2005年考研数学三真题及解析

合集下载

浙江师范大学数学分析考研真题

浙江师范大学数学分析考研真题

浙江师范大学2005年研究生一(每小题8分,共48分)计算题1、求极限 )11(sin lim3220x x x x x x --+-→.解 原式3000sin sin limlim lim 11x x x x x x x xx x x x→→→+-=+-- 3分 211lim3cos 1lim202xx x x x x -++-=→→ 5分316sin lim20==→xx x 8分 2、求级数∑∞=12n n x n 的和.解 作()=x f ∑∞=-112n n x n ,则()d xf t t =⎰∑∞=1n n nx 2分 作()=x g∑∞=-11n n nx ,则()d xg t t =⎰∑∞=1n n x xx-=1 因此()=x g2)1(1x - 5分()d xf t t =⎰2)1(x x-()=x f 223d 12d (1)(1)(1)x xx x x x =+---3)1(1x x -+=于是 ,原式()x xf=32)1(x x x -+=8分3、求级数 ()()111211k k k k k ∞=⎛⎫-+ ⎪ ⎪++⎝⎭∑的和.解 因()111111+-=+∑=n k k nk ,故()∑∞==+1111k k k 2分 为了求()1121kk k ∞=-+∑,作()=x f ()211121kk k x k +∞=-+∑, 4分则()='x f ()2222111111kkk x x x x ∞=--==-++∑ 5分 ()=x f 2011d [arctan ]01xx t t t t ⎛⎫-+=-+ ⎪+⎝⎭⎰arctan x x =-+ 6分 π(1)14f =-+因此,原式π(1)14f =+=8分 4、求211d e d x y y x ⎰⎰的值.解 原式21d e d xx x y =⎰⎰4分21e d xx x =⎰21e e 122x ⎡⎤-==⎢⎥⎢⎥⎣⎦ 8分 5、求极限 ()lim lim cos !πnm n m x →∞→∞解 因cos !πm x 的周期为!2m , 2分故当x为有理数时,存在正整数p 和整数q使得pq x =,这时当p m ≥时,cos !π1m x =,()lim cos !π1nn m x →∞=, 4分而当x 为无理数时,cos !π1m x <,()lim cos !π0nn m x →∞= 6分因此,原式1,0x x ⎧=⎨⎩当为有理数时,当为无理数时8分6、求极限⎪⎭⎫ ⎝⎛++++++∞→n n n n n 12111lim解 原式n nk n k n 111lim1∑=∞→+=4分 1d 1xx =+⎰()[]2ln 011ln =+=x 8分二(14分)已知实数列}{n a 收敛于a ,且na a a S nn +++=21,用定义证明}{n S 也收敛于a .证记i i b a a =-,12k K b b b =+++,则0>∀ε,k 正整数∃,使得2ε<-a a n )(k n >, 3分因01→n ,故1k 正整数∃,使得2ε<n K , 8分 令},max{12k k k =,则当2k n >时,有1212k k nnb b b a a a K a nn n+++++++-≤+εε<-+≤2n k n n K 14分 三(20分)设()t ϕ和()t ψ为二次可微函数,()()()y x y y x x y x u +++=ψϕ,证明0222222=∂∂+∂∂∂-∂∂y u y x u xu证ψϕϕ'+'+=y x u x ,ψψϕ'++'=y x u y 5分 ψϕϕ''+''+'=y x u xx 2 ,ψψϕϕ''+'+''+'=y x u xyψψϕ''+'+''=y x u yy 2 15分因此,左)(22ψψϕϕψϕϕ''+'+''+'-''+''+'=y x y x==''+'+''+02ψψϕy x 右 20分四(20分)设()x f 在[]0,π上连续,证明⑴()()πππsin d sin d 2xf x x f x x =⎰⎰⑵若()0≥x f ,[]0,πx ∈,且()π0d 0f x x =⎰,则()0≡x f ,[]0,πx ∈,证 记()πsin d I xf x x =⎰(1) 令πx t =-,则()πsin d I xf x x =⎰()π(π)sin d t f t t =-⎰()ππsin d f t t I =-⎰因此,左()ππsin d 2I f t t ===⎰右 10分(2)(用反证法)若不然,则[]00,πx ∃∈使得()00>x f ,由极限的保号性,存在开区间),(b a 使得[][]0,0,πx a b ∈⊂,且当),(b a x ∈时,有2)()(0x f x f >, 16分这与()πd 0f x x =⎰矛盾. 20分五(16分)若不定积分()22d 1ax bx cx x x ++-⎰为有理式,则c b a ,,应满足什么条件?解 因()2221(1)ax bx c c ax b c x x x x x ++++=-+--,故 当且仅当⎩⎨⎧=+=00c b a 时,不定积分()22d 1ax bx cx x x ++-⎰为有理式. 16分六(16分)若()x f 在()+∞,0上可微,0)(lim =∞→xx f x ,求证()+∞,0内存在一个数列}{n ξ,使得}{n ξ单调,+∞=∞→n n ξlim ,且0)(lim ='∞→n n f ξ.证法1 因()x f 在()+∞,0上可微,故n +∀∈Z ,()x f 在12,2n n-⎡⎤⎣⎦上连续,在()12,2n n -内可导,从而由拉格朗日中值定理知,n ξ∃∈ ()12,2n n -使11(2)(2)()22n n n n n f f f ξ---'=-,即1111(2)(2)(2)(2)()2222n n n n n n n n f f f f f ξ-----'==- 9分 因0)(lim =∞→xx f x ,lim 2nn →∞=+∞,故由海涅归结原则知,(2)lim 02n n n f →∞=,从而0)(lim ='∞→n n f ξ. 16分证法2 由0)(lim=∞→xx f x 知,0>∀ε,0K ∃>,使得当K x ≥时, ε<xx f )( 2分 01>∃K ,使当1K x ≥时,1)(<xx f ,122K K >∃,使当2K x ≥时,21)(<x x f ,12->∃n n K K ,使得当n K x ≥时,nx x f 1)(< 6分 用数学归纳法,得到一个数列}{n K ,在闭区间]2,[n n K K 上应用拉格朗日中值定理,()n n n K K 2,∈∃ξ,使得nn n n n K K K f K f f --='2)()2()(ξ 10分由12n n n K ξξ+<<知,数列}{n ξ单调增,由数列}{n K 满足11122n n n K K K -->>和10K >知+∞=∞→n n ξlim 13分由(2)()(2)()213()2n n n n n n n n n f K f K f K f K f K K K K n n nξ-'=≤+<+=-知0)(lim ='∞→n n f ξ 16分七(16分)设kn n k k n x x x u --=-=∑)1()(11,证明)(x u n 在[]1,0上一致收敛. 证法1106ε∀<<,当[]0,x ε∈时,11()211n n kn k x x u x x x εεε-=-≤=≤<--∑ 当[]1,1x ε∈-时,由对称性知 11()(1)2n kn k u x x ε-=≤-<∑ 当[],1x εε∈-时,1111()(1)(1)(1)n n k n kk n k n k k u x x x εε----===-≤--∑∑(1)(1)n n ε=-- 6分因lim(1)(1)0nn n ε→∞--=,故对上述的ε,∃正整数K 使得当n K >时,(1)(1)2n n εε--< 14分综上,当n K >时,kn n k k n x x x u --=-=∑)1()(112ε<,对[]1,0中的一切x 成立,这表明)(x u n 在[]1,0上一致收敛. 16分证法2当12x ≠时 220()(1)(1)n k n k n k u x x x x x ---==--∑()11(1)112n n x x x x x ---⎡⎤=--⎣⎦- 3分 由Dini 定理,要证)(x u n 在[]1,0上一致收敛.只需证明)(x u n 在[0,1]上下面分102x <<,112x <<,0x =,1x =这四种情形来证明 0)(lim =∞→x u n n即知极限函数一定连续. 7分 而当1(0,)2x ∈时,)()(1x u x u n n +-()[]0121)1(2222≥----=--n n x x xx x 当1(,1)2x ∈时,)()(1x u x u n n +-()[]0121)1(2222≥----=--n n x x xx x 当0x =或1x =时,()0n u x =,而当12x =时, 111111()2222n n k n k n k n u --=-==∑1111112()()022222n n n n n n n n u u +++---=-=> 10分于是,[0,1]x ∀∈,有)()(1x u x u n n +≥, 即)(x u n 关于n 单调, 16分。

2005年考研数学真题及答案解析

2005年考研数学真题及答案解析
点,直线 l1 与 l2 分别是曲线 C 在点 (0, 0) 与 (3, 2) 处的切线,其交 点 为 (2, 4) . 设 函 数 f (x) 具 有 三 阶 连 续 导 数 , 计 算 定 积 分
3 (x2 x) f (x)dx.
0
(18)(本题满分 12 分) 已 知函数 f (x) 在 [0,1] 上连续,在 (0,1) 内 可导,且 f (0) 0, f (1) 1 .
(C) a 0.3,b 0.2
(D) a 0.1,b 0.4
(14)设 X1, X 2 ,, X n (n 2) 为来自总体 N (0,1) 的简单随机样本, X 为 样本均值, S 2 为样本方差,则
(A) nX ~ N (0,1)
(B) nS 2 ~ 2 (n)
(C) (n 1) X ~ t(n 1)
S
(D) (n 1) X12 n
~
F (1, n 1)
X
2 i
i2
三 、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证
明过程或演算步骤)
(15)(本题满分 11 分) 设 D {(x, y) x2 y 2 2, x 0, y 0} , [1 x2 y 2 ] 表 示 不 超 过
1 x2 y 2 的最大整数. 计算二重积分 xy[1 x2 y 2 ]dxdy.
D
(16)(本题满分 12 分)
求幂级数 (1)n1 (1
1
)x2n 的收敛区间与和函数 f (x) .
n 1
n(2n 1)
(17)(本题满分 11 分) 如图,曲线 C 的方程为 y f (x) ,点 (3, 2) 是它的一个拐
(A)处处可导
(B) 恰 有 一 个 不

历年数学三真题

历年数学三真题

2001年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设生产函数为Q AL K αβ=,其中Q 是产出量,L 是劳动投入量,K 是资本投入量,而,,A αβ均为大于零的参数,则当1Q =时K 关于L 的弹性为.(2)某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元,若以i W 表示第i 年的工资总额(单位:百万元),则t W 满足的差分方程是.(3)设矩阵111111111111kk A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,且秩()3r A =,则k = . (4)设随机变量和的数学期望分别为2-和2,方差分别为1和4,而相关系数为0.5-,则根据切比雪夫不等式{6}P X Y +≥≤.(5)设总体X 服从正态分布2(0,2)N ,而1215,,,X X X L 是来自总体X 的简单随机样本,则随机变量221102211152()X X Y X X ++=++L L 服从 分布,参数为 .二、选择题(本题共5小题,每小题3分,满分15分.每题小给出的四个选项中,只有一个选项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设()f x 的导数在x a =处连续,又'()lim1x af x x a→=--,则 (A ) x a =是()f x 的极小值点. (B ) x a =是()f x 的极大值点. (C ) (,())a f a 是曲线()y f x =的拐点(D ) x a =不是()f x 的极值点, (,())a f a 也不是曲线()y f x =的拐点.(2)设0()()xg x f u du =⎰,其中21(1),01,2()1(1),12,3x x f x x x ⎧+≤<⎪⎪=⎨⎪-≤≤⎪⎩则()g x 在区间(0,2)内 (A ) 无界(B ) 递减(C ) 不连续(D ) 连续(3)设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 21000001001000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,其中A 可逆,则1B -等于 (A ) 112A PP -.(B ) 112P A P -.(C ) 112PP A -.(D ) 121P A P -.(4)设A 是n 阶矩阵,α是n 维列向量.若秩0T Aαα⎛⎫⎪⎝⎭=秩()A ,则线性方程组 (A ) AX α=必有无穷多解.(B ) AX α=必有唯一解. (C ) 00T AX y αα⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭仅有零解. (D ) 00TA X y αα⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭必有非零解.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于(A ) 1-.(B ) 0.(C ) 12.(D ) 1.三、(本题满分5分)设(,,)u f x y z =有连续的一阶偏导数,又函数()y y x =及()z z x =分别由下列两式确定:2xy e xy -=和0sin x txte dt t-=⎰, 求du dx.四、(本题满分6分)已知()f x 在(,)-∞+∞内可导,且lim '(),lim()lim[()(1)],xx x x x c f x e f x f x x c→∞→∞→∞+==---求c 的值.五、(本题满分6分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线,1y x y ==-及1x =围成的平面区域.六、(本题满分7分)已知抛物线2y px qx =+(其中0,0p q <>)在第一象限内与直线5x y +=相切,且此抛物线与x 轴围成的平面图形的面积为S .(1)问p 和q 为何值时,S 达到最大值?(2)求出此最大值.七、(本题满分6分)设()f x 在[0,1]上连续,在(0,1)内可导,且满足110(1)()(1),x k f k xe f x dx k -=>⎰证明至少存在一点(0,1)ξ∈,使得1'()(1)().f f ξξξ-=-八、(本题满分7分) 已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数),且(1)n ef n =,求函数项级数1()n n f x ∞=∑之和.九、(本题满分9分)设矩阵111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,112β⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.已知线性方程组Ax β=有解但不唯一,试求: (1)a 的值;(2)正交矩阵Q ,使TQ AQ 为对角矩阵.十、(本题满分8分)设A 为n 阶实对称矩阵,秩(),ij A n A =是()ij n n A a ⨯=中元素ij a 的代数余子式(,1,2,i j = ,)n L ,二次型1211(,,,)n nij n i j i j A f x x x x x A===∑∑L .(1)记12(,,,)T n X x x x =L ,把12(,,,)n f x x x L 写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2)二次型()T g X X AX =与()f X 的规范型是否相同?说明理由.十一、(本题满分8分)一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0,977.((2)0,977,φ=其中()x φ是标准正态分布函数.)十二、(本题满分8分)设随机变量X 和Y 的联合分布是正方形{(,)13,13}G x y x y ≤≤≤≤上的均匀分布,试求随机变量U X Y =-的概率密度()p u .2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)设常数12a≠,则21lim ln[](12)n n n na n a →∞-+=- .(2)交换积分次序111422104:(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3)设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量(,1,1)Ta α=.已知A α与α线性相关,则a =.0 0.07 0.18 0.15 10.080.320.20则2X 和2Y 的协方差22(,)Cov X Y =.(5)设总体X 的概率密度为(),,(;)0,;x e x f x x θθθθ--⎧≥=⎨<⎩若若 而12,,,n X X X L 是来自总体X的简单随机样本,则未知参数θ的矩估计量为.二、选择题(本题共5小题,每小题3分,满分15分.每题小给出的四个选项中,只有一个选项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则(A ) 当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=.(B ) 对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C ) 当()()f a f b =时,存在(,)a b ξ∈,使'()0f ξ=.(D ) 存在(,)a b ξ∈,使()()'()()f b f a f b a ξ-=-.(2)设幂级数1nn n a x∞=∑与1nn n b x∞=∑13,则幂级数221nn n na xb ∞=∑的收敛半径为 (A ) 5.(B)3. (C )13. (D )15. (3)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x =(A ) 当n m >时仅有零解. (B ) 当n m >时必有非零解. (C ) 当m n >时仅有零解.(D ) 当m n >时必有非零解.(4)设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵.已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵1()T PAP -属于特征值λ的特征向量是(A ) 1P α-. (B )T P α.(C )P α.(D ) 1()TP α-.(5)设随机变量X 和Y 都服从标准正态分布,则 (A )X Y+服从正态分布.(B )22XY +服从分布2χ.(C )2X和2Y 都服从2χ分布.(D )22X Y 服从F 分布.三、(本题满分5分)求极限2[arctan(1)]lim.(1cos )xu x t dt du x x →+-⎰⎰四、(本题满分7分) 设函数(,,)uf x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin )sin x f x x =,求()x dx . 六、(本题满分7分) 设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0,y x a ==所围成的平面区域,其中0 2.a <<(1)试求1D 绕轴x 旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ;(2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数3693()1()3!6!9!(3)!nx x x x y x x n =++++++-∞<+∞L L 满足微分方程'''x y y y e ++=;(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分6分) 设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点(,)a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分) 设齐次线性方程组1231231230,0,0,n nn ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩L L L L L L 其中0,0,2ab n ≠≠≥.试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分) 设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A =.(1)求A 的全部特征值;(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.十一、(本题满分8分)假设随机变量U 在区间上[2,2]-服从均匀分布,随机变量1,1,1,1;U X U -≤-⎧=⎨>-⎩若若1,1,1, 1.U Y U -≤⎧=⎨>⎩若若试求(1)X 和Y 的联合概率分布;(2)()D XY +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()EX 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(= (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是 (A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C)),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.[ ] (3)设2nn n a a p +=,2nn na a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是 (A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D)s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C)321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ]三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n nn x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim 0=--→b x ae xxx ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→n n n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ](13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 22122=所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设Tα)0,2,1(1=, Tααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ] (12)设矩阵A=33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0xe x x x --+-→(16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ (17)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n nxn 在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ](8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ ] (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ] (11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ ] (13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有 (A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. (16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Y f y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数. (Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计2007年考研数学(三)真题(B) 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当0x +→ )A .1- .l n )B + 1C .1cD -(2) 设函数()f x 在0x =处连续,下列命题错误的是: ( )A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f =.C .若0()lim x f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x →--存在,则'(0)f 存在(3) 如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:( ).A .(3)F 3(2)4F =-- .B (3)F 5(2)4F =.C (3)F - 3(2)4F =- .D (3)F -5(2)4F =--(4) 设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于( ).A10arcsin (,)xdy f x y dx ππ+⎰⎰ .B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰ .D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ).A 10 .B 20 .C 30 .D 40(6) 曲线1ln(1),x y e x=++渐近线的条数为( ) .A 0 .B 1 .C 2 .D 3(7)设向量组线性无关,则下列向量组线相关的是( )(A )12αα-2131,,αααα-- (B)21αα-2331,,αααα++ (C )1223312,2,2αααααα--- (D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )2()3(1)A p p - 2()6(1)B p p - 22()3(1)C p p - 22()6(1)D p p -(10) 设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X, Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为( ) (A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim(sin cos )________2x x x x x x x →∞+++=+. (12)设函数123y x =+,则()(0)_________n y =. (13)设(,)f u v 是二元可微函数,(,),y x z f x y =则z zy x y∂∂-=∂∂________. (14)微分方程31()2dy y y dx x x=-满足11x y ==的特解为__________.(15)设距阵01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭则3A 的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分) 设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=; (Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ= (20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)T λλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z . (24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ)求参数θ的矩估计量 θ; (Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.2008年考研数学(三)真题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷间断点.()D 振荡间断点.(2)曲线段方程为()y f x =,函数()f x 在区间[0,]a 上有连续的导数,则定积分()at af x dx ⎰等于( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)已知(,)f x y =(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在 (4)设函数f 连续,若22(,)uvD f u v =⎰⎰,其中uv D 为图中阴影部分,则Fu∂=∂( )(A )2()vf u (B )2()v f u u(C )()vf u (D )()vf u u(5)设A 为阶非0矩阵E 为阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭则在实数域上域与A 合同矩阵为( ) ()A 2112-⎛⎫ ⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}m a x ,Z X Y =分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)设341()1x x f x x x ++=+,则2()______f x dx =⎰.(11)设22{(,)1}D x y x y =+≤,则2()Dx y dxdy -=⎰⎰ . (12)微分方程0xy y '+=满足条件(1)1y =的解y = .(13)设3阶矩阵A 的特征值为1,2,2,E 为3阶单位矩阵,则14_____A E --=. (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == . 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限201sin limln x x x x→. (16) (本题满分10分)设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂.(17) (本题满分11分)计算max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤.(18) (本题满分10分)设()f x 是周期为2的连续函数, (1)证明对任意实数t ,有()()22t tf x dx f x dx +=⎰⎰;(2)证明()()()202xt t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为0.05r =,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵2221212n n a a a A a a ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程A X B =,其中()1,,Tn X x x = ,()1,0,,0B = ,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解;(3)a 为何值,方程组有无穷多解. (21)(本题满分10分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+,证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -. (22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭;(2)求Z 的概率密度.(23) (本题满分11分)12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11ni i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n =-. (1)证 T 是2μ的无偏估计量. (2)当0,1μσ==时 ,求DT .2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数3()sin x x f x xπ-=的可去间断点的个数为:( )()A .1()B . 2 ()C .3()D .无穷多个(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则( )()A .1a =,16b =- ()B . 1a =,16b =()C .1a =-,16b =- ()D .1a =-,16b = (3)使不等式1sin ln x tdt x t>⎰成立的x 的范围是( ) ()A . (0,1) ()B .(1,)2π ()C .(,)2ππ()D .(,)π+∞(4)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(5)设,A B 均为2阶矩阵,*,A B *分别为,A B 的伴随矩阵,若||2,||3A B ==则分块矩阵00A B ⎛⎫⎪⎝⎭的伴随矩阵为( ) ()A .**0320B A ⎛⎫ ⎪⎝⎭()B . **0230B A⎛⎫⎪⎝⎭()C .**0320A B⎛⎫⎪⎝⎭()D .**0230A B⎛⎫⎪⎝⎭(6)设,A P 均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫⎪= ⎪ ⎪⎝⎭,若1231223(,,),(,,)P Q ααααααα==+,则TQ AQ 为( )()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B . 110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫ ⎪⎪ ⎪⎝⎭(7)设事件A 与事件B 互不相容,则( )()A .()0P AB =()B . ()()()P AB P A P B = ()C .()1()P A P B =-()D .()1P A B ⋃=。

2005年考研数学真题

2005年考研数学真题

2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12sinlim 2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz dy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21 . 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a.【详解】 由题设,有=1234123121112aa a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= 0.4 , b= 0.1 .【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小. 【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是22c o s 0y x +≤)c o s (22y x +≤≤222)c o s (y x +因此<+⎰⎰σd y x D22cos<+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是 (A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a发散,进一步排除(C), 故应选(D).事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f s i n c o s)(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界.(C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由TA A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ]【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为0.90的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,)()()(1yxf y x y x f x y f x yg '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂, 所以 222222yg y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f xy ''-''-=).(2xy f x y ' (17)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的.【详解】 设∑∞=-+=12)1121()(n n x n x S , ∑∞=+=121121)(n n x n x S ,∑∞==122)(n n x x S ,则 )()()(21x S x S x S -=,).1,1(-∈x由于∑∞==122)(n n xx S =221x x -, )1,1(,1))((22121-∈-=='∑∞=x xx xx xS n n , 因此 ⎰-++-=-=xx x x dt t t x xS 022111ln 211)(, 又由于 0)0(1=S ,故.0,1,0,11ln 211)(1=<⎪⎩⎪⎨⎧-++-=x x x x x x S 所以 )()()(21x S x S x S -=.0,1,0,1111ln 212=<⎪⎩⎪⎨⎧---+=x x x x x x (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 010).1()()()()()( 【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'x g x f dt t g t f dt t f t g 010)1()()()()()(, 则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到=)1(F ⎰⎰-'+'1010)1()1()()()()(g f dt t g t f dt t f t g , 而 ⎰⎰⎰'-=='10101010)()()()()()()()(dt t g t f t f t g t df t g dt t f t g =⎰'-10)()()1()1(dt t g t f g f ,故F(1)=0. 因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有⎰⎰≥'+'a g a f dx x g x f dx x f x g 010).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 000)()()()()()( =⎰'-a dx x g x f a g a f 0)()()()(, ⎰⎰'+'adx x g x f dx x f x g 010)()()()( =⎰⎰'+'-100)()()()()()(dx x g x f dx x g x f a g a f a ⎰'+1.)()()()(a dx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈,⎰⎰-='≥'1010)]()1()[()()()()(a g g a f dx x g a f dx x g x f , 从而 ⎰⎰'+'a dx x g x f dx x f x g 010)()()()( ).1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a , 从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T )1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211, 显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101, 显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T ,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义.【详解】 (I) 因 ⎥⎦⎤⎢⎣⎡-=-n T mT E A C o E P 1,有 DP P T =⎥⎦⎤⎢⎣⎡--n T m E A C o E 1⎥⎦⎤⎢⎣⎡B C C A T ⎥⎦⎤⎢⎣⎡--n m E o C A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o C A T 1⎥⎦⎤⎢⎣⎡--n m E oC A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o o A T 1. (II )矩阵C A C B T 1--是正定矩阵.由(I)的结果可知,矩阵D 合同于矩阵.1⎥⎦⎤⎢⎣⎡-=-C A C B o o A M T 又D 为正定矩阵,可知矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故C A C B T 1--为对称矩阵. 对T X )0,,0,0( =及任意的0),,,(21≠=T n y y y Y ,有.0)(),(11>-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---Y C A C B Y Y X C A C B o o A Y X T T T T T 故C A C B T 1--为正定矩阵. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计21)(n Y Y c +,利用其数学期望等于2σ确定c 即可.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且 ),,2,1(,02n i DX EX i i ===σ,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11(=.1)1(1)1(222222σσσn n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑= =.112222σσσn n n -=+- (III ))(])([121n n Y Y cD Y Y c E +=+ =)],(2[121n Y Y Cov DY DY c ++ =222)2(2]211[σσσ=-=--+-c n n n n n n n c , 故 .)2(2-=n n c。

2005年全国硕士研究生入学统一考试数学三真题及答案

2005年全国硕士研究生入学统一考试数学三真题及答案

全国硕士研究生入学统一考试数学三试题答案一、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1)极限12sinlim 2+∞→x xx x = . 【答案】2【考点】等价无穷小 【难易度】★ 【详解】 解析:12sinlim 2+∞→x x x x 22lim 2.1x xx x →∞=+等 (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 . 【答案】2xy =【考点】变量可分离的微分方程;一阶线性微分方程【难易度】★★ 【详解】解析:方法一:原方程可化为0)(='xy ,积分得 C xy =, 代入初始条件2)1(=y 得C =2,故所求特解为 2xy =. 方法二:按变量分离法解之. 由0=+'y y x ,分离变量为dy dx dx dx=- 积分ln ln ln y x C =-+.改写为Cy x=. 去掉绝对值号,认为C 可取负值,得通解C y x=. 以2)1(=y 代入得C =2,得特解2xy =. (3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dz.【答案】2ed (e 2)d x y ++ 【考点】全微分形式不变性 【难易度】★★ 【详解】 解析:[]e y xe e x zy x y x 2)0,1()1ln()0,1(=+++=∂∂++,2)0,1(11)0,1(+=⎥⎦⎤⎢⎣⎡+++=∂∂+e y x xe y z y x ,于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a = .【答案】12【考点】向量组线性相关的充分必要条件 【难易度】★★ 【详解】解析:方法一:由题设,有21110100011010210111-1-1-2-1-1-13211212-2-1-2-2-1-143212312a a a a a a a a a a a -----==-=-------(1)(21)0a a =--=得21,1==a a , 但题设1≠a ,故.21=a方法二:令1234223411231123112300120012[,,,]112011101111101220011a a a a a a a a αααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦11230111001200021a a ⎡⎤⎢⎥---⎢⎥=⎢⎥-⎢⎥-+⎣⎦ 向量组线性相关⇒1234[,,,]4r αααα<1a ⇒=或12a =,1a =不合题意,故 12a =.(5)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P = .【答案】1348【考点】全概率公式;条件概率 【难易度】★★★【详解】解析:}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(,)X Y 的概率分布为X Y 0 10 0.4 a 1 b 0.1若随机事件}0{=X 与}1{=+Y X 相互独立,则a = ,b = . 【答案】0.4,0.1【考点】二维离散型随机变量的概率分布;二维随机变量独立性的概念 【难易度】★★ 【详解】解析:方法1:显然0.40.11a b +++=,可知0.5a b += 又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P ,而 {0,1}{0,1};{0}{0,0}{0,1}0.4;{1}{0,1}{1,0}0.5;P X X Y P X Y a P X P X Y P X Y a P X Y P X Y P X Y a b =+=========+===++====+===+=代入独立等式,得(0.4)0.5a a =+⨯,解得0.4,0.1a b ==,故应选(B). 方法2:如果把独立性理解为{10}{1}P X Y X P X Y +===+=即{1|0}{1}0.5;P Y X P X Y a b ===+==+= {00}1{10}P Y X P Y X ===-==,所以{00}{10}P Y X P Y X ======0.5;因此{0,0}{0,1}P X Y P X Y =====,即0.4a =. 又因为0.5a b +=,得0.1b =. 方法3:如果把独立性理解为{10}{11}P X Y X P X Y X +===+==所以}1{}1,1{}0{}0,1{===+====+X P X Y X P X P X Y X P即}1{}1,0{}0{}0,1{=======X P X Y P X P X Y P得bba a +=+1.04.0 又因为0.40.11a b +++=,可知0.5a b +=联立解得:1.0,4.0==b a二、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰有两个不同的零点.( ) (A ) 2. (B ) 4. (C ) 6. (D ) 8. 【答案】(B ) 【考点】零点定理 【难易度】★★ 【详解】解析:12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为1,2x x ==,从而知划分成3个严格单调区间:(,1),(1,2),(2,)-∞+∞,分别为严格单调增、严格单调减、严格单调增,并且lim ,lim x x →-∞→+∞=-∞=+∞.当4a =时,,则区间(,1)-∞内正好有一个零点,区间(1,2)内无零点,(2)f 正好是一个零点,区间(2,)+∞内无零点. 故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则( )(A ) 123I I I >>. (B )321I I I >>.(C ) 312I I I >>. (D )213I I I >>. 【答案】(A )【考点】二重积分的性质 【难易度】★★ 【详解】解析:在区域}1),{(22≤+=y x y x D 上,除点及边界有221x y +=外,有>22y x +>222()x y +而在01u ≤≤内,cos u 是严格单调减函数,于是22cos()x y <+<222)cos(y x +因此<+⎰⎰σd y x D22cos <+⎰⎰σd y x D )cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0Λ=>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是( )(A )∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C ))(1212∑∞=-+n n n a a收敛. (D ))(1212∑∞=--n n n a a收敛.【答案】(D )【考点】收敛级数的基本性质 【难易度】★★ 【详解】解析:方法一:排除法. 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A ),(B )选项.又)(1212∑∞=-+n n n a a =2114-13312122(21)44n n n n n n n n+=>=--g ,发散.排除(C ), 故应选(D ). 事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.方法二:证明(D )正确,将题设收敛的级数∑∞=--11)1(n n n a 展开11234561(1)---n n n a a a a a a a ∞-=-=+++∑L1234562121---()n n n a a a a a a a a ∞-=+++=-∑L 加括号()()()由级数基本性质知,收敛级数可以任意添加括号,故应选(D ). (10)设x x x x f cos sin )(+=,下列命题中正确的是( )(A ) (0)f 是极大值,)2(πf 是极小值. (B )(0)f 是极小值,)2(πf 是极大值.(C ) (0)f 是极大值,)2(πf 也是极大值. (D ) (0)f 是极小值,)2(πf 也是极小值.【答案】(B )【考点】函数单调性的判别;函数的极值 【难易度】★ 【详解】解析:x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又x x x x f sin cos )(-='',且02)2(,01)0(<-=''>=''ππf f ,故(0)f 是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是( )(A )若)(x f '在(0,1)内连续,则)(x f 在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则)(x f 在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则)(x f 在(0,1)内有界. (D )若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. 【答案】(C )【考点】拉格朗日中值定理 【难易度】★★ 【详解】解析:方法1:排斥法: 设1()f x x =, 则()f x 及21()f x x'=-均在(0,1)内连续,但()f x 在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).方法2:论证法.在区间(0,1)内()f x '有界,故存在0M >,对于(0,1)内的一切x ,有()f x M '≤.在(0,1)内取0x ,固定之.再取(0,1)x ∈,用拉格朗日中值定理,有00()()()(),(0,1)f x f x f x x ξξ'=+-∈于是000()()()()f x f x f x x f x M ξ'≤+-≤+, 所以()f x 在(0,1)内有界.(12)设矩阵A =33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为( )(A )33. (B )3. (C )31. (D )3. 【答案】(A )【考点】伴随矩阵 【难易度】★★★ 【详解】解析:由T A A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T或1=A ;而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是( )(A ) 01=λ. (B ) 02=λ. (C ) 01≠λ. (D ) 02≠λ. 【答案】(B )【考点】矩阵的特征向量的性质;向量组线性无关的判别法; 【难易度】★★ 【详解】解析:方法一:令0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 因12λλ≠,故21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B ).方法二: 由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,由12λλ≠,知21,αα线性无关,从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B ).(14)设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是( )(注:大纲已不要求)(A ) )).16(4120),16(4120(05.005.0t t +-(B ) )).16(4120),16(4120(1.01.0t t +-(C ) )).15(4120),15(4120(05.005.0t t +- (D ))).15(4120),15(4120(1.01.0t t +-三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ 【考点】等价无穷小;洛必达法则【难易度】★★ 【详解】解析:)1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+=2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e(16)(本题满分8分)设()f u 具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【考点】多元复合函数二阶偏导数的求法【难易度】★★ 【详解】解析:由已知条件可得),()())(())((2y x f x y f x y y x y x yf x y x y f x g x x '+'-=''+''=∂∂ )(1)()()()(22222yxf y x y f x y x y f x y xg x "+"-+''-=∂∂ ),(1)()(2423yxf y x y f x y x y f x y "+"+'=),()()(1))(()())((yxf y x y x f x y f x y x y x yf y x f x y x y f yg y y '-+'=''++''=∂∂),()(1)()()()(132********yxf y x x y f x y x f y x y x f y x y x f y x x y f x yg "+"="+'+'-"=∂∂所以 )()()()(222222222222x y f x y y x f y x x y f x y x y f x y y g y x g x "-"+"+'=∂∂-∂∂)(2yx f y x "- ).(2xyf x y '=(17)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【考点】二重积分的性质;利用直角坐标计算二重积分;利用极坐标计算二重积分【难易度】★★★ 【详解】解析:D 如图.2210x y +-=为以O 为中心半径为1 的圆周,划分D 如图为 1D 与2D .222222211,(,)11,(,)x y x y D x y x y x y D ⎧+-∈⎪+-=⎨--∈⎪⎩方法1:221Dxy d σ+-⎰⎰=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x前一个积分用直角坐标做,2211222201(1)(1)xD xy dxdy dx x y dy -+-=+-⎰⎰⎰⎰3122222011[(1)(1)1(1-)]33x x x x dx =----+-⎰ 33221111222200002222[()(1)](1)3333x x dx x dx dx x dx =-+-=-+-⎰⎰⎰⎰ 4201212311cos 333342238tdt πππ=-+=-+=-+⎰g g g .后一个积分用极坐标做,11222220011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. =⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π方法2:由于区域2D 的边界复杂,计算该积分较麻烦,可以将2D 内的函数“扩充”到整个区域D =12D D ⋃,再减去“扩充”的部分,就简化了运算.即222(1)d D x y σ+-=⎰⎰22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 因此221Dx y d σ+-⎰⎰=122(1)D x y d σ--⎰⎰222(1)D x y d σ++-⎰⎰122(1)D xy d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰1222(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰由极坐标112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 而3111222220001(1)(1)[(1)]03Dx x y d dy x y dx y x dy σ+-=+-=+-⎰⎰⎰⎰⎰311220011221[1]()[]033333y y dy y dy y =+-=-=-=-⎰⎰ 所以221Dx y d σ+-⎰⎰=.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数()S x . 【考点】幂级数的和函数;幂级数和函数逐项求导;幂级数和函数逐项积分 【难易度】★★★ 【详解】解析:设∑∞=-+=12)1121()(n n x n x S ,∑∞=+=121121)(n nx n x S ,∑∞==122)(n n x x S , 则2221211111()(1)()()2121n nn n n n S x x x x S x S x n n ∞∞∞====-=-=-++∑∑∑,).1,1(-∈x 由于∑∞==122)(n nxx S =221xx -,).1,1(-∈x 21212212111(())()(),(1,1)21211n n nn n n x x x xS x x x n n x ++∞∞∞==='''====∈-++-∑∑∑,因此⎰-++-=-=xxxx dt t t x xS 022111ln 211)(, (1,1)x ∈-又由于0)0(1=S ,故1111ln,1,()210.0,x x S x x xx +⎧-+<⎪=-⎨=⎪⎩所以)()()(21x S x S x S -=21111ln,1,02110.0,x x x x x x x +⎧-+-<≠⎪=--⎨=⎪⎩(19)(本题满分8分)设(),()f x g x 在[0,1]上的导数连续,且(0)0f =,0)(≥'x f ,0)(≥'x g .证明:对任何[0,1]a ∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(【考点】函数单调性的判别;定积分的基本性质【难易度】★★ 【详解】解析:方法一:将a 看成变限设 =)(x F ⎰⎰-'+'xg x f dt t g t f dt t f t g 01)1()()()()()(,则()F x 在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即()F x 在[0,1]上单调递减.注意到 =)1(F ⎰⎰-'+'11)1()1()()()()(g f dt t g t f dt t f t g ,而⎰⎰⎰'-=='110110)()()()()()()()(dt t g t f t f t g t df t g dt t f t g=⎰'-1)()()1()1(dt t g t f g f ,故(1)0F =.因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有 ⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 0)()()()()()(=⎰'-adx x g x f a g a f 0)()()()(,⎰⎰'+'adx x g x f dx x f x g 01)()()()(=⎰⎰'+'-1)()()()()()(dx x g x f dx x g x f a g a f a⎰'+1.)()()()(adx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈, ⎰⎰-='≥'101)]()1()[()()()()(a g g a f dx x g a f dx x g x f ,从而⎰⎰'+'adx x g x f dx x f x g 01)()()()().1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分) 已知齐次线性方程组(I ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (II )⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值.【考点】齐次线性方程组解的判定;齐次线性方程组有非零解的充分必要条件;线性方程组的同解【难易度】★★ 【详解】解析:方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换12310123501111002a a ⎡⎤⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,从而2a =. 此时,方程组(i )的系数矩阵可化为123101235011112000⎡⎤⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 故T)1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得 2,1==c b 或.1,0==c b 当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211,显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101,显然此时方程组(i )与(ii )的解不相同.综上所述,当2a =,b=1,c=2时,方程组(i )与(ii )同解. (21)(本题满分13分) 设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I ) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I )的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. 【考点】二次型正定的判定 【难易度】★★ 【详解】解析:(Ⅰ)因为 Tn 1mTE OC A E P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=,E A C O E n 1T m ⎥⎦⎤⎢⎣⎡-=- 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=n1mT n 1T mT E OC A E B C C A E AC O E DP P.C A C B O O A E OC A E C A C B O C A 1T n1m1T ⎥⎦⎤⎢⎣⎡-=-⎥⎦⎤⎢⎣⎡-=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (Ⅱ)矩阵C A C B T1--是正定矩阵.D 是对称阵,知DP P T 是对称阵,且A 是对称阵,故1T B C A C --是对称阵,又D和1T A o o B C A C -⎡⎤⎢⎥-⎣⎦合同,且D 正定,故1T A o o B C A C -⎡⎤⎢⎥-⎣⎦正定,故对任意的00Y ⎡⎤≠⎢⎥⎣⎦,恒有[]1100,()0TT T T A o Y Y B C A C Y o B C A C Y --⎡⎤⎡⎤=->⎢⎥⎢⎥-⎣⎦⎣⎦故C A C B T1--为正定矩阵. (22)(本题满分13分)设二维随机变量(,)X Y 的概率密度为1,01,02,(,)0,.x y x f x y <<<<⎧=⎨⎩其他求:(I ) (,)X Y 的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z (III )}.2121{≤≤X Y P 【考点】二维连续型随机变量的边缘密度;二维连续型随机变量分布函数的计算;条件概率的计算【难易度】★★★ 【详解】 解析:(Ⅰ)如右图,关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=2001,,.0,xx dy ⎧<<⎪⎨⎪⎩⎰其他=2,01,0,.x x <<⎧⎨⎩其他关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=12,02,.0,y dx y ⎧<<⎪⎨⎪⎩⎰其他=02,1,2.0,yy ⎧<<-⎪⎨⎪⎩其他(II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ; 2) 当20<≤z 时,22(){2}(,)1(,)Z x y zx y zF z P X Y z f x y dxdy f x y dxdy -≤->=-≤==-⎰⎰⎰⎰12021x zz dx dy -=-⎰⎰=241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: 20,0,1(),02,4 2.1,Z z F z z z z z ⎧<⎪⎪=-≤<⎨⎪≥⎪⎩ 故所求的概率密度为:102,1,()2.0,Z z z f z ⎧<<-⎪=⎨⎪⎩其他(III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P(23)(本题满分13分)设)2(,,,21>n X X X n Λ为来自总体2(0,)N σ的简单随机样本,其样本均值为X ,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y 的方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c .【考点】随机变量方差的计算公式;随机变量的方差的性质;协方差的性质;简单随机样本 【难易度】★★★★ 【详解】解析:由题设,知)2(,,,21>n X X X n Λ相互独立,且),,2,1(,02n i DX EX i i Λ===σ,∑==ni i X n X 11,易知:011=⎪⎭⎫⎝⎛=∑=n i i X n E X E ,n X D nX n D X D ni i n i i 212111σ==⎪⎭⎫ ⎝⎛=∑∑== n DX n X X Cov n X n X Cov X X Cov i ni i i n i i i i 2111),(1)1,(),(σ====∑∑==(I )()2(,)i i i i DY D X X DX Cov X X DX =-=-+2222n nσσσ=-+ .12σnn -=(II )),(),(11X X X X Cov Y Y Cov n n --=),(),(),(),(11X X Cov X X Cov X X Cov X X Cov n n +--=X D n+-=22σ .112222σσσnn n -=+-=(III )())()(])[(])([1212121n n n n Y Y E Y Y D c Y Y cE Y Y c E +++=+=+)],(2[)(1211n n Y Y Cov DY DY c Y Y cD ++=+= 222)2(2]211[σσσ=-=--+-=c nn n n n n n c , 故 .)2(2-=n nc。

考研数学-湖南大学高等代数2005--2009年考研真题[1]

考研数学-湖南大学高等代数2005--2009年考研真题[1]

高等代数——2005年真题一.(20分)证明:数域F 上的一个n 次多项式()f x 能被它的导数整除的充要条件是()()nf x a x b =-,(),a b F 其中是中的数.二.(20分)设120n a a a ≠,计算下面的行列式:12311111111111111111111na a a a++++三.(15分)已知矩阵A PQ =,其中2431P ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2121Q ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭,Q ',求矩阵2100,A A A 和。

四.(20分)给定线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 当1234,,,a a a a 满足什么条件时,方程组(1)有惟一解?无穷多解?无解? 五.(20分)设()fX XA X '=是一实二次型,若有实n 维向量1X ,2X 使得()()12f X f X >0,<0,证明:必存在实n 维向量00X ≠使()00f X =。

六.设W 是齐次线性方程组1234512352300x x x x x x x x x +-+-=⎧⎨+- +=⎩ (2)的解空间。

1.W 中的向量与方程组(2)的系数矩阵的行向量有何关系?2。

求W 的一组标准正交基。

七.(15分)求复矩阵131616576687⎛⎫ ⎪--- ⎪ ⎪---⎝⎭的不变因子,初等因子及Jordan 标准形。

八.(10分)设整系数线性方程组1nij ji j a xb ==∑,()1,2,,i n =对任意整数12,,,n b b b 均有整数解。

证明该方程组的系数矩阵的行列式必为1±。

九.(15分)设,,A B C 为复数域上n 维空间V 的线性变换,AB BA C -=,并且C 可以与,A B 交换。

2005年考研数学真题

2005年考研数学真题

2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12sinlim 2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dzdy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21 . 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a.【详解】 由题设,有=1234123121112aa a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= 0.4 , b= 0.1 .【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小. 【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是22c o s 0y x +≤)c o s (22y x +≤≤222)c o s (y x +因此<+⎰⎰σd y x D22cos<+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是 (A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a发散,进一步排除(C), 故应选(D).事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f s i n c o s)(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界.(C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由TA A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ]【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为0.90的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,)()()(1yxf y x y x f x y f x yg '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂, 所以 222222yg y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f xy ''-''-=).(2xy f x y ' (17)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的.【详解】 设∑∞=-+=12)1121()(n n x n x S , ∑∞=+=121121)(n n x n x S ,∑∞==122)(n n x x S ,则 )()()(21x S x S x S -=,).1,1(-∈x由于∑∞==122)(n n xx S =221x x -, )1,1(,1))((22121-∈-=='∑∞=x xx xx xS n n , 因此 ⎰-++-=-=xx x x dt t t x xS 022111ln 211)(, 又由于 0)0(1=S ,故.0,1,0,11ln 211)(1=<⎪⎩⎪⎨⎧-++-=x x x x x x S 所以 )()()(21x S x S x S -=.0,1,0,1111ln 212=<⎪⎩⎪⎨⎧---+=x x x x x x (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 010).1()()()()()( 【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'xg x f dt t g t f dt t f t g 010)1()()()()()(, 则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到=)1(F ⎰⎰-'+'1010)1()1()()()()(g f dt t g t f dt t f t g , 而 ⎰⎰⎰'-=='10101010)()()()()()()()(dt t g t f t f t g t df t g dt t f t g =⎰'-10)()()1()1(dt t g t f g f ,故F(1)=0. 因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有⎰⎰≥'+'a g a f dx x g x f dx x f x g 010).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 000)()()()()()( =⎰'-a dx x g x f a g a f 0)()()()(, ⎰⎰'+'adx x g x f dx x f x g 010)()()()( =⎰⎰'+'-100)()()()()()(dx x g x f dx x g x f a g a f a ⎰'+1.)()()()(a dx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈,⎰⎰-='≥'1010)]()1()[()()()()(a g g a f dx x g a f dx x g x f , 从而 ⎰⎰'+'a dx x g x f dx x f x g 010)()()()( ).1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a , 从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T )1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211, 显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101, 显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T ,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义.【详解】 (I) 因 ⎥⎦⎤⎢⎣⎡-=-n T mT E AC o E P 1,有 DP P T =⎥⎦⎤⎢⎣⎡--n T m E A C o E 1⎥⎦⎤⎢⎣⎡B C C A T ⎥⎦⎤⎢⎣⎡--n m E o C A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o C A T 1⎥⎦⎤⎢⎣⎡--n m E oC A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o o A T 1. (II )矩阵C A C B T 1--是正定矩阵.由(I)的结果可知,矩阵D 合同于矩阵.1⎥⎦⎤⎢⎣⎡-=-C A C B o o A M T 又D 为正定矩阵,可知矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故C A C B T 1--为对称矩阵. 对T X )0,,0,0( =及任意的0),,,(21≠=T n y y y Y ,有.0)(),(11>-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---Y C A C B Y Y X C A C B o o A Y X T T T T T 故C A C B T 1--为正定矩阵. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计21)(n Y Y c +,利用其数学期望等于2σ确定c 即可.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且 ),,2,1(,02n i DX EX i i ===σ,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11(=.1)1(1)1(222222σσσn n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑= =.112222σσσn n n -=+- (III ))(])([121n n Y Y cD Y Y c E +=+ =)],(2[121n Y Y Cov DY DY c ++ =222)2(2]211[σσσ=-=--+-c n n n n n n n c , 故 .)2(2-=n n c。

考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年] 行列式A.(ad—bc)2B.一(ad—bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:解一令则此为非零元素仅在主、次对角线上的行列式由命题2.1.1.1(1),即得|A|=一(ad—bc)(ad—bc)=一(ad一bc)2.仅(B)入选.解二将|A|按第1行展开,然后可利用命题2.1.1.1(2),即式(2.1.1.5)直接写出结果:解三仅(B)入选.解四仅(B)入选.(注:命题2.1.1.1 设非零元素仅在主、次对角线上的2n阶、2n一1阶行列式分别为D2n,D2n-1,则命题2.1.2.3 设A,B分别是m阶与n阶矩阵,则) 知识模块:线性代数2.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:解一由A3=O得E=E-A3=(E-A)(E+A+A3),E=E+A3=(E+A)(E -A+A3).由命题2.2.1.2知,E-A,E+A均可逆.仅(C)入选.解二因A3=0,即A为幂零矩阵,其n个特征值全部都等于零,则A的矩阵多项式f1(A)=E-A的n个特征值为f1(λ)|λ=0=(1-λ)|λ=0=1.因而|E-A|=1≠0,故E一A可逆.A的另一个矩阵多项式f2(A)=E+A的n个特征值为f2(λ)|λ=0=(1+λ)|λ=0=1.故|E+A|=1,所以E+A可逆.知识模块:线性代数3.[2017年] 设α为n维单位列向量,E为n阶单位矩阵,则( ).A.E—ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E一2ααT不可逆正确答案:A解析:令A=ααT,则A2=A.又令AX=λX,由(A2-A)X=(λ2-λ)X=0得λ2-λ=0,即λ=0或λ=1.因为tr(A)=αTα=1=λ1+…+λn故得A的特征值为λ1=…=λn-1=0,λn=1.而E-ααT的特征值为λ1=…=λn-1=1,λn=0,从而|E-ααT|=0,E-ααT不可逆.仅(A)入选.知识模块:线性代数4.[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).A.B.3C.1/3D.正确答案:A解析:解一显然矩阵A满足命题2.2.2.1中的三个条件,因而由该命题得|A|=1.将|A|按第1行展开得到1=|A|=a11A11+a12A12+a13A13=a112+a122+a132=3a112,故仅(A)入选.解二由A*=AT,即其中Aij为|A|中元素aij的代数余子式,得aij=Aij(i,j=1,2,3).将|A|按第1行展开,得到|A|=a11A11+a12A12+a13A13=a112+122+a132=3a112>0.又由A*=AT得到|A*|=|A|3-1=|AT|=|A|,即|A|(|A|=1)=0,而|A|>0,故|A|-1=0,即|A|=1,则3a112=1.因a11>0,故仅(A)入选.注:命题2.2.2.1 设A为n(n≥3)阶实矩阵,其元素分别与其代数余子式相等(aij=Aij(i,j=1,2,…,n),即AT-A*或A=(A*)T)且其中一元素不等于0,则其行列式|A|等于1.知识模块:线性代数5.[2009年] 设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( ).A.B.C.D.正确答案:B解析:解一令则|C|=(-1)2×2|A||B|=2×3=6,即分块矩阵可逆,则由C*=|C|C-1得到解二因对任一四阶矩阵C,有C*C=CC*=|C|4,其中C*为C的伴随矩阵.下面用直接验证法进行选择.对于选项(A),有其中E2,E4分别为二阶、四阶单位矩阵.对于选项(B),有满足伴随矩阵的性质.对选项(C)、(D),分别有由此可知,仅(B)入选.知识模块:线性代数6.[2004年] 设n阶矩阵A与B等价,则必有( ).A.当|A|=a(a≠0)时,|B|=aB.当|A|=a(a≠0)时,|B|=-aC.当|A|≠0时,|B|=0D.当|A|=0时,|B|=0正确答案:D解析:解一因A与B等价,由命题2.2.5.4(1)知,仅(D)入选.(注:命题2.2.5.4 (1)矩阵等价的必要条件是矩阵的行列式同时为零或同时不为零.)解二因A与B等价,其秩必相等.当|A|=0时,秩(A)&lt;n,故秩(B)<n,于是|B|=0.所以选项(D)正确.因秩(A)=秩(B),不一定有|A|=|B|或|A|=-|B|,故(A)、(B)不成立.至于(C),显然有秩(A)&gt;秩(B),故(C)不成立.仅(D)入选.解三因A与B等价,由矩阵等价的必要条件知,存在可逆矩阵P与Q,使得A=PBQ.两边取行列式得|A|=|P||B||Q|,而|P|≠0,|Q|≠0,因而|A|与|B|同时为零或同时不为零.故当|A|=0时,必有|B|=0.仅(D)入选.知识模块:线性代数7.[2013年] 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ).A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B解析:解一对矩阵A,C分别按列分块,记A=[α1,α2,…,αn],C=[γ1,γ2,…,γn],又令B=(bγij)γn×n,则由AB=C得到可见,C的列向量组可由A的列向量组线性表出.因B可逆,由A=CB-1类似可证,A的列向量组也可由C的列向量组线性表出.由两向量组等价的定义知,仅(B)入选.解二因可逆矩阵可表示成若干个初等矩阵的乘积,而每个初等矩阵表示一次初等变换,可逆矩阵B左乘矩阵A,于是A经过有限次初等列变换化为C,而初等列变换能保持变换前的矩阵与变换后所得矩阵的列向量组的等价关系(见命题2.3.1.3),因而仅(B)入选.注:命题2.3.1.3 如果矩阵A 经有限次初等行(列)变换化成矩阵B(即A≌B),则A的行(列)向量组与B的行(列)向量组等价.知识模块:线性代数8.[2003年] 设α1,α2,…,α3均为n维向量,下列结论中不正确的是( ).A.若对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ksαs≠0,则α1,α2,…,αs线性无关B.若α1,α2,…,αs线性相关,则对于任意一组不全为零的数k1,k2,…,ks,有k1α1+k2α2+…+ksαs=0C.α1,α2,…,αs线性无关的充分必要条件是此向量组的秩为sD.α1,α2,…,α3线性无关的必要条件是其中任意两个向量线性无关正确答案:B解析:解一(A)正确.事实上,若α1,α2,…,α3线性相关,则存在一组不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0.这定义的逆否命题就是选项(A)中的命题.可见(A)成立.若α1,α2,…,αs线性相关,由其定义知,存在一组而不是任意一组不全为零的数k1,k2,…,ks使得k1α1+k2αs+…+ksαs=0.(B)不成立.由“向量组α1,α2,…,αs线性无关的充要条件是秩([α1,α2,…,αs])=s”知,(C)也成立.因α1,α2,…,αn线性无关的必要条件是其任一部分向量组线性无关.当然其中任意两个向量也线性无关,(D)也成立.仅(B)入选.解二可举反例证明(B)不正确:向量组α1=[1,0]T,α2=[4,0]T线性相关,但对于一组不全为零的常数k1=1,k2=0,却有k1α1+k2α2=α1=[1,0]T≠0.知识模块:线性代数9.[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.A.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性相关B.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性无关C.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性相关D.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性无关正确答案:A解析:解一由定义知,若α1,α2,…,αs线性相关,则存在不全为零的数c1,c2,…,cs,使得c1α1+c2α2+…+csαs=0.用A左乘等式两边,得c1A α1+c2Aα2+…+csAαs=0,于是Aα1,Aα2,…,Aαs线性相关.仅(A)入选.解二若α1,α2,…,αs线性相关,则秩([α1,α2,…,αs])其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为( ).A.α1,α2,α3B.α1,α2,α4C.α1,α3,α4D.α2,α3,α4正确答案:C解析:因故α1,α3,α4线性相关.仅(C)入选.知识模块:线性代数11.[2007年] 设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).A.α1一α2,α2一α3,α3一α1B.α1+α2,α2+α3,α3+α1C.α1—2α2,α2—2α3,α3—2α1D.α1+2α2,α2+2α3,α3+2α1正确答案:A解析:解一用观察易知,选项(A)中向量有关系(α1-α2)+(α2-α3)+(α3-α1)=0,故(A)中向量线性相关.解二由命题2.3.2.3判别之.s=3为奇数,k=3也为奇数,故(A)中向量线性相关.(注:命题2.3.2.3 已知向量组α1,α2,…,αs(s≥2)线性无关,设β1=α1±α2,β2=α2±α3,…,βs-1=αs-1±αs,βs=αs±α1,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则(1)当s与k的奇偶性相同时,向量组β1,β2,…,βs线性相关;(2)当s与k的奇偶性不同时,向量组β1,β2,…,βs线性无关.) 解三用线性相关的定义判定.为此令x1(α1-α2)+x2(α2-α3)+x3(α3-α1)=0,即(x1-x3)α1+(-x1+x2)α2+(-x2+x3)α3=0.因α1,α2,α3线性无关,故因其系数矩阵行列式等于零,故上述方程组有非零解,即α1-α2,α2-α3,α3-α1线性相关.知识模块:线性代数12.[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件正确答案:A解析:记β1=α1+kα3,β2=α2+lα3,则若α1,α2,α3线性无关,则[α1,α2,α3]为可逆矩阵,故秩即β1=α1+kα3,β2=α2+lα3线性无关.反之,设α1,α2线性无关,α3=0,则对任意常数k,l必有α1+kα3,α2+lα3线性无关,但α1,α2,α3线性相关,故α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的必要但非充分条件.仅(A)入选.知识模块:线性代数填空题13.[2016年] 行列式正确答案:λ4+λ3+2λ2+3λ+4解析:知识模块:线性代数14.[2010年] 设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=________.正确答案:3解析:|A+B-1|=|AE+EB-1|=|ABB-1+AA-1B-1|=|A(B+A-1)B-1|=|A||B+A-1||B-1|=|A||A-1+B ||B|-1=3×2×(1/2)=3.解二|A+B-1|=|EA+B-1E|=|B-1BA+B-1A-1A|=|B-1||B+A-1||A|=|B|-1|B+A-1||A|=(1/2)×2×3=3.知识模块:线性代数15.[2006年] 设矩阵E为二阶单位矩阵,矩阵A满足BA=B+2E,则|B|=____________.正确答案:2解析:解一由BA=B+2E得到B(A-E)=2E,两边取行列式利用命题2.1.2.1(2)和(5)得到|B||A—|=|2E|=22|E|=4.而故|B|=2.解二解一中没有求出矩阵B.但若要求出也不难.由B(A—E)=2E知B==2(A-E)-1而故从而|B|=2.(注:命题2.1.2.1 设A=[aij]n×n,B=[bij]n×n,E为n阶单位矩阵,k为常数.(2)|AB|=|A||B|,|AB|=|BA|,但AB≠BA;(5)|kA|=kn|A|,但[kaij]n ×n=k[aij]n×n=kA;) 知识模块:线性代数16.[2008年] 设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=_________.正确答案:3解析:解一因A的特征值为1,2,2,故A-1的特征值为1,1/2,1/2.因而4A-1一E的特征值为λ1=4×1—1=3,λ2=4×(1/2)一1=1,λ3=4×(1/2)一1=1,故|4A-1一E|=λ1λ2λ3=3×1×1=3.解二所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如果A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP—diag(1,2,2)①=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4.PΛ-1P-1一PEP-1=P(4Λ-1-E)P-1,两端取行列式得到|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,l /2)一E|=|diag(3,1,1)|=3.知识模块:线性代数17.[2003年] 设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵A=E-ααT,B=E+(1/a)ααT,其中A的逆矩阵为B,则a=____________.正确答案:-1解析:解一由题设有A-1=B,故AB=E,注意到αTα=2a2(是一个数),有E=AB-(E-ααT)[E+(1/a)ααT]=E+(1/a)ααT-ααT-(1/a)α(αTα)αT =E+[1/a-1-(1/a)·2a2]ααT=E+(1/a-1-2a)ααT,故(1/a-1-2a)ααT=O.因ααT≠O,所以1/a-1-2a=0,即(2a-1)(a+1)=0.因而a=1/2或a=-1.因a<0,故a=-1.解二因(E-A)2=(ααT)2=ααTααT=(αTα)ααT=2a2ααT=2a2(E-A),即A2-2A+2a2A=2a2E-E,亦即A[A-(2-2a2)E]=(2a2-1)E,故A可逆,且由题设有故整理得到而ααT≠O,故(a+1)(2a-1)=0,又因a<0,故a=-1.知识模块:线性代数18.[2012年] 设A为三阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A 的第1行与第2行得矩阵B,则|BA*|=__________.正确答案:-27解析:由题设有B=E12A,两边右乘A*,得到BA*=E12AA*=|A|E12E=|A|E12,则|BA*|=||A|E12|=|A|3|E12|=33×(-1)=-27.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。

2005考研数学(一)试题及详细答案解析

2005考研数学(一)试题及详细答案解析

如果 A 1,那么 B 2 .
【分析】 将 B 写成用 A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即 可.
【详解】 由题设,有
B ( 1 2 3 , 1 2 2 4 3 , 1 3 2 9 3 )
于是有
1 1 1 = (1, 2 ,3 )1 2 3 ,
(4)设 是由锥面 z x2 y 2 与半球面 z R2 x2 y 2 围成的空间区域, 是
的整个边界的外侧,则 xdydz ydzdx zdxdy 2 (1 2 )R3 .

2
【分析】 本题 是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球
则必有
(A) F(x)是偶函数 f(x)是奇函数.
(B) F(x)是奇函数 f(x)是偶函数.
(C) F(x)是周期函数 f(x)是周期函数.
(D) F(x)是单调函数 f(x)是单调函数.
[ A]
【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.
x
【详解】 方法一:任一原函数可表示为 F(x) f (t)dt C ,且 F(x) f (x). 0
【详解】
因为 a= lim x
f
(x) x

lim
x
x2 2x2
x

1 2

b lim f (x) ax lim x 1 ,
x
x 2(2x 1) 4
于是所求斜渐近线方程为 y 1 x 1 . 24
(2) 微分方程 xy 2y x ln x 满足 y(1) 1 的解为 y 1 x ln x 1 x..

2005年考研数学试题详解及评分参考

2005年考研数学试题详解及评分参考

=
¶2u ¶x 2
.
【答】 应选 (B) .
【解】 因
¶u ¶x
=
j ¢( x
+
y)
+ j¢(x
-
y)
+y
(x
+
y)
-y
(x
-
y)
,且
¶u ¶y
=
j ¢( x
+
y)
- j ¢( x
-
y) +y
(x
+
y)
-y
(x
-
y)


¶2u ¶x2
=
j ¢¢( x
+
y)
- j ¢¢( x
-
y)
+y
¢( x
+
y)
-y
l1 l2
ù úû

所以 a 1
,
A(a1
+
a2
)
线性
1 无关的充要条件是 0
l1 l2
= l2
¹ 0.
故选 (B) .
【解法二】 由题意,知 Aa1 = l1a1, Aa2 = l2a2 . 设 k1a1 + k2 A(a1 + a 2 ) = 0 ,则有 k1a1 + k2l1a1 + k2l2a 2 = 0 ,即有 (k1 + k2l1 )a1 + k2l2a 2 = 0 . 因a1,a 2 是属于不同特征值的特征向量,故a1,a 2 线性无关,于是有 k1 + k2l1 = 0 , k2l2 = 0 . 因此当 l2 ¹ 0 时,有 k1 = 0, k2 = 0 ,此时a1 , A(a1 + a 2 ) 线性无关; 反之,若a1, A(a1 + a2 ) 线性无关,则必然有 l2 ¹ 0 (否则,由 l2 = 0 ,可见 k2 可以不

考研数学三(常微分方程与差分方程)历年真题试卷汇编1(题后含答

考研数学三(常微分方程与差分方程)历年真题试卷汇编1(题后含答

考研数学三(常微分方程与差分方程)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2006年] 设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是( ).A.c[y1(x)一y2(x)]B.y1(x)+c[y1(x)-y2(x)]C.c[y1(x)+y2(x)]D.y1(x)+c[y1(x)+y2(x)]正确答案:B解析:因y1(x),y2(x)是y’+p(x)y=q(x)的两个不同的解,y1(x)-y2(x)是对应齐次方程y’+p(x)y=0的非零解,所以由命题1.6.1.2(2)知,c[y1(x)+y2(x)]是对应齐次方程y+p(x)y=0的通解.又y’+p(x)y=q(x)的通解等于对应齐次方程的通解加上原方程的一个特解(见命题1.6.1.2(1)),故y1(x)+c[y1(x)-y2(x)]是该非齐次方程的通解.仅(B)入选.(注:命题1.6.1.1 (1)若y1,y2,…,ys均为y’+p(x)y=q(x)的解,则当k1+k2+…+ks=1时,k1y1+k2y2+…+ksys为y’+p(x)y=q(x)的解.(2)若y1,y2,…,ys均为y’+p(x)y=q(x)的解,则当k1+k2+…+ks=0时,k1y1+k2y2+…+ksys为y’+p(x)y=0的解.特别地,若y1,y2为y’+p(x)y=q(x)的两个解,则y2-y1为y’+p(x)y=0的解.) 知识模块:常微分方程与差分方程2.[2010年] 设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则( ).A.λ=1/2,μ1=1/2B.λ=一1/2,μ=一1/2C.λ=2/3,μ=1/3D.λ=2/3,μ=2/3正确答案:A解析:解一因λy1-μy2是y’+p(x)y=0的解,故(λy1-μy2)’+p(x)(λy1-μy2)=λ(y1’+p(x)y1)-μ(y2’+p(x)y2)=0.又y1’+p(x)y1=q(x),y2’+p(x)y2=q(x),故λq(x)-μq(x)=(λ-μ)q(x)=0.而q(x)≠0,故λ-μ=0,即λ=μ.又λy1+μy2为y’+p(x)y=q(x)的解,故(λy1+μy2)’+p(x)(λy1+μy2)=λ[y1’+p(x)y1]+μ[y2’+p(x)y2]=λq(x)+μq(x)=(λ+μ)q(x)=q(x).因q(x)≠0,故λ+μ=1.由λ=μ得到λ=μ=1/2.仅(A)入选.解二y1与y2为方程y’+p(x)y=q(x)的解,又已知λy1+μy2也是该方程的解,则由命题1.6.1.1(1)知,λ+μ=1.又由λy1-μy2是该方程对应的齐次方程的解,由命题1.6.1.1(2)知,λ+(-μ)=λ-μ=0,即λ=μ.联立λ=μ,λ+μ=1解得λ=μ=1/2.仅(A)入选.(注:命题1.6.1.1 (1)若y1,y2,…,ys均为y’+p(x)y=q(x)的解,则当k1+k2+…+ks=1时,k1y1+k2y2+…+ksys为y’+p(x)y=q(x)的解.(2)若y1,y2,…,ys均为y’+p(x)y=q(x)的解,则当k1+k2+…+ks=0时,k1y1+k2y2+…+ksys为y’+p(x)y=0的解.特别地,若y1,y2为y’+p(x)y=q(x)的两个解,则y2-y1为y’+p(x)y=0的解.) 知识模块:常微分方程与差分方程3.[2008年] 设函数f(x)连续,若其中区域Duv为图1.6.2.1中阴影部分,则A.vf(u2)B.C.vf(u)D.正确答案:A解析:利用极坐标计算,其中积分区域Duv为Duv={(r,θ)|0≤θ≤v,1≤r≤u},其中u,v均为F的两独立的变量.于是仅(A)入选.知识模块:常微分方程与差分方程填空题4.[2005年] 微分方程xy’+y=0满足初始条件y(1)=2的特解为___________.正确答案:xy=2解析:解一所给方程为可分离变量方程.由xy’+y=0得到两边积分得到ln|y|=-ln|x|+lnc,即ln|xy|=lnc,故xy=c.又y(1)=2,故c=2.所求特解为xy=2.解二原方程可化为(xy)’=0,积分得xy=c,由初始条件得c=2,所求特解xy=2.解三y’+(1/x)y=0.利用一阶齐次线性方程通解公式求解,得到由y(1)=2有c=2,y=2/x,即xy=2.知识模块:常微分方程与差分方程5.[2008年] 微分方程xy’+y=0满足条件y(1)=1的特解是y=___________.正确答案:1/x解析:所给方程属可分离变量的方程:两边积分有l|y|=-ln|x|+c1,即ln|y|+ln|x|=ln|yx|=c1,因而xy=±ec1=x.由y(1)=1>0,可取x>0,y>0,由初始条件y(1)=1得到c=1,故满足初始条件的解为y=1/x.知识模块:常微分方程与差分方程6.[2007年]微分方程满足y|x=1=1的特解为____________.正确答案:解析:设y=ux,则代入原方程得到从而即由y|x=1=1得到c=-1/2.于是所求特解为(x/y)2=lnx+1.因y|x=1=1>0,故应取x>0,y >0,所以即知识模块:常微分方程与差分方程7.[2013年] 微分方程y”-y’+y=0的通解为y=__________.正确答案:其中C1,C2为任意常数.解析:二阶齐次微分方程y”-y’+y=0所对应的特征方程为r2-r+=0即故其特征根为r1=r2=所以该齐次微分方程的通解为其中C1,C2为任意常数.知识模块:常微分方程与差分方程8.[2015年] 设函数y=y(x)是微分方程y”+y’-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=_______.正确答案:e-2x+2ex解析:易知所给方程的特征方程为r2+r-2=(r+2)(r-1)=0,故特征根为r1=-2,r2=1,故其通解为y=C1e-2x+C2 ex ①因y(x)在x=0处取得极值,故y’(0)=0,y(0)=3.将其代入通解①得到y’(x)|x=0=[-2C1 e-2x+C2ex]|x=0=-2C1+C2=0,y(0)=C1+C2=3.解之得C1=1,C2=2,故y=e-2x+2ex.知识模块:常微分方程与差分方程9.[2017年] 差分方程yt+1-2yt=2t的通解为___________.正确答案:yt=Yt+y*=C2t+t2t,C为任意常数.解析:yt+1-2yt=0的通解为Yt=C2t(C为任意常数);设yt+1-2yt=2t 的特解为y*=at2t,代入得综上所述,yt+1-2yt=2t的通解为yt=Yt+y*=C2t+t2t,C为任意常数.知识模块:常微分方程与差分方程10.[2001年] 某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元,若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是__________.正确答案:Wt=1.2Wt-1+2解析:由题意得到Wt=Wt-1+0.2Wt-1+2,故差分方程是Wt=1.2Wt-1+2.知识模块:常微分方程与差分方程11.[2018年] 差方程△2yx-yx=5的通解为_________.正确答案:yx=C·2x-5解析:△2Yx=△(△yx)=△yx+1-△yx=(yx+2-yx+1)-(yx+1-yx)=y+2-2yx+1+yx,所以原方程可化为yx+2-2yx+1=5.易知,对应齐次方程yx+2-2yx+1=0的通解为yx=C·2x.设原方程的特解为yx*=A,代入原方程中得A=-5,所以原方程的通解为yx=C·2x-5.知识模块:常微分方程与差分方程解答题解答应写出文字说明、证明过程或演算步骤。

2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析D“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D)32ln 8+.[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( (A)πab . (B)π2ab . (C)π)(b a +. (D)π2ba + .[ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ ](12)设函数,11)(1-=-x x ex f 则(A) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C)01=λ.(D) 02=λ.[ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy=dxπ- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim 23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x x xdx 4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰10221)2(xxxdx⎰-22cos )sin 2(cos sin πdttt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程xx y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= 43 . 【分析】 题设相当于已知1)()(lim 0=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 2==-+→k x x x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→nnn x x f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C)32ln 8+-. (D)32ln 8+.[ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()((A)πab . (B)π2ab . (C)π)(b a +. (D) π2ba + .[ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 =++⎰⎰σd y f x f y f b x f aD)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D⎰⎰+++++])()()()()()()()([21=.2241222ππσba b a d b a D+=⋅⋅+=+⎰⎰ 应选(D).(11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u ∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1-=-x x ex f 则(B) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(E) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则22211211=++αλαλαk k k ,)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得BA E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→xx x x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f (16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y Sx S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有 ⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--y xdtt t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ 两边对y 求导得)(ln )11(21y y yϕ-=-,故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2,.0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,得022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f2=∂∂,y yf2-=∂∂, 于是 )(),(2y C x y x f +=,且yy C 2)(-=',从而 Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=xfA ,)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,42>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D∈≤+=, }),(,1),{(222D y x y x y x D ∈>+=,于是 σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x =⎰⎰--221)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j jβ不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有1=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。

2005考研数学三真题及答案解析

2005考研数学三真题及答案解析

2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D) 3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12s i nl i m 2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dzdy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21. 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有=1234123121112a a a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= 0.4 , b= 0.1 .【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小.【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π 上为单调减函数,于是22c o s 0y x +≤)c o s (22y x +≤≤222)c o s (y x +因此<+⎰⎰σd y x D22cos <+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a发散,进一步排除(C), 故应选(D).事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f s i n c o s)(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界.(C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D) 3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由T A A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A A E A AA T或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ]【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为0.90的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,)()()(1yxf y x y x f x y f x yg '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂, 所以 222222yg y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y xf y x x y f xy ''-''- =).(2xy f x y ' (17)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可. 【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的.【详解】 设∑∞=-+=12)1121()(n n x n x S , ∑∞=+=121121)(n n x n x S ,∑∞==122)(n n x x S , 则 )()()(21x S x S x S -=,).1,1(-∈x由于∑∞==122)(n n xx S =221x x -, )1,1(,1))((22121-∈-=='∑∞=x xx xx xS n n , 因此 ⎰-++-=-=xx x x dt t t x xS 022111ln 211)(, 又由于 0)0(1=S ,故.0,1,0,11ln 211)(1=<⎪⎩⎪⎨⎧-++-=x x x x x x S 所以 )()()(21x S x S x S -=.0,1,0,1111ln 212=<⎪⎩⎪⎨⎧---+=x x x x x x (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 010).1()()()()()( 【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'xg x f dt t g t f dt t f t g 010)1()()()()()(, 则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到=)1(F ⎰⎰-'+'1010)1()1()()()()(g f dt t g t f dt t f t g ,而 ⎰⎰⎰'-=='10101010)()()()()()()()(dt t g t f t f t g t df t g dt t f t g=⎰'-10)()()1()1(dt t g t f g f ,故F(1)=0.因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有⎰⎰≥'+'a g a f dx x g x f dx x f x g 010).1()()()()()(方法二:⎰⎰'-='aa a dx x g x f x f x g dx x f x g 000)()()()()()(=⎰'-adx x g x f a g a f 0)()()()(,⎰⎰'+'adx x g x f dx x f x g 010)()()()(=⎰⎰'+'-100)()()()()()(dx x g x f dx x g x f a g a f a⎰'+1.)()()()(a dx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈,⎰⎰-='≥'1010)]()1()[()()()()(a g g a f dx x g a f dx x g x f ,从而 ⎰⎰'+'a dx x g x f dx x f x g 010)()()()().1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x xx x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a , 从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T)1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有 ⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211, 显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101, 显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T ,其中⎥⎦⎤⎢⎣⎡-=-n m E o C A E P 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义.【详解】 (I) 因 ⎥⎦⎤⎢⎣⎡-=-n T mT E A C o E P 1,有 DP P T =⎥⎦⎤⎢⎣⎡--n T m E A C o E 1⎥⎦⎤⎢⎣⎡B C C A T ⎥⎦⎤⎢⎣⎡--n m E o C A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o C A T 1⎥⎦⎤⎢⎣⎡--n m E oC A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o o A T 1. (II )矩阵C A C B T 1--是正定矩阵.由(I)的结果可知,矩阵D 合同于矩阵.1⎥⎦⎤⎢⎣⎡-=-C A C B o o A M T 又D 为正定矩阵,可知矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故C A C B T 1--为对称矩阵. 对T X )0,,0,0( =及任意的0),,,(21≠=T n y y y Y ,有.0)(),(11>-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---Y C A C B Y Y X C A C B o o A Y X T T T T T 故C A C B T 1--为正定矩阵. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计21)(n Y Y c +,利用其数学期望等于2σ确定c 即可.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(,02n i DX EX i i ===σ,.0=X E (I )∑≠--=-=n ij j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij j i DX n DX n 221)11(=.1)1(1)1(222222σσσn n n n n n -=-⋅+-(II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑==.112222σσσn n n -=+-(III ))(])([121n n Y Y cD Y Y c E +=+=)],(2[121n Y Y Cov DY DY c ++ =222)2(2]211[σσσ=-=--+-c n n n n n n n c ,故 .)2(2-=n nc。

考研数学免费资料大全

考研数学免费资料大全

考研数学高等数学复习资料汇总[考研数学][高等数学]2007年新东方考研数学基础班-高等数学-汪诚义[考研数学][高等数学]2007年新东方考研数学强化班-高等数学-汪诚义[考研数学][高等数学]陈文灯高数习题答案(新)[考研数学][高等数学]2008年考研-高数春季班讲义第一讲[考研数学][高等数学]2008年考研-高数春季班讲义第二讲[考研数学][高等数学]2008年考研-高数春季班讲义第三讲[考研数学][高等数学]考研高数数学公式_新排版[考研数学][高等数学]08考研数学全程规划(音频)-高数和微积分[考研数学][高等数学]同濟五版高数课本与答案[考研数学][高等数学]高数公式概率公式数学重点、难点归纳辅导[考研数学][高等数学]高数、线性、概率课后答案完整版[考研数学][高等数学]考研数学真题近十年考题路线分析(高数部分)[考研数学][高等数学]考研数学]2008高等数学复习--函数专题[考研数学][高等数学]清华基础班讲义(全)-高等数学部分[考研数学][高等数学]2007版--高等数学(强化)课程电子版教材1-2[考研数学][高等数学]高等数学简明公式[考研数学][高等数学]高等数学各部分常见的题型[考研数学][高等数学]高等数学知识点[考研数学][高等数学]考研数学高等数学部分公式手册[考研数学][高等数学]考研高等数学重点复习与典型题型[考研数学][高等数学]新东方在线考研数学基础班--高等数学讲义[考研数学][高等数学]2008陈文灯考研数学复习指南习题详解(理工)--高等数学[考研数学][高等数学]高等数学公式手册[考研数学][高等数学]《高等数学总复习图册》正文[考研数学][高等数学]龚冬保:高等数学典型题解法•技巧•注释(第2版)[考研数学][高等数学]高等数学试题精选与解答(蔡高厅)[考研数学][高等数学]高等数学基础知识网络图章[考研数学][高等数学]高等数学典型题解法•技巧•注释(龚冬保)[考研数学][高等数学]考研讲义-高等数学[考研数学][高等数学]李大华:高等数学、线性代数1200题[考研数学][高等数学]考研数学高等数学部分复习注意事项[考研数学][高等数学]高等数学二重积分专题[考研数学][高等数学]中值定理总结[考研数学][高等数学]实用三角函数公式总表[考研数学][高等数学]2007考研数学真题评析(水木版)-数一至数四全[考研数学][高等数学]高等数学易错、易忘、易漏问题备忘录[考研数学][高等数学]泰勒公式的应用[考研数学][高等数学]2008高等数学复习--函数专题[考研数学][高等数学]循环递推法积分计算[考研数学][高等数学]洛必达法则失效的种种情况及处理方法[考研数学][高等数学]求极限的方法和技巧[考研数学][高等数学]三角公式大全[考研数学][高等数学]三次函数图象性质的研究和应用[考研数学]考研数学线性代数复习资料汇总[考研数学][线性代数]2007年新东方考研数学强化班-线性代数-尤承业[考研数学][线性代数]2007年新东方考研数学基础班-线性代数-尤承业[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]08考研数学全程规划(音频)-线代[考研数学][线性代数]经济类数学——线代各章节复习题目及解答WORD[考研数学][线性代数]2008陈文灯考研数学复习指南习题详解(理工)--线代[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]考研数学真题近十年考题路线图(线代部分)[考研数学][线性代数]线性代数强化阶段的的复习方法[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]2008考研数学-线性代数全攻略-张跃辉[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]考研数学2008版--线性代数(2008强化) 课程电子版教材[考研数学][线性代数]2008考研数学线性代数辅导讲义(李永乐)[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学][线性代数]线性代数知识网络图[考研数学][线性代数]2008年线性代数必考的知识点[考研数学][线性代数]2007版--线性代数(07强化)课程[考研数学][线性代数]2008考研数学基础班线性代数-曾祥金[考研数学][线性代数]线性代数超强总结[考研数学][线性代数]线性代数知识点[考研数学][线性代数]2008年考研-线性代数春季班讲义[考研数学][线性代数]李大华:高等数学、线性代数1200题[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学]考研数学概率统计复习资料汇总[考研数学][概率统计]概率统计课本[浙三版][考研数学][概率统计]概率统计习题答案[浙三版][考研数学][概率统计]考研数学2008版--概率论与数理统计(2008强化)课程电子版教材[考研数学][概率统计]视频点睛习题详细解答(概率)[考研数学][概率统计]2008陈文灯考研数学复习指南习题详解(理工)--概率WORD [考研数学][概率统计]经济类数学——概率各章节复习题目及解答WORD[考研数学][概率统计]浙大概率习题全解[考研数学][概率统计]高数,线性,概率课后答案完整版[考研数学][概率统计]概率论与数理统计辅导讲义(主编:龚兆仁)[考研数学][概率统计]高数公式概率公式数学重点、难点归纳辅导[考研数学][概率统计]2007年新东方考研数学基础班-概率统计-费允杰[考研数学][概率统计]2007年新东方考研数学强化班-概率统计-费允杰[考研数学][概率统计]概率公式整理[考研数学][概率统计]概率统计知识点[考研数学][概率统计]2006年考研数学概率论基础笔记大全[考研数学][概率统计]概率与数理统计问题集[考研数学][概率统计]概率论与数理统计解题的九种思维定势[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵pdf[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵word[考研数学]考研数学历年真题复习资料汇总[考研数学][历年真题]2007考研数学真题评析(水木版)-数一至数四全[考研数学][历年真题]2006年硕士研究生入学统一考试数学一试题及答案[考研数学][历年真题]数一2005年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2004年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2003年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2002年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2001年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2000年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1999年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1998年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1997年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1996年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1995年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数二2006年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2005年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2004年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2003年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2002年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2001年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2000年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1999全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1998年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1997年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1996年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1995年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数三2006年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2005年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2004年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2003年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2002年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2001年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2000年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1999年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1998年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1997年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1996年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1995年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数四2007年全国硕士研究生入学考试数学四参考答案[考研数学][历年真题]数四2006年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2005年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2004年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2003年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2002年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2001年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2000年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1999年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1998年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1997年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1996年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1995年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学]考研数学综合复习复习资料汇总[考研数学][综合复习]2008年考研大纲、大纲解析、考试分析电子书下载全集[英语、政治、数学][考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试分析[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数一和数二)[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数三和数四)[考研数学][综合复习]2008年李永乐、李正元考研数学全真模拟经典400题(理工类数学一)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(理工类数学二)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(经济类数学三)[考研数学][综合复习]2008年陈文件灯、黄先开、曹显兵考研数学复习指南(经济类)[考研数学][综合复习]08年考研数学考试大纲变化解析与复习建议[考研数学][综合复习]2007年数学考试大纲(一、二、三、四)[考研数学][综合复习]陈文登考研数学辅导书(附详细答案)[考研数学][综合复习]经济数学四轮学习方略[考研数学][综合复习]文都考研数学公式手册[考研数学][综合复习]备考辅导:2008年考研数学三大纲变化对比分析[考研数学][综合复习]考研数学重点及难点归纳辅导笔记[考研数学][综合复习]2008考研数学复习指南100问专题串讲经济类.pdf[考研数学][综合复习]考研数学公式(整理版)[考研数学][综合复习]考研数学高等数学部分公式手册[考研数学][综合复习]李永乐冲刺笔记(网友整理版)[考研数学][综合复习]2007年考研数学轻巧手册(经济类)_陈文灯等[考研数学][综合复习]水木艾迪考研数学三十六计[考研数学][综合复习]陈文灯解读数学大纲:新增泰勒公式考点[考研数学][综合复习]考研数学复习过程中六大禁忌列举[考研数学][综合复习]数学复习多思考的复习事半功倍[考研数学][综合复习]陈文灯:数学复习应注意若干要点[考研数学][综合复习]数学考研讲义(完全版)[考研数学][综合复习]考研数学36技150杀伤力(考研凯旋营提供)[考研数学][综合复习]考研宝典——试题精粹之数学[考研数学][综合复习]高等数学试题精选与解答(蔡高厅)[考研数学][综合复习]数学符号和公式的英语读法[考研数学][综合复习]考研数学函数图像大全(1)[考研数学][综合复习]考研数学函数图像大全(2)[考研数学][综合复习]2008年考研公共课备考:数学首轮复习注意事项[考研数学][综合复习]2007考研数学考前必做三套题(附详细解答)[考研数学][综合复习]陈文登考研数学轻巧手册2008经济类(全)[考研数学][综合复习]陈文灯李永乐两位数学权威对08年数学大纲的分析[考研数学][综合复习]陈文灯数学提高班例题[考研数学][综合复习]清华大学谈08考研—考研数学要走对路找对点[考研数学][综合复习]08数学必过-考研数学重点及难点归纳辅导笔记下载[考研数学][综合复习]海天名师郝海龙权威解析2008年考研数学大纲[考研数学][综合复习]陈文灯考研数学笔记[考研数学][综合复习]2007年考研数学考试大纲下载[考研数学][综合复习]龚冬保教授解读近几年数学考研真题[考研数学][综合复习]理工类数学各部分复习-WORD[考研数学][综合复习]高联08 年考研基础班讲义详解[考研数学][综合复习]2007年考研数学必做客观题1500题精析[考研数学][综合复习]数学满分秘籍[考研数学][综合复习]2007年考研数学轻巧手册(经济类)[考研数学][综合复习]2008年考研数学必备知识点(最新更新)WORD打印版[考研数学][综合复习]数学近10年考题路线图[考研数学][综合复习]六个短语把握牢考研数学复习效率高。

2005年考研数学试题答案与解析(数学一)

2005年考研数学试题答案与解析(数学一)

2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x xy 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=212lim)(lim22=+=∞→∞→xx xxx f x x ,[]41)12(2lim)(lim -=+-=-=∞→∞→x xax x f b x x ,于是所求斜渐近线方程为.4121-=x y(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+',于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx e x ey dxx dxx=2191ln 31xCx x x +-,由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222zyxz y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu ∂∂=33.【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαc o s c o s c o s zu yu xu nu ∂∂+∂∂+∂∂=∂∂因此,本题直接用上述公式即可.【详解】 因为3x xu =∂∂,6y yu =∂∂,9z zu =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅(4)设Ω是由锥面22yx z +=与半球面222yx R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π.【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz⎰⎰⎰Ωd x d y d z3 =.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ(5)设321,,ααα均为3维列向量,记矩阵 ),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 )93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B (6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P = 4813 .【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn xx f 31lim)(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim)(3=+=∞→nnn xx f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xx x f n nn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222yu xu ∂∂-=∂∂. (B )2222yu xu ∂∂=∂∂.(C)222yu yx u ∂∂=∂∂∂. (D)222xu yx u ∂∂=∂∂∂. [ B ]【分析】 先分别求出22xu ∂∂、22yu ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu --++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu -+++-'-+'=∂∂ψψϕϕ,于是)()()()(22y x y x y x y x xu -'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u -'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu -'-+'+-''++''=∂∂ψψϕϕ,可见有2222yu xu ∂∂=∂∂,应选(B).(10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y). (B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C)可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ] 【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xz x +=', yz x F y -=',x e y F xz z +-='ln ,且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nSχ(C) )1(~)1(--n t SXn (D)).1,1(~)1(2221--∑=n F X X n ni i[ D ]【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n n X =-,可排除(A);又)1(~0-=-n t SX n nSX ,可排除(C); 而)1(~)1(1)1(2222--=-n Sn Sn χ,不能断定(B)是正确选项.因为 ∑=-ni in XX222221)1(~),1(~χχ,且∑=-ni i n X X222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F X X n n X X ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.874381=+(16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n nn xn n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x nn -∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x xx x∞--=''=-=∈-+∑.由于 (0)0,(0S S '==所以 21()()arctan ,1x x S x S t dt dt x t'''===+⎰⎰21()()arctan arctan ln(1).2x xS x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn xxx x∞-=-=∈-+∑从而 22()2()1xf x S x x=++2222arctan ln(1),(1,1).1xx x x x x=-++∈-+(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+33302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xy d y dx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cyx x y d ydx y 4222)(ϕ-++⎰+314222)(l l yx x y d ydx y ϕ022)(3242=++⎰+l l yx x y d ydx y ϕ.(II ) 设2424()2,22y xy P Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx yϕ++⎰在该区域内与路径无关,故当0x >时,总有Q P x y∂∂=∂∂.24252422422(2)4242,(2)(2)Q y x y x xyx y y xx y x y ∂+--+==∂++ ①243243242242()(2)4()2()()4().(2)(2)P y x y y yx y y y y yyx y x y ϕϕϕϕϕ'''∂+-+-==∂++ ②比较①、②两式的右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a aa a A , 由二次型的秩为2,知 02011011=-++-=a aa aA ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α 由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数. (22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -;3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z 即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DXEXii===,.0=X E(I )∑≠--=-=nij j i i i X nX nD X X D DY ]1)11[()(=∑≠+-nij jiDXnDXn221)11(=.1)1(1)1(222nn n nnn -=-⋅+-(II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X XE nnj j +++-∑==.112nnn-=+-。

2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析D“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D)32ln 8+.[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( (A)πab . (B)π2ab . (C)π)(b a +. (D)π2ba + .[ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ ](12)设函数,11)(1-=-x x ex f 则(A) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C)01=λ.(D) 02=λ.[ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy=dxπ- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim 23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x x xdx 4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰10221)2(xxxdx⎰-22cos )sin 2(cos sin πdttt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程xx y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= 43 . 【分析】 题设相当于已知1)()(lim 0=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 2==-+→k x x x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→nnn x x f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C)32ln 8+-. (D)32ln 8+.[ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()((A)πab . (B)π2ab . (C)π)(b a +. (D) π2ba + .[ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 =++⎰⎰σd y f x f y f b x f aD)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D⎰⎰+++++])()()()()()()()([21=.2241222ππσba b a d b a D+=⋅⋅+=+⎰⎰ 应选(D).(11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u ∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1-=-x x ex f 则(B) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(E) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则22211211=++αλαλαk k k ,)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得BA E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→xx x x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f (16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y Sx S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有 ⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--y xdtt t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ 两边对y 求导得)(ln )11(21y y yϕ-=-,故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2,.0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,得022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f2=∂∂,y yf2-=∂∂, 于是 )(),(2y C x y x f +=,且yy C 2)(-=',从而 Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=xfA ,)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,42>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D∈≤+=, }),(,1),{(222D y x y x y x D ∈>+=,于是 σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x =⎰⎰--221)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j jβ不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有1=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年考研数学(三)真题
一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在横线上)
(1)极限1
2sin
lim 2
+∞
→x x x x = .
(2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)
0,1(dz
________.
(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则
}2{=Y P =______.
(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1
已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .
二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)
(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D
⎰⎰+=
2
21cos
,σd y x
I D
⎰⎰+=
)cos(2
2
2,σd y x
I D
⎰⎰+=
2
22
3)cos(,其中
}1),{(2
2
≤+=y
x y x D ,则
(A) 123I I I >>. (B )321I I I >>.
(C) 312I I I >>. (D) 213I I I >>. [ ]
(9)设,,2,1,0 =>n a n 若∑∞
=1
n n a 发散,∑∞
=--1
1)1(n n n a 收敛,则下列结论正确的是
(A)
∑∞
=-11
2n n a
收敛,∑∞
=1
2n n a 发散 . (B )
∑∞
=1
2n n
a
收敛,∑∞
=-1
12n n a 发散.
(C)
)(1
21
2∑∞
=-+n n n a a
收敛. (D)
)(1
21
2∑∞
=--n n n a a
收敛. [ ]
(10)设x x x x f cos sin )(+=,下列命题中正确的是
(A) f(0)是极大值,)2
(
πf 是极小值. (B ) f(0)是极小值,)2
(
πf 是极大值. (C ) f(0)是极大值,)2
(
πf 也是极大值. (D) f(0)是极小值,)2
(
πf 也是极小值.
[ ]
(11)以下四个命题中,正确的是
(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.
(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ]
(12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若13
1211,,a a a 为三个相等的正数,则11a 为
(A) 3
3. (B) 3. (C)
3
1. (D) 3. [ ]
(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是
(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ]
(14) 设一批零件的长度服从正态分布),(2
σμN ,其中2
,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是
(A) )).16(4
120),16(4
120(05.005.0t t +
- (B) )).16(4
120),16(4
120(1.01.0t t +-
(C))).15(4120),15(4120(05.005.0t t +-
(D))).15(4
120),15(4
120(1.01.0t t +- [ ]
三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分) 求).111(
lim 0
x
e
x x
x -
-+-→
(16)(本题满分8分)
设f(u)具有二阶连续导数,且)()(),(y
x
yf x y f y x g +=,求.2
2
2
22
2
y g
y x g
x ∂∂-∂∂ (17)(本题满分9分)
计算二重积分σd y x D
⎰⎰-+12
2,其中}10,10),{(≤≤≤≤=y x y x D .
(18)(本题满分9分)
求幂级数∑∞
=-+1
2)11
21(
n n
x
n 在区间(-1,1)内的和函数S(x).
(19)(本题满分8分)
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有


≥'+
'a
g a f dx x g x f dx x f x g 0
1
).1()()()()()(
(20)(本题满分13分) 已知齐次线性方程组
(i ) ⎪⎩⎪
⎨⎧=++=++=++,
0,0532,032321
321321ax x x x x x x x x

(ii ) ⎩⎨⎧
=+++=++,0)1(2,0322
1
321x c x b x cx bx x 同解,求a,b, c 的值.
(21)(本题满分13分) 设⎥⎦


⎣⎡=B C
C A
D T
为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T
,其中⎥⎦


⎣⎡-=-n m
E o
C A E P 1
; (II )利用(I)的结果判断矩阵C A C B T
1
--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)
设二维随机变量(X,Y)的概率密度为 .
,20,10,
0,1),(其他x y x y x f <<<<⎩⎨
⎧=
求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.212
1{≤

X Y P
(23)(本题满分13分)
设)2(,,,21>n X X X n 为来自总体N(0,2
σ
)的简单随机样本,X 为样本均值,记
.,,2,1,n i X X Y i i =-=
求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov
(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.。

相关文档
最新文档