第5课时 全等三角形的判定AAS

合集下载

三角形全等的判定ASA-AAS及尺规作图五种基本作

三角形全等的判定ASA-AAS及尺规作图五种基本作

以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。

三角形的判定AAS

三角形的判定AAS
答:全等,根据AAS
2.两个直角三角形中,有一条直角边和一锐角对应相等,这 两个直角三角形全等吗?为什么?
答:全等,根据AAS
已知:如图, ABC≌△A′B′C′,AD、 例2 :已知:如图,△ABC≌△A′B′C′,AD、A′D′ 分别是△ABC和 A′B′C′的高 的高. 分别是△ABC和△A′B′C′的高. 求证: 求证:AD = A′D′ A 证明: ABC≌△ 证明:∵ △ABC≌△A′B′C′ A′C′, ∠C′(?) ∴AC = A′C′,∠C = ∠C′(?) ∵AD⊥BC, ∵AD⊥BC,A′D′⊥B′C′ 90° ∴∠ADC = ∠A′D′C′= 90° 在△ADC和△A′D′C′中 ADC和 A′D′C′中 ∠ADC = ∠A′D′C′ ∠C = ∠C′ AC = A′C′ B D A′ C
边边边公理 三边对应相等的两个三角形全等.
简记为“边边边”或“SSS”
边角边公理 有两边和它们的夹角对应相等的两
个三角形全等. 简记为“边角边”或“SAS”
角边角公理 有两角和它们的夹边对应相等的两
个三角形全等. 简记为“角边角”或“ASA”
探究6
在△ ABC和△ DEF中, ∠ A= ∠ D, ∠ B= ∠ E,BC=EF, △ABC与△DEF全等吗?能利用角边角证明你的结论吗? 证明:∵ ∠ A= ∠ D, ∠ B= ∠ E A ∴ 1800-∠ A -∠ B 即∠ C= ∠ F =1800-∠ D- ∠ E
例如:
已知如图,∠1 = ∠2,∠C = ∠D 已知如图, , 求证: 求证:AC = AD
证明:在△ABC和△ABD中 ∠1 = ∠2 ∠C = ∠D AB = AB D
Aபைடு நூலகம்
2 1

全等三角形判定(ASA和AAS)

全等三角形判定(ASA和AAS)
A∠BB∥=D∠EE (ASA)
D
或∠A=∠D (AAS)
E
或 AC=DF (SAS)
知识梳理: 三角形全等判定方法3
有两角和它们夹边对应相等的两个三角形全
等(可以简写成“角边角”或“ASA”)。
用符号语言表达为:
在△ABC和△DEF中
A
D
∠A=∠D (已知 )
AB=DE(已知 )
∠B=∠E(已知 )
A_B_=_A__’__C_ ( 已知 )
∠_B__=_∠__C__ ( 已知 )
∴△A_B_E__≌△A_’__C_D( ASA)
B
ED C
考考你
1、如图:已知AB∥DE,AC∥DF, BE=CF。求证:△ABC≌△DEF。
AD B EC F
证明:∵ BE=CF(已知)
∴BC=EF(等式性质)
∵ AB∥DE AC∥DF (已知)
∵∠1= ∴∠1+ 即∠BAC=
∠DAE 在△ABC和△ADC 中
C=E(已知) BAC=DAE(已证


△ABC≌△ADE (AAS)
AB=AD(已知)
5、在△ABC中,AB=AC,
A
AD是边∠BBACC上的的角中平线分,线证。明: ∠求B证A:D=BD∠C=ACDD
B
DC
证明:∵AD是B∠CB边AC上的的角中平线分线(已知)
C
F
A
BD
E
例1 、如图 ,AB=AC,∠B=∠C,那么△ABE和 △ACD全等吗?为什么?
A 证明: 在△ABE与△ACD中
D
E
∠B=∠C (已知) AB=AC (已知)
∠A= ∠A (公共角)
B

初二数学三角形讲义 第5讲 三角形的判定(含解析)

初二数学三角形讲义   第5讲 三角形的判定(含解析)

三角形的判定大题知识点1、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:例题精讲---sss例1.如图,,,求证:.例2.如图,AB = DE,AC = DF,BE = CF. 求证:AB∥DE.对应练习3.如图CE=CB,CD=CA,DE=AB,求证:∠DCA=∠ECB4.已知:如图A、F、B、D四点在同一直线上,且AC=DE,CB=EF,AF=DB.求证:∠A=∠D.例题精讲---ASA例1:.如图,已知:AD是BC上的中线,BE∥CF.求证:DF=DE.对应练习7.如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.例题精讲--AAS例1.如图,在△ABC中,,,,垂足为,,垂足为.求证:.例2 .如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F. 求证:DF=EF.对应练习10:.如图已知:如图,DE⊥AC于点E,BF⊥AC于点F,CD∥AB,AB=CD。

求证:△ABF≌△CDE。

11.已知:如图,∠ABC=90°,AB=BC,CE⊥BE,AD⊥BE,求证:△ABD≌△BCE.例题精讲-SAS例1.如图,已知AC=AD,∠CAB=∠DAB,求证:∠C=∠D。

例2.如图,点B,E,F,C在一条直线上,AB=DC,BE=CF,∠B=∠C.求证:∠A=∠D。

对应练习13.如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.例题精讲--HL14.如图,,,,垂足分别为, ,.求证:.15.如图,AB⊥BD,AC⊥CD,垂足分别为点B、C,AB=CD。

三角形全等的判定定理aas

三角形全等的判定定理aas

三角形全等的判定定理aas全文共四篇示例,供读者参考第一篇示例:三角形是几何学中的基本概念,它由三条边和三个夹角构成。

在三角形的研究中,全等三角形是一个非常重要的概念。

全等三角形是指具有相同形状和大小的三角形,它们的边长和夹角都完全相同。

在证明两个三角形全等时,我们可以利用多种方法,其中之一就是AAS定理。

AAS定理是指如果两个三角形的两组对应边和一个对应角相等,则这两个三角形是全等的。

在AAS定理中,A代表Angle(角度),A代表Angle(角度),S代表Side(边)。

换句话说,如果两个三角形的一个角和两边在另一个角处分别相等,则这两个三角形是全等的。

现在让我们来详细探讨一下AAS定理的证明过程。

假设有两个三角形ABC和DEF,它们有相等的角A和D,相等的边AB和DE,以及相等的边AC和DF。

我们要证明三角形ABC和DEF是全等的。

根据AAS定理,我们知道角A和角D相等。

根据给定的信息,我们知道边AB和DE相等,以及边AC和DF相等。

然后,我们可以利用边对应的性质来得出边BC和EF也相等。

因为两个三角形的三对边都相等,我们可以得出这两个三角形是全等的。

通过AAS定理,我们可以简单且明确地证明两个三角形是全等的。

AAS定理的证明过程不仅简单,而且逻辑严密,使我们能够准确地判断两个三角形是否全等。

除了AAS定理,我们还可以利用其他方法来判定三角形的全等性,比如SSS定理、SAS定理等。

每种方法都有其独特的特点和适用范围,我们可以根据具体的情况选择合适的方法来证明三角形的全等性。

AAS定理是三角形全等的一个重要判定定理,它在几何学中有着广泛的应用。

通过AAS定理,我们可以简单地证明两个三角形是全等的,从而推广到更复杂的几何问题中。

希望通过本文对AAS定理的介绍,读者能够更深入地理解全等三角形的相关概念,并在几何学的学习和研究中有所帮助。

第二篇示例:三角形全等的判定定理aas,即根据三角形的两个角和两个对应边的长度相等来判断是否两个三角形全等。

12_2三角形全等的判定(第5课时)

12_2三角形全等的判定(第5课时)

教 学 设 计 二次备课一、知识梳理问题1 请同学们回答以下问题:(1)判定两个三角形全等的方法有哪些?(2)判定两个直角三角形全等的方法有哪些?(3)在三角形全等的判定方法中,至少要几个条件?二、证题思路建构问题2 已知:如图,(1)当AB =DC 时, 再添一个条件证明△ABC ≌△DCB , 这个条件能够是 .(2)当∠A =∠D 时, 再添一个条件证明△ABC ≌ △DCB ,这个条件能够是 .分析在△ABC 和△DCB 中,已经具备了什么条件?(1)若要以“SAS ”为依据,还缺条件 ____;(2)若要以“ASA ”为依据,还缺条件____;(3)若要以“AAS ”为依据,还缺条件____;(4)若要以“SSS ”为依据,还缺条件____.三、证明两个三角形全等的基本思路(1)已知两边;(2)已知一边一角;(3)已知两角.四、典型例题例1 已知:如图,(1)若AB =DC ,∠A =∠D ,你能证明哪两个三角形全等?(2)若AB =DC ,∠A =∠D =90°,你能证明哪两个三 角形全等?五、展开变式,实行探究 AB CD EABC D E变式1 已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线,求证:AB = DC . 变式2 已知:如图,AB =DC ,AC =DB .求证:EA =ED . 变式3 已知:如图,AB =DC ,AC =BD .求证:EA =ED . 变式4 如图,延长BA 、CD 交于点P :(1)若PA =PD ,PB =PC .求证:BE =CE ;(2)若PA =PD ,∠B =∠C .求证: BE =CE ;(3)若PA =PD ,∠BAC =∠BDC .求证: BE =CE .六、证两三角形全等的方法(1)先确定要证哪两个三角形全等;(2)在图中标出相等的边和角(公共边、公共角以及 对顶角都是隐含条件);(3)分析已知条件,欠缺条件,选择判断方法.七、布置作业A B C DEA B CDE PD。

三角形全等的判定——AAS教学设计

三角形全等的判定——AAS教学设计

三角形全等的判定——AAS教学设计教学设计:三角形全等的判定,AAS一、教学目标:1.知识与技能目标:a.了解三角形全等的判定条件之一,AAS(两角对应相等,且一边对应相等);b.掌握使用AAS进行三角形全等判定的方法;c.能够运用AAS判定条件,解决实际问题;2.过程与方法目标:a.引导学生观察、发现并总结AAS判定全等的规律;b.能够解答关于AAS的相关问题、完成相关练习;c.引导学生通过对比、组合进行归纳总结。

二、教学重点与难点:教学重点:AAS判定全等的理论与方法。

教学难点:如何运用AAS判定条件进行证明。

三、教学过程:1.导入(5分钟):a.引入本节课的主题:三角形全等的判定,AAS;b.展示两个全等的三角形,让学生观察并找出它们的相同之处;c.引导学生思考:这两个三角形有哪些角是相等的?有哪些边是相等的?2.观察与总结(15分钟):a.展示多个已知全等的三角形,引导学生观察这些三角形之间的共同特征;b.引导学生自主探索,通过对比找到AAS判定全等的规律;c.学生个体或小组讨论,总结AAS判定三角形全等的条件;d.学生报告、老师点评,确保学生对AAS的判定条件有正确的理解。

3.示例与分析(15分钟):a.给学生展示两个需要判定全等的三角形,同时给出两个已知的条件;b.引导学生运用AAS条件判断这两个三角形是否全等;c.学生个体或小组讨论,解答问题并给出说明;d.老师点评、纠正错误,确保学生能正确使用AAS进行判定。

4.练习与巩固(15分钟):a.学生进行练习,使用AAS判定条件判断给出的三组三角形是否全等;b.学生个体或小组讨论,解答问题并给出说明;c.老师点评、纠正错误,帮助学生更好地理解与应用。

5.拓展与应用(15分钟):a.学生进行拓展性练习,解答更复杂的问题,例如:给定一个已知条件,判断是否可以通过AAS条件得出全等;b.学生展示解题方法与结果,进行讨论与总结;c.老师点评、总结掌握,帮助学生理解并灵活应用。

第5课时全等三角形判定角边角,角角边练习

第5课时全等三角形判定角边角,角角边练习

全等三角形(三)AAS和ASA【知识要点】1.角边角定理(ASA):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例1.如图,AB∥CD,AE=CF,求证:AB=CD例2.如图,已知:AD=AE,ABE∠,求证:ACD∠=例3.如图,已知:ABD∠∠.,求证:=∠=DBACC∠例4.如图已知:AB=CD,AD=BC,O是BD中点,过O点的直线分别交DA和BC的延长线于E,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( )①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''='③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个 4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠B. AB=CDC . AM=CN D. AM ∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。

三角形全等的判定定理aas_概述及解释说明

三角形全等的判定定理aas_概述及解释说明

三角形全等的判定定理aas 概述及解释说明1. 引言1.1 概述本文将详细介绍三角形全等的判定定理AAS,即“两角一边对应相等”的判定条件。

通过这个定理,我们可以判断两个三角形是否全等,从而更准确地解决有关三角形的各种问题。

了解和掌握AAS判定定理对于学习几何学以及解题非常重要。

1.2 文章结构本文将分为五个主要部分进行介绍。

首先是引言部分,概述本文的内容和目的。

接下来是正文部分,主要包括AAS判定定理的介绍、标准条件以及应用举例;同时还会解释全等三角形与相似三角形之间的关系,并与其他判定定理进行比较。

然后,我们将详细阐述使用AAS判定定理解决问题的步骤,并分析注意事项和常见错误。

最后一部分是结论,总结AAS判定定理的重要性,并展望未来进一步研究和应用该定理可能带来的益处。

1.3 目的本文的目标是使读者充分了解并掌握AAS判定定理,具备应用该定理解决实际问题的能力,并能够正确理解全等三角形和相似三角形之间的关系。

通过本文的阐述,读者将能够正确运用AAS判定定理进行几何推理,并且在解题过程中避免常见错误。

希望通过这篇文章的学习,读者对几何学有更深入的认识,并展望将来可能在该领域进行更深入的研究和应用。

请确认是否满意2. 三角形全等的判定定理AAS:2.1 定理介绍:三角形全等的判定定理AAS(Angle-Angle-Side)是几何学中用来判定两个三角形是否全等的一个重要定理。

根据AAS定理,如果两个三角形的两个角分别相等,并且它们对应的边长度也相等,则可以得出这两个三角形全等的结论。

2.2 AAS标准条件:根据AAS定理,两个三角形ABC和DEF是全等的,需要满足以下条件:- 两个三角形的某一条边AB和DE相等。

- 两个三角形的某一条边AC和DF相等。

- 两个三角形的某一个夹角∠BAC和∠EDF相等。

只有同时满足这些条件时,才能确定这两个三角形是全等的。

2.3 应用举例:为了更好地理解AAS判定定理,现举例说明其应用场景。

全等三角形的判定(AAS和ASA)

全等三角形的判定(AAS和ASA)

全等三角形的判定【知识梳理】1、三角形全等的条件(三):两角和它们的夹边对应相等的两个三角形全等。

2、三角形全等的条件(四):两个角和其中一个角的对边对应相等的两个三角形全等。

3、三个角对应相等的情形:三个角对应相等的两个三角形不一定全等。

4、三角形全等的条件的选用:要根据具体情况和题设条件确定,其基本思路见下表:已知条件可选择的判定方法一边一角对应相等SAS、AAS、ASA两角对应相等ASA、AAS两边对应相等SAS、SSS【例题精讲】【例1】如图⑴,AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由。

若将过O点的直线旋转至图⑵、⑶的情况时,其他条件不变,那么图⑴中∠1与∠2的关系还成立吗?【变式1-1】如图,在△ABC中,AB⊥BC,AB=BC,D为AC上一点,AE⊥BE交BD的延长线于E,BE⊥CF 于F,求证:EF=CF-AE。

【变式1-2】如图,AD∥BC,AB∥DC,MN=PQ,求证:DE=BE。

【变式1-3】如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E。

求证:BD=2CE。

【变式1-4】如图①所示,OP是∠MON的平分线,请利用该图形画一对以OP所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:⑴如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。

请你判断并写出FE与FD之间的数量关系;⑵如图③,在△ABC中,如果∠ACB不是直角,而⑴中的其他条件不变,请在⑴中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

【变式1-5】线段AC与BD相交于点O,连结AB、DC,E为OB的中点,F为OC的中点,连结EF(如图所示)。

⑴添加条件∠A=∠D,∠OEF=∠OFE。

5全等三角形的判定(SAS,ASA)

5全等三角形的判定(SAS,ASA)
第10题
第8题
11.已知如图,AE=AC,AB=AD,∠EAB=∠CAD,试说明:∠B=∠D
12.已知:如图,AB=DC ,AD=BC , O是BD中点,过O的直线分别与DA、BC的延长线交于E、F.
求证:OE=OF
二.拓展提高
13.如图,线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,说明∠A=∠C.
【变式】已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.
【随堂测试】
1、(2014•陕西)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F,求证:AB=BF.
2、(2014•内江)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.
C.只能证明△AOB≌△COB
D.能证明△AOB≌△COD和△AOD≌△COB
2.已知△ABC的六个元素,下面甲、乙、丙三个三角形中和△ABC全等的图形是( )
A.甲和乙B.乙和丙C.只有乙D.只有丙
3.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( )
A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN
知识点二:全等三角形的判定(ASA)
全等三角形判定3——“角边角”
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
注:如图,如果∠A=∠ ,AB= ,∠B=∠ ,则△ABC≌△ .
【例2.1】已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.
D.一个锐角和锐角所对的直角边对应相等

全等三角形的判定AAS(一)

全等三角形的判定AAS(一)

全等三角形的判定AAS(一)引言概述:全等三角形是指具有完全相同的形状和大小的两个三角形。

判定全等三角形可以通过多种方法,其中之一是利用AAS(角-角-边)的判定方法。

在本文中,我们将深入探讨AAS判定法,并介绍如何利用该方法判断两个三角形是否全等。

正文:1. 角-角-边(AAS)判定法- AAS判定法是一种基于三个已知条件的判定方法,它包括两个角度和夹角所对的边长。

- 两个三角形具有相等的两个角度和它们之间的边长,即两个角度和一个夹角边相等时,可以判定两个三角形全等。

2. AAS判定法的应用举例- 给定两个三角形ABC和DEF,已知∠A = ∠D,∠B = ∠E,以及边AC = DE。

- 利用AAS判定法,可以确定是否可以判定三角形ABC和DEF全等。

- 通过比较两个三角形的对应边长和对应角度,可以得出结论。

3. AAS判定法的正确性证明- 通过假设两个三角形具有相等的两个角度和夹角边长,利用三角形的性质和几何定理进行推导和证明。

- 采用反证法或其他几何推理方法,最终得出结论,证明AAS判定法的正确性。

4. AAS判定法的注意事项- 在应用AAS判定法时,需确保给定的两个角度与夹角边长满足相等关系,否则无法判定三角形全等。

- 应通过几何推理和计算方法验证所得出的结论,避免出现错判情况。

5. AAS判定法的实际应用- AAS判定法是几何学中经常应用的方法之一,可以用于解决实际生活和工程问题。

- 例如,在测量和建模领域,利用AAS判定法可以判断两个相似物体的尺寸和比例关系。

总结:通过本文的介绍,我们了解了AAS(角-角-边)判定法在判定全等三角形中的应用。

我们了解了AAS判定法的基本原理和正确性证明,并了解了其在实际应用中的一些注意事项。

通过灵活运用AAS判定法,我们可以准确地判定两个三角形是否全等,从而拓展和应用到更广泛的领域中。

14-2 三角形全等的判定第5课时 22—23沪科版数学八年级上册

14-2 三角形全等的判定第5课时  22—23沪科版数学八年级上册

创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
斜边和一条直角边分别相等的两个直角三角形全等.简记 为“斜边、直角边”或“HL”.
几何语言:
如图,在Rt△ABC与Rt△A'B'C'中:
A
A′
AB=A'B',
BC=B'C',
∴Rt△ABC≌Rt△A'B'C'(HL).
B
C B′
C′
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
抢答
1.在Rt△ABC与Rt△A'B'C'中,∠C=∠C'=90°,有如下几个条件:
①AC=A'C',∠A=∠A';②AC=A'C',AB=A'B';③AC=A'C',BC=B'C';
ASA
HL
SAS
④AB=A'B',∠A=∠A';其中能判定Rt△ABC与Rt△A'B'C'的条件的
AAS
个数为( D )
A.1
B.2
C.3
D.4
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
2.已知:如图,AC⊥BD于点O,且OA=OC,AB=CD.
求证:AB∥CD.
D
证明:∵AC⊥BD于点O,(已知)
∴∠DOC=∠BOA=90°. 又∵OA
教科书第109页练习题 第2、3题
再见
∴Rt△DOC ≌ Rt△BOA.(HL)

八年级数学上册《全等三角形的判定AAS》教案、教学设计

八年级数学上册《全等三角形的判定AAS》教案、教学设计
2.详细讲解AAS判定方法的原理,即两个角和它们之间夹边相等,则两个三角形全等。
3.结合教材中的例题,逐步引导学生掌握AAS判定方法的步骤,如:先确定两个角相等,再找到它们之间的夹边,最后判断另一个角是否相等。
4.强调在运用AAS判定方法时,要注意元素的对应关系,避免出现错误。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。然后给出几个具有挑战性的问题,让学生在小组内进行讨论,共同解决问题。
3.教学评价:
-采用多元化的评价方式,包括课堂问答、小组讨论、课后作业和阶段测试,全面评估学生的学习效果;
-关注学生的学习过程,鼓励学生自我评价和同伴评价,培养学生的自我监控和反思能力;
-根据学生的个体差异,提供个性化的反馈和指导,帮助学生克服困难,提高学习效果。
4.教学资源:
-利用多媒体教学资源,如几何画板、教学视频等,丰富教学内容,提高学生的学习兴趣;
针对以上学情,本章节教学设计将注重分层教学,关注学生的个体差异,通过多样化的教学手段和丰富的教学活动,提高学生对全等三角形判时,关注学生的情感需求,营造宽松、和谐的学习氛围,使学生在愉快的氛围中学习数学。
三、教学重难点和教学设想
(一)教学重难点
2.提高题:给出一个复杂的几何图形,要求学生找到符合AAS判定条件的两个全等三角形。
3.应用题:运用全等三角形的性质解决实际问题,如计算图形的面积、求线段长度等。
(五)总结归纳
在总结归纳环节,我会引导学生回顾本节课所学内容,总结全等三角形的判定方法,特别是AAS判定方法的原理和步骤。
1.让学生用自己的语言概括AAS判定方法的要点,加深理解。
1.教学重点:
-掌握AAS判定全等三角形的方法;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5课时 全等三角形的判定(AAS )
【学习目标】
1.知道“角角边”内容.
2.利用“AAS ”证明全等,为证明线段相等和角相等创造条件. 知识导读
1.在“角边角”中,边是两个角的夹边,如果边是其中一个角的对边,那么这两个三角形还全等吗?
画一画:先任意画一个△ABC ,再画一个△A 1B 1C 1,使∠A 1=∠A ,∠B 1=∠B ,B 1C 1=BC ,把你画好的△A 1B 1C 1剪下,放到△ABC 上,它们全等吗?
结论: 全等. (简称“角角边”或“AAS ”) 几何语言:
2.如图,已知∠ADB=∠ADC ,由AAS 判定△ABD ≌△ACD , 还需添加的一个条件是____________.(说说你是怎么想的) 练习
1.如果∠B=∠C ,AD 平分∠BAC ,证明:△ABD ≌△ACD
2.如图:在△ABC ,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F , 利用学过的知识你能证明几对三角形全等?选一对全等加以证明.
C F
E
B
D
A
D
C
当堂检测
1.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是 ( )
A .甲和乙 B.乙和丙 C.只有乙 D.只有丙
2.如图,AB ⊥BC ,AD ⊥DC ,∠BAC =∠CAD 求证:AB=AD .
3.如图:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足为C ,D 。

求证:(1)OC=OD ,(2)DF=CF
O
F
E
D
C
B
A。

相关文档
最新文档