T3-3.2-20

合集下载

3.2 甲状腺激素的分级调节和激素调节的特点(第2课时)(原卷版)-2024-2025学年高二生物同

3.2 甲状腺激素的分级调节和激素调节的特点(第2课时)(原卷版)-2024-2025学年高二生物同

3.2 甲状腺激素的分级调节和激素调节的特点(第2课时)1.下列关于人体内激素调节的说法正确的是()A.人体细胞中各种激素的合成都需要核糖体直接参与B.人体内的各种激素运输到细胞外的方式都是胞吐C.人体内的激素都需要通过血液定向运输到靶器官D.人体内的激素都不具有催化作用,也不能为代谢提供能量2.孕激素是由卵巢黄体分泌的一种类固醇激素,又称孕酮,是人体维持妊娠过程必要的一种激素,在体温、免疫、水盐平衡的调节方面都有作用。

下列有关说法正确的是()A.孕激素是类固醇激素,所以可以作用于体内所有组织细胞B.孕激素和雌激素本质相同,故作用也相同C.孕激素通过与细胞膜表面的受体结合发挥作用D.可通过对血液中孕激素含量的检测,反映孕妇的妊娠进程3.下列关于胰岛素、甲状腺激素作用特点的叙述,错误的是()A.需借助体液运输B.发挥作用后立即失活C.作用于特定的细胞、器官D.在代谢时发挥催化作用4.褪黑素是哺乳动物和人类的松果体产生的一种内源激素。

随着日照周期变化,褪黑素白天分泌减少,晚上分泌增多。

在淋巴细胞中含有褪黑素的特异性受体。

研究发现,切除雌鼠的松果体会引起卵巢增生肥大,注射褪黑素会导致卵巢重量减轻。

下列说法错误的是()A.致盲小鼠松果体内,与褪黑素合成有关酶的活性明显高于正常小鼠B.褪黑素可能作用于下丘脑,使垂体分泌促性腺激素减少,抑制卵巢的发育C.某人长期熬夜玩电脑扰乱了生物钟,这可能与光线刺激引起褪黑素分泌减少相关D.熬夜可能影响褪黑素的分泌,从而影响淋巴细胞的作用,导致人体免疫力升高5.小鼠甲状腺的内分泌机能受机体内、外环境因素影响,部分调节机理如图所示。

下列叙述错误的是()A.TH分泌的调节依赖下丘脑—垂体—甲状腺轴B.在外环境因素刺激下TRH分泌增多属于神经调节C.长期缺乏碘会导致血浆中TRH和TSH的浓度下降D.血浆TH升高到一定浓度时对垂体的抑制作用增强6.以下是细胞间信息交流的三种形式,下列叙述不正确的是()A.激素调节过程中,信息交流方式与图甲所示相同B.精子和卵细胞受精时要发生图乙所示的信息交流方式C.靶细胞都要依赖膜表面上的受体与信号分子结合,从而接受信息D.图丙中的植物细胞可以通过胞间连丝交流信息和交换物质7.肝脏是哺乳动物合成胆固醇的主要场所,餐后胆固醇的合成量会增加,其调节机制如图,图中mTORC1、AMPK、USP20、HMGCR均为调节代谢过程的酶,HMGCR是胆固醇合成的关键酶,mTORC1能促进USP20磷酸化,USP20磷酸化后使HMGCR稳定发挥催化作用。

PPR管配件名称型号规格

PPR管配件名称型号规格

PPR管及管件一.应用领域1、建筑物的冷热水系统,包括集中供热系统;2、建筑物内的采暖系统、包括地板、壁板及辐射采暖系统;3、可直接饮用的纯净水供水系统;4、中央(集中)空调系统;5、输送或排放化学介质等工业用管道系统。

6、用于气缸传送的气路等管道系统。

二.规格常见的是PPR PN20意思是PPR材质外径是20MM的管子(即四分管)!而PPR PN25意思是PPR材质外径是25MM(即6分管)PPR PN32意思是PPR材质外径是32MM(即一寸管)三.优点1、质量轻2、耐热性能好3、耐腐蚀性能4、导热性低5、管道阻力小6、管道连接牢固7、卫生、无毒四。

单位表示;MPa 是压强单位:兆帕斯卡,简称:兆帕PPR管系列S:其中:dn——PPR公称外径,单位为mm ,en ——PPR 公称壁厚,单位为mm 一般常用的PP-R 管规格有5、4、3.2、2.5、2五个系列 。

举例来讲:PPR 管dn25*en2.3 S5 1.25Mpa 表示的是:PPR 管外径25mm ,管壁厚2.3mm ,属于S5级系列管材,在常温下承受压力12.5公斤PPR 管规格S5系列--------------1.25兆帕(12.5公斤)PPR 管规格S4系列--------------1.6兆帕(16公斤)PPR 管规格S3.2系列------------2.0兆帕(20公斤)PPR 管规格S2系列--------------2.5兆帕(25公斤)PP-R 管件,采用优质原料注塑而成,产品各项性能均达到或超过国家标准GB/T18742的规定指标。

还具有以下特有的设计和工艺优势:产品名称 型号规格说明等径直通 S20两端接相同规格的PP-R 管。

例: S20表示两端均接20PP-R 管。

S25S32异径直通 S25*20 两端接不同规格的PP-R 管。

例:S25*20表示一端接25PP-R 管,另一端接20PP-R 管。

S32*20 S32*25堵头D20用于相关规格PP-R 管的封堵。

T3-3.3-18

T3-3.3-18

RESEARCH ON SOLAR HIGH-TEMPERATURE ABSORPTION AIR-CONDITIONING SYSTEMSGuoqing Yu, Jinhua Tang, Zhijun ZouDepartment of Building Environment and Equipment EngineeringUniversity of Shanghai for Science and TechnologyShanghai 200093, Chinaguoqing.yu@ABSTRACTThis paper studies the characteristics and performance of solar higher-temperature absorption air conditioning systems which employed linear concentrating collectors and double-effect absorption chillers. A solar higher-temperature absorption air conditioning system was designed for a small house. Hourly simulations during a cooling season have been conducted using typical meteorological year (TMY) data. Simulation results show that the solar air conditioning system have excellent thermal performance. The linear concentrating collectors can produce hot water of temperature as high as 120-160o C and the COP of the double-effect absorption chillers can reach 1.2-1.4. The system COP during a cooling season can reach 0.426. Meanwhile, the effects of some factors such as climates, volumes of storage tank, areas of collectors on the performance of this solar air conditioning system are also discussed.1. INTRODUCTIONAs the shortage of fossil energy sources and environmental pollution have become the bottleneck of sustainable development of the whole world, utilization of solar energyis one of the important ways to mitigate energy shortage. Solar air conditioning has attracted much attention from scholars and engineers. At present, most solar assisted air conditioning systems employ evacuated tube collectors with outlet temperature of 70-90o C and single-effect absorption or adsorption chillers. The overall system Coefficient of Performance (COP) of solar air conditioning (which is defined as the ratio of refrigerating capacity to solar radiation incident on the collector aperture) is as low as only 0.2-0.25, because of the low COP (typically 0.4-0.7) of the single effect absorption or adsorption chillers [1,2].This paper introduces high-temperature absorption air-conditioning system which employs linear concentrating collectors and double-effect absorption chillers. The chillers of the solar air conditioning systems are driven by high temperature hot water produced by linear concentrating collectors. The driving hot water temperature can get to as high as 120-160o C, and the COP of chillers can reach 1.2-1.4. The expected overall COP of the solar cooling systems is 0.4-0.5.A typical house was selected and a solar high temperature absorption air conditioning system was designed for the house. The capacity of main components of the system was determined too. This paper conducts hourly simulation of the solar air-conditioning system during a typical cooling season. Some factors which affect the performance of the system were also studied.Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement8382. DESIGN OF A SOLAR HIGH TEMPERATURE ADS-ORPTION AIR-CONDITIONING SYSTEM 2.1 The Cooling LoadThe solar high-temperature absorption air-conditioningsystem will be setup for a typical old house in a university campus in Shanghai which will be retrofitted as a model of high energy efficiency. The overall area of this building is 120m 2. There are two windows in the south wall whose area are both 6m 2. We assume 5 people living in the house and the energy input due to light, computer, etc are 2000KJ/hr. The set temperature for cooling is 26o C and it needs air conditioning all day during summer. 2.2 The Main Components of the SystemA solar high-temperature absorption air-conditioning system was designed for the house. The schematic of the solar air conditioning system is shown in Fig. 1. It mainly includes the following components:Fig. 1: Schematic of the solar high-temperature absorptionair-conditioning system. (1) Collectors: n order to get high-tmeperature water, linear parabolic concentrating collectors were employed in the system. The concentration ratio of the collector employed in this system is 25. Total aperture is 60 m 2. The collectors are positioned east-west and oriented to due south. They are rotated around a horizental axis. The efficiency of collectors is formulated as[3]U i a C T bT Q T Ta b A I I Cη−==−. where,a - intercept efficiency which is 0.7 in this case;b - negative of the first-order coefficient of the efficiency curve which is 4.167W/(m 2·o C);T i - inlet fluid temperature to collectors(o C); T a - the ambient temperature(o C); C - concentration ratio;I bT - beam radiation on collector aperture surface (kJ/m 2·h); A c - Collector aperture area (m)The modifiers of incidence angles for solar beam radiation in the simulations are taken into consideration.(2) Chiller: A double-effect absorption chiller is employed in this system and its maximum cooling power is 16kW. A chiller of 10kW is enough for the cooling purpose in this case, but the minimum capcacity available from the market is 16kW.(3) Storage tank: The volume of the tank is 2.0m 3 for the basic case.(4) Auxiliary heater: When the solar power is not enough, a auxiliary heater is required to heat the supply hot water to 120o C if the inlet temperature is less than 120o C. The maximum heating power of the auxiliary heater is 10 kW.3. SIMULATION OF THE BASIC CASEI n order to study the characteristics and performance ofsolar higher-temperature absorption air conditioning systems ,hourly simulations are conducted on the basic case described in the above section. The hourly data during the cooling season of typical meteorological year (TMY) comes from [4].3.1 Overview of ResultsSome overall indice of performance during a whole cooling season are obtained by simulations. The collector average efficiency is 37.5%, the system COP is as high as 0.426 . This is because the driving hot water’s temperature is so high that the double-effect absorption chillers in this system can obtain high COP which is mainly between 1.1 and 1.4.3 SOLAR COLLECTOR TECHNOLOGI ES AND SYSTEMS 8393.2 Outlet Temperature of Storage Tank and CollectorsThe water temperature out of collectors and storage tank is very important for the normal operating of the solar cooling system. As shown in Fig. 2, in a typical clear summer day the storage tank outlet temperature is between 110o C and 150 o C. In the early morning from 1:00 to 7:00 and in the later afternoon from 18:00 to 24:00 the outlet temperature of collector is lower because of no solar radiation and heat loss to ambient. At time 8:00−17:00, the outlet temperature rises from near ambient temperature to high until the highest (near 150o C) and then drops. There is no great variation of tank water temperature during night due to good insulation and heating from the auxiliary heater.Fig. 2: The hourly outlet temperature of tank and collectors.3.3 Useful Heat Gain from CollectorsThe hourly useful heat obtained from collectors in a typical summer day for the basic case is indicated in Fig. 3. They are higher in middle and lower in two sides. I t is easy to understand.3.4 Collector EfficiencyThe hourly collector efficiency of a typical summer day for this case is shown in Fig. 4.It indicates that in the clear summer day the efficiency of the linear parabolic concentrating collectors is between 50% and 60% during the daytime and it reaches to nearly 60% around noon.It is much higher than the averageFig. 3: The hourly useful heat gain from collectors.Fig. 4 The hourly collector efficiency.collector efficiency (37.5%) during a whole cooling season. Considering the COP of chiller of 1.2-1.4, the system COP in a clear summer day will be 0.6-0.8, which is much higher than the 0.2-0.25 in conventional solar air conditioning systems.4. ANALYSIS AND DISCUSSIONSIn order to find out how factors, such as climates, volumes of storage tank, areas of collectors, affect the performance of thus solar air conditioning systems, some additional simulations have been conducted and some valuable conclusions were obtained.4.1 The Effect of Climatesn this case, only meteorological data was changed to Guangdong and Beijing respectively while all otherProceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement 840parameters are the same as the basic case. The results of simulation are shown in Fig. 5:Fig. 5: The performance in different climates.We can see in Fig. 5, the solar fraction of the system in Beijing is the highest, Shanghai is the second and Guangdong is the third. It is very hot in summer in all of the three cities, so there is no large difference in cooling load in them. The performance difference is mainly due to the fact that the solar radiation source in Beijing is better than that in shanghai and shanghai is better than Guangdong.The system COP of the three cities has the same trend as solar fraction. I n additional to the best solar radiation in Beijing, the highest COP is also due to the dry weather in Beijing which will results in lower condenser water temperature and higher chiller COP.4.2 The Effect of Collector AreasThe effect of collector areas on the performance of this kind of solar higher-temperature absorption air conditioning system is studied here. During the simulation, the collector area is changed from 50m2 to 85m2, the result are shown in Fig. 6.As shown in the Fig.6, the higher the collector area is, the higher the system COP. However it is worth noting that the solar fraction increases slowly after collector area is more than 70m2. The system COP is insensitive to collector area and increases little corresponding to very large collector area variation. Solar fraction is not suitable to be greater than 80% in this case.Fig. 6: Effect of different collector area on the system.4.3 The Effect of Storage Tank V olumesFig. 7 shows the results of simulation about the effect of storage on the performance of this air-conditioning system. From Fig. 7 we can see that the tank volume has little effect on the system COP. Bigger storage tank means lower water temperature and higher collector efficiency but lower chiller COP.Fig. 7: Effect of tank volumes on the system.The solar fraction increases little after the volume is greater than 1.4m3. A tank of 1.4 m3 is enough for this case. For this kind of solar high-temperature absorption air-conditioning system, smaller tank volume is suggested compared to the 40-100L per collector area in solar domestic hot water and space heating systems. This is mainly due to the good match between cooling load and solar radiation.3 SOLAR COLLECTOR TECHNOLOGI ES AND SYSTEMS 8415. CONCLUSIONS(1) The solar high-temperature absorption air-conditioning systems which employs linear concentrating collectors and double-effect absorption chillers have excellent thermal performance. The linear concentrating collectors can produce high temperature water as high as 120-160o C and the COP of the double-effect absorption chillers can reach 1.2-1.4. The system COP can reach 0.4-0.5.(2) The performance of this kind of solar high-temperature absorption air-conditioning systems is affected by weather conditions. I t is best in Beijing, then in Shanghai and Guangzhou.(3) The greater the collector area is, the higher the solar fraction are. However when the area is more than a certain value ( 70m2 for this case), the solar fraction increases little corresponding to much larger collector area.(4) The on the system COP and solar fraction is insensitive to storage tank volumes. Smaller storage volumes than that in solar domestic hot water or space heating systems are suggested for these systems. .6. ACKNOWLEDGEMENTSThe research is financed by Shanghai Education Committee Development Foundation (06EZ005).7. REFERENCES(1)Hans-Martin Henning, 2003. Solar assisted Air-Conditioning in Buildings. SpringerWienNewYork. (2) Ruzhu Wang. 2007. Solar Refrigeration. ChemicalIndustry Press(China).(3) JohnA Duffie, William A.Beckman. 1991. SolarEngineering of Thermal Processes (2nd ed.).New York:Wiley (USA).(4) China Weather Bureau, TsingHua University. 2005.Special databse for building thermal environment inChina. China Architecture & Building Press. (China).。

用友T3操作手册(图文解析)

用友T3操作手册(图文解析)

第一章:建立帐套 (1)1.1进入系统管理界面: (1)1.3开始建账: (3)第二章:增加操作员与权限设置 (7)2.1:增加操作员: (7)2.2权限设置: (9)2.3设置备份和输出:(添加自动备份设置时路径YYBAK) (10)第三章:基础设置 (12)3.4客户供应商档案: (14)3.5新增加会计科目: (16)3.6修改会计科目: (18)3.7删除会计科目: (18)3.8项目大类预制 (19)3.81指定科目: (20)3.9录入期初 (22)第四章:总账流程操作 (23)4.1更换操作员: (23)4.2填制凭证: (24)4.3、出纳鉴字: (26)4.4审核凭证是: (27)4.5删除凭证 (28)4.6记帐: (29)4.51.月末结转 (31)4.6结账 (31)4.7取消结账(在凭证需要修改的时候) (33)4.8反记账(恢复记账前的状态):修改已记账凭证的第二步 (34)T3操作手册第一章:建立帐套1.1进入系统管理界面:软件安装成功后会在桌面出现两个图标,点击如右图系统管理图标进关注新浪微博:编制者:Richard(常利)入界面;1.2进行注册(图1.12)点击系统管理图标有注册按钮进入,出现如下界面:图1.13关注新浪微博:编制者:Richard(常利)(图1.13)输入系统管理员:admin,密码为空,这样注册步骤就完成了-确定1.3开始建账:一、点击菜单中账套-建立-进入界面-录入账套信息-单位信息-核算类型-基础信息-点击完成-启用账套-根据需要启用模块-完成建账,演示步骤如下图:注意点:1.其中启用会计日期为该年1月份(默认),几月启用在后面设置;2.核算类型中,使用小企业会计准则2013(图1.14)注:此处必须是1月;(注:录入单位的部分信息)(图1.15)关注新浪微博:编制者:Richard(常利)(图1.16)(注:此处选择小企业会计准则,并正确录入企业性质)(图1.17)关注新浪微博:编制者:Richard(常利)(图1.18)备注:此处按正常流程下一步进行操作(图1.19)关注新浪微博:编制者:Richard(常利)(图1.2)(图1.21)备注:正常流程进行下一步操作(图1.22)关注新浪微博:编制者:Richard(常利)(图1.23)注:根据需求模块启用,建立账套就成功了,此处必须是作账的月的第一天。

建筑设计防火规范快速记忆口诀

建筑设计防火规范快速记忆口诀

消防考试记忆口诀3.1。

1和3。

1。

3 生产储存物品火灾危险性分类:甲液气自水氧磷闭过氧氯酸棉金烷苯乙液气氧固助自松樟蚁冰碳氨硝铬酸漂烟松樟奈粉硫氧氟油漆布纸绸丙动植沥蜡润重机木纸棉麻电丝冷丁塑泥3。

1.2 五分不延十分不延漆丁戊两闭报负漆丁戊五分不延解释:火灾危险性较大的生产部分占本层或本防火分区建筑面积的比例小于5%且发生火灾事故时不足以蔓延至其他部位或火灾危险性较大的生产部分采取了有效的防火措施;可按火灾危险性较小的部分确定.***五分=5%,不延=采取措施不蔓延,十分不延漆丁戊解释:丁、戊类厂房内的油漆工段小于10%,且发生火灾事故时不足以蔓延至其他部位或火灾危险性较大的生产部分采取了有效的防火措施;可按火灾危险性较小的部分确定。

***十分=10%,不延=采取措施不蔓延,漆丁戊=丁、戊类厂房内的油漆工段两闭报负漆丁戊解释:丁、戊类厂房内的油漆工段,当采用封闭喷漆工艺,封闭喷漆空间内保持负压、油漆工段设置可燃气体探测报警系统或自动抑爆系统,且油漆工段占所在防火分区建筑面积的比例不大于20%***两=20%, 闭=封闭, 报负=保持负压、设置可燃气体探测报警系统或自动抑爆系统;漆丁戊=丁、戊类厂房内的油漆工段3。

1.5 仓库危险性—重Q体半丁变丙丁、戊类储存物品仓库的火灾危险性,当可燃包装重量大于物品本身重量1/4或可燃包装体积大于物品本身体积的1/2时,应按丙类确定。

***重Q=重量大于物品本身重量的1/4,这里Q就是英文QUARTER的缩写即1/4的意思,不喜欢用Q的同学可以用“刻”来代替,一刻钟就是1/4小时,体半=可燃包装体积大于物品本身体积的1/2时,丁变丙=丁、戊类储存物品仓库的火灾危险性按丙类确定。

3。

2。

1 5.1。

2 厂仓民用建筑的材-1不2吊3隔顶*** 1不=1级建筑所有构件都是不燃材料;2吊=2级建筑只有吊顶是难燃材料,其它都是不燃;3隔顶=3级建筑非承重外墙、房间隔墙是难燃材料,屋顶承重构件是难燃材料;当然还不能忘记连2级的吊顶都是是难燃材料,3。

T3系列交流伺服驱动器说明书

T3系列交流伺服驱动器说明书
T3/T3M/T3G系列数字式交流伺服驱动器是机床专用型伺服驱动器,控制接 口采用机床行业主流定义方式,可实现无缝替换。该系列产品采用先进的全数 字化控制及交流电机矢量控制理论,系统性能优异、可靠性高,广泛适用于各 类数控车床、铣床、磨床、加工中心及其他自动化产业机械的伺服轴驱动。
¾ 产品特点
¾ T3a系列全密封设计,防护性好,抗干扰能力强 ¾ T3L系列小巧化设计,节省安装空间 ¾ T3/T3M/T3G控制接口采用机床行业主流定义方式,可实现无缝替换 ¾ 集速度控制、位置控制、转矩控制于一体 ¾ 可驱动各种类型的永磁同步伺服电机 ¾ 具有优异的低速转矩特性和业界领先的动态加减速性能
z 禁止将产品用于阳光直射,灰尘、盐分及金属粉末较多的场所。 z 禁止将产品用于有水、油及药品滴落的场所。
2. 配线
z 请将接地端子可靠接地,接地不良可能会造成触电或火灾。 z 请勿将220V驱动器电源接入380V电源,否则会造成设备损坏及触电或火灾。 z 请勿将U、V、W电机输出端子连接到三相电源,否则会造成人员伤亡或火灾。 z 必须将U、V、W电机输出端子和驱动器接线端子U、V、W一一对应连接,否则电机可
II
安全注意事项
在产品存放、安装、配线、运行、检查或维修前,用户必需熟悉并遵守以 下重要事项,以确保安全正确地使用本产品。
错误操作可能会引起危险并导致人身伤亡。 错误操作可能会引起危险,导致人身伤害,并可能使设备损坏。 严格禁止行为,否则会导致设备损坏或不能使用。
1. 使用场合
z 禁止将产品暴露在有水气、腐蚀性气体、可燃性气体的场合使用。否则会导致触电 或火灾。
能超速飞车造成设备损失与人员伤亡。 z 请紧固电源和电机输出端子,否则可能造成火灾。 z 配线请参考线材选择配线,否则可能造成火灾。

螺纹的收尾、肩距和退刀槽(GBT3-1997)

螺纹的收尾、肩距和退刀槽(GBT3-1997)

螺纹的收尾、肩距和退刀槽(GB/T3-1997)内螺纹的收尾、肩距和退刀槽(GB/T3-1997)(mm)螺距P 收 尾x max 肩 距Amax 退 刀 槽 G1DgR≈一般 短的 一般 长的 一般 短的0.25 1 0.5 1.5 2 D+0.30.3 1.2 0.6 1.8 2.4 0.35 1.4 0.7 2.2 2.8 0.4 1.6 0.8 2.5 3.2 0.45 1.8 0.9 2.8 3.6 0.5 2 1 3 4 2 1 0.2 0.6 2.4 1.2 3.2 4.8 2.4 1.2 0.3 0.7 2.8 1.4 3.5 5.6 2.8 1.4 0.4 0.75 3 1.5 3.8 6 3 1.5 0.4 0.8 3.2 1.6 4 6.4 3.2 1.6 0.4 1 4 2 5 8 4 2 D+0.5 0.5 1.25 5 2.5 6 10 5 2.5 0.6 1.5 6 3 7 12 6 3 0.8 1.75 7 3.5 9 14 7 3.5 0.9 2 8 4 10 16 8 4 1 2.5 10 5 12 18 10 5 1.2 3 12 6 14 22 12 6 1.5 3.5 14 7 16 24 14 7 1.8 4 16 8 18 26 16 8 2 4.5 18 9 21 29 18 9 2.2 5 20 10 23 32 20 10 2.5 5.5 22 11 25 35 22 11 2.8 624 12 283824 123参考值=4P=2P≈(6~5)P≈(8~6.5)P=4P=2P —≈0.5P注: 1.应优先选用“一般”2度的收尾和肩距;容屑需要较大空间时可选用“长”肩距,结构限制时可选用“短”收尾。

2.“短”退刀槽仅在结构受限制时采用。

3.Dg 公差为H13。

4.D为螺纹公称直径代号。

外螺纹的收尾、肩距和退刀槽(GB/T3-1997) (mm)螺距P 收尾xmax肩距a max退刀槽一般短的一般长的短的g1min g2max dg r≈0.250.60.30.7510.50.40.75d-0.40.120.30.750.40.9 1.20.60.50.9d—0.50.160.350.90.45 1.05 1.40.70.6 1.05d—0.60.160.410.5 1.2 1.60.80.6 1.2d—0.70.20.45 1.10.6 1.35 1.80.90.7 1.35d—0.70.20.5 1.250.7 1.5210.8 1.5d—0.80.20.6 1.50.75 1.8 2.4 1.20.9 1.8d—10.40.7 1.750.9 2.1 2.8 1.4 1.1 2.1d—1.10.40.75 1.91 2.253 1.5 1.2 2.25d—1.20.40.821 2.4 3.2 1.6 1.3 2.4d—1.30.41 2.5 1.25342 1.63d—1.60.61.25 3.2 1.6452.523.75d—20.61.5 3.8 1.9 4.5632.5 4.5d—2.30.81.75 4.32.2 5.373.53 5.25d—2.6125 2.5684 3.46d—312.5 6.33.27.51054.47.5d—3.6 1.237.5 3.89126 5.29d—4.4 1.63.594.510.5147 6.210.5d—5 1.6 410512168712d—5.724.5115.513.5189813.5d—6.4 2.5 512.5 6.3152010915d—7 2.55.514716.522111117.5d—7.7 3.2 6157.51824121118d—8.3 3.2参考值≈2.5P≈1.25P≈3P=4P=2P—≈3P——注: 1.应优先选用“一般”长度的收尾和肩距;“短”收尾和“短”肩距仅用于结构受限制的螺纹件上;产品等级为B或C级的螺纹紧固件可采用“长”肩距。

PPR管配件名称型号规格

PPR管配件名称型号规格

PPR管配件名称型号规格PPR管:作为一种新型的水管材料,PPR管具有得天独厚的优势,它既可以用作冷管,也可以用作热水管,由于其无毒、质轻、耐压、耐腐蚀,正在成为一种推广的材料。

也适用于热水管道,甚至纯净饮用水管道。

PPR管的接口采用热熔技术,管子之间完全融合到了一起,所以一旦安装打压测试通过,而且PPR管不会结垢PP-R管件,采用优质原料注塑而成,产品各项性能均达到或超过国家标准GB/T18742的规定指标。

还具有以下特有的设计和工艺优势:●采用大弧度弯位设计,能有效地减少水锤的形成,杜绝管震现象发生。

●采用45度倒角设计,使熔接更容易。

产品名称型号规格说明等径直通S20两端接相同规格的PP-R管。

例: S20表示两端均接20PP-R管。

S25S32异径直S25*20 两端接不同规格的PP-R管。

通S32*20 例:S25*20表示一端接25PP-R管,另一端接20PP-R管。

S32*25堵头D20用于相关规格PP-R管的封堵。

例:D20表示接20PP-R管。

-D25D32等径弯头(9 0°)L20两端接相同规格的PP-R管。

例:L20表示两端均接20PP-R管。

L25L32等径弯头(4 5°)L20(45°)两端接相同规格的PP-R管。

例:L20*20(45°)表示两端均接20PP-R管。

L25(45°)L32(45°)异径弯头F12-L25*20两端接不同规格的PP-R管。

例:L25*20表示一端接25PP-R管,另一端接20PP-R管。

F12-L32*20F12-L32*25等径三通T20三端接相同规格的PP-R管。

例:T20表示三端均接20PP-R管。

T25T32异径三通T25*20 三端均接PP-R管,其中一端变径。

例:T25表示两端均接25PP-R T32*20T32*25管,中间接20PP-R管。

过桥弯W20两端接相同规格的PP-R管。

用友T3标准版几种仓库计价方式

用友T3标准版几种仓库计价方式

1、先进先出法:在这种计价方式下,一定不能允许零出库,否则,系统自动返填单价时会出现混乱。

在作入库时必须填写单价,出库时可以只填数量。

单据记账时,一定要先记入库,后记出库,单据一记账出库单上的单价就会自动返填。

需要注意的是:在同一张入库单上同一货物的不同单价,比如A货:10元,A货:20,同时录入在一张入库单上时,系统不会按照先进先出去单价,而是取平均价152、全月平均法:此方式下,入库单也要输入单价,出库单不需要输入单价,单据记账时,不分先后,知道仓库进行月末处理后才会返填单价。

可以通过出入库调整单调整出入库成本和结存余额。

3、移动平均法:此方式下,入库单和出库单应同时记账,记账之后就可出成本,但是也不允许有零出库的情况发生一)先进先出法1、先进先出法是假定先收到的存货先发出,并根据这种假定的成本流转顺序对发出存货和期末存货进行计价的方法。

2、优缺点:优点:是使企业不能随意挑选存货单价以调整当期利润。

缺点:是计价工作比较繁琐,特别对于存货进出业务频繁的企业更是如此,而且当物价上涨时,会高估企业当期利润和库存存货价值;反之,会低估企业当期利润和库存存货价值。

(二)后进先出法1、后进先出法与先进先出法相反,它是以后收进的存货先发出为假定前提,对发出存货按最后收进的单价进行计价的一种方法。

2、优缺点:优点:在物价持续上涨时期,使当期发出存货成本升高,利润降低,可以减少通货膨胀对企业带来的不利影响,符合会计的稳健性原则。

缺点:这种方法计算起来也比较繁琐。

(三)加权平均法1、加权平均法也叫全月一次加权平均法,指以本月收入全部存货数量加月初存货数量作为权数,去除本月收入全部存货成本加月初存货成本的和,计算出存货的加权平均单位成本,从而确定存货的发出成本和库存成本的方法。

计算公式如下:字串9本月发出存货成本=本月发出存货数量*存货单位成本月末库存存货成本=月末库存存货数量*存货单位成本2、优缺点:优点:采用加权平均法,考虑了不同批次进货的数量及单价,计算结果比较均衡;存货加权平均单价于期末一次计算,平时只记发出存货数量,不记发出存货单价和金额,可以减少日常核算工作量。

深圳招商环贸中心T3塔楼结构设计

深圳招商环贸中心T3塔楼结构设计

建筑技术开发Building Technology Development建筑结构第48卷第1期Building Structure202[年]月深圳招商环贸中心T3塔楼结构设计胡涛,周晓光,卢文汀,禹愿雄,李长庆(香港华艺设计顾问(深圳)有限公司,广东深圳518033)[摘要]环贸中心项目结构存在扭转不规则、构件间断、刚度突变、局部穿层柱等超限内容,采用YJK和ETABS软件对结构进行多遇地震下和设防地震下的可行性分析、楼板应力分析、跨层柱屈曲分析,采用SAUSAGE软件进行结构动力弹塑性分析、弹塑性楼板应力分析,采用ABAQUS软件进行转换结构、复杂节点分析等结构专项研究。

分析计算结果可知,结构设计成功解决了结构超限问题,结构设计安全可靠。

[关键词]抗震设计;动力弹塑性分析;时程分析;设计[中图分类号]TU318[文献标志码]B[文章编号]1001-523X(2021)01-0003-03Design of(ICC T3Project)in ShenzhenHu Tao,Zhou Xiao-guang,Lu Wen-ting,Yu Yuan-xiong,Li Chang-qing[Abstract]The structure of environmental trade center project has some out of limit contents,such as torsion irregularity, member discontinuity,stiffness mutation,local through floor column,etc.,which are respectively adopted by YJK with ETABS software,the feasibility analysis,floor stress analysis and cross story column buckling analysis of the structure under frequent earthquake and fortification earthquake are carried out.The dynamic elastic-plastic analysis and elastic-plastic floor stress analysis of the structure are carried out by using the software of SAUSAGE,and the structural special research such as conversion structure and complex joint analysis is carried out by ABAQUS software.Through the analysis and comparison of the calculation results, it is proved that the structural design successfully solves the problem of structural overrun,and the structural design is safe and reliable.[Keywords]seismic design;analysis of dynamic elastic-plastic response;time history analysis;design1工程概况本项目位于深圳市前海妈湾片区十九开发单元,包括3栋塔楼及商业裙房,4层地下室。

总三碘甲腺原氨酸(Total T3)标准操作规程

总三碘甲腺原氨酸(Total T3)标准操作规程

总三碘甲腺原氨酸(Total T3)标准操作规程1.【实验目的】为了保证总三碘甲腺原氨酸(Total T3)测定结果的准确性,以及可靠性。

2.【职责】2.1 实验室工作人员均应熟知并严格遵守本SOP,室负责人监督落实。

2.2 本SOP的改动,可由任一使用本SOP的工作人员提出,并报经下述人员批准签字:室负责人、科主任。

3.【样品类型及实验前准备】3.1 样本类型:血清和血浆,稳定性:如果检测时间超过24小时,则将血清或血浆从凝集物,血清分离器或红细胞中取出。

2-8℃可稳定6天,如需存放大于6天时,请于-20℃或更低的温度下保存。

3.2 患者准备:实验前正常饮食,晨起空腹,安静状态下抽取静脉血,条件特殊情况下可非空腹抽血检测。

3.3 容器,添加剂类型:血清(包括在血清分离器管中采集的血清),血浆(EDTA三钾、肝素锂、肝素钠),使用玻璃管或塑料管分离样本。

3.4 仪器设备:雅培ARCHITECT i1000SR, 低速离心机3.5 实验试剂:试剂盒(6C51)3.5.1.1 ARCHITECT Total T3(绵羊)包被的微粒抗T3T3吖啶标志物结合物3.5.1.2ARCHITECT总T3人工稀释液(6C51-50)(需另行配置)总T3手工稀释液3.5.1.3其他试剂:激发液、预激发液、清洗缓冲液(需另行配置)3.5.2校准品:名称:美国雅培i1000SR 总T3校准品 LIST NO.: 6C51--01规格:CAL 1: 0.5 ng/mL 1LX4mlCAL 2: 8.0 ng/mL 1LX4ml 3.5.3质控品名称:美国雅培i1000SR 总T3质控品 LIST NO:6C51-10水平浓度(ng/mL) 范围(ng/mL) 体积(ml)质控L 0.7 0.46~0.95 8 质控M 1.5 0.96~2.03 8 质控H 3.3 2.15~4.46 84.【实验原理】Architect i1000SR 总T3是采用化学发光微粒子免疫分析(ChemiluminesentMicroparticle ImmunoAssay, CMIA)技术,两步法对待测样品中的总三碘甲腺原氨酸(总T3)进行量检测。

T3-3.2-06

T3-3.2-06

INCIDENCE ANGLE MODIFIERS: A GENERAL APPROACH FOR ENERGYCALCULATIONSMaria João Carvalho, Pedro Horta, João Farinha Mendes INETI – Instituto Nacional de Engenharia TecnologiaeInovação, IPEstrada do Paço do Lumiar, 221649-038 Lisboa, Portugalmjoao.carvalho@ineti.pt Manuel Collares Pereira, Wildor Maldonado Carbajal AO SOL , Energias Renováveis, S.A .P. Industrial do Porto Alto, Sesmaria Limpa,2135-402 Samora Correia, Portugalmpicp@aosol.ptABSTRACTThe calculation of the energy (power) delivered by a given solar collector, requires special care in the consideration of the way it handles the incoming solar radiation.Some collectors, e.g. flat plate types, are easy to characterize from an optical point of view, given their rotational symmetry with respect to the incident angle on the entrance aperture. This in contrast with collectors possessing a 2D (or cylindrical) symmetry, such as collectors using evacuated tubes or CPC collectors, requiring the incident radiation to be decomposed and treated in two orthogonal planes.Analyses of incidence angle modifier (I AM) along these lines were done in the past for parabolic through, evacuated tube (ETC) or compound parabolic concentrator (CPC) collectors [1-6].The present paper addresses a general approach to I AM calculation, treating in a general, equivalent and systematic way all collector types.This approach will allow the proper handling of the solar radiation available to each collector type, subdivided in its different components, folding that with the optical effects present in the solar collector and enabling more accurate comparisons between different collector types, in terms of long term performance calculation. 1. INTRODUCTIONThe amount of solar radiation reaching the absorber surface is affected by a number of optical effects related with collector geometry and materials properties.n instantaneous power calculations (and thus delivered energy), these effects are accounted for by considering the optical efficiency, η0(θ), measured at normal incidence, and an incidence angle modifier, Κ(θ), w hich relates the optical efficiency for any given incidence angle, to that at normal incidence.The rotational symmetry (or 1D) of flat plate collectors renders the use of the IAM, Κ(θ), easy and direct from the incidence angle value. Yet, the cylindrical (or 2D) symmetry of tubular or line focus collectors, requires an incidence angle (θ) decomposition onto two orthogonal planes - longitudinal (θl), referred to the collector axis; transversal (θt), referred to the collector section - in view of a composed IAM calculation, Κ(θl, θt).I n general, I AM measurements are included in collector efficiency test procedures[3], which determine, in the present, the measurement of: one I AM value at a 50º incidence angle , Κ(50), for 1D collectors; three I AM values in the transversal plane, at 20º, 40º and 60º transversal incidence angles (Κ(0,20), Κ(0,40), Κ(0,60)), and one IAM measurement in the longitudinal plane, at 50º longitudinal incidence angle, Κ(50,0), for 2D collectors.3 SOLAR COLLECTOR TECHNOLOGI ES AND SYSTEMS609(a) (b) Fig. 1: I AM referential for (a) 1D and (b) 2D collector types. Therefore, the calculation of I AM values at different incidence angles requires the use of adequate approximation functions based on the available measured values.In the present paper, a general approach to beam radiation I AM is presented in chapter 3, chapter 4 addresses the calculation of IAM affecting diffuse and reflected radiation and the composed IAM calculation is addressed in 5. A setof conclusions is presented in chapter 6.For the sake of completeness, the foregoing analysis is based in the most complex case of 2D collector optics, namely a truncated CPC collector (θa = 56.8º, θd = 78º), considering that 1D optics embody the generalization of 2D longitudinal plane analysis.2. IAM AFFECTING BEAM RADIATIONThe calculation of the IAM affecting beam radiation depends on an instantaneous incidence angle value, to be used directly (1D collectors case), or to be decomposed onto longitudinal and transversal planes (2D collectors case).As mentioned in [7], the optical effects that might be reflected in the IAM function are manifold and depend not only on collector materials properties, but also (and strongly) on collector geometry. Examples of such effects are: angular variation of transmissivity-absorptivity properties; radiation spilling or end-mirror reflection effects; acceptance function; angular variation of the average number of reflections.2.1 Longitudinal I AMThe major optical effects which might be present in the longitudinal direction are those related with the angular variation of transmissivity-absorptivity properties and with radiation spilling or end-mirror reflection effects. A known approximation to the flat-plate IAM (which suitsthe effects present in the longitudinalAM, for 2Dgeometries), was presented in the past by Souka [8]. Asmentioned in [7], McIntire [2] and Tesfamichael [9] furthershowed that the variation of each of the optical effectspresent along the longitudinal presents a similar behavior, so that the longitudinal I AM may well be fitted by an expression of the type: (1) The (+) sign in Eq.(1) means that only positive or zero IAMvalues are to be considered. As shown in [7], the coefficients b 0 andc in Eq.(1) may be calculated, after Eq.(1), by knowledge of I AM values for two different longitudinal incidence angles (different from 0º or 90º, in light of the approximation used), according to the following expressions:(3)(4)One of the known longitudinal IAM values is that provided in efficiency test results, Κ(50,0). I f no other measured longitudinal I AM values are available, a 0.05 value for Κ(85,0), estimated after Souka IAM approximation, might be used.Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement6102.2 Transversal I AMAs shown in (7), a good approximation for the transversal IAM follows a simple linear connection between measured transversal I AM values, considering also the theoretical values at 0º (1) and 90º (0) transversal incidence angles. Yet, in cases where the transversal IAM is likely to present abrupt variations, such as in the case of CPC collectors at truncation or acceptance angles, e.g., additional transversal IAM values (around such angles) might be recommended. 2.3 Composed I AM An approximation to the composed I AM, based on its longitudinal and transversal components, was proposed by McIntire (2) for 2D collectors. After this approximation, the overall IAM is calculated according to the following expression:()()()()00,l t l t K θK θ,θK θ,K θ≡≈(5)The graphics in Figure 2 (a) and (b) show the composed IAM for the reference CPC collector, calculated after a 3D ray-trace (30 x 126 rays) and after Eq.(5) approximationbased in common efficiency test measured IAM values.(a) (b)Fig. 2: Composed I AM for the reference CPC collector,calculated after (a) a 3D ray-trace (30 x 126 rays) and (b) approximation based in available measured IAM values.3. IAM FOR DIFFUSE AND REFLECTED RADIATION Given the distributed nature of both diffuse and groundreflected radiation, theAM affecting these radiation components is not calculated for an instantaneous incidenceangle, but for the hemispherical section, centered in the collector aperture plane, from which the radiation component may reach the collector absorber, contributing for the overall power available to the collector.An obvious hemispherical cut-off effect is that arising from the aperture angle, in concentrating collectors, which renders negligible the diffuse and reflected radiation contributions at higher concentration factors.In light of the hemispherical integration due in this case, the so-called cosine effect must be accounted for, which implies a weighting of the different incidences included in the hemisphere. As mentioned in [7], a general expression for the weighted average I AM, considering an isotropic distribution of the distributed radiation component, is given in Eq.(6):(6)The calculation of the AM affecting diffuse (K dif,d ) or reflected (K dif,r ) radiation follows from numerical integration of Eq.(6) after integration limits as in Tables 1 and 2.TABLE 1: I NTEGRAT I ON L I M I TS FOR D I FFUSE RADIATION Longitudinal integrationlimits Transversal integration limits Collector type a b c d 1D−π/2+ β π/2 −π/2 π/2 θd <=π/2−β−π/2π/2 −θdθdEW θd >π/2−β −π/2 π/2−π/2 + β θd 2D NS −π/2 + β π/2−θdθd3 SOLAR COLLECTOR TECHNOLOGI ES AND SYSTEMS611TABLE 2: I NTEGRATI ON LI MI TS FOR REFLECTED RADIATIONLongitudinal integration limits Transversal integration limitsCollector type abc d 1D−π/2 −π/2 +β−π/2π/2 θd <=π/2−βNo reflected radiation reaches absorberEW θd >π/2−β −π/2 π/2−θd −π/2 + β 2D NS−π/2 −π/2 +β−θdθd4. ENERGY CALCULATIONEnergy calculations are based in hourly values of the useful absorber irradiance, defined according to the following expression:()()cos abs dif,d dif,r g G =I θK θ+K D+K R (7)Yearly energy calculations were performed for four different locations (Athens, 38º N; Davos, 46º N; Lisbon, 38º N; Stockholm, 59º N) after the reference ray-trace based composed IAM and after transversal and longitudinal I AM approximations based solely in available IAM measured values (L1; T3) or in additional I AM values at K(60,0) (L2) and K(0,55) (T4).The final accumulated energy difference values (referred to the reference ray-trace based I AM calculation) obtained with the different composed I AM approximations are presented, for each location, in Table 3.TABLE 3: ENERGY CALCULAT ION RESULTS DIFFERENCEApprox. Athens Davos Lisbon Stockholm L1-T3 -0.98% -0.85% -0.74% -0.80% L1-T4 0.88% 0.92% 1.02% 1.27% L2-T3 -1.76% -1.79% -1.72% -2.03% L2-T4 0.04% -0.07% -0.02% -0.06%5. CONCLUSIONSThe incidence angle modifier reflects the impact of optical and positional characteristics of the solar collector in the irradiance incident on the absorber surface and is essential for calculation of instantaneous power (and thus energy). I n the present paper a general approach to the incidence angle modifiers affecting beam, diffuse and reflected radiation is presented, together with suitable approximations based on available measured IAM values.The results obtained for yearly energy calculation in four different locations revealed energy estimation errors lower than 1% for IAM approximations based in usually available AM measured values, and lower than 0.1% for AM approximations based in one additional measured AM value for both transversal and longitudinal directions. The AM calculation methodology herein presented is applicable regardless of collector type, which encompasses an advantage in view of its use in simulation tools.6. NOMENCLATURE D - diffuse radiation, [W/m 2]G abs - global irradiance incident on the absorber, [W/m 2] I - beam radiation, [W/m 2]R g - ground reflected radiation, [W/m 2]β - tilt angle, [º]η0(θ) - collector optical efficiency Κ(θ) - incidence angle modifierΚdif,d - diffuse radiation weighted average IAMΚ dif,r - reflected radiation weighted average IAMθ - incidence angle, [º] θa - CPC acceptance angle, [º]θd - CPC truncation angle, [º] θl - longitudinal incidence angle, [º] θt - transversal incidence angle, [º]Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement 6127. ACKNOWLEDGMENTSThe work herein presented was developed under the scope of project “POWERSOL - Mechanical Power Generation based on Solar Thermodynamic Engines”, co-funded by the European Commission [Contract No. 032344 (INCO)].8. REFERENCES(1) Gaul, H., Rabl, A., “ncidence angle modifier andaverage optical efficiency of Parabolic Trough collectors”, Journal of Solar Energy Engineering V ol.102, 16-21, 1980.(2) McI ntire, W.R., “Factored approximations for biaxialincident angle modifiers”, Solar Energy 29 (4), 315-322, 1982.(3) Theunissen, P.-H., Beckman, W.A., “Solar transmittancecharacteristics of evacuated tubular collectors with diffuse back reflectors”, Solar Energy 35 (4), 311-320, 1985.(4) Carvalho, M.J., Collares-Pereira, M., Gordon, J.M.,“Economic optimization of stationary nonevacuated.CPC solar collectors”, Journal of Solar Energy Engineering V ol. 109, 40-45, 1987.(5) Rönnelid, M., Perers, B., Karlsson, B., “On thefactorization of incidence angle modifiers for CPC collectors”, Solar Energy 59 (4), 281-286, 1997.(6) Nilsson, J., Brogren, M., Helgesson, A., Roos, A.,Karlsson, B., “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors”, Solar Energy 80(9), pp. 1199-1212, 2006.(7) Horta, P., Carvalho, M.J., Collares-Pereira, M.,Carbajal, W., “ncidence angle modifiers for beam, diffuse and reflected radiation: a general approach for energy calculations”, submitted to Solar Energy, May 2007.(8) Souka, A.F., Safwat, H.H., “Determination of theoptimum orientations for the double-exposure, flat-plate collector and its reflectors”, Solar Energy 10(4), 170-174.J, 1966.(9) Tesfamichael, T., Wäckelgård, E., “Angular solarabsorptance and incident angle modifier of selective absorbers for solar thermal collectors”, Solar Energy 10(4), 170-174, 2000.。

物理治疗学选择模考试题含参考答案

物理治疗学选择模考试题含参考答案

物理治疗学选择模考试题含参考答案一、单选题(共100题,每题1分,共100分)1、对较深部位病灶进行电容场超短波治疗时()A、加大电极与皮肤间隙B、加大电极面积C、加大治疗剂量D、较少电极与皮肤间隙E、延长治疗时间正确答案:A2、使用双拐步行的四点步态是A、左拐→右足→右拐→左足B、左拐→左足→右拐→右足C、左拐→右拐→左足→右足D、左拐→右足→右足→左拐E、右拐→右足→左足→左拐正确答案:A3、关于冷疗的治疗方法,下列说法不正确的是A、普通冰袋,一般同一部位15~20分钟,最长不超过72小时B、冷湿敷布法每2~3分钟更换一次毛巾,全部治疗时间为20~30分钟C、冰贴法又分为间接冰贴、直接冰贴、冰块按摩三种方法D、循环冷敷法,可分为体外法和体腔法两种E、直接冰贴法是将冰块直接放在治疗部位,每次治疗的时间一般为5~10分钟正确答案:A4、强制性使用技术要求患者主动活动能力达到A、腕伸展>10°,拇指及至少另外两个手指掌指关节和指间关节伸展>20°,且动作可重复3次/B、腕伸展>10°,拇指及至少另外两个手指掌指关节和指间关节伸展>10°,且动作可重复2次/C、腕伸展>20°,拇指及至少另外两个手指掌指关节和指间关节伸展>10°且动作可重复2次/D、腕伸展>10°,拇指及至少另外两个手指掌指关节和指间关节伸展>10°,且动作可重复3次/E、腕伸展>20°,拇指及至少另外两个手指掌指关节和指间关节伸展>10°且动作可重复3次/正确答案:D5、悬吊训练(SET)诊断系统的核心是A、弱链测试B、薄弱环节C、整体肌D、局部稳定肌E、运动肌正确答案:A6、超声波治疗疾病的最基本的机制是A、微细按摩作用B、理化作用C、镇痛作用D、温热作用E、杀菌作用正确答案:A7、水在()时密度最大A、5℃B、1℃C、3℃D、0℃E、4℃正确答案:E8、63岁女性患者,以“反复腰背酸痛3年,伴四肢麻木感1月”主诉。

2022年高考物理二轮复习情境命题设计 交通运输中的直线运动问题

2022年高考物理二轮复习情境命题设计  交通运输中的直线运动问题
x-x加 第10辆车后端通过停止线匀速运动的时间t匀= vm =3.36 s 由于司机有反应时间,则第10辆车延迟的时间为t延=10t0=5 s
所以第10辆车后端恰好通过停止线的时间为t总=t加+t匀+t延=13.36 s
由于13.36 s<28 s,则绿灯亮起13.36 s时第10辆车后端恰好通过停止线。
【解析】选C。根据v-t图像与时间轴所围的面积表示位移知从t=0到停下,汽车在
0.5+2.5 干燥路面通过的位移为x1= 2
×40
m=60
m,平均速度为v1=xt11
=26.05
m×40 m=110 m,平均速度为v2=
x2 t2
命题情境3 无人机类 【典例3】2020年疫情期间,一则“外卖小哥用无人机送外卖”的新闻传遍了整个网 络,目前无人机得到了广泛的应用。如图所示为送餐无人机,它是一种能够垂直起 降的小型遥控飞行器,无人机(包括外卖)的质量为m=2 kg,若无人机在地面上由静 止开始以最大升力竖直向上起飞,经时间t=4 s时离地面的高度为h=48 m,已知无 人机动力系统所能提供的最大升力为36 N,假设无人机(包括外卖)运动过程中所受 空气阻力的大小恒定,g取10 m/s2,求:
mg-f (2)设失去动力时的加速度为a2,则a2= m =8 m/s2
设刚开始下落经t1时间需要恢复动力,恢复动力时的速度为v1=a2t1
下落的高度为h1=v221a2
F+f-mg 恢复动力后,设加速度为a3,则a3= m
=10 m/s2
从恢复到下落到地面的位移h2=v221a3
利用h1+h2=h′
Δs=25 m,速度均为零,乙恰好停在甲后面是不撞上的临界条件,则乙车的加速度 至少3.2 m/s2才能避免两车相撞,选项D正确。

PPR管件名称型规格

PPR管件名称型规格

P P R管件名称型规格集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-P P R管配件名称型号规格PPR管:作为一种新型的水管材料,PPR管具有得天独厚的优势,它既可以用作冷管,也可以用作热水管,由于其无毒、质轻、耐压、耐腐蚀,正在成为一种推广的材料。

也适用于热水管道,甚至纯净饮用水管道。

PPR管的接口采用热熔技术,管子之间完全融合到了一起,所以一旦安装打压测试通过,而且PPR管不会结垢PP-R管件,采用优质原料注塑而成,产品各项性能均达到或超过国家标准GB/T 18742的规定指标。

还具有以下特有的设计和工艺优势:●采用大弧度弯位设计,能有效地减少水锤的形成,杜绝管震现象发生。

●采用45度倒角设计,使熔接更轻松。

产品名称型号规格说明等径直通S20两端接相同规格的PP-R管。

例:S20表示两端均接20PP-R管。

S25S32异径直通S25*20两端接不同规格的PP-R管。

例:S25*20表示一端接25PP-R管,另一端接20PP-R管。

S32*20S32*25堵头D20用于相关规格PP-R管的封堵。

例:D20表示接20PP-R管。

-D25D32等径弯头(90°)L20两端接相同规格的PP-R管。

例:L20表示两端均接20PP-R管。

L25L32等径弯头(45°)L20(45°)两端接相同规格的PP-R管。

例:L20*20(45°)表示两端均接20PP-R管。

L25(45°)L32(45°)异径弯头F12-L25*20两端接不同规格的PP-R管。

例:L25*20表示一端接25PP-R管,另一端接20PP-R管。

F12-L32*20F12-L32*25等径三通T20三端接相同规格的PP-R管。

例:T20表示三端均接20PP-R管。

T25T32异径三通T25*20三端均接PP-R管,其中一端变径。

血清三碘甲状腺原氨酸(T3)实验室检测

血清三碘甲状腺原氨酸(T3)实验室检测

血清三碘甲状腺原氨酸【试剂名称】通用名称:血清三碘甲状腺原氨酸(T3)测定试剂盒(化学发光法)1. 用途本试剂用于定量测定人血清或血浆内三碘甲状腺原氨酸(T3)的含量。

本方法适用标本的浓度范围为0-10 ng/ml (0-15.5 nmol/l )。

该测试必须在MAGLUMI ® 1000 分析仪上进行。

2. 概述与说明- 健康人中,甲状腺每天大约分泌5-10μg 的T3。

然而,循环的T3最主要由外周脱碘作用产生,从而,每天总T3的分泌水平高达20μg (5)。

在血清中,甲状腺激素与载体蛋白结合,只有它们的游离部分是生理活性的。

- 定量测定T3在可疑甲状腺疾病中的临床意义主要在于诊断及评估甲状腺机能亢进(2,3)。

尤其在单独的T3型甲亢中, 观察到T3浓度升高,TBG 及T4水平正常。

在甲状腺外科手术切除及用I-131治疗后,T3与T4浓度可能保持一个很高的水平甚至还会升高(甲亢的复发)。

- 在大约50%与甲亢有关的自发性腺瘤病人中发现T3水平的偶尔升高。

这种升高也可出现在早期甲亢、与潜伏性甲亢有关的内分泌性眼疾、甲亢的治疗(甲状腺拮抗剂)过程中、甲状腺肿或非甲状腺肿性碘缺乏及Hashimoto 氏甲状腺炎中(代谢状态可能是正常的)。

3. 测试原理本试剂盒利用免疫发光竞争法的原理检测T3;采用抗T3单克隆抗体标记ABEI ,T3纯抗原标记FITC 。

标本,定标液,(质控液)与ABEI 标记的单抗,FITC 标记的纯抗原,包被有羊抗FITC 抗体的纳米免疫磁性微珠置37℃ 孵育形成免疫复合物,然后外加磁场沉淀,去掉上清液,用洗液循环清洗沉淀复合物1次,直接进入样品测量室,仪器自动泵入发光底物1和2,自动监测3秒钟内发出的相对光强度(RLU )。

T3浓度与RLU 成一定的比例关系,仪器自动拟合计算T3浓度。

4. 试剂4.1试剂组成4.2试剂的准备 在揭开密封纸之前,先轻轻地水平摇晃试剂盒(为了防止泡沫形成!)。

PP-R_管件名称型号规格

PP-R_管件名称型号规格

PPR管配件名称型号规格PPR管:作为一种新型的水管材料,PPR管具有得天独厚的优势,它既可以用作冷管,也可以用作热水管,由于其无毒、质轻、耐压、耐腐蚀,正在成为一种推广的材料。

也适用于热水管道,甚至纯净饮用水管道。

PPR管的接口采用热熔技术,管子之间完全融合到了一起,所以一旦安装打压测试通过,而且PPR管不会结垢PP-R管件,采用优质原料注塑而成,产品各项性能均达到或超过国家标准GB/T18742的规定指标。

还具有以下特有的设计和工艺优势:●采用大弧度弯位设计,能有效地减少水锤的形成,杜绝管震现象发生。

●采用45度倒角设计,使熔接更轻松。

产品名称型号规格说明等径直通S20两端接相同规格的PP-R管。

例:S20表示两端均接20PP-R管。

S25S32异径直通S25*20 两端接不同规格的PP-R管。

S32*20 例:S25*20表示一端接25PP-R管,另一端接2 0PP-R管。

S32*25堵头D20用于相关规格PP-R管的封堵。

例:D20表示接20PP-R管。

-D25D32等径弯头(90°)L20两端接相同规格的PP-R管。

例:L20表示两端均接20PP-R管。

L25L32等径弯头(45°)L20(45°)两端接相同规格的PP-R管。

例:L20*20(45°)表示两端均接20PP-R管。

L25(45°)L32(45°)异径弯头F12-L25*2两端接不同规格的PP-R管。

例:L25*20表示一端接25PP-R管,另一端接20PP-R管。

F12-L32*2F12-L32*25等径三通T20三端接相同规格的PP-R管。

例:T20表示三端均接20PP-R管。

T25T32异径三通T25*20三端均接PP-R管,其中一端变径。

例:T25表示两端均接25PP-R管,中间接20PP-R管。

T32*20T32*25过桥弯W20 两端接相同规格的PP-R管。

PP-R_管件名称型号规格

PP-R_管件名称型号规格

PPR管配件名称型号规格PPR管:作为一种新型的水管材料,PPR管具有得天独厚的优势,它既可以用作冷管,也可以用作热水管,由于其无毒、质轻、耐压、耐腐蚀,正在成为一种推广的材料。

也适用于热水管道,甚至纯净饮用水管道。

PPR管的接口采用热熔技术,管子之间完全融合到了一起,所以一旦安装打压测试通过,而且PPR管不会结垢PP-R管件,采用优质原料注塑而成,产品各项性能均达到或超过国家标准GB/T18742的规定指标。

还具有以下特有的设计和工艺优势:●采用大弧度弯位设计,能有效地减少水锤的形成,杜绝管震现象发生。

●采用45度倒角设计,使熔接更轻松。

产品名称型号规格说明等径直通S20两端接相同规格的PP-R管。

例:S20表示两端均接20PP-R管。

S25S32异径直通S25*20两端接不同规格的PP-R管。

例:S25*20表示一端接25PP-R管,另一端接20PP-R管。

S32*20S32*25堵头D20用于相关规格PP-R管的封堵。

例:D20表示接20PP-R管。

-D25D32等径弯头(90°)L20两端接相同规格的PP-R管。

例:L20表示两端均接20PP-R管。

L25L32等径弯头(45°)L20(45°)两端接相同规格的PP-R管。

例:L20*20(45°)表示两端均接20PP-R管。

L25(45°)L32(45°)异径弯头F12-L25*20两端接不同规格的PP-R管。

例:L25*20表示一端接25PP-R管,另一端接20PP-R管。

F12-L32*20F12-L32*25等径三通T20三端接相同规格的PP-R管。

例:T20表示三端均接20PP-R管。

T25T32异径三通T25*20三端均接PP-R管,其中一端变径。

例:T25表示两端均接25PP-R管,中间接20PP-R管。

T32*20T32*25过桥弯W20两端接相同规格的PP-R管。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INTEGRAL-TYPE SOLAR WATER HEATER USING LOOP HEAT PIPEB.J. Huang, P.E. Yang , J. H. Wang, J. H. WuNew Energy Center, Department of Mechanical EngineeringTaiwan University, Taipei, Taiwanm, Chinabjhuang@.twABSTRACTTaiwan University has been devoted to the development of low-cost LHP (loop hat pipe). A new manufacturing process for low-cost LHP has been developed that leads to a cost down to less than 10 USD for a 100W LHP. The present study utilizes the low-cost LHP to develop a new type of solar water heater. A thermosyphon which is thermally bonded with a solar absorber plate is used to absorb solar energy and transfer the heat upward to the evaporator of the LHP. From that, the heat is conducted downward to the condenser of the LHP which is immersed in a hot water tank beneath the solar collector. The solar water heater thus can be designed in integral type with streamline shape which is easy to install and has a good outlook as well as high efficiency. A prototype was designed and fabricated in the present study.A preliminary heat transfer test for a single unit of thermosyphon-LHP combination shows that it is capable of transferring the absorbed energy downward to the LHP condenser immersed in a hot water tank. The overall thermal resistance from the absorber plate to water is 0.34o C/W, and the thermal resistance of the LHP is 0.16o C/W. Two prototypes of the solar water heaters with 50 liters and 80 liters hot water tanks were designed according to the results of the feasibility test. I n addition, an automatic monitoring system was designed and set up for the performance test of these two solar water heaters based on the test standard CNS B7277. The measured overall thermal resistance from solar absorber plate to water is 0.369o C/W. The daily solar water heater efficiency is 0.503. The present study has shown that the application of low-cost LHP in solar water heater is feasible and cost competitive.1. INTRODUCTIONSolar hot water heater is important in renewable energy application. There are three types of commonly-used solar water heaters: namely, forced-circulation system, natural-circulation system (known as thermosyphon), and constant temperature-intermittent output system (known as once-through system). Among them, the thermosyphon solar water heater is the most popular one since no circulation pump or regulating valve is needed. However, in order to prevent heat loss during night time or raining days caused by reverse-flow phenomenon, the water tank must be placed upon the collector [1]. I n addition, the whole solar water heater is manufactured at factory in three separate parts: solar collector, tank, and supporting frame (Figure 1). The solar water heater is then installed by assembling the three separate parts together on site, including frame fixing on roof and cold and hot water piping. The installation cost is thus time consuming and at high cost.The design of integral-type solar water heater (I SWH) as shown in Figure 2 can greatly simplify the installation since the whole system can be manufactured in factory with good quality control. The whole system is then moved to the3 SOLAR COLLECTOR TECHNOLOGI ES AND SYSTEMS679rooftop and just placed on the floor without additionalfixing work. A few solar water heaters of this type were in market. However, the thermal efficiency is low since the downward heat transfer design is poor, usually with daily thermal efficiency < 0.4. The poor integral-type solar water heater cannot survive in Taiwan solar market since the government subsidy program asks all products to havedaily solar thermal efficiency larger than 0.5.Fig. 1: Natural-circulation solar water heater.Fig. 2: Integral-type solar water heater design.Two companies in Taiwan had ever marketed the integral- type product about 10 years ago, but failed (Figure 3). Brand A was designed in forced-circulation type, with water capacity 75 liters which is placed under the solar collector. The water pump is driven by a solar PV to circulate the water through solar collector to tank (Figure 4). This product failed due to the reliability problem of solar-pumping system.Brand B is designed in thermosyphon type with water capacity 150 liters. The solar collector is placed nearly on floor in order to keep it below the tank (Figure 4). The vertical distance between the tank inlet and the collector outlet thus becomes negative and causes flow reversal at night or cloudy days. The solar energy collection efficiencyis thus very low, < 0.40, and the product cannot survive on the market. Since then, the integral-type solar water heater disappeared from Taiwanese market. However, the installation process of both brand A and B had been simplified a great deal. Brand A (5 modules, 375 liters) takes only two man-hour to install. Brand B (300 liters, single module) is too heavy (>60kg) and took about 6 man-hour to install on the roof.Fig. 3: Failed ISWH products.Fig. 4: Failed ISWH design.The present study intends to utilize the low-cost LHP to develop a new integral-type solar water heater. Two prototypes were designed and fabricated in the presentstudy.Brand BProceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement6802. PRELIMINARY TEST OF THERMOSYPHON-LHP n order to prove that the low-cost LHP can achieve downward heat transfer to the water tank from solar collector, a thermosyphon-LHP experiment was first carried out. A single unit of thermosyphon-LHP device was designed. The device includes a single strip of tube-in-sheet solar collector (0.12m 2) with a thermosyphon, a LHP and a water tank set beneath the collector. An electric film heater is adhered on the solar collector to simulate solar heating in both summer and winter. The thermosyphon is thermally bonded with the solar absorber plate and transfers the heat upward to the evaporator of the LHP. The heat is then conducted downward to the condenser of the LHP which is immersed in a hot water tank beneath the solar collector. The test results (Figure 5) shows that the thermosyphon- LHP configuration is capable of transferring the absorbed energy downward to the LHP condenser immersed in a hot water tank beneath the collector. The overall thermal resistance from the absorber plate to water is 0.34o C/W, and the thermal resistance of the LHP is 0.16o C/W. 00.10.20.30.40.5050100150200Power(W)T h e r m a l r e s i s t a n c e (℃/W )HP +R LHP )LHP )HP )Fig. 5: Thermal resistance measurement in a singlethermosyphon-LHP device.3. LHP-BASED SOLAR WATER HEATERApplying the low-cost LHP (Figure 6) [2] to solar water heater, we can effectively transfer the heat downward to the tank from the solar collector. A thermosyphon which is thermally bonded with a solar absorber plate is used to absorb solar energy and transfer the heat upward to the evaporator of the LHP. From that, the heat is conducteddownward to the condenser of the LHP which is immersed in a hot water tank beneath the solar collector. The solar water heat thus can be designed in integral type with streamline shape which is easy to install and has a good outlook as well as high efficiency. Figure 7 shows the design concept. Two models, 80L(Figure 8) and 50L (Figure 9), were designed.ISWH-1 was designed for feasibility study to validate the downward heat transfer capability. ISWH-1 uses 1m 2solar collector and 4 sets of LHP. The tank is of closed-type which can sustain the tape water pressure. I SWH-2 is designed with compact and rectangular configuration with open-type tank.Fig. 6: Low-cost LHP.Fig. 7: LHP-based solar water heater.3 SOLAR COLLECTOR TECHNOLOGI ES AND SYSTEMS681Fig. 8: ISWH-1.The solar collector area of ISWH-2 is 0.5m2. ISWH-2 uses 2 sets of LHP. The daily solar energy collection efficiency is measured according to the outdoor test standard CNSB7277 [3].Fig. 9: ISWH-2.The daily solar energy collection efficiency is 0.503 (Fig.10) and the heat releasing efficiency of hot water supply is 0.77 as shown in Figure 11. Both exceed the requirement of the subsidy program. The measured overall thermal resistance from solar absorber plate to water is 0.369o C/W.ISWH has been proved at the first time to be able to utilize low-cost LHP as the downward heat transfer element and obtain a good efficiency.n order to understand whether the LHP can perform normally in the long run, we have carried out a long-term outdoor experiment. The result indicates that LHP can function normally; moreover, the daily solar energy collection efficiency is 0.501 (Fig 12) for the test period of3 months.Fig. 10: ISWH-2 thermal efficiency.Fig. 11: Heat releasing test of the tank.0.10.20.30.40.50.60.7-0.5-0.4-0.3-0.2-0.100.10.2X=(Ti-Ta)/Ht (℃m2day/MJ)EfficiencyηFig. 12: ISWH-2 thermal efficiency in the long run.Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement 6824. CONCLUSIONTaiwan University has been devoted to the development of low-cost LHP, in cooperation with local industry. A new manufacturing process for low-cost LHP has been developed that leads to a cost down to less than 10USD for a 100W LHP. The present study utilizes the low-cost LHP to develop a new type of solar water heater. A thermosyphon which is thermally bonded with a solar absorber plate is used to absorb solar energy and transfer the heat upward to the evaporator of the LHP. From that, the heat is conducted downward to the condenser of the LHP which is immersed in a hot water tank beneath the solar collector. The solar water heat thus can be designed in integral type with streamline shape which is easy to install and has a good outlook as well as high efficiency. A prototype was designed and fabricated in the present study.A preliminary heat transfer test for a single unit of thermosyphon-LHP combination shows that it is capable of transferring the absorbed energy downward to the LHP condenser immersed in a hot water tank. The overall thermal resistance from the absorber plate to water is 0.34o C/W, and that of the LHP part is 0.16o C/W. Two prototypes of the solar water heaters with 50 liters and 80 liters hot water tanks were designed according to the results of the feasibility test. In addition, an automatic monitoring system was designed and set up for the performance test of these two solar water heaters based on the test standard CNS B7277. The measured overall thermal resistance from solar absorber plate to water is 0.369o C/W. The daily solar water heater efficiency is 0.503. The present study has shown that the application of low-cost LHP in solar water heater is feasible and cost competitive. Figure 13 shows the outlook of the new product design which is in mass production. The capacity of water storage is 80L, and the solar collector area is 1m2.CFD analysis has also shown that this product can stand in a wind speed >60 m/s without tilt-over or sliding.Fig. 13: Product design of ISWH.5. ACKNOWLEDGEMENTThe present study was supported by Energy Bureau, “Ministry of Economic Affairs”, Taiwan, China, KongLin Group, and Advanced Thermal Devices, Inc.6. REFERENCES(1) B.J.Huang: "Similarity theory of solar water heaterwith natural circulation". Solar Energy, V ol.25(2), pp.105-116 (1980).(2) B.J. Huang: “Development of a low-cost LHP forcommercial application”. 13th I nternational Heat Pipe Conference (13th I HPC), Shanghai, China, September 21-25, 2004.(3) Bureau of Standards, Metrology&Inspection,M.O.E.A., R.O.C. CNS B7277: Method of Test for Solar Water Heater System1989.。

相关文档
最新文档