作环境差、环境污染严重、装备水平落后、全人工操作,无机械化可言,但因其投资少还有一些小型企业在使用。

但国家不提倡使用。

回转窑工艺的特点:机械化程度较高、劳动强度较低,但也存在着产品成本高、投资大、易于发生结圈故障、产品质量不高、产品分化率高、对原料及还原剂要求苛刻、生产效率较低、热效率低、填充系数低等缺点,在国内有几家使用过,但均不太成功。

另在我国也有一些科研单位进行过其他工艺的试验与研究,但均未取得有效进展。

隧道窑工艺具有工艺成熟可靠、投资少、见效快、成本低、产品品位高且稳定、操作简单、设备运行稳定、能耗低、对原料的要求不苛刻、规模灵活、填充系数高(一般在30%以上)等优点。

但过去也存在着劳动强度大、机械化程度较低的缺点,在我国有十几家海绵铁厂在使用,属成熟可靠使用最多的工艺。

针对各种工艺的优缺点,结合实际情况,本项目拟采用全自动化隧道窑生产工艺(见工艺流程图)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神户制钢煤基直接还原铁生产工艺(下)
2009-11-11 09:14:55 作者:TNCSTEEL 来源:TNC数据库
2.3 熔化试验结果
2.3.1熔化试验设备概要及工艺流程
图4 熔化试验设备概要
熔化试验设备如图4所示。

试验设备由生产原料铁水的低频熔化炉、熔化炉本体以及烟气处理设备构成。

熔化炉具有圆柱形固定式炉出铁口:钻孔;直径:2m;高:2.6m;产能:1.3万t铁水/a。

2.3.2固定式熔化炉的基本设想和技术开发课题
该试验设备采用固定式熔化炉,基本设想如下所述。

熔化炉如果采用倾动式,出铁时必须中止吹炼,倾动炉体,出铁后,向相反一侧倾动炉体,排出炉渣。

这样,就会出现吹炼中止从而降低生产率,而且炉内温度也会下降。

而采用固定式炉,出铁时不需倾动炉体,继续吹氧和熔化直接还原铁,可定时排出铁水和熔渣,出铁渣时只是带出铁渣显热,炉内温度没有下降,而且生产率也基本没有降低,可以连续作业。

如将RHF生产的还原铁高温状态装入炉内,则可进一步提高生产率。

2.3.3熔化试验条件及操作参数
熔化试验为一周几次的间歇运转,将低频炉约1450℃的原料铁水(6t)装入熔化炉后,开始第一次吹炼。

吹氧使铁水中碳燃烧,充分运用炉内二次燃烧升温,铁水温度达到规定值后,从中间出铁口排出约2t 的铁水和熔渣。

然后,在残留铁水(约4t)和少量渣的状态,反复多次进行还原铁(DRI)熔化和出铁渣操作,试验结束时从残铁排出口排出铁渣。

本试验所用的原料铁水成分和DRI成分分别示于表4和表5。

装入熔化炉的碳材使用钢铁厂产生的小粒焦粉(固定[C]=85%)。

表4 原料铁水主要成分 %
表5 直接还原铁(DRI)主要化学成分%
2.3.4熔化试验结果
(1)吹炼中铁水温度、[C]的变化
将原料铁水装入炉内时,铁水温度大约降到1350℃,但第一次吹炼升温到1500℃左右出铁。

第二次吹炼后,铁水温度基本保持不变,反复进行直接还原铁的熔化和出铁渣作业。

吹炼中控制炉渣的形成,[C]含量基本保持在饱和状态。

(2)直接还原铁和碳材的装入速度
本试验使用的是金属化率约85%的DRI。

第二次吹炼到一半后提高DRI的装入速度,第三次提高到2 t/h。

随着稳定地熔化还原铁,在第二次出铁渣时,不中断吹炼,继续吹氧、装入还原铁和碳材。

另外,碳材应根据吹氧速度增减,稳定吹炼时基本保持在一定值。

(3)连续吹炼和连续作业
当初,在出铁时中断吹氧和装入还原铁、碳材,进行出铁渣作业。

这样到下一次吹炼的准备和初始条件的设定需要20-30min。

因此,进行了出铁中继续吹氧和装入DRI、碳材的连续吹炼试验,对稳定条件进行了确认。

熔化还原铁,生成一定量的铁水和炉渣后,反复进行出铁渣作业,获得了固定式炉连续作业的有益经验。

为了连续作业,在稳定吹炼的同时,应顺畅地排出炉渣。

另外,出铁中,应针对液面高度的变化调整氧气流量、DRI装入速度等。

2.3.5熔化试验结果分析
冶炼铁水所需的碳材包括RHF含碳材和熔化炉装入的碳材。

长时间吹炼后,熔化大量冷DRI的碳材单耗归纳为表6。

表6 碳耗和氧单耗
热DRI,50万t/a级熔化炉总碳材单耗预测如表7所示。

表7 热DRI,50万t/a级熔化炉总碳材单耗预测
如果将RHF含碳材实际值加上吹炼中装入碳材的单耗,总碳耗为1008kg/t铁。

以该结果为基础,进行了工业化碳材单耗的预测。

如将高温状态的DRI装入熔化炉,就可以利用其显热,预计碳单耗为798kg/ t铁。

另外,如果扩大到年产50万t级熔化炉的规模,预计碳单耗为707kg/t铁,将RHF和熔化炉组合工艺的碳单耗目标定在约700kg/t铁。

这次的验证试验使用的是小粒焦粉,工业化时考虑使用合适的煤。

3 将来煤基熔化工艺的开展
FASTMELT工艺的特点是RHF+熔化炉组合。

在这次中试厂的试验中,在RHF确认了铁矿石之外的各种粉尘的造粒、还原处理技术。

除此之外,还获得了高挥发分煤和高结晶水矿石处理技术,并确认了加快熔化炉熔化还原铁的速度,连续吹炼等固定式熔化炉的基本设想。

FASTMELT法还原铁的还原率高,直接使用RHF生产的高温还原铁,有望提高熔化炉的生产率。

但是,从中试厂到大型工业炉还须对设备和操作进行进一步确认,今后将进入研发工业生产设备的阶段,例如,开发连续运转的10万t/a级中试厂。

4 结语
在RHF进行了铁矿石、钢铁厂粉尘、高挥发分煤等原燃料的造粒、还原处理,获得更多的关于使用廉价原燃料方面的知识。

将RHF和固定式熔化炉组合,掌握了各种品位直接还原铁的熔化特性,确认了固定式熔化炉连续作业的基本状况。

将来通过应用该项技术,有望研发出使用廉价原燃料的铁水生产工艺。

相关文档
最新文档