2015初中数学竞赛选苗试题 2
2015年全国初中数学联赛(初三组)初赛试卷
第3题图AB东第2题图1-2 -1M2015年全国初中数学联赛(初三组)初赛试卷(3月13日下午3:00—5:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分) 1、(21211-+--的值为( )A 、2-B 、2C 、22-D 、222、如图,观察图中的数轴,用字母a ,b ,c 依次表示点A 、B 、C 对应的数,则ab 1,a b -1,c1这三个数的大小关系为( )A 、ab c a b 111- B 、ab a b c 111- C 、cab a b 111 -D 、c a b ab 111 - 3、如图,一艘船以h km /32速度向正东方向航行。
在A 处时看见灯塔M 在北偏东︒60方向,半小时后到达B 处,看见灯塔M 在北偏东︒15方向,此时,灯塔M 与船的距离是( )ECM D第4题图AB 第5题图 GECFD第8题图 ABA 、km 28B 、km 216C 、km 8D 、km 164、如图,平行四边形ABCD 中,AB BC 2=,AB DE ⊥,M 是BC 的中点,︒=∠35DEM ,则B ∠的大小是( )A 、︒100B 、︒110C 、︒120D 、︒1255、如图,在平面直角坐标系xOy 中,一次函数434+-=x y 的图像分别交x 轴、y 轴于点A 、B ,把直线AB 绕点O 逆时针旋转︒90,交y 轴于点A ',交直线AB 于点C ,则BC A '∆的面积为( )A 、2524B 、2512C 、256D 、253 6、满足2=++b a ab 的有序正整数对(a ,b )共有( )A 、17对B 、18对C 、34对D 、36对 二、填空题(本大题满分28分,每小题7分)7、已知2241622=---x x ,则_________41622=-+-x x .8、如图所示,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连接AF 、CE ,设AF 、CE 的交于点G ,若矩形ABCD 的面积是1,则四边形AGCD 的面积是 .9、已知0≠y ,且089222=+-y xy x ,则22223484y xy x y xy x ++--的值为 .10、若关于x 的不等式()()n m x n m 352-- 的解集为1 x ,则关于x 的不等式()m x n m 25 -n 3-的解集是 .三、(本大题满分20分)11、已知正数a ,b 满足b a b a +=-211,求3333b a a b +的值。
2015年世界少年奥林匹克数学竞赛九年级海选赛试题含答案
九年级 第1页 九年级 第2页2015年世界少年奥林匹克数学竞赛九年级海选赛试题含答案绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题(2015年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
九年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、两块三角形面板如图放置,等腰直角三角形板ABC 的斜边BC 与∠F=30°的直角三角板DEF 的直角边EF 重合,则∠a 的度数为 。
2、若a 、b 都为实数,且b = 20131-a + 2014a -1+ 2015 则a b= 。
3.设x 1,x 2是方程x 2 - x -2013 = 0 的两实数根,则x 13+2014x 22-2013= 。
4、已知三个实数x ,y ,z 中,x 与y 的平均数是127,y 与z 的和的31是78,x 与z 的和的41是52,则这三个数x ,y ,z 的平均数是 。
5、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC 与E ,PF ⊥BD 与F ,则PE+PF= 。
6、如图,在平面直角坐标系中,△ABC 是等腰直角三角形,∠ACB = Rt, CA ⊥x 轴,垂足为点A ,点B 在反比例函数y 1=x4(x>0)的图像上,反比例 函数y 2=x2(x>0)的图像经过点C ,交AB 于点D ,则点D 的坐标 。
7、若有理数x ,y ,z 满足2121=-+-+z y x (x+y+z )则(x-zy)2= 。
8、我国汉代数学家赵爽为了证明勾股定理,创制了一副"弦图",后人称其为"赵爽弦图"如图,也是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH,正方形MNKT 的面积,分别为S 1,S 2,S 3,若S 1+S 2+S 3 = 10 ,则S 2的值是 。
2015年全国初中数学联赛试题及参考答案_第二试_
第二试 ( A) 一、 ( 本题满分2 关于x 的方程 槡 0 分) x -m
2 2 求实数 + 2 x 有且仅 有 一 个 实 数 根 , x - 1= 槡 的取值范围 m . 2 解 将所给方程记为方程 ① , 显然有 x ≥
F-D F C D, ( 如 果B 证 明: 2) = MN = B D A C MD.
证明 ( 使得 1)在 B E 上 取 一 点 P,
①
)- ( m+ n- 1 4 m n-m- n) Δ =( 2 ( ) ( ) = m+ n - 4 m n+ 2 m+ n + 1
2
z x s s . c b t . c n k i . n e t z x s s h i n a o u r n a l . n e t . c n 网址 : 电子邮箱 : @c p j
至少有一个正整数解 , 所以 Δ 应为完全平方数 .
2 注意 到 Δ= ( m -n) +( m +n) +1= 2 2 ( )+ ), m- n+ 1 4 n> ( m- n+ 1 2 ( m- n) + 2 m+ n) + 1 Δ =( 2 ) ) , =( m- n+ 3 -( 4 m- 8 n+ 8 若4 , 即 m> , m- 8 n+ 8 0 2 n- 2 > 2 即 Δ< ( ) , m- n+ 3 2 2 从而有 ( ) ) , m- n+ 1 m- n+ 3 <Δ< (
m 且x≥ 1 .
2 2 若 m <0 , 则 槡 此 x -m +2 x - 1 >x, 槡 不符合题意 , 故 m≥ 时方程 ① 无解 , 0 . 2 2 方程 ① 变 形 得 2 x - 1=x- 槡 x -m , 槡 2 两 边 平 方 后 整 理 得 2 x + m - 4 = 2 再平方 , 整 理 得 8( - 2 x x2 2-m) x = -m , 槡 2 ( ). m- 4
2015 年全国初中数学联合竞赛试题参考答案及评分标准
C E
B
G
∴ GF 11, GE 10 ,∴ EF GE2 GF 2 221 .
4. 已知 O 为坐标原点,位于第一象限的点 A 在反比例函数 y 1 (x 0) 的图象上,位于第二象限的 x
点 B 在反比例函数 y 4 (x 0) 的图象上,且 OA OB ,则 tan ABO 的值为 x
5. 已知实数 x, y 满足关系式 xy x y 1,则 2 2 .
B. 6 4 2 .
C.1.
D. 6 4 2 .
【答】B.
设 x y t , 则 由 题 设 条 件 可 知 xy x y 1 t 1 , 所 以 x, y 是 关 于 m 的 一 元 二 次 方 程
则 5n2 3n 5 125m2 15m 5 120m2 15m 5(m2 1) .
∵ 5n2 3n 5 是 15 的倍数,∴ m2 1是 3 的倍数,∴ m 3k 1或 m 3k 2 ,其中 k 是非负整数.
∴ n 5(3k 1) 15k 5或 n 5(3k 2) 15k 10 ,其中 k 是非负整数. ∴符合条件的所有正整数 n 的和是(5+20+35+50+65+80+95)+(10+25+40+55+70+85)
A. 8. 【答】C.
B. 12.
C. 16.
D.24.
依题意,有 n m2 bm c (m 8)2 b(m 8) c ,于是可得 b 8 2m .
∵抛物线 y x2 bx c 与 x 轴只有一个公共点,∴ b2 4c 0 ,∴ c 1 b2 (4 m)2 . 4
6. 设 n 是小于 100 的正整数且使 5n2 3n 5 是 15 的倍数,则符合条件的所有正整数 n 的和是( )
A.285. 【答】D.
2015年年全国初中数学联赛试题答案(2021年整理)
2015年年全国初中数学联赛试题答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年年全国初中数学联赛试题答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年年全国初中数学联赛试题答案(word版可编辑修改)的全部内容。
2015年全国初中数学联合竞赛试题。
2015年全国初中数学联赛(初二组)初赛试卷(含答案)(完整资料).doc
(2)若 ,求PM的值。
2015年全国初中数学联赛(初二组)初赛试题
参考解答
一、选择题
1.D.
2.C.
3.A 延长FD至点G,使得DG=BE.显然△ABE≌△ADG.
∴AE=AG.易证△FAG≌△FAE. ∴FG=FE. ∴△ECF的周长=CF+FE+EC=CF+FG+EC=CF+FD+DG+EC=(CF+FD)+(BE+EC)=CD+BC=2.选A.
C、2或 D、2或
6、已知2015年3月13日是星期五,则 天之后是星期( )
A、一 、二C、三D、四
二、填空题(本题满分28分,每小题7分)
7、计算: .
8、已知 ,则 的值为.
9、如图,在四边形ABCD中, , , , , ,则BD的值为.
10、如果关于x的不等式组 的整数解仅为1,2,3,那么适合这个不等式组的整数a,b组成的有序数对(a,b)的个数为.
10.12. 即是 .因为原不等式组的整数解仅为1,2,3,所以 即 .所以 可以取9,10,11共3个数, 可以取1,2,3,4共4个数. 所以适合原不等式组的整数 组成的有序数对 的个数为 个.
三、解答题
11.解:∵a2+2ab+b2-6a-6b+9=0,……………………………………..…………………5分
∵AP=PC,CM=ME, ∴PM∥ 且PM= .………………………………….……….20分
∴PQ=PM, PQ⊥PM.
∴△MPQ为等腰直角三角形.
∴PM=PQ=2.5. .…………………………………………………………………………….25分
(完整版)2015年全国初中数学联合竞赛试题及参考答案
2015年全国初中数学联合竞赛试题第一试(A )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c ac a b +++++=---( ) A. 0B. 3C. 6D. 92.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15 CD.4.已知O 为䝐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的瀹B 在反比例函数4(0)y x x=-<的图象上且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12B.2 C .1 D .25.已知实数x (y 满足关系式1xy x y --=,则22x y +的最小值为( )A.3-B.6-C .1 D.6+6.设n 是小于100的正整数且使2535n n +-是15的倍数,则符合条件的所有正整数n 的和是( ) A .285 B .350 C .540 D .635 二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.从三边长均为整数且周长为24的三角形中任取一个,它是直角三角形 的概率为 .9.已知锐角△ABC 的外心为O ,AO 交BC 于D ,E 、F 分别为△ABD 、 △ACD 的外心,若AB >AC ,EF =BC ,则∠C -∠B = .10.将数字1,2,3,…,34,35,36填在6×6的方格中,每个方格填一个数字,要求每行数字从左到右是从小到大的顺序,则第三列所填6个数字的和的最小值为 .第一试(B )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( )A. 12B. 9C. 6D. 32.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15CD.4.已知实数x ,y 满足关系式223x xy y ++=,则2()x y -的最大值为( )A .3B .6C .9D .125.已知O 为坐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的点B 在反比例函数4(0)y x x=-<的图象上,且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12BC .1D .26.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是( ) A .784B .850C .1536D .1634二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.三边长均为整数且周长为24的三角形的个数为 .9.C 、D 两点在以AB 为直径的半圆周上,AD 平分∠BAC ,AB =20, AD=AC 的长为 .10.在圆周上按序摆放和为15的五个互不相等的正整数a ,b ,c ,d ,e ,使得ab +bc +cd +de +ea最小,则这个最小值为 .ABCD EF第二试(A )1.(20分)关于xx 有且仅有一个实数根,求实数m 的取值范围. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ; (2)如果BF DF CDBD AC-=,证明:MN =MD .3.(25分)设正整数m ,n 满足:关于x 的方程()()x m x n x m n ++=++至少有一个正整数解,证明:222()5m n mn +<.第二试(B )1.(20分)若正数a ,b 满足ab =1,求11112M a b=+++的最小值. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC =BD . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ;(2)如果MN =MD ,证明:BF =CD +DF .3.(25分)若关于x 的方程2343410x x k -+-=至少有一个正整数根,求满足条件的正整数k 的值.2015年全国初中数学联合竞赛试题参考答案第一试(A )1. 解:D. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 5. 解:B. 提示:设x y t +=,则由题设条件可知11xy x y t =++=+, ∴x ,y 是关于m 的一元二次方程210m tm t -++=的两个实数根, 于是有:24(1)0t t ∆=-+≥,解得2t ≥+2t ≤-又∵22222()22(1)(1)3x y x y xy t t t +=+-=-+=--,∴当2t =-1x y ==22x y +取得最小值,最小值为2(21)36--=-6. 解:D. 提示:∵2535n n +-是15的倍数, ∴25|(535)n n +-,∴5|3n ,∴5|n . 设5n m =(m 是正整数),则2222535125155120155(1)n n m m m m m +-=+-=++-.∵2535n n +-是15的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴5(31)155n k k =+=+或5(32)1510n k k =+=+,其中k 是非负整数.∴符合条件的所有正整数n 的和是(5203550658095)(102540557085)635++++++++++++=. 7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:112. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11,满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,其中,只有一组是直角三角形的三边长,∴所求概率为112. 9. 解:60°. 提示:作EM ⊥BC 于点M ,FN ⊥BC 于点N ,FP ⊥EM 于点P . ∵E 、F 分别为△ABD 、△ACD 的外心, ∴M 、N 分别为BD 、CD 的中点.又EF =BC ,∴PF =MN =12BC =12EF ,∴∠PEF =30°.又EF ⊥AD ,EM ⊥BC ,∴∠ADC =∠PEF =30°. 又∠ADC =∠B +∠BAD =∠B +12(180°-2∠C )=90°+∠B -∠C ,∴∠C -∠B =90°-∠ADC =60°.10. 解:63. 提示:设第三列所填6个数字按从小到大的顺序排列后依次为A ,B ,C ,D ,E ,F .∵A 所在行前面需要填两个比A 小的数字,∴A 不小于3; ∵B 所在行前面需要填两个比B 小的数字,且A 及A 所在行前面两个数字都比B 小,∴B 不小于6.同理可知:C 不小于9,D 不小于12,E 不小于15,F 不小于18.因此,第三列所填6个数字之和A +B +C +D +E +F ≥3+6+9+12+15+18=63.如图即为使得第三列所填6个数字之和取得最小值的一种填法(后三列的数字填法不唯一).ABCD E F G第一试(B )1. 解:B. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:D. 提示:设x y t -=,则x y t =+,代入题设等式得22()()3y t y t y y +++++=,整理得223330y ty t ++-=. 由判别式22(3)12(3)3t t ∆=--≥得t -≤22()12x y t -=≤. 5. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 6. 解:D. 提示:∵2232n n --是6的倍数, ∴22|(232)n n --,∴2|3n ,∴2|n .设2n m =(m 是正整数),则2222232862662(1)n n m m m m m --=--=-+-. ∵2232n n --是6的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴2(31)62n k k =+=+或2(32)64n k k =+=+,其中k 是非负整数. ∴符合条件的所有正整数n 的和是(2814869298)(41016828894)1634++++++++++++=L L . 7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:12. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11, 满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,∴三边长均为整数且周长为24的三角形的个数为12. 9. 解:4. 提示:连接OD 、OC ,作DE ⊥AB 于E ,OF ⊥AC 于F .∵AD 平分∠BAC ,∴∠DOB =2∠BAD =∠OAC .又OA =OD ,∴△AOF ≌△ODE ,∴OE =AF ,∴AC =2OF =2OE .设AC =2x ,则OE =AF =x . 在Rt △ODE中,由勾股定理得DE ==在Rt △ADE 中,AD 2=DE 2+AE 2,即222(100)(10)x x =-++,解得x =2.∴AC =2x =4.10. 解:37. 提示:和为15的五个互不相等的正整数只能是1,2,3,4,5.注意到五个数在圆周上是按序摆放的,且考虑的是和式ab bc cd de ea ++++,不妨设a =5.如果1和5的位置不相邻,不妨设c =1(如图2),此时的和式为155P b b d ed e =++++; 交换1和b 的位置后,得到如图3的摆法, 此时的和式为255P b bd ed e =++++.∵1255(5)(1)0P P b dbd d b -=+--=-->,∴12P P >.因此,交换1和b 的位置使得1和5相邻(如图3)以后,和式的值会变小. 如图3,如果d =2,此时的和式为35225P b b e e =++++;交换e 和2的位置以后,得到如图4的摆法,此时的和式为45210P b be e =++++. ∵342510(5)(2)0P P b e be b e -=+--=-->,∴34P P >. 因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 如果b =2,此时的和式为55225P d ed e =++++;交换e 和2的位置以后,得到如图5的摆法,此时的和式为65210P e ed d =++++. ∵5625104(2)0P P e e e -=+--=->,∴56P P >.因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 综上可知:1和2摆在5的两边(如图5)时,和式的值会变小.AB CD E F Gd d d de 图1 图2 图3 图4 图5当d =3,e =4时,和式的值为754126103P =++++=; 当d =4,e =3时,和式的值为853*******P =++++=. 因此,所求最小值为37.第二试(A )1. 解:将所给方程记为方程①,显然有2x m ≥且1x ≥.若0m <x ,此时方程①无解,不符合题意,故0m ≥.方程①变形得x两边平方后整理得2242x m +-=- 再平方,整理得228(2)(4)m x m -=-.显然,应该有02m ≤<,并且此时方程①只可能有解x =将x =1=-,化简整理得???,于是有403m ≤≤,此时方程①有唯一解x =.综上所述,所求实数m 的取值范围为403m ≤≤. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD . 又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE ,∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC .(2)设∠DAC =α,则∠BAC =2α,∠BAD =3α,∠NDM =90°-α. 在FB 上截取FQ =FD ,连接QD ,则BQ =BF -FQ =BF -FD .又BF DF CD BD AC -=,∴BQ CD BD AC=. 又∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴∠QDB =∠DAC .又∵∠DBC =∠DAC ,∴∠QDB =∠DBC ,∴QD ∥BC ,∴∠FQD =∠ABC . 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =90°-α. 又FQ =FD ,∴∠BFD =2α.∵FN 平分∠BFD ,∴∠AFM =α,∴∠NMD =∠AMF =∠BAD -∠AFM =3α-α=2α, ∴∠MND =180°-∠NMD -∠NDM =90°-α=∠MDN ,∴MN =MD .3. 证明:方程即2(1)0x m n x mn m n ++-+--= ①,方程①的判别式222(1)4()()42()1()2()1m n mn m n m n mn m n m n m n ∆=+----=+-+++=-+++.不妨设m n ≥,由题设可知,整系数方程①至少有一个正整数解,∴∆应为完全平方数. 注意到222()2()1(1)4(1)m n m n m n n m n ∆=-+++=-++>-+,22()2()1(3)(488)m n m n m n m n ∆=-+++=-+--+,若4880m n -+>,即22m n >-,则2(3)m n ∆<-+,从而有22(1)(3)m n m n -+<∆<-+,故只可能2(2)m n ∆<-+, 即22()2()1(2)m n m n m n -+++=-+,整理得332m n =-, 这与m ,n 均为正整数矛盾.因此22m n ≤-,从而可得2m n <,∴2mn<. 又∵112m n >>,∴有1()(2)02m m n n --<,整理即得222()5m n mn +<.第二试(B )1. 解:∵1ab =,∴1b a=, ∴2111111211211211212321a aM a b a a a a a a a a =+=+=+=+-=-++++++++++. 设232a a N a++=,则22333N a a =++=+++当a .∴103N <≤=-111(32M N=-≥--=.因此,当a =2b =时,11112M a b=+++取得最小值2. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD .又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE , ∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC . (2)设∠DAC =α,则∠BAC =2α,∠BAD =3α. ∵AC ⊥BD ,∴∠NDM =90°-α.∵MN =MD ,∴∠MND =∠MDN =90°-α, ∴∠NMD =180°-∠MND -∠NDM =2α,∴∠AMF =2α, ∴∠AFM =∠BAD -∠AMF =3α-2α=α.FN 平分∠BFD ,∴∠BFD =2∠AFM =2α.在FB 上截取FQ =FD ,连接QD ,则∠FQD =90°-α. 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =∠ABC , ∴QD ∥BC ,∴∠QDB =∠DBC .又∵∠DBC =∠DAC ,∴∠QDB =∠DAC .又∵DB =AC ,∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴BQ =CD , ∴BF =BQ +FQ =CD +DF .3. 解:设方程的两个根为x 1,x 2,且x 1为正整数, 则1234x x +=,12341x x k =-.由1234x x +=知2134x x =-,∴ x 2也是整数.由k 为正整数及12341x x k =-可知20x >,∴x 2是正整数. 注意到121212(1)(1)134(1)x x x x x x k ++=+++=+, ∴1217|(1)(1)x x ++,∴117|(1)x +或217|(1)x +.若117|(1)x +,则由112134x x x +≤+=知:1117x +=或1134x +=. 当1117x +=时,116x =,218x =,此时3411618k -=⨯,k 无整数解; 当1134x +=时,133x =,21x =,此时341331k -=⨯,解得k =1. 若217|(1)x +,同样可得k =1. ∴满足条件的正整数k =1.。
2015年下学期九年级数学竞赛试题及答案
2015年下学期九年级数学竞赛试题时量:120分钟 满分:120分一、选择题(共8道小题,每小题4分,满分32分)1.若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A .正比例函数B .反比例函数C .一次函数D .不能确定2.反比例函数k y x =和正比例函数y mx =的图象如图.由此可以得到方程k mx x=的实数根为( ) A .2x =- B .1x =C .12x =,22x =-D .11x =,22x =-第2题图 第3题图 第4题图 第5题图A .12AE AC =B .12DE BC = C .13ADE ABC =△的周长△的周长D .13ADE ABC =△的面积△的面积 4.如上图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则ABC ∠的正切值是( )A .2B .5C .5D .125.如上图,四边形ABCD 为O ⊙的内接四边形,已知100BOD ∠=︒,则BCD ∠的度数为( )A .50°B .80°C .100°D .130°6.已知1sin cos 8αα⋅=,4590α︒<<︒,则cos sin αα-=( )A .2B .2-C .34D .2±7.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( )A .5000条B .2500条C .1750条D .1250条8.已知二次函数223y x x =-++,当2x ≥时,y 的取值范围是( )A .3y ≥B .3y ≤C .3y >D .3y <二、填空题(共7道小题,每小题4分,满分28分)9.如下图,在平面直角坐标系中,反比例函数()0k y x x=>的图象交矩形OABC 的边AB 于点D ,交边BC 于点E ,且2BE EC =.若四边形ODBE 的面积为6,则k = .第9题图 第11题图 第14题图 第15题图10.若()()222223100x y x y +-+-=,则22x y += .11.如上图,AD DF FB ==,DE FG BC ∥∥,则 S S S =ⅠⅡⅢ∶∶ . 12.已知α是锐角且3tan 4α=,则sin cos αα+= . 13.抛物线在223y x x =--在x 轴上截得的线段长度是 .14.如上图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则BAC ∠等于 度.15.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:0a b c ++<①;0a b c -+<②;20b a +<③;0abc >④,其中所有正确结论的序号是 .三、解答题(共六道小题,每小题10分,满分60分)16.(10分)若m 、n 满足2320m m +-==0,2320n n +-=,求m n n m+的值.17.(10分)如图,建筑物AB后有一座假山,其坡度为 1 i =,山坡上E 点处有一凉亭,测得假山坡脚C 与建筑物水平距离25BC =米,与凉亭距离20CE =米,某人从建筑物顶端测得E 点的俯角为45︒,求建筑物AB 的高.18.(10分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据(1)a = ,b = ,c = .并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在 组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.19.(10分)如图,在ABC △中,AB AC =,以AC 为直径的O ⊙交AB 于点D ,交BC 于点E .(1)求证:BE CE =;(2)若2BD =,3BE =,求AC 的长.20.(10分)如图,在ABC △中,AB AC =,点P 、D 分别是BC 、AC 边上的点,且APD B ∠=∠.(1)求证:AC CD CP BP ⋅=⋅;(2)若10AB =,12BC =,PD AB ∥,求BP 的长.21.(10分)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线212y x bx c =-++经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.参考答案16.解:∵m 2+3m ﹣2=0,n 2+3n ﹣2=0,∴当m=n 时,原式=1+1=2; ………………………………………………………3分当m ≠n 时,m 、n 可看作一元二次方程x 2+3x ﹣2=0的两不等根,∴m+n=﹣3,mn=﹣2,………………………………………………………………6分 ∴原式= ===﹣,…………………………………………9分∴的值为2或﹣.…………………………………………………………10分17.解:过点E 作EF ⊥BC 于点F ,过点E 作EN ⊥AB 于点N ,∵建筑物AB 后有一座假山,其坡度为i=1:,∴设EF=x ,则FC=x ,……………………………………………………………2分∵CE=20米,∴x 2+(x )2=400,…………………………………………………………………4分 解得:x=10,则FC=10m ,…………………………………………………………………………6分∵BC=25m ,∴BF=NE=(25+10)m ,)∴AB=AN+BN=NE+EF=10+25+10=(35+10)m ,……………………………9分答:建筑物AB 的高为(35+10)m .……………………………………………10分18.解:(1)a=36,b=0.30,c=120, ………………………………………………………3分 C 组的频数为120﹣18﹣36﹣24﹣12=30,补充图见右上图……………………………………5分(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C 小组内;…7分(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.………………10分3019.(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,………………………………………………………………2分∴AE⊥BC,……………………………………………………………………………………………3分而AB=AC,∴BE=CE;………………………………………………………………………………5分(2)连结DE,如图,∵BE=CE=3,∴BC=6,………………………………………………………………………………6分∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,……………………………………8分∴=,即=,∴BA=9,∴AC=BA=9.……………………………………………………10分20.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;……………………………………………………………………5分(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.………………………………………………………10分21.解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,……………………………………………2分解得:b=2,c=4,……………………………………………………………………………………4分则解析式为y=﹣x2+2x+4;…………………………………………………………………………5分(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),……………………7分则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.…………………………………………10分。
2015年全国初中数学联合竞赛试题及参考答案
2015年全国初中数学联合竞赛试题第一试(A )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c ac a b +++++=---( ) A. 0B. 3C. 6D. 92.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15 CD.4.已知O 为䝐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的瀹B 在反比例函数4(0)y x x=-<的图象上且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12B.2 C .1 D .25.已知实数x (y 满足关系式1xy x y --=,则22x y +的最小值为( )A.3-B.6-C .1 D.6+6.设n 是小于100的正整数且使2535n n +-是15的倍数,则符合条件的所有正整数n 的和是( ) A .285 B .350 C .540 D .635 二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.从三边长均为整数且周长为24的三角形中任取一个,它是直角三角形 的概率为 .9.已知锐角△ABC 的外心为O ,AO 交BC 于D ,E 、F 分别为△ABD 、 △ACD 的外心,若AB >AC ,EF =BC ,则∠C -∠B = .10.将数字1,2,3,…,34,35,36填在6×6的方格中,每个方格填一个数字,要求每行数字从左到右是从小到大的顺序,则第三列所填6个数字的和的最小值为 .第一试(B )一、选择题(每小题7分,共42分)1.设实数a ,b ,c 满足:3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( )A. 12B. 9C. 6D. 32.若抛物线2y x bx c =++与x 轴只有一个公共点,且过点A (m ,n ),B (m -8,n ),则n =( )A. 8B. 12C. 16D. 243.矩形ABCD 中,AD =5,AB =10,E 、F 分别为矩形外的两点,BE =DF =4,AF =CE =3,则EF =( ) A. B .15CD.4.已知实数x ,y 满足关系式223x xy y ++=,则2()x y -的最大值为( )A .3B .6C .9D .125.已知O 为坐标原点,位于第一象限的点A 在反比例函数1(0)y x x=>的图象上,位于第二象限的点B 在反比例函数4(0)y x x=-<的图象上,且OA ⊥OB ,则tan ∠ABO 的值为( ) A .12BC .1D .26.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是( ) A .784B .850C .1536D .1634二、填空题(每小题7分,共28分)7.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为 . 8.三边长均为整数且周长为24的三角形的个数为 .9.C 、D 两点在以AB 为直径的半圆周上,AD 平分∠BAC ,AB =20, AD=AC 的长为 .10.在圆周上按序摆放和为15的五个互不相等的正整数a ,b ,c ,d ,e ,使得ab +bc +cd +de +ea最小,则这个最小值为 .ABCD EF第二试(A )1.(20分)关于xx 有且仅有一个实数根,求实数m 的取值范围. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ; (2)如果BF DF CDBD AC-=,证明:MN =MD .3.(25分)设正整数m ,n 满足:关于x 的方程()()x m x n x m n ++=++至少有一个正整数解,证明:222()5m n mn +<.第二试(B )1.(20分)若正数a ,b 满足ab =1,求11112M a b=+++的最小值. 2.(25分)如图,圆内接四边形ABCD 的对角线AC 、BD 交于点E ,且AC ⊥BD ,AB =AC =BD . 过点D 作DF ⊥BD ,交BA 的延长线于点F ,∠BFD 的平分线分别交AD 、BD 于点M 、N . (1)证明:∠BAD =3∠DAC ;(2)如果MN =MD ,证明:BF =CD +DF .3.(25分)若关于x 的方程2343410x x k -+-=至少有一个正整数根,求满足条件的正整数k 的值.2015年全国初中数学联合竞赛试题参考答案第一试(A )1. 解:D. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 5. 解:B. 提示:设x y t +=,则由题设条件可知11xy x y t =++=+, ∴x ,y 是关于m 的一元二次方程210m tm t -++=的两个实数根, 于是有:24(1)0t t ∆=-+≥,解得2t ≥+2t ≤-又∵22222()22(1)(1)3x y x y xy t t t +=+-=-+=--,∴当2t =-1x y ==22x y +取得最小值,最小值为2(21)36--=-6. 解:D. 提示:∵2535n n +-是15的倍数, ∴25|(535)n n +-,∴5|3n ,∴5|n . 设5n m =(m 是正整数),则2222535125155120155(1)n n m m m m m +-=+-=++-.∵2535n n +-是15的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴5(31)155n k k =+=+或5(32)1510n k k =+=+,其中k 是非负整数.∴符合条件的所有正整数n 的和是(5203550658095)(102540557085)635++++++++++++=. 7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:112. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11,满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,其中,只有一组是直角三角形的三边长,∴所求概率为112. 9. 解:60°. 提示:作EM ⊥BC 于点M ,FN ⊥BC 于点N ,FP ⊥EM 于点P . ∵E 、F 分别为△ABD 、△ACD 的外心, ∴M 、N 分别为BD 、CD 的中点.又EF =BC ,∴PF =MN =12BC =12EF ,∴∠PEF =30°.又EF ⊥AD ,EM ⊥BC ,∴∠ADC =∠PEF =30°. 又∠ADC =∠B +∠BAD =∠B +12(180°-2∠C )=90°+∠B -∠C ,∴∠C -∠B =90°-∠ADC =60°.10. 解:63. 提示:设第三列所填6个数字按从小到大的顺序排列后依次为A ,B ,C ,D ,E ,F .∵A 所在行前面需要填两个比A 小的数字,∴A 不小于3; ∵B 所在行前面需要填两个比B 小的数字,且A 及A 所在行前面两个数字都比B 小,∴B 不小于6.同理可知:C 不小于9,D 不小于12,E 不小于15,F 不小于18.因此,第三列所填6个数字之和A +B +C +D +E +F ≥3+6+9+12+15+18=63.如图即为使得第三列所填6个数字之和取得最小值的一种填法(后三列的数字填法不唯一).ABCD E F G第一试(B )1. 解:B. 提示:∵3a b c ++=,2224a b c ++=,∴222222222444(2)(2)(2)222222a b b c c a c a b c a b c a b c a b +++---++=++=+++++------6()9a b c =+++=.2. 解:C. 提示:依题意,有22(8)(8)n m bm c m b m c =++=-+-+,于是可得82b m =-. ∵抛物线2y x bx c =++与x 轴只有一个公共点,∴240b c -=,∴221(4)4c b m ==-.因此222(82)(4)16n m bm c m m m m =++=+-+-=.3. 解:C. 提示:易知∠AFD =∠BEC =90°,△BEC ≌△DF A ,∴∠DAF =∠BCE . 延长F A ,EB 交于点G . ∵∠GAB =90°-∠DAF =∠ADF ,∠GBA =90°-∠CBE =∠BCE =∠DAF ,∴△BGA ∽△AFD ,且∠AGB =90°,∴AG =8,BG =6, ∴GF =11,GE =10,∴EF ==4. 解:D. 提示:设x y t -=,则x y t =+,代入题设等式得22()()3y t y t y y +++++=,整理得223330y ty t ++-=. 由判别式22(3)12(3)3t t ∆=--≥得t -≤22()12x y t -=≤. 5. 解:A. 提示:过点A 、B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足为C 、D . 由OA ⊥OB 得∠AOB =90°,于是可得△AOC ∽△OBD ,∴12OAABO OB∠===. 6. 解:D. 提示:∵2232n n --是6的倍数, ∴22|(232)n n --,∴2|3n ,∴2|n .设2n m =(m 是正整数),则2222232862662(1)n n m m m m m --=--=-+-. ∵2232n n --是6的倍数,∴21m -是3的倍数,∴31m k =+或32m k =+,其中k 是非负整数.∴2(31)62n k k =+=+或2(32)64n k k =+=+,其中k 是非负整数. ∴符合条件的所有正整数n 的和是(2814869298)(41016828894)1634++++++++++++=.7. 解:11. 提示:∵a ,b 是一元二次方程210x x --=的两根, ∴1ab =-,1a b +=,21a a =+,21b b =+, ∴332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.8. 解:12. 提示:设三角形的三边长为a ,b ,c (a b c ≥≥), 则324a a b c ≥++=,2()24a a b c <++=,∴812a ≤<,故a 的可能取值为8,9,10或11, 满足题意的数组(a ,b ,c )可以为: (8,8,8),(9,9,6),(9,8,7),(10,10,4),(10,9,5),(10,8,6), (10,7,7),(11,11,2),(11,10,3),(11,9,4),(11,8,5),(11,7,6). 共12组,∴三边长均为整数且周长为24的三角形的个数为12. 9. 解:4. 提示:连接OD 、OC ,作DE ⊥AB 于E ,OF ⊥AC 于F .∵AD 平分∠BAC ,∴∠DOB =2∠BAD =∠OAC .又OA =OD ,∴△AOF ≌△ODE ,∴OE =AF ,∴AC =2OF =2OE .设AC =2x ,则OE =AF =x . 在Rt △ODE中,由勾股定理得DE ==在Rt △ADE 中,AD 2=DE 2+AE 2,即222(100)(10)x x =-++,解得x =2.∴AC =2x =4.10. 解:37. 提示:和为15的五个互不相等的正整数只能是1,2,3,4,5.注意到五个数在圆周上是按序摆放的,且考虑的是和式ab bc cd de ea ++++,不妨设a =5.如果1和5的位置不相邻,不妨设c =1(如图2),此时的和式为155P b b d ed e =++++; 交换1和b 的位置后,得到如图3的摆法, 此时的和式为255P b bd ed e =++++.∵1255(5)(1)0P P b d bdd b -=+--=-->,∴12P P >.因此,交换1和b 的位置使得1和5相邻(如图3)以后,和式的值会变小. 如图3,如果d =2,此时的和式为35225P b b e e =++++;交换e 和2的位置以后,得到如图4的摆法,此时的和式为45210P b be e =++++. ∵342510(5)(2)0P P b e be b e -=+--=-->,∴34P P >. 因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 如果b =2,此时的和式为55225P d ed e =++++;交换e 和2的位置以后,得到如图5的摆法,此时的和式为65210P e ed d =++++. ∵5625104(2)0P P e e e -=+--=->,∴56P P >.因此,交换e 和2的位置使得2和5相邻以后和式的值会变小. 综上可知:1和2摆在5的两边(如图5)时,和式的值会变小.AB CD E F Gd d d de 图1 图2 图3 图4 图5当d =3,e =4时,和式的值为754126103P =++++=; 当d =4,e =3时,和式的值为853*******P =++++=. 因此,所求最小值为37.第二试(A )1. 解:将所给方程记为方程①,显然有2x m ≥且1x ≥.若0m <x ,此时方程①无解,不符合题意,故0m ≥.方程①变形得x两边平方后整理得2242x m +-=- 再平方,整理得228(2)(4)m x m -=-.显然,应该有02m ≤<,并且此时方程①只可能有解x =将x =1=-,化简整理得,于是有403m ≤≤,此时方程①有唯一解x =.综上所述,所求实数m 的取值范围为403m ≤≤. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD . 又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE ,∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC .(2)设∠DAC =α,则∠BAC =2α,∠BAD =3α,∠NDM =90°-α. 在FB 上截取FQ =FD ,连接QD ,则BQ =BF -FQ =BF -FD .又BF DF CD BD AC -=,∴BQ CD BD AC=. 又∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴∠QDB =∠DAC .又∵∠DBC =∠DAC ,∴∠QDB =∠DBC ,∴QD ∥BC ,∴∠FQD =∠ABC . 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =90°-α. 又FQ =FD ,∴∠BFD =2α.∵FN 平分∠BFD ,∴∠AFM =α,∴∠NMD =∠AMF =∠BAD -∠AFM =3α-α=2α, ∴∠MND =180°-∠NMD -∠NDM =90°-α=∠MDN ,∴MN =MD .3. 证明:方程即2(1)0x m n x mn m n ++-+--= ①,方程①的判别式222(1)4()()42()1()2()1m n mn m n m n mn m n m n m n ∆=+----=+-+++=-+++.不妨设m n ≥,由题设可知,整系数方程①至少有一个正整数解,∴∆应为完全平方数. 注意到222()2()1(1)4(1)m n m n m n n m n ∆=-+++=-++>-+,22()2()1(3)(488)m n m n m n m n ∆=-+++=-+--+,若4880m n -+>,即22m n >-,则2(3)m n ∆<-+,从而有22(1)(3)m n m n -+<∆<-+,故只可能2(2)m n ∆<-+, 即22()2()1(2)m n m n m n -+++=-+,整理得332m n =-, 这与m ,n 均为正整数矛盾.因此22m n ≤-,从而可得2m n <,∴2mn<. 又∵112m n >>,∴有1()(2)02m m n n --<,整理即得222()5m n mn +<.第二试(B )1. 解:∵1ab =,∴1b a=, ∴2111111211211211212321a aM a b a a a a a a a a =+=+=+=+-=-++++++++++. 设232a a N a++=,则22333N a a =++=+++当a .∴103N <≤=-111(32M N=-≥--=.因此,当a =2b =时,11112M a b=+++取得最小值2. 2. 证明:(1)在BE 上取一点P ,使得∠BAP =∠DAC , 则△BAP ≌△CAD ,∴AP =AD .又AE ⊥PD ,∴△ADE ≌△APE ,∴∠P AE =∠DAE , ∴∠P AE =∠BAP =∠DAC ,∴∠BAD =3∠DAC . (2)设∠DAC =α,则∠BAC =2α,∠BAD =3α. ∵AC ⊥BD ,∴∠NDM =90°-α.∵MN =MD ,∴∠MND =∠MDN =90°-α, ∴∠NMD =180°-∠MND -∠NDM =2α,∴∠AMF =2α, ∴∠AFM =∠BAD -∠AMF =3α-2α=α.FN 平分∠BFD ,∴∠BFD =2∠AFM =2α.在FB 上截取FQ =FD ,连接QD ,则∠FQD =90°-α. 又AB =AC ,∠BAC =2α,∴∠ABC =90°-α,∴∠FQD =∠ABC , ∴QD ∥BC ,∴∠QDB =∠DBC .又∵∠DBC =∠DAC ,∴∠QDB =∠DAC .又∵DB =AC ,∠QBD =∠DCA ,∴△QBD ∽△DCA ,∴BQ =CD , ∴BF =BQ +FQ =CD +DF .3. 解:设方程的两个根为x 1,x 2,且x 1为正整数, 则1234x x +=,12341x x k =-.由1234x x +=知2134x x =-,∴ x 2也是整数.由k 为正整数及12341x x k =-可知20x >,∴x 2是正整数. 注意到121212(1)(1)134(1)x x x x x x k ++=+++=+, ∴1217|(1)(1)x x ++,∴117|(1)x +或217|(1)x +.若117|(1)x +,则由112134x x x +≤+=知:1117x +=或1134x +=. 当1117x +=时,116x =,218x =,此时3411618k -=⨯,k 无整数解; 当1134x +=时,133x =,21x =,此时341331k -=⨯,解得k =1. 若217|(1)x +,同样可得k =1. ∴满足条件的正整数k =1.。
2015年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则
2015年四川初中数学联赛初赛试题参考答案及评分标准一、选择题(本题满分42分,每小题7分)1、A2、D3、A4、B5、C6、C 二、填空题(本题满分28分,每小题7分)7、238、32 9、720 10、75- x 三、(本大题满分20分)11、已知正数a ,b 满足b a b a +=-211,求3333ba ab +的值。
解:由已知条件有ab a b 222=-,即2=-b aa b . ································ 5分又422=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+b a a b b a a b ,0 a ,0 b 所以22=+baa b . ················································································ 10分 6222222=-⎪⎭⎫⎝⎛+=+b a a b b a a b . ································································ 15分 故21022223333=⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+b a a b b a ab b a a b b a a b . ···························· 20分 四、(本大题满分25分)12、四边形ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以边BC 为直径的半圆交于正方形内的一点P ,连结AP 交BC 于点Q .(1)求PC 的长度;(2)求QCBQ.解:(1)取BC 的中点O ,连结OD ,OP ,PC . 过P 点作AD EF //交CD ,AB 于E ,F 两点.因为PC DP =,OC OP =,所以DCO DPO ∆≅∆. ····························· 5分2522=+=DC OC DO 因为DHC ∆∽DCO ∆,所以DOCOCD CH =所以1=CH ,又PH CH =所以2=PC . ························································································· 10分 (2)222=-=CH CD DH ,又因为PC DO ⊥,所以由DPC ∆面积公式可以得到O554=⋅=CD DH PC PE . ········································································· 15分 在PDG Rt ∆中,由勾股定理得553=PG . 55=-=PE EF PF . ············································································ 20分 由AFP ∆∽ABQ ∆可得BQ AB FP AF =,则35553555=⨯=⋅=AFPFAB BQ所以21=QC BQ . ························································································ 25分 五、(本大题满分25分) 13、如图,一次函数623+-=x y 的图像与x 轴、y 轴分别交于A 、B 两点。
全国初中数学竞赛预选赛试题及参考答案湖北Word版
2015年全国初中数学竞赛预选赛试题及参考答案(湖北)(时间:120分钟满分:120分)一.选择题(每小题6分,共36分)1.如图,将Rt△ABC绕其直角顶点C按顺时针旋转90º后得到Rt△DEC,连接AD,若∠B=65º,则∠ADE=( ). A. 30º B. 25º C. 20º D. 15º第6题图第1题图MAabEAB DC2.有甲、乙、丙三个不透明布袋,里面都装有数量相同的玻璃球,这些球只有颜色不同.已知甲布袋中黑球占袋内总球数的14,乙布袋中没有黑球,丙布袋中黑球占袋内总球数的712.现将乙、丙布袋内的球全部倒入甲布袋中,再从甲布袋中任取一个球,则取出黑球的概率是().A.56B.512C.518D.7483.反比例函数kyx=的自变量x满足12≤x≤2,函数值y满足14≤y≤1,则k的值为().A.12B.12或 2 C.12或18D. 2或184是关于x的一元二次方程2()7a x b-=(0a≠)的两根,则ba的值为().A.18B. 8C. 2D.925.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,取向右为正方向;直线c、d与水平线垂直,以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数221y mx mx=++的图象如图,则下面结论正确的是().A. a为x轴,c为y轴B.a为x轴,d为y轴C. b为x轴,c为y轴D.b为x轴,d为y轴6. 如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于C,圆周上有另一个点D与点C分居直径AB的两侧,且使得MC=MD=AC.现有下列结论:(1)MD 与⊙O 相切; (2)四边形ACMD 是菱形; (3)AB =MO ; (4) ∠D =120º.其中正确的结论有( )个.A. 4 B. 3 C. 2 D. 1二.填空题(每小题6分,共36分)7. 若方程280x x m -+=有一个根是a ,方程280x x m +-=有一个根是-a ,则a = . 8. 如图所示为一个电路图,在该电路图上有四个开关A 、B 、C 、D 和一个灯泡○×,现在任意闭合其中两个开关,灯泡能够发光的概率为 .第8题图第9题图ADBC9. 如图为一个玉石饰品的示意图,与中心在同一平面上的A 、B 为外圆上的两点,且AB 与内圆相切于C 点,过C 作CD ⊥AB 交外圆于D ,且AB =24cm ,CD =6cm ,则外圆的直径是 cm . 10. 已知二次函数2(21)1y kx k x =+--的图象与x 轴交于1(,0)A x 、2(,0)B x ,1x <2x ,现有下列结论:①方程2(21)10kx k x +--=有两个不相等的实数根;②当x =-2时,y =1;③当x >2x时,y >0; ④AB =.其中正确结论的序号是 . 11.如图,在△ABC 中,AB =30cm ,AC =20cm ,以BC 为边作等边△BCD ,连接AD ,则AD 的最大值与最小值的和是 .第11ABCD12.如图,△AOB 中为等边三角形,点B 的坐标为(-1,0),过C (1,0)作直线l 交AO于D ,交AB 于E ,E 在反比例函数ky x=的图象上,且△ADE 的面积和△DOC 的面积相等,则k = .三.解答题(每小题12分,共48分)13.关于x 的一元二次方程2(2)20(0)kx k x k -++=≠. (1)求证:方程有两个实数根;(2)若方程的两个实数根都是整数,求正整数k 的值.14.如图是四张卡片A 、B 、C 、D 的正面图案,它们的背面都相同,现在将这四张卡片背面朝上洗匀,先摸出一张,记下正面的图案后放回,再次洗匀后又摸出一张. (1) 用树状图或列表法表示两次摸出的卡片的所有可能性; (2) 求摸出的两张卡片的正面图案都是中心对称图形的概率.A15. 如图,在Rt△ABC中,∠A=30º,∠ABC=90º,延长BC到点O,使得OC=BC,以点O为圆心,以OC为半径作⊙O交AC的延长线于D,连接BD.(1)求证:BD与⊙O相切;(2)若AB= 3 ,求图中阴影部分的面积(结果保留π).ACOBD16. 已知二次函数的图象与x轴交于A、B,与y轴交于C,且OC=OB=2OA=2.(1)求此二次函数的解析式及顶点D的坐标;(2)过BD上一点E作EF⊥x轴于F,当E在线段BD上运动时(不与B、D点重合),设EF =t,四边形ACEF的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点G,使得△ACG为直角三角形,若存在,求出点G 的坐标;若不存在,说明理由.xBEAD OyC参考答案(原文在不影响题意时局部有编辑)题号 12345678 91011 12 答案C C AB D A 0,8 1/230 ①②60-3 3 /1613.(1) 2(2)k ∆=-≥0; (2) 12(2)(1)01,kx x x x k--=⇒==,1,2k =±±,1,2=k 14.(1) …, (2) 14,(说明:本题官方解答是1/16); 15.(1)…,(2) 36π-16.(1) 2192,(,)24y x x D =---;(2) 21193,(0)334S t t t =-++<<;(3)125735(,),(,)2424G G -第11题 将∆ABC 绕B 点顺时针旋转60º,得∆A'DC ,连A'A ,在∆A'AD 中,-A'D AA'≤AD ≤+A'D AA'(取等号时是A 、A ‘、D 三点共线), -AB AC ≤AD ≤+AB AC , 即 10=30-20≤PC ≤30+20=50.12. 应用等积转换,也较基础,BOD COD ADE S S S ∆∆∆==,BCE AOB S S ∆∆=,设(,)E a b ,则22312=b ,则3=b ,又13()2-A ,故E 为AB 的中点,33(4-E ,即可得k .15.解:(1)连接OD ,∵30A ∠=,90ABC ∠=, ∴60OCD ACB ∠=∠=,∵OC OD =,∴OCD ∆为等边三角形, ∴CD OC BC ==,∴1302CDB CBD OCD ∠=∠=∠=,∴603090ODB ∠=+=,∴OD BD ⊥, ∵OD 为半径,∴BD 与O 相切.(2)∵30A ∠=,30CDB ∠=,90ABC ∠=,AB =∴BD =2AC BC =,∴2222BC BC +=(), ∴1BC =, ∴1OD =,∴阴影部分的面积为21601123606OBD OCD S S ∆ππ-=-⨯π⨯扇形.16.解:(1)由题意(1,0)A -,(2,0)B ,(0,2)C -,设二次函数的解析式为(1)(2)y a x x =+-,则2(01)(02)a -=+-,解得1a =, ∴22y x x =--,顶点为19(,)24D -.(2)点(2,0)B 、19(,)24D -所在的直线方程为332y x =-,∴2(2,)3E t t --,其中904t <<,∴211211=12+(2)(2)322333AOC OCEF S S S t t t t ∆=+⨯⨯⨯+⨯-=-++梯形,即211333S t t =-++,其中自变量t 的取值范围是904t <<.(3)存在点157(,)24G 和235(,)24G -使得ACG ∆为直角三角形.设点G 的坐标为2(,2)G m m m --,则2222()365AG m m m m =--++,2222()CG m m m =+-,2AC ①若AG 为斜边,则222AG CG AC =+, 即222222()365()5m m m m m m m --++=+-+, 解得0m =(舍),或32m =,此时点35(,)24G -; ②若CG 为斜边,则222CG AG AC =+, 即222222()()3655m m m m m m m +-=--+++, 解得1m =-(舍),或52m =,此时点57(,)24G ; ③若AC 为斜边,则222AG CG AC +=, 即222222()365()5m m m m m m m --++++-=,解得0m=(舍),或1m=-(舍),或m无解,此时点G不存在,综上,存在点157 (,) 24G和235 (,) 24G-使得ACG∆为直角三角形.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
2015年世界少年奥林匹克数学九年级竞赛选拔赛地方海选赛试题答案及评分
九年级A一、填空题(每题5分,共计50分)1、75°2、1 3, 22014=4056196 4、116 5、6、, )7、258、310 9、20 10、75° 二、计算题(每题6分,共计12分)11、解: ∵f (2015) = =f () = =∴f (2015) +f ()=1同理f (2014) +f () = 1……f (2) +f () = 1 f (1)= ∴原式 =1×2014 += 201412、解: ∵= -2∴= - 即 + = - ---- ①同理 + = 5 --- ②++ =- --- ③由① + ② 得 ++=29 --- ④由④ - ③ 得= 314∴ + = 629 ∴== -296 三、解答题(第13题至15题,每题8分,第16题10分,第17题12分,第18题12分,共计58分)13、解: 由 (+) = 3(+5)..................1分化简得a -2 -15b = 0; .............................1分因式分解得(-5)(+) = 0 ,......................1分 由于+≠ 0.................................1分 ∴-5= 0....................................1分∴a = 25b .......................................1分原式 == 2............................2分14、解:由=-两边平方得a = m +n -2.......................2分∵a ,m ,n 为自然数...............................1分 ∴..................................1分又∵=->0.....................1分∴m > n ........................................1分 ∴ 或523===a n m ...........................2分15、解:原方程整理为:x 2 -2(2m -3)x +3m 2 -2m +4k =0..........................1分∴△=b 2-4ac = 4(2m -3)2 - 4(3m 2 -2m +4k ).........2分=4(m 2 -6m +4 -4k )..............................1分∵原方程的根为有理数..........................1分∴△应为关于m 的完全平方式.....................1分∴二次三项式 m 2 -6m +4 -4k 的△必定为零即36-4(4 -4k ) = 0 ∴k = - ....................2分16、①若∠MAN = 60° 可证△ABM ≌△ACN ,得△ANM 为等边三角形 ....................................................4分②若∠AMN = 60°,过m 做AC 平行线交AB 于P ,.........1分 可得△BPM 为等边三角形 B P = BM .....................1分又 BA =BC 得 P A = MC ................................1分可证∠P AM = ∠NMC ,可证△APM ≌△MCN .................2分AM = MN 可得△AMN 为等边三角形......................1分17、解:设整数a ≥b ≥c c ≥2.............................1分若c ≥5 ,则≤≤≤...............................1分由abc =2(a -1)(b -1) (c -1),可得....................1分=(1-)(1-) (1-) ≥3矛盾...................1分故c 只可能取2,3,4.................................1分当c =2时,ab =(a -1)(b -1)有a +b =1,又a ≥b ≥2,故无解。
2015年福建省初中数学竞赛试题(附答案)
2015年全国初中数学竞赛试题班级 姓名 成绩一、选择题(共5小题,每小题7分,共35分)。
每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知12a =,则3222621a a a a ++=-( )A .BC .2D 22.将编号为1,2,3,4,5,6的6个小球放入3个不同的盒子内,每个盒子放2个球。
则编号为1,2的小球放入同一个盒子内的概率为( )A .215B .15C .25D .353.已知圆O 是边长为ABC 的内切圆,圆1O 圆O 外切,且与ABC △的CA 边、CB 边相切,则圆1O 的面积为( )A .πB .2πC .3πD .4π4.如图,P 为等腰三角形ABC 内一点,过P 分别作三条边BC 、CA 、AB的垂线,垂足分别为D 、E 、F 。
已知10AB AC ==,12BC =,且133PD PE PF =∶∶∶∶。
则四边形PDCE 的面积为( )A .10B .15C .403D .5035.记()S n 为非负整数n 的各个数位上的数字之和,如(0)0S =,(1)1S =,(1995)199524S =+++=。
则(1)(2)(3)(2015)S S S S ++++=L ( )A .28097B .28098C .28077D .28087二、填空题(共5小题,每小题7分,共35分)6.已知直线23y x =+与抛物线2231y x x =-+交于11()A x y ,、22()B x y ,两点,则121111x x +=++。
7.如图,已知正方形ABCD 的边长为1,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒。
则CE F △的周长为。
8.若13x ≤≤时,二次函数2234y x ax =-+的最小值为23-,则a =。
9.已知正整数p ,q=()p q ,的个数是。
2015年全国初中数学联合竞赛初二第2试(A)(word版含参考答案)
(考试时间:90分钟,总分:70分)一、(本题20分)求所有的两位数A ,使得2A 的末两位数字构成的数恰好为A .二、(本题25分)在四边形ABCD 中,AC =4,CD =3,∠ADB =∠ABD =∠ACD =45°,求BC .三、(本题25分)已知实数a ,b ,c 满足条件0)()()(222=-+-+-b a c a c b c b a .求代数式ba c a cbc b a -+-+-的值.参考答案一、解:设A =10a +b ,其中a ,b 均为整数且1≤a ≤9,0≤b ≤9,则b b b a a b a b a A A -+-+=+-+=-2222)12(10100)10()10(由题意可知,A A -2的末两位数字均为0所以)1(2-=-b b b b 必为10的倍数,验证可知:只可能b =5或6或0当b =5时,)2(101001002090100222a a a a a A A -++=++=-,只可能a =2,此时A =25 当b =6时,)3(1010010030110100222a a a a a A A +++=++=-,只可能a =7,此时A =76 当b =0时,a a A A 1010022-=-,只可能a =0,不符合,舍去综上所述,符合要求的两位数为25和76.二、解:∵∠ABD =∠ACD =45°∴A 、B 、C 、D 四点共圆设AD =AB =x ,则x BD 2=,由托勒密定理得BDAC CD AB BC AD ⋅=⋅+⋅即x x BC x 243⋅=+⋅ ∴324-=BC三、解:+-+-+-=-+-+--+-+-222)()()()111)((b a c a c b c b a b a a c c b b a c a c b c b a )11()11()11(ac c b b a c b a c b a c b b a a c c b a -+-⋅-+-+-⋅-+-+-⋅- 0))()(()())()(()())()(()(=----+----+----=b a a c c b a b c b a a c c b c a b b a a c c b b c a ① 显然a ,b ,c 互不相等,所以 )111)()()((b a a c c b a c c b b a -+-+---- ))(())(())((a c c b c b b a a c b a --+--+--=ac c ab bc bc b ac ab ab bc a ac +--++--++--=222[]0)()()(21222222≠-+-+--=+++---=a c c b b a ac bc ab c b a 0111≠-+-+-∴ba a c cb 综合①式得0=-+-+-ba c a cbc b a .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年宁县三中初中数学竞赛选苗赛试卷
班级: 姓名:
题号 一 二 三 总分 21 22 23 24 25 得分
一、单选题(每题3分,共36分)
1、与数轴上的点一一对应的数是( )
A 、整数
B 、有理数
C 、无理数
D 、实数
2
、一块矩形木板,截去一块三角板后(只切一刀)余料上角的个数是(
) A 、5 B 、3 C 、3或5 D 、3,4或5
3、若m,n 为实数,则代数式n m n m ++-2)(+|n
m
|的值( )
A 、大于0
B 、不小于0
C 、小于0
D 、等于0
4、若两圆的半径分别为3和5,圆心距为x ,且2)3(-x =x-3,|x-4|=4-x,则两圆的公切线共有( )
A 、1条
B 、2条
C 、3条
D 、4条
5、已知关于x 的不等式(1-a )x>2的解集为x<a
-12
,则a 的取值范围是( )
A 、a>0
B 、a>1
C 、a<0
D 、a<1
6、若实数a,b 满足a 2-8a+5=0,b 2-8b+5=0则代数式11--a b +1
1
--b a 的值为( )
A 、-20
B 、2
C 、2或-20
D 、2或20 7、方程x 2+3x-6=0与x 2-6x+3=0所有根的乘积是( ) A 、-18 B 、18 C 、-3 D 、3 8、在(1)圆、(2)等腰梯形、(3)正方形、(4)正三角形这四种图形中,既是轴对称图形又是中心对称图形的是( )
A 、(1)(4)
B 、(1)(2)(3)
C 、(1)(3)
D 、(1)(3)(4) 9、两圆的半径分别是R 和r (R>r ),圆心距为d ,若关于x 的方程x 2—2rx+(R —d)2=0有相等的两实根,则两圆的位置关系是( )
A 、内切
B 、外切
C 、相交
D 、相切 10、二次函数y=ax 2+bx+c 的图象如图所示,则a,b,c 的大小关系是( )
A 、a>b>c
B 、a>c>b
C 、a>b=c
D 、不能确定
11、半径为5、25的两圆相交且公共弦长为8,则圆心距是( )
A 、5
B 、6
C 、1
D 、1或5
12、如图,P ,Q 为双曲线y=x
2
上的两点
Rt △POM 的面积为S 1,Rt △QON 的面积为S 2,则S 1与S 2之间的关系是( )
A 、S 1=2S 2
B 、S 1+S 2<2
C 、S 1=S 2=1
D 、S 1+S 2>2
二、填空题(每空3分,共24分)
13、已知a 是正数,且a -a 2=1,则2a -24
a
= 。
14、已知,实数m 満足m m m =-+-20102009,则
m -20092
=______. 15、如图,大半圆的弦AB 与小半圆相切,且AB ∥CD ,AB=4。
则阴影部分的面积是__________________。
16、在△ABC 中,AD 是中线,
且AB =3,AC =5 ,AD =2,则BC = 17、已知, a+d 2=2005, b+d 2=2006, c+d 2=2007,且
abc=4,则
c
b a ab
c ac b bc a 111---++=_____________________。
18、用长为8米的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么窗户的最大透光面积是 。
19、如果圆柱母线长为3cm ,侧面积为12лcm 2,那么圆柱的底面半径是 。
20、为了调查学生的身体状况,对某校的毕业生进行了体检,在前50名学生中有49名是合格的,以后每8名中有7名是合格的,且该校毕业生体检合格率在90%以上,则该校毕业生人数最多有 名。
三、解答下列各题(共40分)
21、(5分)已知a >0,b a <0 化简2
)2(32
6---+--a b b a
O 1O
D
C B A
22、(5分)若x,y为正整数,且xy+x+y=23,x2y+xy2=120。
求x2+y2的值.
23、如图,△ABC中,∠B=900。
O是AB上的一点,以O为圆心OB为半径的圆交AB于点E,与AC相切于点D,若AD=2,AE=1。
求CD的长。
(8分)
24、(10分)已知关于x的方程x2—(3k+1)x+2k2+2k=0。
(1)求证:无论k取何实数值方程总有实数根;
(2)若等腰三角形△ABC的一边长a=6,另两边长b,c恰好是此方程的两根,求△ABC 的周长。
25、(12分)已知点M(a,b)第一象限,半径为r的圆交x轴于A、B两点,交y轴于
C、D两点,且点M在直线y=x—2 上,点A、B分圆M的弧长之比为1:3,CD=2。
(1)求证:r=2b (2)求过M、A、B三点的抛物线的解析式。