新课标经典例题——必修2直线面圆
必修二直线与圆练习题
必修二直线与圆练习题直线与圆是数学中的基础概念和重要内容之一。
在必修二的学习中,我们需要多做一些练习题来加强对直线和圆的理解和应用能力。
下面我将给出一些关于直线与圆的练习题,帮助你更好地掌握这一知识点。
1. 设直线 l 过点 O(2,3),斜率为 3/4。
求直线 l 的方程并画出直线 l。
解析:由题意可得直线 l 的方程为 y-3=(3/4)(x-2),即 4y-12=3x-6,整理得 3x-4y=-6。
2. 已知圆心为 O(-1,2),过点 A(3,-4) 的直径为 AB。
求圆的方程并画出圆。
解析:由圆的定义可知,圆的方程满足 (x-a)^2+(y-b)^2=r^2,其中(a,b) 为圆心坐标,r 为半径。
根据题意,圆心坐标可知 a=-1,b=2。
半径 r=AB 的长度的一半,即 r=sqrt[(3-(-1))^2+(-4-2)^2]=sqrt[16+36]=sqrt(52)=2sqrt(13)。
所以圆的方程为 (x+1)^2+(y-2)^2=52,并画出该圆。
3. 直线 l1 过点 A(1,2),斜率为 2/3;直线 l2 过点 B(-3,4),斜率为 -1/2。
求直线 l1 和直线 l2 的交点坐标。
解析:根据直线的斜率公式可得直线 l1 的方程为 y-2=(2/3)(x-1),即 3y-6=2x-2,整理得 2x-3y=4。
直线 l2 的方程为 y-4=(-1/2)(x+3),即2y-8=-x-3,整理得 x+2y=5。
将方程组 2x-3y=4 和 x+2y=5 联立解方程组,得交点坐标为 x=2,y=1,即交点为 (2,1)。
4. 设直线 l 过点 A(3,5),与圆 C:(x-2)^2+(y-1)^2=25 相切。
求直线l 的方程。
解析:直线与圆相切时,直线的斜率等于圆心到直线的距离除以该点处切线的斜率的相反数。
我们可以先求出圆心到直线的距离,然后再求直线的斜率,最后得出直线的方程。
(完整版)学生版高中数学必修2直线和圆的位置关系知识点总结经典例题和习题
高中数学必修2直线与圆的位置关系【一】、圆的定义及其方程.(1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定长就是半径;(圆心是定位条件,半径是定型条件) (2)圆的标准方程: ;圆心),(b a圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ;圆心 ,半径为 ;【二】、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理)设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ; ①P 在在圆C 外 ; ②P 在在圆C 内 ; ③P 在在圆C 【三】、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,圆心C 到直线l 之距为d ,由直线l 和圆C 联立方程组消去x (或y )后,所得一元二次方程的判别式为∆,则它们的位置关系如下:相离 ;相切 ;相交 ; 注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法;利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。
【四】、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。
(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离 ; ②两圆外切 ; ③两圆相交 ; ④两圆内切 ⑤两圆内含 ;(五)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。
判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。
高中数学必修二直线与圆的综合问题精选
直线与圆一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.直线与圆参考答案与试题解析一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.【分析】(1)求出圆心C到直线l的距离,利用截得的弦长为2求得半径的值,可得圆C的方程;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣9=0,若动点M的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心C到直线l的距离为=,∵截得的弦长为2,∴半径为2,∴圆C:(x﹣3)2+(y﹣4)2=4;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣21=0,若动点M的轨迹方程是直线,则k2﹣1=0,∴k=1,直线的方程为x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆C的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线l与圆C交于A,B两点.∵直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦长等于该圆的半径,∴△CAB为正三角形,∴三角形的高等于边长的,∴圆心C到直线l的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3,2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心C到直线m的距离为h,H为DE的中点,连结CD,CH,CE.在△CDE中,∵DE=,∴=∴,当且仅当h2=6﹣h2,即h2=3,解得h=时,△CDE的面积最大.∵CH=,∴|n+1|=,∴n=,∴存在n的值,使得△CDE的面积最大值为3,此时直线m的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设P(x,y),则=(﹣3,0),=(x﹣4,y),=(1﹣x,﹣y).∵•=6||,∴﹣3×(x﹣4)+0×y=6,化简得=1为所求点P的轨迹方程.4分(Ⅱ)设A(x1,y1),B(x2,y2).①当直线l与x轴不重合时,设直线l的方程为x=my+1(m≠0),则H(0,﹣).从而=(x1,y1+),=(1﹣x1,﹣y1),由=λ1得(x1,y1+)=λ1(1﹣x1,﹣y1),∴﹣λ1=1+同理由得﹣λ2=1+,∴﹣(λ1+λ2)=2+由直线与椭圆方程联立,可得(4+3m2)y2+6my﹣9=0,∴y1+y2=﹣,y1y2=﹣代入得∴(λ1+λ2)=2+=,∴λ1+λ2=﹣②当直线l与x轴重合时,A(﹣2,0),B(2,0),H(0,0),λ1=﹣.λ2=﹣2,∴λ1+λ2=﹣11分综上,λ1+λ2为定值﹣.12分.【点评】本题考查轨迹方程,考查向量知识的运用,考查直线与椭圆位置关系的运用,考查分类讨论的数学思想,属于中档题.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.【分析】(I)由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程.(II)由MN∥OQ,知△QMN的面积=△OMN的面积,由此能求出△QMN的面积的最大值.【解答】解:(Ⅰ)设圆P的半径为R,圆心P的坐标为(x,y),由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,所以动圆P与圆F1只能内切.…(1分)所以|PF1|+|PF2|=7﹣R+R﹣1=6>|F1F2|=4.…(3分)所以圆心圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=6,2c=4,∴a=3,c=2,b2=a2﹣c2=5.所以曲线C的方程为=1.…(4分)(Ⅱ)设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,由可得:(5m2+9)y2+20my﹣25=0,则y1+y2=﹣,y1y2=﹣.…(5分)所以|MN|==…(7分)因为MN∥OQ,∴△QMN的面积=△OMN的面积,∵O到直线MN:x=my+2的距离d=.…(9分)所以△QMN的面积.…(10分)令=t,则m2=t2﹣1(t≥0),S==.设,则.因为t≥1,所以.所以,在[1,+∞)上单调递增.所以当t=1时,f(t)取得最小值,其值为9.…(11分)所以△QMN的面积的最大值为.…(12分)【点评】本题考查椭圆的标准方程、直线、圆、与椭圆等椭圆知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.【分析】(Ⅰ)由题意可知丨PM丨+丨PN丨=4>丨MN丨=2,则P的轨迹C是以M,N为焦点,长轴长为4的椭圆,则a=4,c=,b2=a2﹣c2=1,即可求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得t=±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆P的半径为r,由N:及,知点M在圆N 内,则有,从而丨PM丨+丨PN丨=4>丨MN丨=2,∴P的轨迹C是以M,N为焦点,长轴长为4的椭圆,设曲线C的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线C的轨迹方程为;(Ⅱ)依题意可设直线AB的方程为x=my+3,A(x1,y1),B(x2,y2).,由,整理得:(4+m2)y2+6my+5=0,则△=36m2﹣4×5×(4+m2)>0,即m2>4,解得:m>2或m<﹣2,由y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+6=,x1x2=(my1+3)(my2+3)=m2y1y2+m(y1+y2)+9=,假设存在定点Q(t,0),使得直线AQ,BQ的斜率之积为非零常数,则(x1﹣t)(x2﹣t)=x1x2﹣t(x1+x2)+t2=﹣t×+t2=,∴k AQ•k BQ=•==,要使k AQ•k BQ为非零常数,当且仅当,解得t=±2,当t=2时,常数为=,当t=﹣2时,常数为=,∴存在两个定点Q1(2,0)和Q2(﹣2,0),使直线AQ,BQ的斜率之积为常数,当定点为Q1(2,0)时,常数为;当定点为Q2(﹣2,0)时,常数为.【点评】本题考查椭圆标准方程及简单几何性质,椭圆的定义,考查直线与椭圆的位置关系,韦达定理,直线的斜率公式,考查计算能力,属于中档题.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.【分析】(Ⅰ)确定点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点,即可求曲线Γ的方程;(Ⅱ)可设直线,进而表示面积,即可求△OEF面积的取值范围.【解答】解:(Ⅰ)依题意得AB=2,BD=1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,则AD=AT1,BD=BT2,CT1=CT2所以AD+BD=AT1+BT2=AC+CT1+BT2=AC+CT1+CT2=AC+BC=AB+2BD=4>AB=2…(2分)所以点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线Γ的方程为.…(4分)(Ⅱ)由于曲线Γ要挖去长轴两个顶点,所以直线OE,OF斜率存在且不为0,所以可设直线…(5分)由得,,同理可得:,;所以,又OE⊥OF,所以…(8分)令t=k2+1,则t>1且k2=t﹣1,所以=…(10分)又,所以,所以,所以,所以,所以△OEF面积的取值范围为.…(12分)【点评】本题考查轨迹方程,考查直线与椭圆位置关系的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.【分析】(Ⅰ)利用直接法,求C点的轨迹Γ的方程;(Ⅱ)设直线l的方程为y=kx﹣2,与抛物线方程联立,求出斜率,即可证明结论.【解答】解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(﹣x,0),由|AB|=|AC|,得(x+1)2=(x﹣1)2+y2,化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).(Ⅱ)直线l的斜率显然存在且不为0,设直线l的方程为y=kx﹣2,M(x1,y1),N(x2,y2),由得ky2﹣4y﹣8=0,所以,,,同理,,所以Q(1,2)与M,N两点连线的斜率之积为定值4.【点评】本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查学生的计算能力,属于中档题.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.【分析】(1)利用圆与圆的位置关系,得出曲线E是M,N为焦点,长轴长为的椭圆,即可求曲线E 的方程;(2)联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,利用韦达定理,结合k1k2=4,得出直线BC过定点(3,0),表示出面积,即可求△ABC面积的最大值.【解答】解:(1)圆M:x2+y2+2y﹣7=0的圆心为M(0,﹣1),半径为点N(0,1)在圆M内,因为动圆P经过点N且与圆M相切,所以动圆P与圆M内切.设动圆P半径为r,则﹣r=|PM|.因为动圆P经过点N,所以r=|PN|,>|MN|,所以曲线E是M,N为焦点,长轴长为的椭圆.由,得b2=2﹣1=1,所以曲线E的方程为…(4分)(Ⅱ)直线BC斜率为0时,不合题意设B(x1,y1),C(x2,y2),直线BC:x=ty+m,联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,又k1k2=4,知y1y2=4(x1﹣1)(x2﹣1)=4(ty1+m﹣1)(ty2+m﹣1)=.代入得又m≠1,化简得(m+1)(1﹣4t2)=2(﹣4mt2)+2(m﹣1)(1+2t2),解得m=3,故直线BC过定点(3,0)…(8分)由△>0,解得t2>4,=(当且仅当时取等号).综上,△ABC面积的最大值为…(12分)【点评】本题考查圆与圆的位置关系,考查椭圆的定义与方程,考查直线与椭圆位置关系的运用,考查韦达定理,属于中档题.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.【分析】(1)设出直线方程,利用直线与圆的位置关系,列出不等式求解即可.(2)设出M,N的坐标,利用直线与圆的方程联立,通过韦达定理,结合向量的数量积,求出直线的斜率,然后判断直线与圆的位置关系求解|MN|即可.【解答】解:(1)由题设,可知直线l的方程为y=kx+1,因为直线l与圆C交于两点,由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由<1,解得:<k<所以k的取值范围为得(,)(2)设M(x1,y1),N(x2,y2).将y=kx+1代入方程:(x﹣2)2+(y﹣3)2=1,整理得(1+k2)x2﹣4(1+k)x+7=0.所以x1+x2=,x1x2=,•=x1x2+y1y2=(1+k2)(x1x2)+k(x1+x2)+1==12,解得k=1,所以直线l的方程为y=x+1.故圆心C在直线l上,所以|MN|=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力,是中档题.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.【分析】(1)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段OQ的长;(2)联立直线和抛物线方程进行消元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.【解答】解:(Ⅰ)由抛物线y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,得2+=,∴n=2,抛物线C的方程为y2=2x,P(2,2).…(2分)C在第一象限的图象对应的函数解析式为y=,则y′=,故C在点P处的切线斜率为,切线的方程为y﹣2=(x﹣2),令y=0得x=﹣2,所以点Q的坐标为(﹣2,0).故线段OQ的长为2.…(5分)(Ⅱ)l2恒过定点(2,0),理由如下:由题意可知l1的方程为x=﹣2,因为l2与l1相交,故m≠0.由l2:x=my+b,令x=﹣2,得y=﹣,故E(﹣2,﹣)设A(x1,y1),B(x2,y2)由消去x得:y2﹣2my﹣2b=0则y1+y2=2m,y1y2=﹣2b …(7分)直线PA的斜率为,同理直线PB的斜率为,直线PE的斜率为.因为直线PA,PE,PB的斜率依次成等差数列,所以+=2×…(10分)整理得:=,因为l2不经过点Q,所以b≠﹣2,所以2m﹣b+2=2m,即b=2.故l2的方程为x=my+2,即l2恒过定点(2,0).…(12分)【点评】本题主要考查直线和抛物线的位置关系,利用直线和抛物线方程,转化为一元二次方程,结合韦达定理,利用设而不求的思想是解决本题的关键.。
高中数学必修二直线和圆的综合问题精选
直线与圆一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.直线与圆参考答案与试题解析一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.【分析】(1)求出圆心C到直线l的距离,利用截得的弦长为2求得半径的值,可得圆C的方程;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣9=0,若动点M的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心C到直线l的距离为=,∵截得的弦长为2,∴半径为2,∴圆C:(x﹣3)2+(y﹣4)2=4;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣21=0,若动点M的轨迹方程是直线,则k2﹣1=0,∴k=1,直线的方程为x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆C的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线l与圆C交于A,B两点.∵直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦长等于该圆的半径,∴△CAB为正三角形,∴三角形的高等于边长的,∴圆心C到直线l的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3,2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心C到直线m的距离为h,H为DE的中点,连结CD,CH,CE.在△CDE中,∵DE=,∴=∴,当且仅当h2=6﹣h2,即h2=3,解得h=时,△CDE的面积最大.∵CH=,∴|n+1|=,∴n=,∴存在n的值,使得△CDE的面积最大值为3,此时直线m的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设P(x,y),则=(﹣3,0),=(x﹣4,y),=(1﹣x,﹣y).∵•=6||,∴﹣3×(x﹣4)+0×y=6,化简得=1为所求点P的轨迹方程.4分(Ⅱ)设A(x1,y1),B(x2,y2).①当直线l与x轴不重合时,设直线l的方程为x=my+1(m≠0),则H(0,﹣).从而=(x1,y1+),=(1﹣x1,﹣y1),由=λ1得(x1,y1+)=λ1(1﹣x1,﹣y1),∴﹣λ1=1+同理由得﹣λ2=1+,∴﹣(λ1+λ2)=2+由直线与椭圆方程联立,可得(4+3m2)y2+6my﹣9=0,∴y1+y2=﹣,y1y2=﹣代入得∴(λ1+λ2)=2+=,∴λ1+λ2=﹣②当直线l与x轴重合时,A(﹣2,0),B(2,0),H(0,0),λ1=﹣.λ2=﹣2,∴λ1+λ2=﹣11分综上,λ1+λ2为定值﹣.12分.【点评】本题考查轨迹方程,考查向量知识的运用,考查直线与椭圆位置关系的运用,考查分类讨论的数学思想,属于中档题.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.【分析】(I)由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程.(II)由MN∥OQ,知△QMN的面积=△OMN的面积,由此能求出△QMN的面积的最大值.【解答】解:(Ⅰ)设圆P的半径为R,圆心P的坐标为(x,y),由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,所以动圆P与圆F1只能内切.…(1分)所以|PF1|+|PF2|=7﹣R+R﹣1=6>|F1F2|=4.…(3分)所以圆心圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=6,2c=4,∴a=3,c=2,b2=a2﹣c2=5.所以曲线C的方程为=1.…(4分)(Ⅱ)设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,由可得:(5m2+9)y2+20my﹣25=0,则y1+y2=﹣,y1y2=﹣.…(5分)所以|MN|==…(7分)因为MN∥OQ,∴△QMN的面积=△OMN的面积,∵O到直线MN:x=my+2的距离d=.…(9分)所以△QMN的面积.…(10分)令=t,则m2=t2﹣1(t≥0),S==.设,则.因为t≥1,所以.所以,在[1,+∞)上单调递增.所以当t=1时,f(t)取得最小值,其值为9.…(11分)所以△QMN的面积的最大值为.…(12分)【点评】本题考查椭圆的标准方程、直线、圆、与椭圆等椭圆知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.【分析】(Ⅰ)由题意可知丨PM丨+丨PN丨=4>丨MN丨=2,则P的轨迹C是以M,N为焦点,长轴长为4的椭圆,则a=4,c=,b2=a2﹣c2=1,即可求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得t=±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆P的半径为r,由N:及,知点M在圆N 内,则有,从而丨PM丨+丨PN丨=4>丨MN丨=2,∴P的轨迹C是以M,N为焦点,长轴长为4的椭圆,设曲线C的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线C的轨迹方程为;(Ⅱ)依题意可设直线AB的方程为x=my+3,A(x1,y1),B(x2,y2).,由,整理得:(4+m2)y2+6my+5=0,则△=36m2﹣4×5×(4+m2)>0,即m2>4,解得:m>2或m<﹣2,由y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+6=,x1x2=(my1+3)(my2+3)=m2y1y2+m(y1+y2)+9=,假设存在定点Q(t,0),使得直线AQ,BQ的斜率之积为非零常数,则(x1﹣t)(x2﹣t)=x1x2﹣t(x1+x2)+t2=﹣t×+t2=,∴k AQ•k BQ=•==,要使k AQ•k BQ为非零常数,当且仅当,解得t=±2,当t=2时,常数为=,当t=﹣2时,常数为=,∴存在两个定点Q1(2,0)和Q2(﹣2,0),使直线AQ,BQ的斜率之积为常数,当定点为Q1(2,0)时,常数为;当定点为Q2(﹣2,0)时,常数为.【点评】本题考查椭圆标准方程及简单几何性质,椭圆的定义,考查直线与椭圆的位置关系,韦达定理,直线的斜率公式,考查计算能力,属于中档题.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.【分析】(Ⅰ)确定点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点,即可求曲线Γ的方程;(Ⅱ)可设直线,进而表示面积,即可求△OEF面积的取值范围.【解答】解:(Ⅰ)依题意得AB=2,BD=1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,则AD=AT1,BD=BT2,CT1=CT2所以AD+BD=AT1+BT2=AC+CT1+BT2=AC+CT1+CT2=AC+BC=AB+2BD=4>AB=2…(2分)所以点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线Γ的方程为.…(4分)(Ⅱ)由于曲线Γ要挖去长轴两个顶点,所以直线OE,OF斜率存在且不为0,所以可设直线…(5分)由得,,同理可得:,;所以,又OE⊥OF,所以…(8分)令t=k2+1,则t>1且k2=t﹣1,所以=…(10分)又,所以,所以,所以,所以,所以△OEF面积的取值范围为.…(12分)【点评】本题考查轨迹方程,考查直线与椭圆位置关系的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.【分析】(Ⅰ)利用直接法,求C点的轨迹Γ的方程;(Ⅱ)设直线l的方程为y=kx﹣2,与抛物线方程联立,求出斜率,即可证明结论.【解答】解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(﹣x,0),由|AB|=|AC|,得(x+1)2=(x﹣1)2+y2,化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).(Ⅱ)直线l的斜率显然存在且不为0,设直线l的方程为y=kx﹣2,M(x1,y1),N(x2,y2),由得ky2﹣4y﹣8=0,。
人教新课标A版高一数学《必修2》4.2.1 直线与圆的位置关系
典例精讲:题型二:直线与圆相切问题 解析:
典例精讲:题型二:直线与圆相切问题 解析:
典例精讲:题型二:直线与圆相切问题
2+y2=13上, (1) 解法 3 : ∵ ( - 3,2) 在圆 x 解析: ∴切线方程为-3x+2y=13.
即3x-2y+13=0.
典例精讲:题型二:直线与圆相切问题 解析:
谢谢大家!
典例精讲:题型二:直线与圆相切问题 解析:
题后反思: (1)由于过某一定点的直线有两类:斜率存在,斜率不存在,
故过某一点做圆的切线,求切线方程时要分情况讨论.
(2)求切线一般有三种方法:①设切点坐标用切线公式:过圆
(x-a)2+ (y-b)2= r2上一点(x0,y0) 的切线方程为 (x-a)(x0-a) +
【提示】
相交、相切、相离
探究点1
直线和圆的位置关系
【问题1】如果直线与圆相交,它们的公共点有几个?如果是相切 或相离又是如何呢?
【提示】
相交2个、相切1个、相离0个
探究点1
直线和圆的位置关系
r d d
r
r d
【提示】
相交⇔d<r;相切⇔d=r;相离⇔d>r
探究点1
直线和圆的位置关系
【提示】
相交⇔方程有2个不同实数解⇔ Δ>0;
(y0 - b)(y - b) = r2 ;②设切线方程,用判别式法;③设切线方程,
用圆心到切线的距离等于半径,但要注意斜率不存在的情况.
典例精讲:题型三:弦长问题 例3 过点P(4,-4)的直线l被圆C:x2+y2-2x-4y-20=0截得的弦AB 的长度为8,求直线l的方程. 分析:设出直线l的方程,由圆心到直线的距离d与圆的半径及半弦长
高中数学必修二直线和圆的位置关系课后练习一(含解析)新人教A版必修2
题2 答案: C.
详解:∵圆 x2+y2 =r 2 的圆心 O( 0, 0)到直线 l : 2x+3y+1=0 的距离 m= 13 , 13
又直线 l :2x+3y+1=0 被圆 C:x2 +y2 =r 2 所截得的弦长为 d,
∴弦心距 13 ,弦长之半 d 与圆半径 r 组成的直角三角形,
13
2
即 r 2 ( d )2 ( 13 )2 ,∵圆心 O( 0, 0)到直线 2x+4y-1=0 的距离
-2 ,
题3
11
1
答案:最大值为 5 ,最小值为 5.
详解:圆心 C( - 2,0) 到直线 3x+ 4y+12= 0 的距离为
|3 × ( -2) +4×0+ 12| 6
d=
32+ 42
=5.
6
11
∴P 点到直线 3x+ 4y+ 12= 0 的距离的最大值为 d+ r = 5+ 1= 5 ,
6
1
最小值为 d- r = 5-1= 5.
题4
求与圆
x
2
+(
y-2
)
2
=
4
相切且在两坐标轴上截距相等的直线方程.
题5
从直线 x- y+3=0 上的点向圆( x+2) 2 +( y+2) 2 =1 引切线,则切线长的最小值是
.
题6 若⊙ O: x2+ y2=5 与⊙ O1: ( x-m) 2+ y2= 20( m∈ R) 相交于 A、B 两点,且两圆在点 线互相垂直,则线段 AB的长度是 __________ .
当△> 0 时, ( m+1) 2-5 <0,∴ 1 5 <m< 1 5 ;
新课标经典例题——必修2直线面圆-09f6af767fd5360cba1adb5b
直线、平面、圆:1. 已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0垂直,则m 的值为( )A .-8B .0C .10D .2[答案] D[解析] 由条件知,4-mm +2·(-2)=-1,∴m =2.2. 过点P (1,2)的直线l 平分圆C :x 2+y 2+4x +6y +1=0的周长,则直线l 的斜率为( ) A.53 B .1 C.85 D.43 [答案] A[解析] ∵直线l 平分⊙C 的周长,∴l 过圆心C (-2,-3),∴l 的斜率为k PC =53.3.过点A (3,-2)的直线l 经过圆x 2+y 2-2y =0的圆心,则直线l 的倾斜角大小为( )A .150°B .60°C .30°D .120° [答案] D[解析] 圆x 2+y 2-2y =0的圆心C (0,1),l 过点A (3,-2)和C ,∴其斜率k AC =-3,由tan α=-3,0<α<π得,α=120°,故选D.4.点P (2,-1)为圆(x -1)2+y 2=25内弦AB 的中点,则直线AB 的方程为( )A .x +y -1=0B .2x +y -3=0C .x -y -3=0D .2x -y -5=0[答案] C[解析] 圆心C (1,0),k PC =-1,∴k AB =1,排除A 、B 、D ,选C.5.过(2,2)点且与曲线x 2+y 2+2x -2y -2=0相交所得弦长为23的直线方程是( )A .3x -4y +2=0B .3x -4y +2=0或x =2C .3x -4y +2=0或y =2D .x =2或y =2 [答案] C[解析] 圆(x +1)2+(y -1)2=4的圆心C (-1,1),半径r =2,∵弦长为23,∴C 到直线距离为1,经检验知选C.6.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是( )A .(4,-2)B .(4,-3)C .(3,32) D .(3,-1)[答案] A[解析] 解法一:由条件知,点(10,0)与(-6,8)关于折线对称,故折线过点(2,4),斜率k =-18-6-10=2,故折线所在直线方程为y -4=2(x -2),即2x -y =0,与点(-4,2)重合的点M 和点(-4,2)的中点应在直线2x -y =0上,经检验知,只有A 适合,故选A.解法二:设与点C (-4,2)重合的点为D ,又A (10,0),B (-6,8),则必有AB ∥CD ,∴k AB =k CD , ∵k AB =-12,∴k CD =-12,经检验知,只有A 适合.7.将直线x +y -1=0绕点(1,0)沿逆时针方向旋转15°得到直线l ,则直线l 与圆(x +3)2+y 2=4的位置关系是( ) A .相交 B .相切 C .相离 D .相交或相切[答案] B[解析] 直线x +y -1=0的斜率k =-1,∴倾斜角为135°,故直线l 的倾斜角α=135°+15°=150°,斜率k l =tan α=-33,方程为y =-33(x -1),即x +3y -1=0,∵圆心C (-3,0)到直线l 距离d =2,∴直线与圆相切.8.若圆C :x 2+y 2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点(a ,b )向圆所作的切线长的最小值是( ) A .2 B .3 C .4 D .6[答案] C[解析] ⊙C :(x +1)2+(y -2)2=2,圆心C (-1,2)在直线2ax +by +6=0上,∴a -b -3=0,由点P (a ,b )向圆引切线,设切线长为l ,则l 2=|PC |2-r 2=(a +1)2+(b -2)2-2=(b +4)2+(b -2)2-2=2b 2+4b +18=2(b +1)2+16≥16,∴l ≥4,当b =-1,a =2时,l min =4.9.已知直线的倾斜角的余弦值是12,则此直线的斜率是________. [答案]3[解析] 设直线的倾斜角为α,则cos α=12,0<α<π,∴sin α=1-cos 2α=32,∴tan α=sin αcos α= 3.(理)两平行直线x +ay -a -1=0与2x +a 2y +5=0之间的距离是________.[答案] 72或11510[解析] ∵两直线平行,∴当a ≠0时,12=a a 2≠-a -15,∴a =2,此时两直线方程为x +2y -3=0与2x +4y +5=0,∴距离为d =|-6-5|22+42=11510,当a =0时,两直线方程为x =1或x =-52,此时两平行直线之间的距离为d 1=1-(-52)=72.10.已知圆C :x 2+y 2-6x -8y +21=0和直线kx -y -4k +3=0.(1)证明不论k 取何值,直线和圆总有两个不同交点;(2)当k 取什么值时,直线被圆截得的弦最短?并求这最短弦的长.[解析] (1)证明:由kx -y -4k +3=0得(x -4)k -y +3=0.∴⎩⎨⎧x -4=0,-y +3=0.直线kx -y -4k +3过定点P (4,3).由x 2+y 2-6x -8y +21=0,即(x -3)2+(y -4)2=4, 又(4-3)2+(3-4)2=2<4,∴点P 在⊙C 内, ∴直线和圆总有两个不同的交点.(2)k PC =3-44-3=-1.可以证明与PC 垂直的直线被圆所截得的弦最短,因此过P 点斜率为1的直线即为所求,其方程为y -3=x -4,即x -y -1=0. |PC |=|3-4-1|2=2,∴|AB |=2|AC |2-|PC |2=2 2.[点评] 当点P 在⊙C 内时,过点P 的所有直线l 中,当l ⊥PC 时,l 被⊙C 截得的弦长最短.证明如下:如图,P 在⊙C 内,直线AB 过P ,且AB ⊥PC ,直线DE 是过P 与PC 不垂直的任意一条弦(不是直径),过C 作CM ⊥DE ,垂足为M ,则PC>CM,∴PC2>CM2,∵CD2=CA2,∴CD2-CM2>CA2-PC2,∴DM2>AP2,∴DM>AP,∵DE=2DM,AB=2AP,∴DE>AB,即过点P 的任意与PC不垂直的弦长,总大于过点P与PC垂直的弦长(当DE 为⊙C的直径时,DE>AB显然成立).。
新课标高中数学(必修)第二章:点直线平面(基础训练)题精品教育.doc
2019新课标高中数学(必修2)第二章:点直线平面(基础训练)题精品教育1A 资料名称: 新课标高中数学(必修2)第二章点直线平面(基础训练)测试题一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为()A .0B .1C .2D .32.下面列举的图形一定是平面图形的是()A .有一个角是直角的四边形B .有两个角是直角的四边形C .有三个角是直角的四边形D .有四个角是直角的四边形3.垂直于同一条直线的两条直线一定()A .平行B .相交C .异面D .以上都有可能4.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,D E F 分别是,,VC V A AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是()A .030B .090C .060D .随P 点的变化而变化。
5.互不重合的三个平面最多可以把空间分成()个部分A .4B .5C .7D .8 6.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为()A .90B .60C .45D .30二、填空题1.已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。
2.直线l 与平面α所成角为030,,,l A m A m αα=⊂∉,则m 与l 所成角的取值范围是_________3.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为1234,,,d d d d ,则1234d d d d +++的值为。
4.直二面角α-l -β的棱l 上有一点A ,在平面,αβ内各有一条射线AB ,AC 与l 成045,,AB AC αβ⊂⊂,则BAC ∠= 。
人教课标版高中数学必修2典型例题:与直线、圆有关的范例分析
与直线、圆有关的范例分析例1.已知三角形顶点B (1,1),C (3,6),三角形的面积为3,求顶点A 的轨迹方程.分析:由于三角形的B ,C 两点已经给定,因而BC 边长可以求出.又三角形面积为已知,所以BC 边上的高可以求出,也就是A 点到BC 的距离是定值了.所以这个问题就是求到定直线的距离等于定长的点的轨迹问题.由求曲线方程的一般方法,设动点坐标为(x ,y ),列出它所满足的条件,即到直线BC 距离等于定长,化简即可得所求方程,此问题也可以从几何性质知道其轨迹图形为与BC 平行且距离为定值的两条直线,所以也可设轨迹方程为斜率是定值的直线方程,再确定此直线方程即可.解:∵ 两顶点坐标为B (1,1),C (3,6) ∴ BC 边所在直线方程为5x -2y -3 = 0,29||=BC 设A (x ,y ),由点到直线的距离公式可得:2962532522=+--y x化简得 5x -2y -9 = 0或 5x -2y + 3 = 0. 这就是所求的轨迹方程.例2.(1)若动圆与圆C :x 2 + (y -2)2 = 4相外切,且与直线y =-2相切,求动圆的圆心M 的轨迹方程,并说明轨迹是什么图形.(2)若直线y = ax + 1与(1)中所求轨迹相交于A ,B 两点,问:a 为何值时,以AB 为直线的圆经过点P (0,-2)?分析:对于第(1)小题,可直接设圆心坐标为M (x ,y ),根据已知,它到圆C 的圆心距离应等于圆C 与圆M 半径之和,到直线y =-2的距离等于圆M 的半径,从而列出等式后,化得轨迹方程,也可以设出直线y =-4,由已知,可知圆心M 到点C 和直线y =-4的距离相等,那么它的轨迹应是一条以点C 为焦点,直线y =-4为准线的抛物线,从而求出轨迹方程.对于第(2)小题,欲使以AB 为直径的圆经过点P (0,-2),此几何条件可转化为数量关系的等式不止一种,比如可用AB 中点到P 点距离等于AB 长的一半列等式,也可以用PA 、PB 的斜率成负倒数列等式,等等.解:(1)设动圆圆心为M (x ,y ),得:()|2|2222++=-+y y x (y >-2) 化简,得x 2 = 12 ( y + 1)为所求轨迹方程.其图形为以(0,2)为焦点,y =-4为准线的抛物线. (2)由 ⎩⎨⎧+=+=121212y x ax y 消去y ,得 x 2-12ax -24 = 0设A (x 1,y 1),B (x 2,y 2),则有 ⎩⎨⎧-==+24122121x x ax x从而可求得:y 1 + y 2 = 12a 2 + 2,y 1 y 2 = -12a 2 + 1 ∵PA ⊥PB ,∴1222211-=+⋅+x y x y ∴ -12a 2 + 1 + 2 (12a 2 + 2 ) + 4 = 24 12a 2 = 1525±=a 即 25±=a 时,以AB 为直径的圆经过点P ( 0,-2 )。
必修二直线与圆练习题
必修二直线与圆练习题直线与圆是几何学中的基础概念,对于学习几何学的同学来说,掌握这些知识点是非常重要的。
在必修二的课程中,直线与圆的练习题是必不可少的一部分,通过练习题的训练,可以帮助学生巩固知识,提高解题能力。
下面我将给大家分享一些直线与圆的练习题。
1. 已知直线AB与直线CD相交于点O,且AO=BO=CO=DO,证明四边形ABCD是菱形。
解析:首先,根据已知条件可得AO=BO,所以AO与BO的长度相等,即∠AOB=∠BOA。
同理,可得∠COD=∠DOA。
又因为直线AB与直线CD相交于点O,所以∠AOB+∠BOC=180°,∠COD+∠DOA=180°。
将上述等式代入,得到∠AOB+∠BOC+∠COD+∠DOA=360°。
而四边形ABCD的内角和为360°,所以四边形ABCD是菱形。
2. 在平面直角坐标系中,圆O的半径为r,圆心坐标为(a, b),点P在圆上,且P的坐标为(x, y)。
若P到直线x=0的距离等于P到直线y=0的距离,求证OP的长度为r。
解析:首先,根据题意可得P到直线x=0的距离为x,P到直线y=0的距离为y。
又因为P在圆上,所以P到圆心O的距离为r。
根据勾股定理可得(x-a)^2+(y-b)^2=r^2。
将P到直线x=0的距离等于P到直线y=0的距离代入,得到x^2+y^2=r^2。
而P到圆心O的距离也为r,所以OP的长度为r。
3. 已知圆O的半径为r,点A在圆上,点B在圆内且与点A不重合。
若直线AB与圆O相交于点C,求证AC的长度大于BC。
解析:首先,根据题意可得点A在圆上,所以OA的长度为r。
又因为点B在圆内且与点A不重合,所以OB的长度小于r。
根据三角形不等式可得AC的长度大于OB的长度,即AC>OB。
又因为OA的长度为r,所以AC>OB可以推导出AC>BC。
通过以上的练习题,我们可以看到直线与圆的知识点在几何学中的应用非常广泛。
高中数学必修二直线和圆练习含答案
高中数学必修二直线和圆练习一、选择题1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .103.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 4.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23B .32C .32-D . 23-. 5. 圆C 1:x 2+y 2+4x-4y+7=0和圆C 2:x 2+y 2-4x-10y+13=0的公切线有( )A.2条B.3条C.4条D.以上均错6. 已知空间两点A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为( )A.(-1,2,4)B.(2,1,1)C.(1,0,4)D.(3,3,-1)7.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( )A.1、-1B.2、-2C.1D.-18.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为32时,则a 等于( ) A.2 B.22-C.12-D.12+二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.经过点P(1,2)与圆x 2+y 2=1相切的直线方程为______________.3.与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是________.4. 已知圆x2+y2-4x+6y-12=0的内部有一点A(4,-2),则以A为中点的弦所在的直线方程为______________________.三、解答题1.求经过点(2,2)A-并且和两个坐标轴围成的三角形的面积是1的直线方程。
人教新课标版数学高一-数学人教版必修二直线和圆的综合问题
学科:数学专题:直线和圆的综合问题引入在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )A .1条B .2条C .3条D .4条重难点易错点解析题1题面:若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是( ).A .[31]--,B .[13]-,C .[31]-,D .3][1-∞-+∞(, , )金题精讲题1题面:①直线3y kx =+与圆()()22324x y -+-=相交于M 、N 两点,若MN ≥则k 的取值范围是_____________.②已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切.则圆C 的方程为 .题2题面:弦中点问题:若直线l 与圆C 交于P 、Q 两点,P 、Q 的中点为M , ① 若已知圆方程2216x y +=与(2,3)M ,求:直线l 的方程.② 若已知圆方程2216x y +=与直线l 的斜率2k =,求:M 点的轨迹方程.③ 若已知圆方程2216x y +=,直线l 过定点(6,6),求:M 点的轨迹.题3题面:(1)在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线 1250x y c -+=的距离为1,则实数c 的取值范围是 .(2)若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为l 的倾斜角的取值范围是 .题4题面:过点(11,2)A 作圆22241640x y x y ++--=的弦,则弦长为整数的有 条.题5题面:过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为 .题6题面:过直线x +y -上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.题7题面:直线:(21)(1)740l m x m y m +++--=(m ∈R )被圆22:(1)(2)25C x y -+-=截出的最短弦长为 .题8 题面:若直线1x y a b+=通过点(cos sin )M αα,,则( ). A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b+≥题9题面:已知直线:l y kx k =+,曲线:C y =l 与曲线C 有两个公共点,则实数k 的取值范围是 .思维拓展题1题面:在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ).A .1条B .2条C .3条D .4条学习提醒温故知新,数形结合讲义参考答案重难点易错点解析题1答案:C .金题精讲题1 答案:①3[,0]4-;②22(1)2x y ++=. 题2答案:①23130x y +-=;②20(55x y x +=-<<;③以(3,3)为圆心,半径在圆2216x y +=内的一段圆弧. 题3答案:(1)1313c -<<;(2)5[,]1212ππ. 题4答案:32.题5答案:60°.题6 答案:)2,2(.题7答案:题8答案:D .题9 答案:[0,)3. 思维拓展题1答案:B .。
高中数学必修2直线与圆常考题型:圆的标准方程
圆的标准方程【知识梳理】1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A (a ,b ),半径长为r 的圆的标准方程是(x -a )2+(y -b )2=r 2. 当a =b =0时,方程为x 2+y 2=r 2,表示以原点为圆心、半径为r 的圆.2.点与圆的位置关系圆的标准方程为(x -a )2+(y -b )2=r 2,圆心A (a ,b ),半径为r .设所给点为M (x 0,y 0),则题型一、求圆的标准方程【例1】 过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4[解析] 法一:设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由已知条件知⎩⎪⎨⎪⎧ (1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组,得⎩⎪⎨⎪⎧ a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4.法二:设点C 为圆心,∵点C 在直线x +y -2=0上,∴可设点C 的坐标为(a,2-a ).又∵该圆经过A ,B 两点,∴|CA |=|CB |. ∴(a -1)2+(2-a +1)2 =(a +1)2+(2-a -1)2,解得a =1.∴圆心坐标为C (1,1),半径长r =|CA |=2.故所求圆的标准方程为(x -1)2+(y -1)2=4.法三:由已知可得线段AB 的中点坐标为(0,0),k AB =1-(-1)-1-1=-1,所以弦AB 的垂直平分线的斜率为k =1,所以AB 的垂直平分线的方程为y -0=1·(x -0),即y =x .则圆心是直线y =x 与x +y -2=0的交点,由⎩⎪⎨⎪⎧ y =x ,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1, 即圆心为(1,1),圆的半径为(1-1)2+[1-(-1)]2=2,故所求圆的标准方程为(x -1)2+(y -1)2=4.[答案] C【类题通法】确定圆的标准方程就是设法确定圆心C (a ,b )及半径r ,其求解的方法:一是待定系数法,如解法一,建立关于a ,b ,r 的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如解法二、三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.【对点训练】1.求下列圆的标准方程:(1)圆心是(4,-1),且过点(5,2);(2)圆心在y 轴上,半径长为5,且过点(3,-4);(3)求过两点C (-1,1)和D (1,3),圆心在x 轴上的圆的标准方程.解:(1)圆的半径长r = (5-4)2+(2+1)2=10,故圆的标准方程为(x -4)2+(y +1)2=10.(2)设圆心为C (0,b ),则(3-0)2+(-4-b )2=52,解得b =0或b =-8,则圆心为(0,0)或(0,-8).又∵半径r =5,∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25.(3)直线CD 的斜率k CD =3-11+1=1,线段CD 中点E 的坐标为(0,2),故线段CD 的垂直平分线的方程为y -2=-x ,即y =-x +2,令y =0,得x =2,即圆心为(2,0).由两点间的距离公式,得r = (2-1)2+(0-3)2=10.所以所求圆的标准方程为(x -2)2+y 2=10.题型二、点与圆的位置关系【例2】 如图,已知两点P 1(4,9)和P 2(6,3).(1)求以P 1P 2为直径的圆的方程;(2)试判断点M (6,9),N (3,3),Q (5,3)是在圆上,在圆内,还是在圆外.[解] (1)设圆心C (a ,b ),半径长为r ,则由C 为P 1P 2的中点,得a=4+62=5,b =9+32=6.又由两点间的距离公式得r =|CP 1|= (4-5)2+(9-6)2=10,故所求圆的方程为(x -5)2+(y -6)2=10.(2)由(1)知,圆心C (5,6),则分别计算点到圆心的距离:|CM |= (6-5)2+(9-6)2=10;|CN |= (3-5)2+(3-6)2=13>10;|CQ |= (5-5)2+(3-6)2=3<10.因此,点M 在圆上,点N 在圆外,点Q 在圆内.【类题通法】1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断.2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.【对点训练】2.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.-1<a<1B.0<a<1C.a>1或a>-1 D.a=±1解析:选A由于点(1,1)在圆(x-a)2+(y+a)2=4的内部,所以(1-a)2+(1+a)2<4,a2<1,所以-1<a<1.【练习反馈】1.圆(x-1)2+(y+3)2=1的圆心坐标是()A.(1,3)B.(-1,3)C.(1,-3) D.(-1,-3)答案:C2.点P(m,5)与圆x2+y2=24的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定解析:选A∵m2+25>24,∴点P在圆外.3.若点P(-1,3)在圆x2+y2=m2上,则实数m=________.解析:∵P点在圆x2+y2=m2上,∴(-1)2+(3)2=4=m2,∴m=±2.答案:±24.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.解析:圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.答案:(x+2)2+y2=45.求以A(2,2),B(5,3),C(3,-1)为顶点的三角形的外接圆的方程.解:设所求圆的方程是(x-a)2+(y-b)2=r2.将点A(2,2),B(5,3),C(3,-1)代入上式得⎩⎪⎨⎪⎧ (2-a )2+(2-b )2=r 2,(5-a )2+(3-b )2=r 2,(3-a )2+(-1-b )2=r 2,解此方程组,得⎩⎪⎨⎪⎧ a =4,b =1,r 2=5. 所以,△ABC 的外接圆方程是(x -4)2+(y -1)2=5.。
高中数学必修2直线与圆常考题型:圆的一般方程
圆的一般方程【知识梳理】圆的一般方程(1)圆的一般方程的概念:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程.(2)圆的一般方程对应的圆心和半径:圆的一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的圆的圆心为(-D 2,-E 2),半径长为12D 2+E 2-4F . 【常考题型】题型一、圆的一般方程的概念辨析【例1】 若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求(1)实数m 的取值范围;(2)圆心坐标和半径.[解] (1)据题意知D 2+E 2-4F =(2m )2+(-2)2-4(m 2+5m )>0,即4m 2+4-4m 2-20m >0, 解得m <15, 故m 的取值范围为(-∞,15). (2)将方程x 2+y 2+2mx -2y +m 2+5m =0写成标准方程为(x +m )2+(y -1)2=1-5m , 故圆心坐标为(-m,1),半径r =1-5m .【类题通法】形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有如下两种方法: ①由圆的一般方程的定义令D 2+E 2-4F >0,成立则表示圆,否则不表示圆,②将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式,若不是,则要化为这种形式再求解.【对点训练】1.下列方程各表示什么图形?若表示圆,求其圆心和半径.(1)x 2+y 2+x +1=0;(2)x 2+y 2+2ax +a 2=0(a ≠0);(3)2x 2+2y 2+2ax -2ay =0(a ≠0).解:(1)∵D =1,E =0,F =1,∴D 2+E 2-4F =1-4=-3<0,∴方程(1)不表示任何图形.(2)∵D =2a ,E =0,F =a 2,∴D 2+E 2-4F =4a 2-4a 2=0,∴方程表示点(-a,0).(3)两边同除以2,得x 2+y 2+ax -ay =0,D =a ,E =-a ,F =0,∴D 2+E 2-4F =2a 2>0,∴方程(3)表示圆,它的圆心为(-a 2,a 2), 半径r =12 D 2+E 2-4F =22|a |. 题型二、圆的一般方程的求法【例2】 已知△ABC 的三个顶点为A (1,4),B (-2,3),C (4,-5),求△ABC 的外接圆方程、外心坐标和外接圆半径.[解] 法一:设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,∵A ,B ,C 在圆上,∴⎩⎪⎨⎪⎧ 1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0,∴⎩⎪⎨⎪⎧ D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0,即(x -1)2+(y +1)2=25.∴外心坐标为(1,-1),外接圆半径为5.法二:∵k AB =4-31+2=13,k AC =4+51-4=-3, ∴k AB ·k AC =-1,∴AB ⊥AC .∴△ABC 是以角A 为直角的直角三角形,∴外心是线段BC 的中点,坐标为(1,-1),r =12|BC |=5. ∴外接圆方程为(x -1)2+(y +1)2=25.应用待定系数法求圆的方程时:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D 、E 、F .【对点训练】2.求经过点A (-2,-4)且与直线x +3y -26=0相切于点B (8,6)的圆的方程. 解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E 2. ∵圆与x +3y -26=0相切,∴6+E 28+D 2·⎝⎛⎭⎫-13=-1,即E -3D -36=0.①∵(-2,-4),(8,6)在圆上,∴2D +4E -F -20=0,②8D +6E +F +100=0.③联立①②③,解得D =-11,E =3,F =-30,故所求圆的方程为x 2+y 2-11x +3y -30=0.题型三、代入法求轨迹方程【例3】 已知△ABC 的边AB 长为4,若BC 边上的中线为定长3,求顶点C 的轨迹方程.[解] 以直线AB 为x 轴,AB 的中垂线为y 轴建立坐标系(如图),则A (-2,0),B (2,0),设C (x ,y ),BC 中点D (x 0,y 0).∴⎩⎨⎧2+x 2=x 0,0+y 2=y 0. ①∵|AD |=3,∴(x 0+2)2+y 20=9. ②将①代入②,整理得(x +6)2+y 2=36.∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y ≠0).用代入法求轨迹方程的一般步骤【对点训练】3.过点A (8,0)的直线与圆x 2+y 2=4交于点B ,则AB 中点P 的轨迹方程为________________. 解析:设点P 的坐标为(x ,y ),点B 为(x 1,y 1),由题意,结合中点坐标公式可得x 1=2x -8,y 1=2y ,故(2x -8)2+(2y )2=4,化简得(x -4)2+y 2=1,即为所求.答案:(x -4)2+y 2=1【练习反馈】1.圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)解析:选D 圆的方程化为(x -2)2+(y +3)2=13,圆心(2,-3),选D.2.已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( )A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D .(-32,+∞) 解析:选A 方程可化为:(x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆.3.方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a =________,b =________,c =________.解析:∵⎩⎪⎨⎪⎧ -2a 2=2,--b 2=2,12 4a 2+b 2-4c =2,∴⎩⎪⎨⎪⎧ a =-2,b =4,c =4.答案:-2,4,44.设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线且|P A |=1,则P 点的轨迹方程是________.解析:设P (x ,y )是轨迹上任一点,圆(x -1)2+y 2=1的圆心为B (1,0),则|P A |2+1=|PB |2,∴(x -1)2+y 2=2.答案:(x -1)2+y 2=25.求过点(-1,1),且圆心与已知圆x 2+y 2-6x -8y +15=0的圆心相同的圆的方程. 解:设所求的圆的方程为:x 2+y 2+Dx +Ey +F =0,又圆x 2+y 2-6x -8y +15=0的圆心为(3,4),依题意得⎩⎪⎨⎪⎧2-D +E +F =0,-D 2=3,-E 2=4, 解此方程组,可得⎩⎪⎨⎪⎧D =-6,E =-8,F =0. ∴所求圆的方程为x 2+y 2-6x -8y =0.。
高中数学必修2直线与圆常考题型:直线的两点式方程、直线的一般式方程
直线的两点式方程、直线的一般式方程【知识梳理】1.直线的两点式与截距式方程(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.(2)每个关于x ,y 的二元一次方程都表示一条直线. 3.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.【常考题型】题型一、利用两点式求直线方程【例1】 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.[解] 由两点式,直线AB 所在直线方程为:y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.【类题通法】求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.【对点训练】1.(1)若直线l 经过点A (2,-1),B (2,7),则直线l 的方程为________. (2)若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________.解析:(1)由于点A 与点B 的横坐标相等,所以直线l 没有两点式方程,所求的直线方程为x =2.(2)由两点式方程得,过A ,B 两点的直线方程为y -(-1)4-(-1)=x -2-3-2,即x +y -1=0.又点P (3,m )在直线AB 上,所以3+m -1=0,得m =-2.答案:(1)x =2 (2)-2题型二、直线的截距式方程及应用【例2】 直线l 过点P (43,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程.[解] (1)设直线l 的方程为x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12. 又因为直线l 过点P (43,2),所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎨⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0 或15x +8y -36=0.(2)设直线l 的方程为x a +yb =1(a >0,b >0),由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎪⎨⎪⎧a 2=2,b 2=6, 所以直线l 的方程为3x +4y -12=0或3x +y -6=0. 【类题通法】用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便.(2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式. (3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.【对点训练】2.求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程. 解:设直线在x 轴、y 轴上的截距分别是a 、b , 则有S =12|a ·b |=1.∴ab =±2.设直线的方程是x a +yb=1.∵直线过点(-2,2),代入直线方程得-2a +2b =1,即b =2aa +2.∴ab =2a 2a +2=±2.当2a 2a +2=-2时,化简得a 2+a +2=0,方程无解;当2a 2a +2=2时,化简得a 2-a -2=0, 解得⎩⎪⎨⎪⎧ a =-1,b =-2,或⎩⎪⎨⎪⎧a =2,b =1.∴直线方程是x -1+y -2=1或x 2+y1=1,即2x +y +2=0或x +2y -2=0.题型三、直线方程的一般式应用【例3】 (1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值; (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?[解] (1)法一:由l 1:2x +(m +1)y +4=0. l 2:mx +3y -2=0.①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2, 需2m =m +13≠4-2. 解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2. 当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2, ∴m 的值为2或-3.(2)法一:由题意,直线l 1⊥l 2,①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,所以a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 法二:由直线l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1.将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. 【类题通法】1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0,(1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.【对点训练】3.(1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程. 解:(1)法一:设直线l 的斜率为k , ∵l 与直线3x +4y +1=0平行,∴k =-34.又∵l 经过点(1,2),可得所求直线方程为y -2= -34(x -1),即3x +4y -11=0. 法二:设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0. ∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11. ∴所求直线方程为3x +4y -11=0. (2)法一:设直线l 的斜率为k . ∵直线l 与直线2x +y -10=0垂直, ∴k ·(-2)=-1, ∴k =12.又∵l 经过点A (2,1),∴所求直线l 的方程为y -1=12(x -2),即x -2y =0.法二:设与直线2x +y -10=0垂直的直线方程为x -2y +m =0. ∵直线l 经过点A (2,1), ∴2-2×1+m =0, ∴m =0.∴所求直线l 的方程为x -2y =0.【练习反馈】1.直线x 3-y4=1在两坐标轴上的截距之和为( )A .1B .-1C .7D .-7解析:选B 直线在x 轴上截距为3,在y 轴上截距为-4,因此截距之和为-1. 2.直线3x -2y =4的截距式方程是( ) A.3x 4-y2=1 B.x 13-y 12=4 C.3x 4-y-2=1 D.x 43+y-2=1 解析:选D 求直线方程的截距式,必须把方程化为x a +yb =1的形式,即右边为1,左边是和的形式.3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________. 解析:由题意直线过两点,由直线的两点式方程可得:y -25-2=x -(-1)2-(-1),整理得x -y +3=0.答案:x -y +3=04.斜率为2,且经过点A (1,3)的直线的一般式方程为________. 解析:由直线点斜式方程可得y -3=2(x -1),化成一般式为2x -y +1=0. 答案:2x -y +1=05.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程. 解:∵直线AB 过点A (0,-5),B (-3,3)两点, 由两点式方程,得y +53+5=x -0-3-0.整理,得8x +3y +15=0.∴直线AB 的方程为8x +3y +15=0. 又∵直线AC 过A (0,-5),C (2,0)两点, 由截距式得x 2+y-5=1,整理得5x -2y -10=0,∴直线AC 的方程为5x -2y -10=0.。
新课标人教A版高中数学必修二《直线和圆》专题经典题型练习
直线和圆专题1.圆的方程和常见考点2.直线和圆的位置关系3.与直线和圆有关的最值问题4.高考专题:直线与圆(培优)圆的方程考点1、圆的标准方程例1.迅速而又准确的写出满足下列各条件的圆的标准方程:(1)圆心坐标为(1,2)A-,半径为2的圆的标准方程为(2)圆心坐标为(2,3)R-的圆的标准方程为p-,且经过点(1,1)(3)求以(1,2)A-,(5,6)B-为直径两端点的圆的标准方程为(4)圆心坐标为(1,2)A-,且圆与x轴相切,则圆的标准方程为(5)圆心坐标为(1,2)A-,且圆与y轴相切,则圆的标准方程为(6)求过点(5,2)y x=-上的圆的标准方程为B,且圆心在直线23A,(3,2)考点2、圆的一般方程例1.方程22-++=是圆的方程,圆心坐标是,半径是,(3)(4)10x y化为一般方程是例2.若方程224250x y mx y m++-+=表示的曲线是圆,则m的范围是____________考点3、点与圆的位置关系例1.过点(1,)A a-作圆224+=的切线,恒能作出两条切线,则a的取值范围是__________x y例2.圆22(1)4x y -+=上的点到(2,3)p -的最近距离是__________,最远距离是__________考点4、直线与圆的位置关系例1.直线20x y --=与圆222210x y x y +--+=的位置关系是_______,直线到圆的最近距离是___________,最远距离是___________。
例2.对任意的实数k ,直线1y kx =+与圆222230x y x y +---=的位置关系是________例3.圆222430x y x y +++-=到直线10x y ++=________个。
考点5、圆与圆的位置关系例1.两圆222x y x my m++-+-=2230+-++-=,2222450x y mx y m讨论m的取值情况使得两圆分别:(1)相离;(2)外切;(3)相交;(4)内切;(5)内含。
人教新课标版数学高一-数学人教版必修二直线和圆的综合问题(2)
学科:数学专题:直线和圆的综合问题题1已知直线l :y =x +m 与半圆C :x 2+y 2=4(y ≥0)有两个公共点,则实数m 的取值范围是____________.题2已知直线l :y =x +m ,m ∈R .若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;题3过原点的直线与圆044222=+--+y x y x 相交所得弦的长为2,则该直线的方程为__________.题4在平面直角坐标系xOy 中,已知圆x 2+y 2=4上恰有两个点到直线4x -3y +c =0的距离为1,则实数c 的取值范围是 .题5已知点P 是半径为5的⊙O 内的一个定点,且OP =3,则过点P 的所有弦中,弦长为整数的弦共有多少条( ).A .2条B .3条C .4条D .5条题6圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( ).A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)题7 从原点向圆x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为 .题8已知圆C :(x -3)2+(y -4)2=4和直线l :kx -y -4k +3=0.(1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长.题9若直线ax +by =2经过点M (cos α,sin α),则( ).A .422≤+b aB . 422≥+b aC .41122≤+b aD .41122≥+b a题10若直线b x y -=与曲线212+-=y x ,有两个不同的公共点,则实数b 的取值范围为 .题11如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有 个.课后练习详解 题1答案:222<≤m .详解:当直线y =x +m 与圆相切时,由题意可得2||2m =, ∴22=m 或22-=m (舍去),当直线y =x +m 过A (-2,0)时,m =2,此时y =x +2过(0,2)点结合图形可得,直线l :y =x +m 与半圆C :x 2+y 2=4(y ≥0)有两个公共点时,222<≤m .题2答案:(x -2)2+y 2=8.详解:依题意,点P 的坐标为(0,m ).因为MP ⊥l ,所以0-m 2-0×1=-1, 解得m =2,即点P 的坐标为(0,2).从而圆的半径r =|MP |=22,故所求圆的方程为(x -2)2+y 2=8.题3答案:2x -y =0.详解:设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-(22)2=0, 即圆心位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.题4答案:(-15,-5)∪(5,15).详解:由已知可得:圆半径为2,圆心为(0,0)故圆心(0,0)到直线4x -3y +c =0的距离为5||c d =, 如图中的直线m 恰好与圆有3个公共点,此时d =OA =2-1,直线n 与圆恰好有1个公共点,此时d =OB =2+1=3,当直线介于m 、n 之间满足题意.故要使圆x 2+y 2=4上恰有两个点到直线4x -3y +c =0的距离为1,只需d 大于1小于3,即35||1<<c , 解得:-15<c <-5,或5<c <15故c 的取值范围是:(-15,-5)∪(5,15).题5答案:C .详解:如图,过P 作弦AB ⊥OP ,交⊙O 于A 、B ,连接OA ;Rt △OAP 中,OP =3,OA =5;根据勾股定理,得AP =4;∴AB =2AP =8;故过点P 的弦的长度都在8~10之间;因此弦长为8、9、10;当弦长为8、10时,过P 点的弦分别为弦AB 和过P 点的直径,分别有一条;当弦长为9时,根据圆的对称性知,符合条件的弦应该有两条;故弦长为整数的弦共有4条.故选C .题6答案:A .详解:由题得圆心(1,-3),且(-2)2+62-4·5a >0,即a <2.由圆心在直线上,可得b =-2,∴a -b <4,所以选A .题7答案:60°.详解:设原点为O ,圆心为P (0,6),半径是PA =3,切点为A 、B ,则OP =6, 在Rt △AOP 中,∠AOP=30°,所以则这两条切线的夹角的大小为60°.题8答案:(1)省略;(2)k =1,22.详解:(1)证明:由直线l 的方程可得y -3=k (x -4),则直线l 恒通过定点(4,3),把(4,3)代入圆C 的方程,得(4-3)2+(3-4)2=2<4,所以点(4,3)在圆的内部,所以直线l 与圆C 总相交.(2)设圆心到直线l 的距离为d ,则d ==又设弦长为L ,则2222Lr d =+)(, 即222221)224-4(1)322111L k k k k k k +==-+=-≥+++((), ∴当k =1时,22L min 2=)(,∴22L min =, 所以圆被直线截得最短的弦长为22.题9答案:B .详解:直线ax +by =2经过点M (cos α,sin α),∴a cos α+b sin α=2,∴a 2+b 2=(a 2+b 2)(cos 2α+sin 2α)≥(a cos α+b sin α)2=4,(当且仅当cos sin a b αα=时等号成立)故选B .题10 答案:)223[+,. 详解:因为曲线212+-=y x ,所以(x -2)2+y 2=1(x ≥2),表示圆心为(2,0),半径为1的右半圆.圆心(2,0),到直线x -y -b =0的距离为12|2|=-=b d 解得22+=b 或2-2=b (舍去),当直线y =x -b 过点B (2,-1)时,直线与圆有两个交点,此时b =3. 所以要使直线y =x -b 与曲线212+-=y x 有两个不同的公共点, 所以223+<≤b ,即实数b 的取值范围为)223[+,. 故答案为:)223[+,.题11 答案:4.详解:到l 1的距离是1的点,在与l 1平行且与l 1的距离是1的两条直线上; 到l 2的距离是1的点,在与l 2平行且与l 2的距离是1的两条直线上; 以上四条直线有四个交点,故“距离坐标”是(1,1)的点共有4个. 故答案为:4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线、平面、圆:
1. 已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0垂直,则m 的值为( )
A .-8
B .0
C .10
D .2
[答案] D
[解析] 由条件知,4-m
m +2
·(-2)=-1,∴m =2.
2. (文)过点P (1,2)的直线l 平分圆C :x 2+y 2+4x +6y +1=0的周长,则直线l 的斜率为( ) A.53 B .1 C.85 D.4
3
[答案] A
[解析] ∵直线l 平分⊙C 的周长,
∴l 过圆心C (-2,-3),∴l 的斜率为k PC =5
3
.
(理)过点A (3,-2)的直线l 经过圆x 2+y 2-2y =0的圆心,则直线l 的倾斜角大小为( )
A .150°
B .60°
C .30°
D .120°
[答案] D
[解析] 圆x 2+y 2-2y =0的圆心C (0,1),l 过点A (3,-2)和C ,∴其斜率k AC =-3,由tan α=-3,0<α<π得,α=120°,故选D. 3. (文)点P (2,-1)为圆(x -1)2+y 2=25内弦AB 的中点,则直线AB 的方程为( )
A .x +y -1=0
B .2x +y -3=0
C .x -y -3=0
D .2x -y -5=0
[答案] C
[解析] 圆心C (1,0),k PC =-1,∴k AB =1,排除A 、B 、D ,选C.
(理)过(2,2)点且与曲线x 2+y 2+2x -2y -2=0相交所得弦长为23的直线方程是( )
A .3x -4y +2=0
B .3x -4y +2=0或x =2
C .3x -4y +2=0或y =2
D .x =2或y =2
[答案] C
[解析] 圆(x +1)2+(y -1)2=4的圆心C (-1,1),半径r =2,∵弦长为23,∴C 到直线距离为1,经检验知选C.
4. 将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是( ) A .(4,-2) B .(4,-3) C .(3,3
2)
D .(3,-1)
[答案] A
[解析] 解法一:由条件知,点(10,0)与(-6,8)关于折线对称,故折线过点(2,4),斜率k =-1
8-6-10=2,故折线所在直线方程为y -4
=2(x -2),即2x -y =0,与点(-4,2)重合的点M 和点(-4,2)的中点应在直线2x -y =0上,经检验知,只有A 适合,故选A.
解法二:设与点C (-4,2)重合的点为D ,
又A (10,0),B (-6,8),则必有AB ∥CD ,∴k AB =k CD ,
∵k AB =-12,∴k CD =-1
2
,经检验知,只有A 适合.
5. 将直线x +y -1=0绕点(1,0)沿逆时针方向旋转15°得到直线l ,则直线l 与圆(x +3)2+y 2=4的位置关系是( ) A .相交 B .相切 C .相离 D .相交或相切
[答案] B
[解析] 直线x +y -1=0的斜率k =-1,∴倾斜角为135°,故直线l 的倾斜角α=135°+15°=150°,斜率k l =tan α=-3
3
,方程为y =-3
3
(x -1),即x +3y -1=0,
∵圆心C (-3,0)到直线l 距离d =2,∴直线与圆相切. 6. 若圆C :x 2+y 2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点(a ,b )向圆所作的切线长的最小值是( ) A .2 B .3 C .4 D .6
[答案] C
[解析] ⊙C :(x +1)2+(y -2)2=2,圆心C (-1,2)在直线2ax +by +6=0上,∴a -b -3=0,由点P (a ,b )向圆引切线,设切线长为l ,则l 2=|PC |2-r 2=(a +1)2+(b -2)2-2=(b +4)2+(b -2)2-2=2b 2+4b +18=2(b +1)2+16≥16,∴l ≥4,当b =-1,a =2时,l min =4. 7. (文)已知直线的倾斜角的余弦值是1
2,则此直线的斜率是
________. [答案]
3
[解析] 设直线的倾斜角为α,则cos α=1
2
,0<α<π,∴sin α=
1-cos 2α=
32,∴tan α=sin αcos α
= 3. (理)两平行直线x +ay -a -1=0与2x +a 2y +5=0之间的距离是________.
[答案] 72或115
10
[解析] ∵两直线平行,∴当a ≠0时,12=a a 2≠-a -1
5,∴a =2,
此时两直线方程为x +2y -3=0与2x +4y +5=0,∴距离为d =|-6-5|
22+4
2=11510,当a =0时,两直线方程为x =1或x =-5
2,此时两平行直线之间的距离为d 1=1-(-52)=7
2
.
8. (文)已知圆C :x 2+y 2-6x -8y +21=0和直线kx -y -4k +3=0.
(1)证明不论k 取何值,直线和圆总有两个不同交点;
(2)当k 取什么值时,直线被圆截得的弦最短?并求这最短弦的长.
[解析] (1)证明:由kx -y -4k +3=0得(x -4)k -y +3=0.
∴⎩
⎪⎨⎪⎧
x -4=0,-y +3=0.直线kx -y -4k +3过定点P (4,3). 由x 2+y 2-6x -8y +21=0,即(x -3)2+(y -4)2=4, 又(4-3)2+(3-4)2=2<4,∴点P 在⊙C 内, ∴直线和圆总有两个不同的交点.
(2)k PC =3-4
4-3=-1.可以证明与PC 垂直的直线被圆所截得的弦
最短,因此过P 点斜率为1的直线即为所求,
其方程为y -3=x -4,即x -y -1=0. |PC |=|3-4-1|2=2,
∴|AB |=2|AC |2-|PC |2=2 2.
[点评] 当点P 在⊙C 内时,过点P 的所有直线l 中,当l ⊥PC 时,l 被⊙C 截得的弦长最短.证明如下:
如图,P 在⊙C 内,直线AB 过P ,且AB ⊥PC ,直线DE 是过P 与PC 不垂直的任意一条弦(不是直径),过C 作CM ⊥DE ,垂足为M ,则PC >CM ,∴PC 2>CM 2,∵CD 2=CA 2,∴CD 2-CM 2>CA 2-PC 2,∴DM 2>AP 2,∴DM >AP ,∵DE =2DM ,AB =2AP ,∴DE >AB ,即过点P 的任意与PC 不垂直的弦长,总大于过点P 与PC 垂直的弦长(当DE 为⊙C 的直径时,DE >AB 显然成立).。