全国高中数学竞赛不等式试题
高中数学不等式高考真题精选和解析
高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。
高中数学竞赛与强基计划试题专题:不等式
高中数学竞赛与强基计划试题专题:不等式一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w zx y+的最小值等于()A .34B .78C .1D .前三个答案都不对2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A.417+B.417-C .417D .以上答案都不对3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.8.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]nii i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦10.(2023·全国·高三专题练习)设0()n ii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos 22x x a a +≥.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z ,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nn k k k k x x x x λ==≥+++∑∑ .16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c ab λ+-的最大值.21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk kn i i i kD C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111n n k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n n i i i i a a ==+=-∏∏,求1ni i a =∑的最小值.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.高中数学竞赛与强基计划试题专题:不等式一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w zx y+的最小值等于()A .34B .78C .1D .前三个答案都不对【答案】D【分析】利用基本不等式可求最小值,从而可得正确的选项.【详解】根据题意,有2111122222w z w x y w w x w x y x y x y y +-+≥+=++-≥+-≥-,等号当1::::12x y z w =12-.2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A .417+B .417-C .417D .以上答案都不对【答案】A【分析】根据题设条件可设1ab =,利用柯西不等式可求最小值.【详解】由111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭可得22111a b c ab a b ab c +⨯=⨯++,由对称性可设1ab =,则条件即1()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭即221a b c c a b ++=+,从而2221a b a b a b+≥⇒+≥++根据柯西不等式()()24444444411a b c a b a b c ⎛⎫++++≥++ ⎪⎝⎭242()4()3a b a b ⎡⎤=+-++⎣⎦417≥+等号当1,1c a b =+=417+3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对【答案】B【分析】利用非负性可求最小值.【详解】根据题意,有5a b c ++=≥=,等号当cyc (,,)(5,0,0)a b c =时可以取得,因此所求最小值为5.二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.【答案】6+++【分析】利用柯西不等式及三角形的恒等式可取最小值.【详解】记题中代数式为M ,我们熟知三角形中的三角恒等式:cot cot cot cot cot cot 1A B B C C A ++=,于是tan tan 2tan tan 3tan tan M A B B C C A=++2(1cot cot cot cot cot cot A B B C C A ≥++2(16=+=+,等号当tan tan tan tan tan :tan :tan A B B C C A A B C ==⇒=时取得,因此所求最小值为6+++5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.【详解】由柯西不等式知()()()22220201212232220112232021a a a a a a a a a a a a a a a ⎛⎫+++++++++⎡⎤ ⎪⎣⎦+++⎝⎭ ()2122201a a a ≥+++= ,且()()()1223202012a a a a a a ++++++= ,所以2222201212232020112a a a a a a a a a +++≥+++ ,且当12202012020a a a ==== 时取到等号.故答案为:12.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.【答案】7316【详解】由题意可得1abc d=,且a b c d ,则()222222911141f a a b c a b c a b c abc=+++++++,原问题等价于求函数()f a 的最小值.322291()2214()d f a a a b c a b c d a '-⎛⎫=-+⋅-⋅- ⎪+++⎝⎭322221924()a da a a d a abcd --=+⋅-⋅+++()22223232229()4()a d a d a d a d a a b c d d --=-+++()()222222328()9()4()a d a b c d a d a d a a b c d d -+++--=+++()2223228()()94()a d a d a b c d a d a a b c d d -=⋅++++-+++,3a b c d a d ++++ ,22()(3)12a b c d a d ad ∴++++ ,2228()()9a d a b c d a d ∴++++-[]228()129332()3a d ad a d ad a d ad +⋅-=+- ,令()32()3g a a d ad =+-,则()323g a d '=-,由a b c d可得1d ≤,则()()'0,g a g a >单调递增,2()()643(643)0g a g d d d d d ∴=-=-> ,则()()'0,f a f a >单调递增,()()f a f d ≥,此时1a b c d ====,73()(1)16f a f =.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.【答案】1【详解】解析:最大值为1记01202011min,1,11ii i k ii k kk a S x a x a ≤≤====+=+∑∑,则1i i i a x x -=-,故111i i i i i x x xS x x ---≤=-,即11i ix S x --≥,对1,2,3,,2020i = ,求和,并结合算术-几何平均不等式,有120202020101202020202020(1)202020202i i i x x S x x -=⎛⎫-≥≥⨯=⎪⎝⎭∑,故1S ≤1(((1,2,3,,2020)i i i a i -=-= 时取到.所以原式的最大值为18.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.【答案】52或2.5【分析】巧妙利用换元2log z x =得到111022z y ++=+,将12y y M x +=取对数运算得到2log (1)(1)1M y z =++-,将所求问题转化为求(1)(1)y z ++的最大值问题,由111022z y ++=+使用两次基本不等式可求出(1)(1)y z ++的最大值,考查等号取得条件即可.【详解】设12y y M x +=,则22log (1)log M y y x =++,设2log z x =,则2z x =,可知225z y +=,2log (1)(1)(1)1M y y z y z =++=++-.1111210222222z y z y +++++=+≥⋅≥⋅,(当且仅当z y =,即522yx ==时取等号.)所以5≥,故(1)(1)y z ++有最大值22(log 5),所以2log M 就有最大值,即12y y M x +=有最大值.【点睛】使用基本不等式求最值关键是要有定值才能求最值,没有明显的定值要进行变形拼凑.在此题中拼凑的定值有:①225z y +=及111022z y ++=+,为求(1)(1)z y +++最大值做准备;②通过提取公因式实现因式分解拼凑乘积,(1)(1)(1)1y y z y z ++=++-,产生了(1)(1)y z ++与上面(1)(1)z y +++遥相呼应,可以使用基本不等式.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]nii i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦【分析】根据给定条件,利用多项式平方运算求出2[()]f x ,再利用赋值法结合已知及进行不等式的放缩,推理判断作答.【详解】22200[()]()()nni si i ji s i j sf x a x a a x==+===∑∑∑,于是s iji j sb a a+==∑,222000001111[(1)]()(2)(2)2222n n i i i j i j i j i i i j n i j n i j n f a a a a a a a a ==≤<≤≤<≤≤<≤==+≥=∑∑∑∑∑001ni j j i j n j a a a a =<≤=≥=∑∑,因为00,1,2,,i a a i n ≤≤= ,则211211001010111[(1)]2nn i j n n n n n ji j n j b a a a a a a a a a a a a a a a a f +--+=+===+++≤+++=≤∑∑ ,所以211[(1)]2n b f +≤.10.(2023·全国·高三专题练习)设0()nii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+【分析】根据给定条件,利用多项式恒等定理求出多项式(),()f x g x 的对应项系数的关系,再按||1r ≤和||1r >讨论,并结合含绝对值不等式的性质推理作答.【详解】因为()()()g x x r f x =-,即1110101()()n n nn niii ii n i i i i i i n i i i i i c x x r a x a xra x ra a ra x a x +++-======-=-=-+-+∑∑∑∑∑,则有()0011,1,2,,,i i i n n c ra c a ra i n c a -+=-=-== ,于是2211121101231,,,,nn n n n n n n n n n a c a c rc a c rc r c a c rc r c r c +-+--++==+=++=++++ ,若1r ≤,则1111,||2n n n n n n n a c c a c rc c r c c +-++=≤=+=+⋅≤,2221111||3,n n n n n n n a c rc r c c r c r c c --+-+=++≤+⋅+≤ ,()22012311231||||||||||||||||1n n n n a c rc r c r c c r c r c r c n c ++=++++≤+⋅+⋅++⋅≤+ ,所以()1i a n c ≤+,于是()1a n c ≤+,若1r >,则11,r<由()0011,1,2,,,i i i n n c ra c a ra i n c a -+=-=-== ,得()0011111,1,2,,,i i i n n a c a a c i n a c r r r-+=-=-== ,于是00101012120122321111111111,,,,a c a a c c c a a c c c c r r r r r r r r r r =-=-=--=-=--- 101111111,n n n n n n a c c c a c r r r--+-=----= ,于是0001010122111111,2a c c c a c c c c c r r r r r r =-=<=--≤+<,201201232321111113,,a c c c c c c c r r r r r r=---≤++< 1011011111111111,n n n n n n n n n a c c c c c c nc a c c r r r r r r---+--=----≤+++<=≤ ,所以i a nc <,于是()1a n c <+,综上得:()1a n c ≤+.11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.【详解】()()()()111abc a b ab bc ca c a b ab ⎡⎤⎣⎦++-++=-+⨯-,因为a ,b ,0,2c a b c ≥++=,所以()1,1c a b ab +≤≤.于是()1abc a b ab bc ca ++≥++,同理()1abc b c ab bc ca ++≥++,()1abc c a ab bc ca ++≥++.则:1()1()1()bc ca ababc a b abc b c abc c a ++++++++1bc ca abab bc ca ab bc ca ab bc ca≤++=++++++.故题中的不等式成立.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos 22x x a a +≥.【详解】设22sin x t a =,则不等式化为20at t+-≥.当01a <<时,2[,1]t a ∈;当1a =时,1t =;当1a >时,2[1,]t a ∈.因此不等式可化为220t t a +≥-.设2()2f t t t a =-+,考虑()f t 在1和2a 之间恒小于零,则2(1)0,()0,0f f a a <<>,故()()21110a a a a <⎧⎪⎨-+-<⎪⎩,1a <<.所以a的取值范围是10,[1,)2⎛⎤⋃+∞ ⎥ ⎝⎦.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z ,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.【详解】(1)不妨设x y z ≤≤,则||||||-+-+-=-+-+-x y y z z x y x z y zx2()=-=≤≤=z x .(2)因为2023为奇数,则1220231,, i x x x x x 中必存在1,i i x x +(令20241=x x )同号,不妨设12,x x 同号,则:20233232023112112211232++===-=-+-≤-+++=∑∑∑ii i i i i i i xx x x x x x x x x x S .不妨设210≥≥x x ,则122122-++=x x x x x,所以:20232322=⎫⎫=+≤≤=⎪⎪⎪⎪⎭⎭∑i i S x x当且仅当124130,,====== x x x xx或124130,,====== x x x x x 因此12232022202320231-+-++-+- x x x x x x xx 的最大值为14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.【分析】第一步化简原式,第二步利用AM GM -不等式即可得到1k =或2m ,这两种情况是对称的,不妨证明1k =的时候成立,所以原式成立.【详解】由已知22121,1,2,,i i njj mx x i nx==+=⋅⋅⋅∑,得22121ni jj i mx x x ==-∑,故221i i mx x -全相等.注意到若实数a b ¹满足2211a b a b =--,则ab a b =+,即1b a b =-.因此,1i b x b b ⎧⎫∈⎨⎬-⎩⎭,0,1,2,,b i n ≠= .设i x 中有1bb -,21n k m k -=+-个b ,则有201k m ≤≤+,且()2222221(1)1b mb k m k b b b ⋅++-=--,即()21(1)21km k b m b ++--=-.由AM GM -不等式,若201k m <<+,()21(1)21km k b m b ++--≥≥-,因此必取等,即1k =或2m ,这两种情况是对称的,不妨1k =,则21(1)21m b m b +-=-,知11b m -=,则1,1m b a m m+==+.若0k =,则()21(1)2m b m +-=,即222(1)(1),12m m b a m m++==+.若21k m =+,则2121m m b +=-,即222(1)(1),21m m b a m m ++==+.综上可知,12,,,n x x x 要么1个21,+m m 个1m m +;要么全是22(1)1m m ++.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nnk k k k x x x x λ==≥+++∑∑ .【分析】先取101231,2,4,,2n n x x x x x -===== ,通过对其求和可得λ的范围,再利用放缩法可得010101201111333n nx x x x x x x x x x x +++≥+++++++++ ,最后求出最大的正实数λ的值.【详解】一方面,取101231,2,4,,2n n x x x x x -===== ,得1111322nn kk λ-=-≥∑即1113122n n λ-⎛⎫-≥- ⎪⎝⎭.令n →∞,得3λ≤.另一方面对正实数x ,y 有114x y x y+≥+,故0101114x x x x +≥+,012012114x x x x x x +≥+++,01230123114x x x x x x x x +≥+++++,……01101114n n nx x x x x x x -+≥++++++ .以上各式相加,得010101201111333n nx x x x x x x x x x x +++≥+++++++++ .故3λ=时,原不等式恒成立.综上,λ的最大值为3.16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.【详解】不妨1210x x x ≤≤≤ ,设()(,)i j j i f i j x x x x =-,当010i j ≤≤≤时,因为()()()22333i j j i i i j j j i j i x x x x x x x x x x x x -≤++-=-,即333(,)j i f i j x x ≤-,当且仅当i j =时,等号成立.故()()10103311131,1i i i i f i i x x -==-<-<∑∑,所以存在{1,2,,10}i ∈ ,使得13(1,)10f i i -<,即1(1,)30f i i -<.所以存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.【分析】构造一个直角三角形,,<cos )2αα+≤,即得证.【详解】证明:为了使得条件1a b +=与待证式的中间部分在形式上接近一些,我们将该条件作如下变形:11222a b ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,进而有222⎫+=⎪⎪⎭.①(如图所示).显然,这个直角三角形的三边长之间的关系是符合①的,从而满足条件1a b +=.由图所示,根据定理“三角形任意两边之和大于第三边”<.α=,α=.cos )24πααα⎛⎫+=+≤ ⎪⎝⎭∴2<成立.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹2112a b a b+>>>+.【分析】如图所示,可先构造Rt ABC △,再构造Rt BCD ,最后,作Rt Rt BC D BCD '△≌△,由图形直观得AB BC BD BE >>>,即得证.=可先构造Rt ABC △,使得2a b BC +=,2a bAC -=,如图所示.此时,AB =.再以2a bBC +=为斜边,2a b CD -=为直角边构造Rt BCD,则BD =最后,作Rt Rt BC D BCD '△≌△,过点D 作DE BC ⊥'交BC '于点E ,由2BD BE BC =⋅'得22112BD BE a b BC a b=='+,由图形直观得AB BC BD BE >>>,2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥【详解】证法一:由AM-GM 不等式有:()=120222022ni i i x x +∏=11=2022nk i i k x ≠+∑∏()11i n n =⎛≥- ⎝∏()()=11=2022nn i i n x -+∏,2022≥.证法二:不妨设12022i i y x =+,则12022,1iix i n y =-≤≤.从而原题转化为:已知111=,0<<20222022ni i i y y =∑,求证()=11ln 2022ln 20221ni i n n y ⎛⎫-≥-⎡⎤ ⎪⎣⎦⎝⎭∑.令()11ln 20222022i f y y y ⎛⎫=-<< ⎪⎝⎭,则()()2214044=2022''y f y y y --.不失一般性,我们设12n y y y ≤≤≤ ,则:(1)若1214044n y y y ≤≤≤≤,由Jesen 不等式有:()()1111ln 202212022nn i i i f y nf y nf n n n n ==⎛⎫⎛⎫≥==-⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭∑∑.(2)若12114044n n y y y y -≤≤≤≤≤ .容易得到()1ni i f y =∑取得最小值当且仅当121n y y y -=== .20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c ab λ+-的最大值.【分析】解法一:设12x m λ=-,22x m λ=+,()30x m t t =+>,利用韦达定理可化简所求式子为解法二:由()()()32311321232279222a c ab x x x x x x x x x +-=+-+-+-可令21x x λ=+,()3102x x n n λ=++>,由此可化简所求式子为3922n n λλ⎛⎫⋅- ⎪⎝⎭,令0n t λ=>,()()39202g t t t t =->,利用导数可求得()max g t ,即为所求式子的最大值.【详解】解法一:由题意可设:12x m λ=-,22x m λ=+,()31212x x x m >+= ,∴可令()30x m t t =+>,由韦达定理得:()()123221223312232123332444a x x x m t b x x x x x x m mt c x x x m m t m t λλλ⎧⎪=-++=-+⎪⎪=++=+-⎨⎪⎪=-=--++⎪⎩,则()323222327929292727244a ab a a b m m t m t t λλ-=-=+---,3222272727272744c m m t m t λλ=--++,则323332279942a c abt t λλλ+--=要取得最大值,则23940t t λ->,()3223322791942a c abt t λλλ+-=-2=(当且仅当222948t t λ-=,即t=时取等号),又t =满足23940t t λ->,∴取0m =,2λ=,则t =,此时11x =-,21x =,3x =a =1b =-,c =时,3322792a c ab λ+-=,332279a c abλ+-∴解法二:323227927273333a a a a a c ab a b c f⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=-+-+-+=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()()12312327333333a a a x x x a x a x a x ⎛⎫⎛⎫⎛⎫=------=------ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,又123a x x x -=++,()()()32311321232279222a c ab x x x x x x x x x ∴+-=+-+-+-,令21x x λ=+,()3102x x n n λ=++>,322339227922224a c ab n n n n n λλλ⎛⎫⎛⎫⎛⎫∴+-=+-=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,2233339222799422n n a c ab n n λλλλλ⎛⎫- ⎪+-⎛⎫⎝⎭∴==⋅- ⎪⎝⎭;令0nt λ=>,则3332279922a c abt t λ+-=-,令()()39202g t t t t =->,则()2962g t t '=-,令()0g t '=,解得:t =,∴当0,2t ⎛∈ ⎝⎭时,()0g t '>;当,2t ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g t '<;()g t ∴在2⎛⎫⎪ ⎪⎝⎭上单调递增,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递减,()max22482g t g ⎛⎫∴==-⨯= ⎪ ⎪⎝⎭;∴当2λ=,n =11x =-,21x =,3x =a =1b =-,c =332279a c ab λ+-=332279a c abλ+-∴21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk k ni i i k D C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .【详解】任取121,,,k i i i a a a + ,由柯西不等式,有:()()1211211212111(1)(1)k j k k k j i i i i i i i i i i k a a a a k a a a a a a ++++=+≥+++-++++-+++∑ 1212(1)1k i i i k k a a a ++=⋅+++ .所以()1211212111(1)1k k jk j i i i i i i i k k aa a aa a a +++=+++++++-∑∑∑.其中求和对1,2,…,n 的所有1k n C +个1k +元组合进行.上式左边实际上是一些k 元组合的求和,因对任意k 元组合12,,,k i i i a a a ,选这k 个数的1k +元组合有n k -个(余下的n k -个数中任意一个数都与其构成一个1k +元组合),故121121111()k j kk j i i i i i i i n k a a a a a a a ++==-+++-+++∑∑∑ .这样便有1212121(1)1()k k i i i i i i k n k a a a k aa a ++-≥++++++∑∑ ,所以1212121(1)1C ()C k k kkni i i ni i i kk a a a n k aa a ++≥+++-+++∑∑ .再注意到1()(1)k k n n n k C k C +-=+,即得:121211111C C k k k k ni i i n i i i k k aa a a a a +++≥++++++∑∑.这就证明了1k k D D +≥,其中1,2,,1k n =- .即有121k k n D D D D D +≥≥⋅⋅⋅≥≥≥⋅⋅⋅≥.22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.【答案】当n为偶数时,最大值为n为奇数时,最大值为【详解】i j i j a a a a -≤+当且仅当·0i j a a ≤时等号成立.(1)当n 为偶数时,122311n n n a a a a a a a a --+-++-+-L 最大时,显然需满足10i i a a +⋅≤,否则用1i a +-替换1i a +依然满足条件,且值增大.设11n a a +=,所以()111112nn nii i i i i i i a aa a a ++===-≤+=≤=∑∑∑当且仅当i j a a ==i 为奇数,j 为偶数或i 为偶数,j 为奇数)时等号成立.(2)当n 为奇数时,122311,,,,n n n a a a a a a a a ----- 必存在()111,i i n a a a a ++=同号,不妨设12,a a 同号,则:112112211232A nn nii i i i i i i a aa a a a a a a a a ++===-=-+-≤-+++=∑∑∑.不妨设210a a ≥≥,则122122a a a a a -++=,所以:23A 2222ni i a a ==+≤≤=⎝∑当且仅当124130,a a a a a =======L L124130,,a a a a a ======L L .23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .【详解】当4n ≥时,由平均值不等式知1111111n nn j i nj i j j j ia a a a n n --==≠⎛⎫- ⎪-⎛⎫ ⎪= ⎪ ⎪--⎝⎭⎪⎝⎭∑∏ .又111i a n -<-,则131111n i i a a n n ---⎛⎫⎛⎫≤ ⎪ ⎪--⎝⎭⎝⎭,所以231312112222n n n n a a a a a a a a a a n a n a n -++++-+-+- ()()3311(1)2ni i i a n a n =-≤-+-∑33321(10)1(1)(02)(1)(2)(1)ni n n n n n n =-<=≤-+----∑.当3n =时,即证312311(1)4=≤+∑i i i a a a a a .由于()()()()11123121311111111411a a a a a a a a a ⎛⎫=≤+ ⎪+-+---⎝⎭,所以3112131111((1)4(1)(1)=≤++--∑∑i i i a a a a a a ()()2131111411a a a a ⎛⎫=+ ⎪--⎝⎭∑()2323123111414a a a a a a a +==-∑∑,所以31231111(1)44=≤=+∑∑i i i a a a a a a .命题得证.24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111nn k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.【详解】由题意2112a a =+=.对2n ≥,我们有:11nn k k na n a +==+∑;()1111n n k k n a n a -=-=-+∑.两式相减,得:11n n na na +-=,即()111n n a a n n+=+≥.对2n ≥有1111n n k a k-==+∑.取403621n =+,则114035220211122i i n n k i k a k k +-===+⎛⎫=+=+ ⎪⎝⎭∑∑∑1403521021122i i i i k ++==+⎛⎫>+ ⎪⎝⎭∑∑403501220202i ==+=∑,从而403621n =+满足要求.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.【答案】3,3,41, 4.n M n ⎧=⎪=⎨⎪≥⎩【详解】当4n ≥时,令1(1,2,,1)k k a xa k n +==- ,则2221111(1)11nk n k k k a x n a a x x -=+⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑.当0x →时,2211(1)111n x n x x -⎛⎫⎛⎫-+→ ⎪ ⎪++⎝⎭⎝⎭.令1k k k a x a +=,则问题化为:121n x x x = ,证明:21111n k k x =⎛⎫≥ ⎪+⎝⎭∑.当4n =时,首先证明:22111111x y xy⎛⎫⎛⎫+≥⎪ ⎪+++⎝⎭⎝⎭.①①式332212x y xy x y xy ⇔++≥+,由均值不等式知成立.由①式知2412341123412341234211111111k k x x x x x x x x x x x x x x x x x =⎛⎫++≥+== ⎪++++++⎝⎭∑.假设n k =时,对任意正实数12,,,k x x x 结论成立.则1n k =+时,由对称性不妨设121,,,,k k x x x x + 中1k x +最大,则11k x +≥,所以22211111111k k k k x x x x ++⎛⎫⎛⎫⎛⎫+≥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,由归纳假设知,此时结论成立.由数学归纳法知,2111nk k k k a a a =+⎛⎫≥ ⎪+⎝⎭∑.故1M =.当1233,n a a a ===时,231134k k k k a a a =+⎛⎫= ⎪+⎝⎭∑.由于24111k k k k a a a =+⎛⎫≥ ⎪+⎝⎭∑,令34a a =,则231134k k k k a a a =+⎛⎫≥⎪+⎝⎭∑,所以34M =.综上所述,3,3,41, 4.n M n ⎧=⎪=⎨⎪≥⎩26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .【详解】原不等式等价于cos()cos()cos()8cos cos cos B C C A A B A B C--- .在三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=,cos()sin sin cos cos cos sin sin cos cos B C B C B C A B C B C -+=-tan tan 1tan tan 1B C B C +=-tan (tan tan 1)tan tan A B C B C +=+2tan tan tan tan tan A B CB C++=+.令tan tan tan tan tan tan A B xB C y C A z+=⎧⎪+=⎨⎪+=⎩,则原不等式等价于()()()8z x y z x y yxz +++ .而上式左边8=,故原不等式得证27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ .【详解】332211a b a b ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭()()()()55234234222211(1)(1)11a b a b a aa ab b b b a b a b ----++++++++==()()23423411a aa ab b b b ab++++++++=23231111a a a b b b a b ⎛⎫⎛⎫=++++++++ ⎪⎪⎝⎭⎝⎭231ab ⎫≥++++⎪⎭(柯西不等式),122a b +=,令t =231()1g t t t t t=++++,其中102t <≤,则2213()12341104g t t t t =-+++≤-+++<',所以131()28g t g ⎛⎫≥= ⎪⎝⎭.所以2332211318a b a b ⎛⎫⎛⎫⎛⎫--≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.【详解】解同除!n :()()11111!3!2nnn nn n n n ++⋅<<,设()1!nnn a n +=,原题即证:23n nn a <<,而()2211111111C C 2nn nn n n n n n n aa n n n n -+⎛⎫⎛⎫⎛⎫==+=++⋅+⋅⋅⋅+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以112121···2n n n n n a a a a a a ----⋅⋅⋅>,即1122n nn a a ->⋅=,1n >,又2211111C C nn n n n n a a n n -⎛⎫⎛⎫=++⋅++ ⎪ ⎝⎭⎝⎭ 11122!3!!n <+++⋅⋅⋅+211112222n -<+++⋅⋅⋅+11332n -=-<,所以112121···<3n n n n n a a aa a a ----⋅⋅⋅,即1133n nn a a -<⋅<,1n >,综上可得:1n >时,23nnn a <<,即11!32n nn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n n i i i i a a ==+=-∏∏,求1ni i a =∑的最小值.【分析】由特例可得当n 为偶数时,1||ni i a =∑的最小值为0,当n 为奇数时,问题可转化为“给定正奇数n ,设11,,n x x +⋯满足1(1,2,)i i x x i n +≠=,111n n i i i i x x +===∏∏,则111||2ni i i i i x x x x +=++≥-∑恒成立.”,利用逐步调整法可证后者.【详解】当n 为偶数时,取10n a a =⋯==,故1||ni i a =∑的最小值为0;当n 为奇数时,也可只取121,1a a =-=,其余为0,此时1||2ni i a ==∑,下证当n 为奇数时,12ni i a =≥∑恒成立.(利用换元可以得到更直观的形式如问题2).问题2:给定正奇数n ,设11,,n x x +⋯满足1(1,2,)i i x x i n +≠=,111n n i i i i x x +===∏∏,则111||2ni i i i i x x x x +=++≥-∑恒成立.证明:注意到若10i i x x +⋅≥同号,即有111i i i i x x x x +++≥-,因为n 为正奇数,则必定存在一组0010i i x x +⋅≥同号,否则若1,i i x x +均异号,则111,nni i i i x x +==∏∏的符号必定相异.若还存在其他组10i i x x +≥,则可得111||2ni i i i i x x x x +=++≥-∑成立,若无其他组10,i i x x +≥同号,不妨10n n x x +≥,可设10,0n n x x +>>,(若等于0的可以进行小范围微调,只要不影响绝对值内数值的符号即可).因为无其他组10,i i x x +≥同号,故122221221110,0,,0,0,0,0,,0,0,0k k k k n n n x x x x x x x x x --+-+><<>><<>> ,此时11,n x x +同号.记1i i i x d x +=,则11ni i d ==∏且对1i n ≤≤,11111.1i i i ii i i i i i x x d x x x x x x d ++++--+==-++设1121|1|1(,,,)11n i n n i i nd d f d d d d d -=-+=++-∑ ,下面将在11n i i d ==∏条件下进行调整.①若存在1,1k d k n >≤-.令()1,,,,n n k n i k i d d d d d d d i k n '==>='≠'则()()()()()'''1212211,,,,,,0.111n k k n n k n n k d d d f d d d f d d d d d d d --⋯-⋯=+>+--②若存在,1,1k l d d k l n <<≤-.令()'''1,,,,k l k l i i d d d d d d i k l ===≠则()()1212111,,,,,,111k l k l n n k l k l d d d d f d d d f d d d d d d d '''---⋯-⋯=+-+++()()()()()()1110111k l k l k l k l d d d d d d d d ---=>+++由上述讨论知,经过有限次调整可得:对1i n ≤-,除至多一个1i d ≠(设为)1d 外,其余1i d =.因此就有11n d d =,不妨设1n d >,则101d <<,故1121|1|1(,,,)11n i n n i i n d d f d d d d d -=-+⋯=++-∑111111n n n nd d d d -+≥+-+1111n n n n d d d d -+=++-2≥,原不等式得证.至此我们完成了问题2在奇数情况下的解答,即所求()max 2n λλ==.综上,当n 为偶数时,1||ni i a =∑的最小值为0;当n 为奇数时,1||ni i a =∑的最小值为2.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.【详解】等价于已知x ,y ,0z >,1x y z ++=,证:()8445221x y z x y z +≥+∑,由三元均值不等式有()844522x y z x y z +≥+∑由柯西不等式有()84444622()x y z x y xyz yx ∏+⎛⎫=≥∏+ ⎪⎝⎭,所以有()()8446653()()xy z x y xyz xyz ++≥∏∏,则可知()844522x y z x y z +≥+∑由柯西不等式有()()()866444444322()893xyx y x xyxyz xxy ++≥≥≥+∏∏∑∑∑∏,则有()844522x y z x y z+≥+∑1x y z =++≥13≥,所以()8445221x y z x y z +≥+∑,所以原不等式成立.。
高中数学竞赛《不等式的证明》专题练习
不等式的证明一 能用单调性证明的不等式 二 利用最值证明三 利用中值定理(拉格朗日、柯西、泰勒公式)证明 四 利用凹凸性证明一 能用单调性证明的不等式(1)对不等式()()f x g x ≥,x I ∈,构造函数()()()F x f x g x =-若()F x 的导数()F x '在I 上的符号,若()F x '恒正(或恒负),则可以考虑用单调性证明.(若导数符号不一致,则可能考虑最值方法证明了)(2)若不等式含有两个参数,并且能分离两个参数分别在不等式两边,且结构一样,那么可以用单调性证明(也可用拉格朗日定理证明)。
例(1) 含一个参数的例 1 (1) 设0x <<+∞,证明不等式()11114xx x x ⎛⎫++≤ ⎪⎝⎭,且等号仅在1x =处成立。
(2)证明:当0x >时,()()221ln 1x x x -≥- (1)证明 注意到当1x ≤<+∞时101x<≤,故只需要当证明01x <≤时成立即可 令函数()11ln 1ln(1)ln 4f x x x x x⎛⎫=+++- ⎪⎝⎭,其中01x <≤,则()()21111ln 1ln(1)11f x x x x xx x ⎛⎫'=+--++⎪++⎝⎭,且()10f '= 另外()322(21)ln(1)(1)x x f x x x x ⎡⎤+''=+-⎢⎥+⎣⎦令()2(21)ln(1)(1)x x g x x x +=+-+,其中01x <≤,则()3(1)0(1)x x g x x -'=<+ 故在01x <≤有()()00g x g <=,从而在01x <≤有()0f x ''<,这表明()f x '在01x <≤严格单调减,故在01x <<时()()10f x f ''>=这说明()f x 在01x <≤严格单调增,即()11114xx x x ⎛⎫++≤ ⎪⎝⎭,且等号仅在1x =处成立。
国高中数学联赛试题及详细解析___
2021年全国高中数学联赛试题及详细解析一.选择题(此题满分是36分,每一小题6分)1.设锐角θ使关于x 的方程x 2+4x cos θ+cos θ=0有重根,那么θ的弧度数为 ( )A .π6B .π12或者5π12C .π6或者5π12D .π122.M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.假设对于所有的m ∈R ,均有M ∩N ≠∅,那么b 的取值范围是( )A .[-62,62]B .(-62,62)C .(-233,233]D .[-233,233] 3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 4.设点O 在∆ABC 的内部,且有→OA +2→OB +3→OC =→0,那么∆ABC 的面积与∆AOC 的面积的比为( )A .2B .32C .3D .538.设函数f:R→R,满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,那么f(x)=;9.如图,正方体ABCD-A1B1C1D1中,二面角A-BD1—A1的度数是;10.设p是给定的奇质数,正整数k使得k2-pk也是一个正整数,那么k=;11.数列a0,a1,a2,…,a n,…满足关系式(3-a n+1)(6+a n)=18,且a0=3,那么n∑i=01a i的值是;12.在平面直角坐标系xOy中,给定两点M(-1,2)和N(1,4),点P在x轴上挪动,当∠MPN取最大值时,点P的横坐标为;二试题一.(此题满分是50分)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,BC=25,BD=20,BE=7,求AK 的长.二.(此题满分是50分)在平面直角坐标系XOY 中,y 轴正半轴上的点列{A n }与曲线y=2x (x ≥0)上的点列{B n }满足|OA n |=|OB n |=1n,直线A n B n 在x 轴上的截距为a n ,点B n 的横坐标为b n ,n ∈N*.⑴ 证明a n >a n +1>4,n ∈N*;⑵ 证明有n 0∈N *,使得对∀n >n 0,都有b 2b 1+b 3b 2+…+b n b n -1+b n +1b n<n -2021. 三.(此题满分是50分)对于整数n ≥4,求出最小的整数f (n ),使得对于任何正整数m ,集合{m ,m +1,…,m+n -1}的任一个f (n )元子集中,均至少有3个两两互素的元素.EFBCDAGHK2021年全国高中数学联赛试卷第一试一.选择题(此题满分是36分,每一小题6分)1.设锐角θ使关于x 的方程x 2+4x cos θ+cot θ=0有重根,那么θ的弧度数为 ( )A .π6B .π12或者5π12C .π6或者5π12D .π12【答案】B【解析】由方程有重根,故14∆=4cos 2θ-cot θ=0,∵ 0<θ<π2,⇒2sin2θ=1,⇒θ=π12或者5π12.选B .3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 【答案】C【解析】令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),⇒x ∈[2,4),选C .4.设点O 在∆ABC 的内部,且有→OA +2→OB +3→OC =→0,那么∆ABC 的面积与∆AOC 的面积的比为( )A.2 B.32C.3 D.53【答案】C【解析】如图,设∆AOC=S,那么∆OC1D=3S,∆OB1D=∆OB1C1=3S,∆AOB=∆OBD=S.∆OBC=S,⇒∆ABC=3S.选C.5.设三位数n=¯¯¯abc,假设以a,b,c为三条边长可以构成一个等腰(含等边)三角形,那么这样的三位数n有( )A.45个B.81个C.165个D.216个6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C为PA的中点,那么当三棱锥O-HPC的体积最大时,OB的长为( )A.53B.253C.63D.263SB11OABC二.填空题(此题满分是54分,每一小题9分)7.在平面直角坐标系xOy 中,函数f (x )=a sin ax +cos ax (a >0)在一个最小正周期长的区间上的图像与函数g (x )= a 2+1的图像所围成的封闭图形的面积是 ;【答案】2πaa 2+1.【解析】f (x )= a 2+1sin(ax +ϕ),周期=2πa ,取长为2πa,宽为2a 2+1的矩形,由对称性知,面积之半即为所求.故填2πaa 2+1.又解:∫ϕ1ϕ0a 2+1[1-sin(ax +ϕ)]dx=a 2+1a ∫π20(1-sin t )dt=2p aa 2+1.8.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,那么f (x )= ;【答案】x+1【解析】令x=y=0,得,f (1)=1-1-0+2,⇒f (1)=2. 令y=1,得f (x +1)=2f (x )-2-x +2,即f (x +1)=2f (x )-x .①又,f (yx +1)=f (y )f (x )-f (x )-y +2,令y=1代入,得f (x +1)=2f (x )-f (x )-1+2,即f (x +1)=f (x )+1.②比拟①、②得,f (x )=x +1.10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,那么k= ;【答案】14(p +1)2.【解析】设k 2-pk=n ,那么(k -p2)2-n 2=p 24,⇒(2k -p +2n )(2k -p -2n )=p 2,⇒k=14(p +1)2.11.数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,那么n∑i=01a i的值是 ;【答案】13(2n +2-n -3).【解析】1a n +1=2a n +13,⇒令b n =1a n +13,得b 0=23,b n =2b n -1,⇒b n =23⨯2n .即1a n =2n +1-13,⇒n∑i=01a i =13(2n +2-n -3).12.在平面直角坐标系xOy中,给定两点M(-1,2)和N(1,4),为;【答案】1【解析】当∠MPN最大时,⊙MNP与x轴相切于点P(否那么⊙MNP与x轴交于PQ,那么线段PQ上的点P'使∠MP'N更大).于是,延长NM交x轴于K(-3,0),有KM·KN=KP2,⇒KP=4.P(1,0),(-7,0),但(1,0)处⊙MNP的半径小,从而点P的横坐标=1.三.解答题(此题满分是60分,每一小题20分)13.一项“过关游戏〞规那么规定:在第n关要抛掷一颗骰子n次,假如这n次抛掷所出现的点数的和大于2n,那么算过关.问:⑴某人在这项游戏中最多能过几关?⑵他连过前三关的概率是多少?14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P 到直线BC的间隔 是该点到直线AB 、AC 间隔 的等比中项.⑴ 求点P 的轨迹方程;⑵ 假设直线L 经过 ABC 的内心(设为D ),且与P 点轨迹恰好有3个公一共点,求L 的斜率k 的取值范围.【解析】⑴ 设点P 的坐标为(x ,y ),(b ) k=0时,直线y=12与圆④切于点(0,12),与双曲线⑤交于(±582,12),即k=0满足要求.(c ) k=±12时,直线⑥与圆只有1个公一共点,与双曲线⑤也至多有1个公一共点,故舍去.(c ) k ≠0时,k ≠12时,直线⑥与圆有2个公一共点,以⑥代入⑤得:(8-17k 2)x 2-5kx-254=0. 当8-17k 2=0或者(5k )2-25(8-17k 2)=0,即得k=±23417与k=±22.∴ 所求k 值的取值范围为{0,±23417,±22}.15.α,β是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )= 2x -t x 2+1的定义域为[α,β].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,π2)(i=1,2,3),假设sin u 1+sin u 2+sin u 3=1,那么1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364.【解析】⑴α+β=t,αβ=-14.故α<0,β>0.当x1,x2∈[α,β]时,∴f '(x)=2(x2+1)-2x(2x-t)(x2+1)2=-2(x2-xt)+2(x2+1)2.而当x∈[α,β]时,x2-xt<0,于是f '(x)>0,即f(x)在[α,β]上单调增.∴g(t)=2β-tβ2+1-2α-tα2+1=(2β-t)(α2+1)-(2α-t)(β2+1)(α2+1)(β2+1)=(β-α)[t(α+β)-2αβ+2]α2β2+α2+β2+1=t2+1(t2+52)t2+2516=8t2+1(2t2+5)16t2+25二试题一.(此题满分是50分)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,BC=25,BD=20,BE=7,求AK 的长.二.(此题满分是50分)在平面直角坐标系XOY 中,y 轴正半轴上的点列{A n }与曲线y=2x (x ≥0)上的点列{B n }满足|OA n |=|OB n |=1n,直线A n B n 在x 轴上的截距为a n ,点B n 的横坐标为b n ,n ∈N*.⑴ 证明a n >a n +1>4,n ∈N*;⑵ 证明有n 0∈N*,使得对∀n >n 0,都有b 2b 1+b 3b 2+…+b n b n -1+b n +1b n<n -2021. 【解析】⑴ 点A n (0,1n ),B n (b n ,2b n )⇒由|OA n |=|OB n |,⇒b n 2+2b n =(1n)2,⇒b n =1+(1n)2-1(b n >0).∴ 0<b n <12n 2.且b n 递减,⇒n 2b n =n (n 2+1-n )= n n 2+1+n=11+(1n)2+1单调增.∴ 0<n b n <12.⇒令t n =1n b n>2且t n 单调减.由截距式方程知,b na n +2b n1n=1,(1-2n 2b n =n 2b n 2) ∴ a n =b n 1-n 2b n =b n (1+n 2b n )1-2n 2b n =1+n 2b n n 2b n =(1n b n )2+2(1n b n)=t n 2+2t n =(t n +22)2-12≥(2+22)2-12=4. 且由于t n 单调减,知a n 单调减,即a n >a n+1>4成立. 亦可由1n 2b n=b n +2.1n b n=b n +2,得 a n =b n +2+2b n +2,.∴ 由b n 递减知a n 递减,且a n >0+2+2⨯2=4.三.(此题满分是50分)对于整数n ≥4,求出最小的整数f (n ),使得对于任何正整数m ,集合{m ,m +1,…,m+n -1}的任一个f (n )元子集中,均至少有3个两两互素的元素.【解析】⑴ 当n ≥4时,对集合M (m ,n )={m ,m +1,…,m+n -1},当m为奇数时,m,m+1,m+2互质,当m为偶数时,m+1,m+2,m+3互质.即M的子集M中存在3个两两互质的元素,故f(n)存在且f(n)≤n.①取集合T n={t|2|t或者3|t,t≤n+1},那么T为M(2,n)={2,3,…,n+1}的一个子集,且其中任3个数无不能两两互质.故f(n)≥card(T)+1.但card(T)=[n+12]+[n+13]-[n+16].故f(n)≥[n+12]+[n+13]-[n+16]+1.②由①与②得,f(4)=4,f(5)=5.5≤f(6)≤6,6≤f(7)≤7,7≤f(8)≤8,8≤f(9)≤9.现计算f(6),取M={m,m+1,…,m+5},假设取其中任意5个数,当这5个数中有3个奇数时,这3个奇数互质;当这3个数中有3个偶数k,k+2,k+4(k 0(mod2))时,其中至多有1个被5整除,必有1个被3整除,故至少有1个不能被3与5整除,此数与另两个创作人:历恰面日期:2020年1月1日。
高中数学竞赛之重要不等式汇总(相关练习答案)
(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++-2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni ini i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a (2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J e n se n 不等式)若)(xf 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=证: 作变换 令i i x a =β,则β1i i x a = 则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥ 因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。
近五年全国高中数学联赛选编——不等式
近五年全国高中数学联赛选编——不等式 2015.8.171.(2010年 加试3)给定整数2n >,设正实数12,,,n a a a 满足1,1,2,,k a k n ≤=,记12,1,2,,kk a a a A k n k+++==.求证:1112nnk k k k n a A ==--<∑∑ 解:由01k a <≤知,对11k n ≤≤-,有110,0kni ii i k a k an k ==+<≤<≤-∑∑.注意到当,0x y >时,有{}max ,x y x y -<,于是对11k n ≤≤-,有11111kn n k i i i i k A A a a n k n ==+⎛⎫-=-+ ⎪⎝⎭∑∑11111n ki i i k i a a n k n =+=⎛⎫=-- ⎪⎝⎭∑∑ 11111max ,nk i i i k i a a n k n =+=⎧⎫⎛⎫<-⎨⎬ ⎪⎝⎭⎩⎭∑∑ 111max (),n k k nk n ⎧⎫⎛⎫≤--⎨⎬ ⎪⎝⎭⎩⎭1k n =-, 故111nnnk k n k k k k a A nA A ===-=-∑∑∑()1111n n n k n kk k A A A A --===-≤-∑∑111n k k n -=⎛⎫<- ⎪⎝⎭∑12n -=.111n nnk k n k k k k a A nA A ===-=-∑∑∑()1111n n n k n k k k A A A A --===-≤-∑∑111n k k n -=⎛⎫<- ⎪⎝⎭∑12n -=.2.(2011年 加试3)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a j k ij ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.证明:对给定的)1(n j j <<,满足n k j i ≤<<≤1,且r a a a a jk i j =-- ①的三元数组),,(k j i 的个数记为)(r g j .注意到,若j i ,固定,则显然至多有一个k 使得①成立.因j i <,即i 有1-j 种选法,故1)(-≤j r g j . 同样地,若k j ,固定,则至多有一个i 使得①成立.因j k >,即k 有j n -种选法,故j n r g j -≤)(.从而},1min{)(j n j r g j --≤.因此,当n 为偶数时,设m n 2=,则有∑∑∑-=-=-=+==121212)()()()(m mj jm j j n j j n r gr g r g r f2)1(2)1()2()1(1212-+-=-+-≤∑∑-+==m m m m j m j m m j m j 4222n m m m =<-=.当n 为奇数时,设12+=m n ,则有∑∑∑+==-=+==mm j jmj j n j j n r gr g r g r f 21212)()()()(∑∑+==-++-≤mm j mj j m j 212)12()1(422n m <=.3.(2012年 加试3)4.(2013年加试3)5.(2014年加试1)。
全国高中数学联赛-不等式专题排序不等式与琴生不等式.pdf
1. ABC 中,求 sin A sin B sin C 的最大值。
2. f (x) ax 2 bx c ,若 a 0 ,证明 f (x) 是下凸的;若 a 0 ,证明 f (x) 是上凸的。
3. 用函数 f (x) lg x 的凸函数性质证明平均值不等式:对 ai 0 ( i 1,2,..., n )有
2
x分
别是 (0,
), (0,)
上的下凸函数。
f
(x)
sin
x, lg
x
分别是 [0,
], (0,)
上的上凸函数。
2
定理一和定理二所表达的不等关系,统称为琴生不等式。
幂平均:
设
a1, a2 ,..., an
是任意
n
个正数,我们称 ( a1r
a2r n
...
an r
1
)r
(r
在命题与逻辑用语的学习过程中,我们常常会列举与不等式性质相关的问题作为范例. 不仅在大纲版人教社教材和课标版各教材的简易逻辑部分,都配有与此相关的例题、练习题 作为逻辑学习的载体,在各类教辅用书和重要考试的考题中, 以不等式性质或其运用作为 素材的逻辑问题也是屡见不鲜的.这不仅是因为不等式的性质具有形式简洁明确、易于体现 逻辑关系的特点,还因为它的工具作用使得我们在以许多其他教学内容作为题材提出围绕命 题与逻辑用语的问题时,也与不等式的性质相关.
高一对函数单调性的证明, 由于学生对不等式相关知识和方法的掌握方面还很欠缺,所以
我们将证明 f (x1 )与f (x2 ) 的大小关系,转化为判断 f (x1 ) f (x2 ) 的符号问题,从而以 f (x1 ) f (x2 ) 的恒等变形作为主要步骤,避免了对运用不等式性质进行变形的依赖.
高中数学 第三节 不等式奥林匹克竞赛题解
第二章代数第三节不等式B3-001 北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,a n为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,b n使1.a k<b k, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设b k=a1q k-1+a2q k-2+…+a k-1q+a k+a k+1q+…+a n q n-k(k=1,2,…,n).1.显然b k>a k对k=1,2,…,n成立.2.比较b k+1=q k a1+q k-1a2+…+qa k+a k+1+…+q n-k-1a n与qb k=q k a1+…+q2a k-1+qa k+q2a k+1+…+q n-k+1a n,qb k的前面k项与bk+1的前面k项相等,其余的项小于b k+1的相应项(因为q<1).因此b k+1>qb k.因此,b1,b2,…,b n满足题目的要求.B3-008求满足条件:x≥1,y≥1,z≥1,xyz=10,x lgx y lgy z lgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1(3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得 uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)·(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、a n是给定不全为0的实数,r1、r2、…、r n是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+r n(x n-a n)对任何实数x1、x2、…、x n成立,求,r1、r2、…、r n的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取x i=a i,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|x i|<1 ,又设|x1|+|x2|+…+|x n|=19+|x1+…+x n|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 a max=3因为 m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)a=3maxB3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0 B3-020 怎样的整数a,b,c满足不等式 a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021有限数a1,a2,…,a n(n≥3)满足关系式a1=a n=0,a k-1+a k+1≥2a k(k=2,3,…,n-1),证明:数a1,a2,…,a n中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,a n中,a r最大,s是满足等式a s=a r的最小下标.若n>s>1,则a s-1;<a s,a s+1≤a s,从而a s-1+a s+1<2a s,与已知条件a s-1+a s+1≥2a s矛盾.故只有s=1或s=n,于是a r=0,数a1,a2,…,a n中没有正数,B3-022设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab,矛盾.B3-023 证明:任何正数a1,a2,…,a n满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n ≥27不成立.B3-024证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,A n-1和A n 是a进制数系中的数,B n-1和B n是b进制数系中的数.A n-1、A n、B n-1和B n呈如下形式:A n-1=x n-1x n-2…x0,A n=x n x n-1…x0(a进制的位置表示法);B n-1=x n-1x n-2…x0,B n=x n x n-1…x0(b进制的位置表示法).其中x n≠0,x n-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故A n B n-1-A n-1B n=(x n a n-1+A n-1)B n-1-(x n b n-1+B n-1)A n-1=x n[x n-1(a n-1b n-2-a n-2b n-1)+…+x0(a n-1-b n-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,a n都有(a1-a2)·(a1-a3)…(a1-a n)+(a2-a1)·(a2-a3)…(a2-a n)+…+(a n-a1)·(a n-a2)…(a n-a n-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤a n.若n为偶数,令a1<a2=a3=…=a n,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=a n则左边只有一个非零项(a4-a1)(a4-a2)…(a4-a n)<0故不等式不成立.B3-027 A=(a ij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一a ij=0,那么对i和j有a i1+a i2+…+a in+a1j+a2j+…+a nj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=a kk=0.此时对于i,j>k有a ij≠0.对于i≤k,j>k,若a ij=0,则a ji≠0,因若不然,交换i,j行,就会使a11=a22=…=a kk=a jj=0,与k的极大性矛盾.因而对于j>k,仍有a j1+…+a jn+a1j+…+a nj≥nB3-028求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=x i,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果x i都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而 c3+abc≥ac2+bc2 (2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030已知a1,a2,…,a n为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=b a+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设x i、y i是实数(i=1,…,n).且x1≥x2≥…≥x n;y1≥y2≥…≥y n;z1、z2、…、z n是y1、y2、…、y n的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034有n个数a1,a2,…,a n.假设C=(a1-b1)2+(a2-b2)2+…+(a n-b n)2D=(a1-b n)2+(a2-b n)2+…+(a n-b n)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2则 f(x)=n(x-b n)2+f(b n)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,a n中添一个数a n+1,此时C 增加了(a n+1-b n+1)2,而D增加了(a n+1-b n+1)2+f(b n+1)-f(b n).在(1)式中,令x=bn+1,得这样,D增加的值(a n+1-b n+1)2+f(b n+1)-f(b n)在(a n+1-b n+1)2与2(a n+1-b n+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,a n,满足1≤a1<a2<…<a n 时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若a k>2k,则若a k≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{a i},i=1,2,…,n.没有两个差|a i-a j|相等,1≤i<j ≤n.求证:【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<a n,r为整数且2≤r≤n.对于1≤所以, a r≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kx k=kx k-1+[kx]=(k-1)x k-1+x k-1+[kx] (2)(k-1)x k-1=(k-2)x k-2+x k-2+[(k-1)x] (3)…2x2=x1+x1+[2x](k)将(2)至(k)式相加,得kx k=x k-1+x k-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kx k≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kx k≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即x k≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b -c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,x n都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044设P(x)=a0+a1x+…+a k x k为整系数多项式,其中奇系数的个数由W(P)来表示,设Q i(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,i n是整数,且0≤i1<i2<…<i n,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当i n=1时,命题显然成立.设i n>1并且命题在i n换为较小的数时成立.令k=2m<i n<2m+1,(1)i1<k.设i r<k,i r+1>k,Q=R+(1+x)k S,其中的次数均小于K,由(1)(1+x)k≡1+x k(mod2),故W(Q)=W(R+S+x k S)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+x k S)=2W(S)≥2W(R)=W(R+x k R)=W((1+x k)R)045 证明:对于任意的正数a1,a2,…,a n不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤a n.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA <k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即 aB+bC+cA<k2B3-048证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n 成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n -a n-b n≥22n-2n+1【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-a k-b k≥22k-2k+1当n=k+1时,左边=(a+b)k+1-a k+l-b k+1=(a+b)[(a+b)k-a k-b k]+a k b+ab k从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2(2)由(2)知 a>0且a≠1(1)÷a得 a4-a2+1=2/a (3)(1)×a得 a6-a4+a2=2a (4)(3)+(4)得 a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3故 a3<2(6)由(5)和(6)得3<a6<4.B3-051已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)(3)(2)÷(3)即得结论.B3-052已知x i∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053已知a1,a2,…,a n是n个正数,满足a1·a2…a n=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+x n=0,那么x1x2+x2x3+…+x n-1x n+x n x1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=x n=0,则x1+x2+x3+x4+…+x n=0而 x1x2+x2x3+x3x4+…+x n-1x n+x n x1=l>0 所以n≥5时,命题不成立.B3-055证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z (1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知 -1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1(2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得 -1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而 |4a±2b+c|=|2(a±b+c)+2a-c| ≤2|a±b+c|+2|a|+|c|≤7即 |f(±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058证明:对于和为1的正数a1,a2,…,a n,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=a n=时,上式取等号.B3-059设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知所以B3-060设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8;【题说】1991年中国国家教委数学试验班招生数学题3.【证】≥0并且由柯西不等式,y≥x2,所以B3-061已知0<a<1,x2+y=0,求证:【题说】1991年全国联赛一试题5.B3-063已知a1,a2,…,a n>1(n≥2),且|a k+1-a k|<1,k=1,2,…,n-1.证明: a1/a2+a2/a3+…+a n-1/a n+a n/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若a k≤a k+1(k=1,2,…,n-1),则a k/a k+1≤1,故a1/a2+a2/a3+…+a n-1/a n+a n/a1<(n-1)+na1/a1=2n-1(n≥2)若有a k>a k+1,则由|a k+1-a k|<1知a k/a k+1<1+1/a k+1<2设有p个k值使a k≤a k+1,(n-1-p)个k值使a k>a k+1,则a1/a2+a2/a3+…+a n-1/a n≤p+2(n-1-p)同时 a n/a1=[(a n-a n-1)+…+(a2-a1)+a1]/a1<p+1因此 a1/a2+a2/a3+…+a n-1/a n+a n/a1<p+2(n-1-p)+p+1=2n-1B3-064令其中m,n∈N,证明a m+a n≥m m+n n【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有m m-a m=(m-a)(m m-1+m m-2a+…+a m-1)≤(m-a)(m m-1+m m-1+…+a m-1)=(m-a)m m (2)a n-n n=(a-n)(a n-1+a n-2+…+n n-1)≥(a-n)n n由(1)有(m-a)m m=(a-n)n n (3)将(2)、(3)代入,即得a n-n n≥m m-a m或a m+a n≥m m+n n此即所求证之式.B3-065设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066设a i≥0(i=1,2,…,n),a=min{a1,a2,…,a n},试证式中a n+1=a1.【题说】1992年第七届数学冬令营题2.B3-067设n(≥2)是整数,证明:【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明:【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071设A是一个有n个元素的集合,A的m个子集A1,A2,…,A n两两互不包含,证明:其中a i为A i中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头a i个元素取自A i中的,有a i!(n-a i)!个.由于A i与A j(i≠j)互不包含,故这些排列与开头a j个元素取自A j中的不同.由柯西不等式,结合(1)便得(2).B3-073设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥f n-1(x n)所以(1)对所有的自然数n成立.B3-075设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076设a1,a2,…,a n为n个非负实数,且a1+a2+…a n=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077已知f(z)=c0z n+c1z n-1+…+c n (1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|c n|(2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与c n辐角相同,从而|βn c0+c n|=|βn c0|+|c n|=|c0|+|c n|再令ω=e2πi/n,a k=β·ωk(0≤k≤n-1)故必有一个k,使 |f(αk)|≥|c0|+|c n|显然,|αk|=1,于是αk就是所求的z0。
数学竞赛单元训练题高中 不等式的性质
) - ( sin nθ+ cos nθ
n
) ( sin θ+ cos θ- 1) = ( sin θ+ cos θ
π ) - 1] > 0 , 4 π π 3 π π 2 ( ∵ < θ+ ) < 1) , < , ∴ < sin (θ+ 4 4 4 2 4 ∴f ( n ) > f ( n + 1) .
a+ b< c+ d, ( a + b) ( c + d ) < ab + cd , ( a + b) cd < ab ( c + d ) .
B . f ( m ) < f ( n) D . f ( m ) ≥f ( n)
14 . 已知 x , y , z ∈R , 且 x + y + z = 0 .
求证 :6 ( x 3 + y3 + z 3 ) 2 ≤( x 2 + y 2 + z 2 ) 3 .
15 . 记 p = λ ( a4 + b4 + c4 ) + μ ( a2 b2 + b2 c2
6. 设 a 、 b、 c、 d 都是正实数 , 下列三个不等式 :
① ② ③
+ c2 a2 ) , 当 a = b = c > 0 或 a = b > 0 , c = 0 时 , 都有
1 , x 2 = x 3 = …= x n = 1 , 满足 D . 2 5 . 由 a2 + b2 = c2 设 a = ccos θ, b = csin θ
全国高中数学竞赛专题-不等式
全国高中数学竞赛专题-不等式(2)商值比较法(原理:若>1,且B>0,则A>B 。
)例2 若a<x<1,比较大小:|log a (1-x)|与|log a (1+x)|. 解:因为1-x ≠1,所以log a (1-x)≠0,|)1(log ||)1(log |x x aa -+=|log (1-x)(1+x)|=-log (1-x)(1+x)=log (1-x)x +11>log (1-x)(1-x)=1(因为0<1-x 2<1,所以x+11>1-x>0, 0<1-x<1). 所以|log a (1+x)|>|log a (1-x)|.2.分析法(即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。
)例3 已知a, b, c ∈R +,求证:a+b+c-33abc ≥a+b .2ab - 证明:要证a+b+c 33b a c ⋅⋅-≥a+b .2ab -只需证332abc ab c ≥+,因为33332abc b a c ab ab c ab c =⋅⋅≥++=+, 所以原不等式成立。
例 4 已知实数a, b, c 满足0<a ≤b ≤c ≤21,求证:.)1(1)1(1)1(2a b b a c c -+-≤-证明:因为0<a ≤b ≤c ≤21,由二次函数性质可证a(1-a) ≤b(1-b) ≤c(1-c),所以)1(1)1(1)1(1c c b b a a -≥-≥-, 所以)1(2)1(2)1(1)1(1c c b b b b a a -≥-≥-+-, 所以只需证明)1(1)1(1)1(1)1(1a b b a b b a a -+-≤-+-, 也就是证)1)(1()1)(1(b a b b a b a a b a ---≤---,只需证b(a-b) ≤a(a-b),即(a-b)2≥0,显然成立。
高中数学竞赛试题及答案
高中数学竞赛试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数不是无理数?A. πB. √2C. √3D. 0.33333(无限循环)答案:D2. 已知函数f(x) = x^2 - 4x + 4,求f(2x)的值。
A. 4x^2 - 16x + 16B. 4x^2 - 12x + 12C. 4x^2 - 8x + 4D. 4x^2 - 4x + 4答案:C3. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 一个圆的半径为3,求其内接正六边形的边长。
A. 3√3B. 6C. 2√3D. 3答案:A5. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。
A. 29B. 32C. 35D. 38答案:A6. 根据题目所给的函数f(x) = 2x - 1,求f(x+1)的值。
A. 2x + 1B. 2x + 3C. 2x - 1D. 2x - 3答案:A7. 若x^2 - 5x + 6 = 0,求x的值。
A. 2, 3B. -2, -3C. 2, -3D. -2, 3答案:A8. 已知一个等比数列的首项a1=3,公比q=2,求第5项a5的值。
A. 48B. 96C. 192D. 384答案:A9. 一个圆的直径为10,求其面积。
A. 25πB. 50πC. 100πD. 200π答案:B10. 已知一个二次方程x^2 + 8x + 16 = 0,求其根的判别式Δ。
A. 0B. 64C. -64D. 16答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数列{an}是等差数列,且a3 = 7,a5 = 13,求a7的值。
答案:1912. 已知一个函数y = x^3 - 3x^2 + 2x,求其一阶导数dy/dx。
答案:3x^2 - 6x + 213. 一个长方体的长、宽、高分别是2,3,4,求其表面积。
2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]
2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 11一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为.(其中i 为虚数单位)2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为.3.若点A -12,32关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB,则△ABC 最大角的正弦值为.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-a n +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为.7.已知四面体ABCD 满足AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,且异面直线AD 与BC 所成的角为60°,则四面体ABCD 的外接球的体积为.ABCD A 1D 1O 1O 8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p 0≤p ≤1 的概率消失,有1-p3的概率保持不变,有1-p 3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p 至多为.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分 已知函数f x =ln x -sin x ,若两不相等的实数x 1,x 2∈0,π 满足曲线y =f x 在点x 1,f x 1 和点x 2,f x 2 处的切线斜率相等,求证:f x 1 +f x 2 >-2.10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)一、填空题(每小题8分,共计96分)1.设集合A =x x -12x -1≤0 ,集合B =x ∣x 2+2x +m ≤0 .若A ⊆B ,则实数m 的取值范围为.2.设函数f :{1,2,3}→{2,3,4}满足f f x -1 =f x ,则这样的函数有个.3.函数y =sin 2x +sin x +1sin 2x +1的最大值与最小值之积为.4.已知数列x n 满足:x 1=22,x n +1=x n n n +1x 2n+n n +1,n ≥1,则通项x n =.5.已知四面体A -BCD 的外接球半径为1,若BC =1,∠BDC =60°,球心到平面BDC 的距离为.6.已知复数z 满足z 24=z -1 510=1,则复数z =.7.已知平面上单位向量a ,b 垂直,c 为任意单位向量,且存在t ∈0,1 ,使得向量a +1-t b 与向量c -a 垂直,则a +b -c的最小值为.8.若对所有大于2024的正整数n ,成立n2024=2024i =0a i C in ,a i ∈N ∗,则a 1+a 2024=.9.设实数a ,b ,c ∈(0,2],且b ≥3a 或a +b ≤43,则max {b -a ,c -b ,4-2c }的最小值为.10.在平面直角坐标系xOy 上,椭圆E 的方程为x 212+y 24=1,F 1为E 的左焦点;圆C 的方程为x -a 2+y -b 2=r 2,A 为C 的圆心.直线l 与椭圆E 和圆C 相切于同一点P 3,1 .当∠OAF 1最大时,实数r =.11.设n 为正整数,且nk =0-1 kC knk 3+9k 2+26k +24=1312,则n =.12.设整数n ≥4,从编号1,2,⋯,n 的卡片中有放回地等概率抽取,并记录下每次的编号.若1,2均出现或3,4均出现就停止抽取,则抽取卡片数的数学期望为.二、解答题(13题满分14分,14、15题满分各20分,合计54)13.正实数k 1,k 2,k 3满足k 1<k 2<k 3;实数c 1,c 2满足c 1=k 2-k 1,c 2-c 1=2k 3-k 2 ,定义函数f x =k 1x ,0≤x ≤1k 2x -c 1,1<x ≤2,k 3x -c 2,x >2 g x =k 1x ,0≤x ≤1k 2x -c 112,1<x ≤2k 3x -c 212,x >2 试问,当k 1,k 2,k 3满足什么条件时,存在A >0使得定义在[0,A ]上的函数g x +f A -x 恰在两点处达到最小值?14.设集合S ={1,2,3,⋯,997,998},集合S 的k 个499元子集A 1,A 2,⋯,A k 满足:对S 中任一二元子集B ,均存在i ∈{1,2,⋯,k },使得B ∈A i .求k 的最小值.15.设f x ,g x 均为整系数多项式,且deg f x >deg g x .若对无穷多个素数p ,pf x +g x 存在有理根,证明:f x 必存在有理根.(考试时间:2024年5月19日9:00∼11:00)一、填空题:本大题共8小题,每小题8分,满分64分.1.设函数f x =ln x +x -2的零点都在区间[a ,b ]a ,b ∈Z ,a <b 内,则b -a 的最小值为.2.已知a >b >1,若log a b +log b a =52,则ba +4的最大值为.3.设a ∈R ,若函数f x =ax -ax-2ln x 在其定义域内为单调递增函数,则实数a 的最小值为.4.用f X ,Γ 表示点X 与曲线Γ上任意一点距离的最小值.已知⊙O :x 2+y 2=1及⊙O 1:x -4 2+y 2=4,设P 为⊙O 上的动点,则f P ,⊙O 1 的最大值为.5.设△ABC 中,AC =2,∠ABC =2∠BAC ,则△ABC 面积的最大值为.6.将边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1绕着其中心旋转45°得到一个十面体ABCD -EFGH (如图),则该十面体的体积为.7.若T =100k =1299+k ⋅3101-k ,则T 的末尾数字0的个数为.8.记I ={1,4,5,6},U ={1,2,3,⋯,25},集合U 的子集A =a 1,a 2,a 3,a 4,a 5 ,满足a i -a j ∉I ∀1≤i <j ≤5 ,则符合条件的集合A 的个数为.(用具体数字作答)二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(16分)已知t 为正实数,若曲线y =t ⋅e x 与椭圆C :x 22+y 2=1交于A 、B 两个不同的点,求证:直线AB 的斜率k <22.10.(20分)设复数x ,y ,z 满足:x +2y +3z =1.求x 2+y 2+z 2+x 2+y 2+z 2的最小值.11.(20分)给定正整数n ≥2,数组a 1,a 2,⋯,a n 称为“好数组”是指:a 1,a 2,⋯,a n 均不为0,a 1=1,且对任意的1≤k ≤n -1,均有a k +1+a k a k +1-a k -1 =0.求“好数组”a 1,a 2,⋯,a n 的组数.一、选择题:本大题共6小题,每小题x 分,满分x 分.1.记S =32+432-4+42+442-4+52+452-4+⋯+132+4132-4,则与S 最接近的整数为()A.14B.15C.16D.172.在四边形ABCD 中,AB ⎳CD ,AC =λAB +μAD λ,μ∈R .若λ+μ=32,则CDAB=()A.13B.12C.1D.23.函数f x =ax 3-6x a ∈R ,若f x ≤2对∀x ∈-1,12成立,则()A.f x ≤1对∀x ∈-12,12 成立B.f x ≤32对∀x ∈-12,12成立C.f x ≤18对∀x ∈-32,32成立D.f x ≤352对∀x ∈-32,32成立4.在正四面体ABCD 中,棱AD 的中点和面BCD 的中心的连线为MN ,棱CD 的中点和面ABC 的中心的连线为PQ ,则MN 与PQ 所成角的余弦值为()A.118B.117C.116D.1155.已知函数f x =2x 4-18x 2+12x +68+x 2-x +1,则()A.f x 的最小值为8 B.f x 的最小值为9C.f x =8有1个实根D.f x =9有1个实根6.已知A ,B ,C 是平面上三个不同点,且BC =a ,CA =b ,AB =c ,则c a +b +bc的最小值为()A.2-12B.22-12C.2-22D.1-22二、填空:本大题共6小题,每小题x 分,满分x 分.7.设集合S ={1,2,3,4,5}.若S 的子集A 满足:若x ∈A ,则6-x ∈A ,则称子集A 具有性质p ,现从S 的所有非空子集中,等可能地取出一个,则所取出的非空子集具有性质p 的概率为.8.函数f x =log a 4-ax (a >0,且a ≠1),若f x ≥1对∀x ∈[1,2]成立,则实数a 的取值范围.9.已知甲、乙、丙、丁四位同学对某10道判断题的解答情况如下表:题号12345678910甲×√××√×√√√×乙××√√×√√√××丙√√×√√√×√×√丁××√√××√√××若甲、乙、丙三人均答对7题,则丁答对的题数为.10.已知函数f x =ln x -1x2+2ax -ax .若∃m >0,使得f m ≥a 2,则实数a 的最大值为11.设函数f x =sin x⋅sin3x,若关于x的方程f x =a在(0,π]上有奇数个不同的实数解,则实数a的值为.12.在△ABC中,AP平分∠BAC,AP交BC于P,BQ平分∠ABC,BQ交CA于Q,∠BAC=30°,且AB+BP =AQ+QB,则∠ABC的度数为.三、解答:本大题共4小题,每小题x分,满分x分.13.已知椭圆C1的中心为坐标原点O,焦点在坐标轴上.圆C2的圆心为坐标原点O,过点A-2,0且倾斜角为30°的直线与圆C2相切.(1)求圆C2的方程;(2)过圆C2上任意一点P x0,y0x0⋅y0≠0作圆C2的切线,与椭圆C1交于A,B两点,均有∠AOB=90°成立.判断椭圆C1是否过定点?说明理由.14.已知数列a n满足:a1=1,a2=2,a n+1=1a n+an-1n≥2.求证:2024k=11a k>88.15.如图,⊙O1、⊙O2外切于点A,过点A的直线交⊙O1于另一点B,交⊙O2于另一点C,CD切⊙O1于点D,在BD的延长线上取一点F,使得BF2=BC2-CD2,连接CF交⊙O2于E,求证:DE与⊙O2相切.16.全体正有理数的集合Q+被分拆为三个集合A,B,C(即A∪B∪C=Q+,且A∩B=B∩C=C∩A=∅,满足B*A=B,B*B=C,B*C=A,这里H*K={h⋅k∣h∈H,k∈K}.(1)给出一个满足要求的例子(即给出A,B,C);(2)给出一个满足要求的例子,且1,2,⋯,35中的任意两个相邻正整数均不同时在A中.2024年广西省高中数学联赛初赛试题一、填空题(本大题共8小题,每小题10分,共80分).1.设函数f x =log2x.若a<b且f a =f b ,则a+2024b的取值范围是.2.已知椭圆x 2a2+y2b2=1a>b>0的焦点为F1,F2,M为椭圆上一点,∠F1MF2=π3,OM=153b.则椭圆的离心率为.3.若正实数x,y满足x-2y=2x-y,则x的最大值为.4.方程3x=x37的正整数解为.5.设x1,x2,x3,x4均是正整数,且x i x j x k∣1≤i<j<k≤4=18,36,54.则x1+x2+x3+x4=.6.正三棱雉P-ABC中,AP=3,AB=4.设D是直线BC上一点,面APD与直线BC的夹角为45°,则线段PD的长度是.7.已知四次多项式x4-25x3+ax2+61x-2024的四个根中有两个根的乘积是-253,则实数a=.8.设数列x n满足x1=2001,x n+1=x n+y n,其中y n等于x n的个位数,则x2024=.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(15分)如图所示,AD=CD,DP=EP,BE=CE,DP<AD<BE,∠ADC=∠DPE=∠BEC=90°.证明:P为线段AB的中点.10.(15分)设A为数集{1,2,3,⋯,2024}的n元子集,且A中的任意两个数既不互素又不存在整除关系.求n 的最大值.11.(20分)用[x]表示不超过x的最大整数.设数列x n满足:x1=1,x n+1=4x n+11x n.求x2024的个位数.12.(20分)图G是指一个有序二元组V,E,其中V称为顶点集,E称为边集.一个图G中的两点x,y的距离是指从x到y的最短路径的边数,记作d x,y.一个图G的直径是指G中任意两点的距离的最大值,记作diam G.∣x,y∈G,即diam G=max d x,y记Z n={[0],[1],[2],⋯,[n-1]}是模n的剩余类,定义Z n上的加法和乘法,均是模n的加法和乘法,例如在Z12={[0],[1],[2],⋯,[11]}中:[3]+[4]=[7],[6]+[9]=[3];[3]⋅[4]=[0],[6]⋅[9]=[6].在Z n中,设[x]≠[0].若存在[y]≠[0]使得[x]⋅[y]=[0],则称[x]是Z n的一个零因子.记Z n的所有零因子的集合为D Z n,它是以={[2],[3],[4],[6],[8],[9],[10]}.Z n的零因子图,记为ΓZ n .例如D Z12D Z n为顶点集,两个不同的顶点[x],[y]之间有一条边相连当且仅当[x]⋅[y]=[0].下图是ΓZ12的例子.证明:对一切的整数n≥2,都有diamΓZ n≤3.2024年内蒙古高中数学联赛初赛试题(2024年5月19日,8:30-9:50)一、填空题(本题满分64分,每小题8分)1.集合M ={1,2,3,5,6}的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足a +b +c =1,a 2+b 2+c 2=1,a ≠0,bca 3的取值范围为.3.已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱BB 1,CC 1分别交于点M ,N ,若△MNA 为直角三角形,则△MNA 面积的最大值为.4.已知在△ABC 中BC =3,A =π3,BD =14BC,则线段AD 的最大值为.5.从1,2,⋯,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆x 24+y 25=1,直线l 过1,0 且与椭圆交于A ,B 两点,则△ABO 面积的最大值为.7.数列a n 中,a 1=110,且对任意n ∈N *,a n +1=a 2n +a n ,求2024n =11a n+1 的整数部分是.8.已知关于x 的方程x 3-3x +4=0的三个复数根分别为z 1,z 2,z 3,则z 1-z 2 2z 2-z 3 2z 3-z 1 2的值为.二、解答题(本题满分56分)9.(16分)已知双曲线C :x 24-y 23=1,直线l :y =kx +1与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求△ABP 面积的最小值.10.(20分)已知函数f x =e x -1-xax 2-2x +1.(1)当a =0时,讨论f x 在-4,12上的极值.(2)若x =0是f x 的极小值点,求a 的取值范围.11.(20分)设n 是一个给定的正整数,集合S n =i ,j ∣1≤i ,j ≤2n ,i ,j ∈N * ,求最大的正数c =c n ,使得对任意正整数d 1,d 2,都存在集合S n 的子集P ,满足集合P 至少有cn 2个元素,且集合P 的任两个元素i ,j ,k ,l 均有i -k2+j -l 2≠d 1,i -k 2+j -l 2≠d 2.2024年北京市高中数学联赛初赛一试考试时间:8:00-9:20一、填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合A=a1,a2,a3,a4,a5,若A中所有三元子集的三个元素之积组成的集合为B={-30,-15, -10,-6,-5,-3,2,6,10,15},则集合A={-30,-15,-10,-6,-5,-3,20,10,15},则集合A=.2.已知函数f x =x+2,x<0;ln12x+1,x≥0.若关于x的方程f f x=m恰有三个不相等的实数根x1,x2,x3且满足x1<x2<x3,则2x1+9ln x2+4的取值范围是.3.从1,2,⋯,2024中任取两个数a,b a≤b,则3a+7b的值中,个位数字为8的数有个.4.设复数z满足3z-2i=6,令z1=z2-10z+74z-5+7i,则z1的最大值是.5.已知函数f x =x,若x为无理数;q+1p,若x=qp,其中p,q∈N*,且p,q互质,p>q.则函数f x 在区间89,910上的最大值为.6.对于c>0,若非零实数a,b满足4a2-2ab+4b2-c=0,且使2a+b最大,则3a-4b+2c的最小值为.7.已知函数f x =cos4x+sin4x+a sin4x-b,且f x+π6为奇函数.若方程f x +m=0在[0,π]上有四个不同的实数解x1,x2,x3,x4,则fx1+x2+x3+x44的平方值为.8.已知A⊆{1,2,⋯,2625},且A中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式f x =x2024+2023i=0c ix i,其中c i∈{-1,0,1}.记N为f x 的正整数根的个数(含重根).若f x 无负整数根,N的最大值是.10.在棱长为4的正方体ABCD-A1B1C1D1中,E为棱AA1上的一点,且A1E=1,F为截面A1BD上的动点,则AF+FE的最小值等于.11.数列a n定义如下:设2n!n!n+2024!写成既约分数后的分母为A n ,a n等于2A n 的最大质因数,则a n的最大值等于.2024年北京市高中数学联赛初赛二试考试时间:9:40-12:301.(40分)设a,b,c是三个正数,求证:2a2a2+b2+c2+2ba2+2b2+c2+2ca2+b2+2c2≤32a+b+c5a2+5b2+5c2+ab+bc+ca.2.(40分)如图所示,锐角△ABC的三条高线AD,BE,CF交于点H,过点F作FG⎳AC交直线BC于点G,设△CFG的外接圆为⊙O,⊙O与直线AC的另一个交点为P,过P作PQ⎳DE交直线AD于点Q,连接OD,OQ.求证:OD=OQ.3.(50分)有n个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.4.(50分)设a1,a2,⋯,a n为n个两两不同的正整数且a1a2⋯a n恰有4048个质因数.如果a1,a2,⋯,a n中任意多个数相乘均不是一个整数的4049次方,求n的最大值.2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 112024年重庆市高中数学联赛初赛试题一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为2-2.(其中i 为虚数单位)【答案】2-2【解析】z -4z 为纯虚数⇒z -4z =-z -4z⇔z +z =4z +zzz.当z +z=0时,,z -1-i min =1;当z +z≠0时,,则z =2,,此时z -1-i min =2-2<1,,当z =21+i 可取等号.2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为-12,52 .【答案】-12,52 【解析】因为f x 为R 上单调递增的奇函数,,且值域为R ,,所以f -1x 也为R 上单调递增的奇函数.注意f 1 =32,,故f -1x -1 <1⇔-32<x -1<32⇔-12<x <52.3.若点A -12,32 关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =3.【答案】3【解析】注意点A 在圆x 2+y 2=1上,,且A 关于直线y =kx 对称的点必然在圆x 2+y 2=1上,,而圆x 2+y 2=1与圆x -2 2+y 2=1仅有唯一公共点B 1,0 ,,因此对称点只能是B .易知∠AOB =120°,,因此k =tan60°= 3.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB ,则△ABC 最大角的正弦值为31010.【答案】31010【解析】设△ABC 的内角A ,,B ,,C 所对的边分别为a ,,b ,,c ,,由条件知b 2+c 2-a 22=a 2+c 2-b 2=3a 2+b 2-c 2 2,,解得b 2=85a 2,,c 2=95a 2,,故最大角为角C ,,由余弦定理得cos C =a 2+b 2-c 22ab =1010⇒sin C =31010.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-an +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=62029.【答案】62029【解析】由a n +1-a n a n =a n +2-a n +1a n +2可得1a n +1a n +2=2a n +1,,则数列1a n 为等差数列,,首项为1a 1=1,,设公差为d ,,则a 1a 2+a 2a 3+⋯+a 6a 7=11+d +11+d 1+2d +⋯+11+5d 1+6d=1d 1-11+d +11+d -11+2d +⋯11+5d -11+6d =61+6d =3⇒d =16,,故1a 2024=1+20236=20296⇒a 2024=62029.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为21600.【答案】21600【解析】一个圆排列满足要求当且仅当该排列中8,,9与7,,9这两对数均不能相邻.设满足8,,9相邻的圆排列有N1个,,满足7,,9相邻的圆排列有N2个,,满足8,,9相邻且7,,9相邻的圆排列有N3个,,则N1= N2=A22⋅7!,,N3=A22⋅6!,,从而由容斥原理,,满足要求的排列的个数为N=8!-N1+N2-N3=21600.7.已知四面体ABCD满足AB⊥BC,BC⊥CD,AB=BC=CD=1,且异面直线AD与BC所成的角为60°,则四面体ABCD的外接球的体积为55π6.ABC DA1D1 O1O【答案】55π6【解析】由题设条件,,可将四面体补成直三棱柱ABD1-A1CD,,如图所示.由题知∠A1AD=60°,,AA1=1,,于是A1D=AD1=3,,又AB=BD1=1,,则∠ABD1=120°.设四面体ABCD的外接球球心为O,,则O在平面ABD1的投影O1为△ABD1的外心,,且OO1=12.由正弦定理知,,O1A=1,,从而外接球半径R=OA=52,,于是V=43πR3=55π6.8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p0≤p≤1的概率消失,有1-p3的概率保持不变,有1-p3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p至多为5 17.【答案】517【解析】设开始有一个珍稀生物、最终灭绝的概率为f1 =q≤12,,那么若开始有n个珍稀生物、最终灭绝的概率则为f n =q n.由题知,,f1 =p+1-p3f1 +1-p3f2 +1-p3f3 ,,从而有q=p+1-p3q+1-p 3q2+1-p3q3即q-11-p3q2+2q+3-1∣=0,,由于q≤12,,则0=1-p3q2+2q+3-1≤1-p 3⋅174-1,,得p≤517.故p至多为517.注:该题也可以用母函数.其第n天的母函数为f n x ,,其中f x =p+1-p3x+1-p3x2+1-p3x3,,考虑limn→+∞f n 0 ≤12即可.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分已知函数f x =ln x-sin x,若两不相等的实数x1,x2∈0,π满足曲线y=f x 在点x1,f x1和点x2,f x2处的切线斜率相等,求证:f x1 +f x2 >-2.【解析】先证一个引理:对x>0,,有sin x<x.引理的证明:令φx =sin x-x,,φ x =cos x-1≤0,,故φx 为减函数,,所以当x>0时,,φx <φ0 =0,,引理得证!4分回到原题:f x =1x-cos x,,由题知f x1=f x2 .不妨x 1>x 2,,则x 1-x 22∈0,π2,,于是由f x 1 =f x 2 并结合引理可得x 1-x 2x 1x 2=cos x 2-cos x 1=2sin x 1+x 22sin x 1-x228分≤2sin x 1-x 22<2×x 1-x22=x 1-x 2,,因此x 1x 2>1.12分所以f x 1 +f x 2 =ln x 1x 2-sin x 1-sin x 2>-sin x 1-sin x 2≥-2.16分10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.【解析】设M x 1,x 21 ,,N x 2,x 22 ,,注意k MN =x 22-x 21x 2-x 1=x 1+x 2,,从而当MN ⎳AB 时,,k MN =k AB =3⇒x 1+x 2= 3.5分因为y =2x ,,所以k AM =2x 1,,可得切线AM 的方程为y -x 21=2x 1x -x 1 ,,即y =2x 1x -x 21.同理可得切线BN 的方程为y =2x 2x -x 22.由题设中A ,,B 的要求,,可设A t ,3t -3 ,,B t +3,3t ,,10分将A t ,3t -3 代入切线AM 的方程,,得3t -3=2tx 1-x 21,,即x 21-2tx 1+3t -3=0,,可求得x 1=t -t 2-3t +3,,这里取较小的根是因为M 为左边的切点.同理可求得x 2=t +3+t 2+3t +3.15分于是x 1+x 2=3⇒t -t 2-3t +3+t +3+t 2+3t +3=3,,整理得t 1+3t 2-3t +3+t 2+3t +3=0⇒t =0.故点A 的横坐标为0.20分11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)【解析】设f x =x +14-x +2=12x +14+x +2.对于x >0,,f x 连续且单调递减.由于x 1>2,,则0<x 2=f x 1 <f 2 =2,,进而依次可以得到x 3>2,,0<x 4<2,,即0<x 2k <2,,x 2k +1>2.5分令g x =x +f x .由于g x =1+12x +14-12x +2>0恒成立,,故当x ≥0时,,g x 单调递增.又由于g 2 =4,,故当x >2时,,g x >4;当0<x <2时,,g x <4.10分当n 为偶数时,,设n =2k k ∈N * ,,有x 1+⋯+x 2k =x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k =g x 1 +g x 3 +⋯+g x 2k -1 >4k ,,且x 1+⋯+x 2k =x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k -2+x 2k -1 +x 2k =x 1+g x 2 +g x 4 +⋯+g x 2k -2 +x 2k <4k +1,,故x 1+x 2+⋯+x 2k =4k =2n .当n 为大于1的奇数时,,设n =2k +1k ∈N * ,,有x 1+⋯+x 2k +1=x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k +x 2k +1=g x 1 +g x 3 +⋯+g x 2k -1 +x 2k +1>4k +2x 1+⋯+x 2k +1=x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k +x 2k +1=x1+g x2+g x4 +⋯+g x2k<4k+3,,故x1+x2+⋯+x2k+1=4k+2=2n.当n=1时,,x1=3.综上,,当n=1时,,x1=3;当n≥2时,,x1+x2+⋯+x n=2n.20分2024年浙江省高中数学联赛初赛试题一、填空题(每小题8分,共计96分)1.设集合A=x x-12x-1≤0,集合B=x∣x2+2x+m≤0.若A⊆B,则实数m的取值范围为m≤-3.【答案】m≤-3【解析】集合A=x 12<x≤1,,要使A⊆B,,则12+2×1+m≤0,,解得m≤-3.2.设函数f:{1,2,3}→{2,3,4}满足f f x -1=f x ,则这样的函数有10个.【答案】10【解析】令y=f x -1∈{1,2,3},,则f y =y+1.对f1 =2以下三种情况都满足条件f2 =f3 =2;f2 =f3 =3;f2 =f3 =4,,共3种.同理对f2 =3,,f1 =f3 有3种情况;f3 =4,,f1 =f2 也有3种情况.又f1 =2,,f2 =3,,f3 =4显然满足条件.所以满足已知条件的函数共有3×3+1=10个.(可以看出这种映射的限制仅在值域上,,因此也可对值域大小分类讨论.)3.函数y=sin 2x+sin x+1sin2x+1的最大值与最小值之积为34.【答案】34【解析】令t=sin x,,-1≤t≤1,,原式变形y=1+1t+1t ,,当t≠0时,,12≤y≤32.当t=0时,,y=1.所以y的最大、最小值分别为32,,12,,其积为34.4.已知数列x n满足:x1=22,x n+1=xnn n+1x2n+n n+1,n≥1,则通项x n=n3n-1.【答案】n3n-1【解析】将已知条件变形得1x2n+1-1x2n=1n-1n+1,,将上式从1到n叠加得到1 x2n -1x21=1-1n,,即x n=n3n-1.5.已知四面体A-BCD的外接球半径为1,若BC=1,∠BDC=60°,球心到平面BDC的距离为6 3.【答案】63【解析】因为球心在平面BDC上的投影就是△BDC的外心,,由已知求得△BDC的外接圆半径为33,,所以球心到平面BDC的距离为1-332=63.6.已知复数z满足z24=z-1510=1,则复数z=12±32i.【答案】12±32i【解析】由已知得z =z-1=1,,解得z=12±3i2.显然这两个解满足题设条件.。
n元竞赛不等式100题
������
������
1
������2
(∑
������=1
√������������)
(∑
������=1
√1
+
) ������������
≤
√������
+
. 1
题 8. 给定整数������ ≥ 2,正实数������1, ������2,⋯, ������������.求证:
������ ������ ������
第一部分——不等式
题 1.给定正奇数������,������1, ������2,⋯, ������������为������个非负实数.令������������ = ���������2��� + ���������2���+1,������������ = 2������������������������+1,这 里ⅈ = 1,2, … , ������.定义������������+1 = ������1.记������ = min{������1, ������2,⋯, ������������}, ������ = max{������1, ������2,⋯, ������������}. 求证:������ ≤ ������.
������=1
������=1
������=1
������=1
题 15. 给定正整数������,正实数������1, ������2,⋯, ������������满足∑������������=1 ������������ = 1.求证:
������
(∑
������=1
������������ ������������+1 )
全国高中数学竞赛不等式试题
-全国高中数学竞赛不等式试题全国高中数学联赛试卷(第一试)3、不等式2log 211log 3212++-x x >0的解集是 ( ) A .[2,3] B 。
(2,3) C 。
[2,4] D 。
(2,4)[答案]3、解:原不等式等价于22331log 0222log 10x x ++>⎪-≥⎩2310,220t t t t ⎧-+>⎪=⎨⎪≥⎩则有 解得01t ≤<。
即20log 11,24x x ≤-<∴≤<。
故选C 。
全国高中数学联赛(第一试)7.不等式322430x x x --+<的解集是______________ 9. 已知 {}2430,,A xx x x R =-+<∈ (){}1220,2750,.x B x a x a x x R -=+≤-++≤∈若A B ⊆,则实数a 的取值范围是_____________.13. 设35,2x ≤≤ 证明不等式319.[答案]7. ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---3,215215,3 . 提示: 原不等式可以化为:()()01||3||2<-+-x x x 9. 14-≤≤-a提示:()3,1=A ,令()a x f x+=-12,()()5722++-=x a x x g ,则只需()()x g x f ,在(1,3)上的图象均在x 轴的下方,其充要条件是()()()()⎪⎪⎩⎪⎪⎨⎧≤≤≤≤03010301g g f f ,由此推出14-≤≤-a ;13.证明:由()bd ac da cd bc ab d c b a d c b a +++++++++=+++2)(22222可得,22222d c b a d c b a +++≤+++当且仅当a=b=c=d 时取等号 ……5分则()()()()x x x x x x x 315321123153212-+-++++≤-+-++192142≤+=x ……………………………………………………15分 因为x x x 315,32,1--+不能同时相等,所以1923153212<-+-++x x x ……………………………………全国高中数学联赛试卷4.如果满足∠ABC=60°,AC=12,BC=k 的△ABC 恰有一个,那么k 的取值范围是( ) (A )k=38(B )0<k≤12 (C ) k≥12(D ) 0<k≤12或k=386.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较结果是( )(A ) 2枝玫瑰价格高 (B ) 3枝康乃馨价格高 (C ) 价格相同 (D ) 不确定.10. 不等式232log 121>+x 的解集为 .11.函数232+-+=x x x y 的值域为[答案].4.D 6.A 10.()()∞+⎪⎪⎭⎫ ⎝⎛,42,11,07211. ()∞+⎪⎭⎫⎢⎣⎡,223,1全国高中数学联赛 (第一试)10.已知)(x f 是定义在R 上的函数,1)1(=f 且对任意R x ∈都有5)()5(+≥+x f x f1)()1(+≤+x f x f若x x f x g -+=1)()(,则=)2002(g .11.若1)2(log )2(log 44=-++y x y x ,则||||y x -的最小值是 .12.使不等式x a x a x cos 1cos sin 22+≥++对一切R x ∈恒成立的负数a 的取值范围是 .[答案]10. 解:由x x f x g -+=1)()(,得1)()(-+=x x g x f ,所以5)1()(1)5()5(+-+≥-+++x x g x x g 1)1()(1)1()1(+-+≤-+++x x g x x g即)()5(x g x g ≥+,)()1(x g x g ≤+∴)()1()2()4()5()(x g x g x g x g x g x g ≤+≤+≤+≤+≤ ∴)()1(x g x g =+即)(x g 是周期为1的周期函数,又1)1(=g ,故1)2002(=g11. 解:⎪⎩⎪⎨⎧=-+>->+4)2)(2(0202y x y x y x y x ⇒⎩⎨⎧=-≥>440||222y x y x 由对称性只考虑0≥y ,因为0>x ,所以只须求y x -的最小值. 令u y x =-公代入4422=-y x ,有0)4(2322=-+-u uy y . 这是一个关于y 的二次方程显然有实根,故0)3(162≥-=∆u ,∴3≥u当334=x ,33=y 时,3=u .故||||y x -的最小值为312. 解:原不等式可化为4)1()21(cos 222-+≤--a a a x∵1cos 1≤≤-x ,0<a ,021<-a ∴当1cos =x 时,函数2)21(cos --=a x y 有最大值2)211(--a ,从而有4)1()211(222-+≤--a a a ,整理得022≥-+a a ∴1≥a 或2-≤a ,又0<a ,∴2-≤a1999年全国高中数学联合竞赛三、(满分已知当x ∈[0,1]时,不等式0sin )1()1(cos 22>-+--θθx x x x 恒成立,试求的取值范围.[答案]13. 若对一切x ∈[0,1],恒有f(x)= 0sin )1()1(cos 22>-+--θθx x x x , 则 cosθ=f(1)>0, sinθ=f(0)>0. (1)取x ∈ (0,1),由于 ()()()x x x x x f ---≥1cos sin 12θθ, 所以,()0>x f 恒成立,当且仅当 01cos sin 2>-θθ (2 )先在[0,2π]中解(1)与(2):由cosθ>0,sinθ>0,可得0<θ<2π. 又由(2)得 sin2θ>21 注意到0<2θ<π,故有6π<2θ< 65π,所以,12π<θ<125π .因此,原题中θ的取值范围是2kπ+12π<θ<2kπ+125π ,k ∈Z.或解:若对一切x ∈[0,1],恒有f (x )=x 2c o s θ-x (1-x )+(1-x )2s i n θ>0,则c o s θ=f (1)>0,s i n θ=f (0)>0. (1)取 x 0= ∈(0,1),则.由于+2x (1-x ),所以,0<f (x 0)=2x 0(1-x 0) .故 -+>0 (2)反之,当(1),(2)成立时,f (0)=s i n θ>0,f (1)=c o s θ>0,且x ∈(0,1)时,f (x )≥2x (1-x )>0.先在[0,2π]中解(1)与(2):由c o s θ>0,s i n θ>0,可得0<θ<.又-+>0,>, s i n 2θ>, s i n 2θ>,注意到 0<2θ<π,故有 <2θ<,所以,<θ<.因此,原题中θ的取值范围是 2k π+<θ<2k π+ ,k ∈Z首届中国东南地区数学奥林匹克(7月11日 8:00 — 12:00 温州)63)cos()2sin2364sin cosa aπθθθθ+-+-<++对于0,2πθ⎡⎤∈⎢⎥⎣⎦恒成立,求a的取值范围。
高中数学不等式专题训练7套含答案
不等式单元试卷一班级 姓名 座号 成绩一、选择题(每题正确答案只有一个,共8题,每小题5分)1.若a <b <0,则 ( )A . b 11<aB . 0<b a <1C . a b >b 2D . bb a a >2.若|a +c|<b ,则 ( )A . |a |<|b|-|c|B . |a |>|c|-|b|C . |a |>|b|-|c|D . |a |<|c|-|b| 3.设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bdB . db>c a C . a +c >b +d D . a -c >b -d4.下列命题中正确的一个是 ( ) A .ba ab +≥2成立当且仅当a ,b 均为正数B .2222ba b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a1|≥2成立当且仅当a ≠0 5函数y =log ⎪⎭⎫⎝⎛-+⋅+-2134223x x x x 的定义域是 ( )A .x ≤1或x ≥3B .x <-2或x >1C .x <-2或x ≥3D .x <-2或x >36.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A 甲是乙的充分条件,但不是乙的必要条件 B 甲是乙的必要条件,但不是乙的充要条件 C 甲是乙的充要条件 D 甲不是乙的充分条件,也不是乙的必要条件7.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21和最大值1 B .最小值43和最大值1 C .最小值21和最大值43D .最小值1 8.函数y =xx x +++132(x >0)的最小值是( )A .23B .-1+23C .1+23D .-2+23二、填空题(请将正确的答案填到横线上,共4题,每小题4分)9.关于x 的不等式a x 2+b x +2>0的解集是}3121|{<<-x x ,则a +b=_____________.10.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________.11.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 .12.建造一个容积83m ,深为m 2长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造价为__________元. 三、解答题(本大题共4小题,共44分)13.(10分)已知.))((,1,0,xy bx ay by ax b a b a ≥++=+>求证:且14 (10分)解关于x 的不等式:0122<++x ax (其中R a ∈).15.(12分)设f(x)是定义在上]1,1[-的奇函数,g(x)的图象与f(x)的图象关于直线x =1对称,而当]3,2[∈x 时,44)(2-+-=x x x g .(1)求f(x)的解析式;(2)对于任意的,]1,0[,2121x x x x ≠∈且求证:;2)()(1212x x x f x f -<- (3)对于任意的,]1,0[,2121x x x x ≠∈且求证:.1)()(12≤-x f x f16.(12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?参考答案二、填空题9.-14 10.1,2,1 11.)1,21()0,21(⋃- 12. 1760 三、解答题13.[解析]: 左边=)()(22222222y x ab xy b a aby abx xy b xy a +++=+++,xy xy b a xy ab b a xy y x =+=++≥∴≥+22222)()2(,2左边 .15.[解析]:(1)由题意知f(x+1)=g(1-x))2()(x g x f -=⇒当224)2(4)2()(,32201x x x x f x x -=--+--=≤-≤≤≤-时,当2)(0110x x f x x -=-∴<-≤-≤<时,,由于f(x)是奇函数2)(x x f =∴ ⎪⎩⎪⎨⎧≤<≤≤--=∴)10()01()(22x x x x x f(2)当,20]1,0[,212121<+<≠∈x x x x x x 时,且 1212122122122))(()()(x x x x x x x x x f x f -<+-=-=-∴(3)当1110,10]1,0[,212222212121≤-≤-∴≤≤≤≤≠∈x x x x x x x x 时,且.12122≤-x x 即 .1)()(212212≤-=-∴x x x f x f16.[解析]:由题意得 x y+41x 2=8,∴y=xx 482-=48xx-(0<x <42). 于定, 框架用料长度为 l =2x +2y+2(x 22)=(23+2)x +x16≥4246+. 当(23+2)x =x16,即x =8-42时等号成立. 此时, x ≈2.343, y=22≈2.828.故当x 为2.343m, y 为2.828m 时, 用料最省.不等式基本性质二一,不等式的8条基本性质补充1,b a b a ab 110<⇔>>且2,)(0+∈>⇒>>R x b a b a x x 3, )(0-∈<⇒>>R x b a b a x x二,基本练习( )1, 2003京春文,1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是A.a +c >b +dB.a -c >b -dC.ac >bdD.cb d a >( )2,(2001上海春)若a 、b 为实数,则a >b >0是a 2>b 2的A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件( )3,若,011<<ba 则下列结论正确..的是A .22b a <B .2b ab <C .ab a <2D .b a >( )4,“a>b”是“ac 2>bc 2”成立的A .必要不充分条件B .充分不必要条C .充要条件D .以上均错( )5,若b a , 为任意实数且b a >,则( ) A ,22b a > B ,1>b a C ,0)lg(>-b a D ,b a )21()21(<( )6,“1>a ”是“11<a”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件( )7,设10<<<a b ,则下列不等式成立的是A .12<<b abB .0log log 2121<<a b C .222<<a b D .12<<ab a( )8,1>ab是0)(<-b a a 成立的A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分不必要条件( )9,若0,0,0><>+ay a y x ,则y x -的值A ,小于0B ,大于0C ,等于0D ,正负不确定( )10,若a >b ,在①ba 11<;②a 3>b 3;③)1lg()1lg(22+>+b a ;④ba 22>中,正确的有 A.1个 B.2个 C.3个 D.4个( )11,(04高考试题)已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 A .ab ac >B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac( )12,(04高考试题)若011<<ba ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④02<-ab a 中,正确的不等式有A .1个B .2个C .3个D .4个二,填空题13,设01,0<<-<b a ,则2,,ab ab a 三者的大小关系为14,设R x x x B x A ∈+=+=,2,21234且1≠x ,则B A ,的大小关系为15,如果01<<<-b a ,则22,,1,1a b ab 的大小关系为16,设,则b a >是bb a a 11->-成立的 条件17,若53,42≤<<≤b a ,则b a -3的取值范围为 ,bba +2的取值范围为18,若a b a a 231,63<<<≤,则b a +的取值范围为三,解答题19,证明:若0>>b a >0>m ,则ma mb a b m a m b ++<<--不等式的性质三A 卷一、选择题1、下列命题中,正确的是( )A 若ac >bc,则a >bB 、若a 2>b 2,则a >bC 、若,则a <bD 、若b a <,则a <b2、 若a >b,则( ) A 、b a 33>B 、b a >C 、a 3>b 2D 、a 2>b 33、不等式a >b 和同时成立的充分且必要条件是( ) A 、a >b >0 B 、a >0>b C 、011<<a b D 、 011>>ba4、若a <b <0,则下列不等式中不能成立的是( )A 、B 、ab a 11>- C 、| a | > | b | D 、a 2>b 25、设a 、b 、c 、d 都是正数,a >b ,c >d ,a + b > c + d ,ab = cd ,那么a 、b 、c 、d 之间的大小关系是( )A 、a >b >c >dB 、a >c >b >dC 、c >a >d >bD 、a >c >d >b 6、已知a <0 ,-1<b <0,那么( )A 、a >ab >ab 2B 、ab 2>ab >aC 、ab >a >ab 2D 、ab >ab 2>a 7、若x + y = 2,b <x <a ,则下列不等式正确的是( )A 、b + 2<y <a + 2B 、a + 2<y <b + 2C 、2-a <y <2-bD 、2-b <y <2-a8、给定命题(1) a >b 且ab <0,(2)b a > b,(3)| a | <b b <a < 2a >b ,其中真命题的个数是( ) A 、3 B 、2 C 、1 D 、0 二、填空题9、已知a <b <0,c >0,在下列空白处填上恰当的不等号。
全国高中数学联赛 历届真题
全国高中数学联赛 历届真题1981第一届全国高中数学联赛试题部分一、选择题下面7个题目各提出四个答案,将你认为正确的答案的英文字母代号填写在题后的括号内.1. 条件甲:两个三角形的面积和二条边对应相等.条件乙两个三角形全等.〔A 〕甲是乙的充分必要条件 〔B 〕甲是乙的必要条件〔C 〕甲是乙的充分条件 〔D 〕甲不是乙的必要条件,也不是充分条件 答〔 〕2.条件甲: a =.条件乙: sin cos 22a θθ+=.〔A 〕甲是乙的充分必要条件 〔B 〕甲是乙的必要条件〔C 〕甲是乙的充分条件 〔D 〕甲不是乙的必要条件,也不是充分条件答〔 〕3.设(0,1,2,...)2k a k π≠=±±,sin tan cos 9cot a a T a a+=+. 〔A 〕T 取负值 〔B 〕T 取非负值〔C 〕T 取正值 〔D 〕T 取值可正可负答〔 〕4.下面四个图形中,哪一个面积最大?〔A〕00:60,45,ABC A B AC ∠=∠==〔B 〕梯形:夹角为075〔C 〕圆:半径为1〔D 〕正方形:对解线的长度为2.5答〔 〕5.给出长方体''''ABCD A B C D -,以下十二条直线:',',',',',',',',,,'',''AB BA CD DC AD DA BC CB AC BD A C B D 中有多少对异面直线?〔A 〕30对 〔B 〕60对 〔C 〕24对 〔D 〕48对答〔 〕 BA'C'6.在坐标平面上有两个区域M 和N.M 是由0,y y x ≥≤,和2y x ≤-这三个不等式确定的.N 是随t 变化的区域,它由不等式1t x t ≤≤+所确定的,t 的取值范围是01t ≤≤.设M 和N 的公共面积是函数()f t .那么()f t 为:〔A 〕212t t -++ 〔B 〕222t t -+ 〔D 〕2112t - 〔D 〕21(2)2t -BPQ n ∠= 答〔 〕7.对方程||0x x px q ++=进展讨论,下面的结论中,哪能个是错误的?〔A 〕至多有三个实根 〔B 〕至少有一个实根〔C 〕仅当240p q -≥才有实根 〔D 〕当0p <和0q >时,有三个实根答〔 〕三、在圆O 内,弦CD 平行于弦EF ,且与直径AB 交成045角.假设CD 与EF 分别交直径AB 于P 和Q,且圆O 的半径长为1.求证:2PC QE PD QF ⋅+⋅<.四、组装甲、乙、丙三种产品,需用A ,B ,C 三种零件.每件甲需用A,B 各2个;每件乙需用B,C 各1个;每件丙需用2个A 和1个C.用库存的A,B,C 三种零件,如组装成p 件甲产品、q 件乙产品和r 件丙产品,那么剩下2个A 和1个B,但C 恰好用完.试证:无论臬改变产品甲、乙、丙的件数,也不能把库存的A,B,C 三种零件都恰好用完.五、一张台球桌开头是正六边形ABCDEF.一个球从AB 的中点P 击出,击中BC 边上的某点Q,并且依次碰击CD,DE,EF,FA 各边,最后击中AB 边上的某一点,设BPQ θ∠=,求θ的取值范围.提示:利用入射角等于反射角的原理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011全国高中数学竞赛不等式试题
3、不等式
2log 211
log 32
12x x >0的解集是 ( )
A .[2,3]
B 。
(2,3)
C 。
[2,4] D。
(2,4)
[答案]3、解:原不等式等价于
222331log 1log 0
2
2
2
log 1
x x
x 设
2
2310
log 1,2
2
0t t
x t t
则有
解得
01t 。
即20
log 11,
24x x。
故选C 。
2003年全国高中数学联赛
(第一试)
7.不等式3
2
2430x x
x
的解集是______________
9. 已知
2
430,,A
x x x x
R 12
20,275
0,.x
B x a
x a x x
R 若A B ,则实数a 的取值范围是_____________. 13.设
35,2
x 证明不等式21
23
153219.
x x x
[答案]7. 3,2
1
521
5,3. 提示:原不等式可以化为:0
1||3||2
x x x 9.
14
a 提示:
3
,1A
,令
a x f x
12,5722
x
a x
x
g ,则只需x g x f ,在(1,3)上的图象均在
x 轴
的下方,其充要条件是
3
010301
g g f f ,由此推出
14a ;
13.证明:由
bd ac da cd bc ab d
c
b
a
d c b a 2)
(2
2
2
2
2
可得
,22
2
2
2
d c b a d
c
b a 当且仅当a=b=c=d 时取等号……5分
则
x
x
x x x x
x 3153
21
1
2315321219
214
2x ……………………………………………………
15分
因为
x x x 315,32,1不能同时相等,所以
19
23153212x x x ……………………………………20分
2001年全国高中数学联赛试卷
4.如果满足∠ABC=60°,AC=12,BC=k 的△ABC
恰有一个,那么k 的取值范围是()
(A )k=38
(B )0<k ≤12 (C )k ≥12(D )0<k ≤12或k=3
86.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的
价格和3枝康乃馨的价格比较结果是()(A ) 2枝玫瑰价格高(B ) 3枝康乃馨价格高(C )
价格相同
(D )
不确定.
10. 不等式
2
32
log
12
1x
的解集为.
11.函数
232
x
x
x y 的值域为
[答案].4.D 6.A 10.
,42
,11,07
2
11.,
22
3,
12000年全国高中数学联赛 (第一试)
10.已知)(x f 是定义在R 上的函数,1)1(f 且对任意R x
都有5)()5(x f x f 1
)()1(x f x f 若x x f x g 1)()(,则)
2002(g .
11.若
1)
2(log )
2(log 44y x
y x ,则|||
|y x 的最小值是
.
12.使不等式x a
x
a x
cos 1cos sin 2
2
对一切R x 恒成立的负数a 的取值范围是
.
[答案]10.解:由x x f x g 1)()(,得1)
()(x x g x f ,所以
5)
1()(1
)5()5(x
x g x x g 1
)1()
(1
)1()
1(x x g x x
g 即)()5(x g x g ,)()1(x g x g ∴)
()1()2()
4()
5()
(x g x g x
g x
g x
g x g
∴)
()1(x g x
g 即)(x g 是周期为1的周期函数,又
1)
1(g ,故1
)
2002(g 11.解:
4
)
2)(2(0
202y x
y x
y
x y x
4
40||22
2
y
x
y x 由对称性只考虑0y
,因为0x
,所以只须求y x 的最小值.
令u y x
公代入442
2
y x
,有0)
4(232
2
u uy
y .这是一个关于
y 的二次方程显然有实根,故
0)
3(162
u ,∴3
u 当3
34x
,3
3y
时,
3u .故||||y x 的最小值为3
12.解:原不等式可化为
4
)1()
2
1(cos 2
2
2a a
a x ∵1cos 1x ,0a
,
2
1a
∴当
1cosx
时,函数2
)2
1(cos a x
y
有最大值2
)211(a ,
从而有4)1()
2
11(2
2
2
a a
a ,整理得0
22
a
a ∴
1a 或2a ,又0a
,∴2
a
1999年全国高中数学联合竞赛
三、(满分20分)已知当x [0,1]时,不等式
0sin
)1()1(cos
2
2
x x x x 恒成立,试求的取值范围.
[答案]13.若对一切x [0,1],恒有f(x)= 0sin
)1()1(cos
2
2
x x x x ,
则
cos θ=f(1)>0,
sin θ=f(0)>0.
(1)
取x (0,1),由于x x x x x f 1cos sin 12,
所以,
0x f 恒成立,当且仅当0
1cos sin 2(2 )
先在[0,2π]中解(1)与(2):由cos θ>0,sin θ>0,可得0<θ<2
.。