浙江省历年空间几何整理

合集下载

浙江省高考数学二轮专题复习 第12课时 空间几何体课件 理

浙江省高考数学二轮专题复习 第12课时 空间几何体课件 理

【例3】(2010·浙江嘉兴一中一模)在棱柱ABC-A1B1C1 中AB1∩A1B=E,F为B1C1的中点,其直观图和三视图 如下:
(1)求证:EF⊥平面A1BC; (2)求A1C与平面A1B1BA所成角的余弦值.
本题主要是通过三视图得到直观图中有关线 段的长度和位置关系,从而求出线面角.
(1)由三视图知,侧棱CC1⊥平面ABC, AC=CC1=BC=a,AC⊥BC,所以CC1⊥BC,
侧 棱 A A1 平 面 A B C, 所 以 平 面 A B C 平 面 A A1B1B, 所 以 C M 平 面 A A1B1B, 所 以 C A1M 就 是 A1C 与 平 面 A1B1B A所 成 角 的 平 面 角 .
因 为 A C B C a, A C B C, 故 C M 2 a. 2
方法1:(1)如图所示,因为EH=BG=2=EB,所以四边 形BEHG为正方形,所以BH⊥EG.又DH⊥EF,且平 面AEFD⊥平面EBCF,则有DH⊥平面EBCF,所以 DH⊥EG,又DH∩BH=H,因此EG⊥平面BDH.
(2)取DC的中点为K,AB的中点为M,连接KM, FK,EM,则四边形FKME为矩形. 因为EM⊥AB,所以EM⊥平面ABCD, 而FK∥EM,所以FK⊥平面ABCD, 因此可得平面FDC⊥平面ABCD, 则二面角B-DC-F的余弦值为0. 方法2:(1)连接HG,由已知条件知四边形HGBE为正 方形,则可得EG⊥HB,① 又由平面AEFD⊥平面EBCF,AE⊥FE,且DH∥AE, 则DH⊥平面EBCF,所以DH⊥EG,② 由①②知EG⊥平面BDH.
【变式训练】(2011·3月台州中学模拟)BC是Rt△ABC的
斜边,AP⊥平面ABC,PD⊥BC于D点,则图中直角三

浙江省宁波市高考数学真题分类汇编专题16:空间几何

浙江省宁波市高考数学真题分类汇编专题16:空间几何

浙江省宁波市高考数学真题分类汇编专题16:空间几何姓名:________ 班级:________ 成绩:________一、解答题 (共12题;共100分)1. (10分)(2018·榆社模拟) 如图,在各棱长均为2的正三棱柱中,,分别为棱与的中点,,为线段上的动点,其中,更靠近,且 .(1)证明:平面;(2)若与平面所成角的正弦值为,求异面直线与所成角的余弦值.2. (10分) (2018高三下·滨海模拟) 如图,在四棱锥中,底面的边长是的正方形,,,为上的点,且平面 .(1)求证:;(2)求证:平面平面;(3)求直线与平面所成角的正弦值.3. (5分) (2016高一上·南山期末) 已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM 折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:BM⊥平面ADM;(Ⅱ)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.4. (5分) (2019高三上·郑州期中) 如图,在四棱锥中,平面底面,其中底面为等腰梯形,,,,,为的中点.(1)证明:平面;(2)求二面角的余弦值.5. (10分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB= ,AD=1,AB=2,BC=3.(Ⅰ)求证:平面SAD⊥平面SBC;(Ⅱ)求平面SCD与底面ABCD所成二面角的余弦值.6. (10分) (2017高二上·长春期末) 如图,在三棱锥中,平面,,,分别在线段上,,,是的中点.(1)证明:平面;(2)若二面角的大小为,求 .7. (10分)如图,在圆锥PO中,已知PO= ,⊙O 的直径AB=2,C是弧的中点,D为AC的中点.(1)证明:AC⊥平面POD;(2)求二面角B﹣PA﹣C的余弦值.8. (10分) (2016高二上·温州期中) 如图,已知矩形ABCD所在平面与等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M为线段AE的中点.(Ⅰ)证明:BM⊥平面AEC;(Ⅱ)求MC与平面DEC所成的角的余弦值.9. (5分)(2017·兰州模拟) 在四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=3,AD=2 ,∠ABC=45°,P点在底面ABCD内的射影E在线段AB上,且PE=2,BE=2EA,F为AD的中点,M在线段CD上,且CM=λCD.(Ⅰ)当λ= 时,证明:平面PFM⊥平面PAB;(Ⅱ)当平面PAM与平面ABCD所成的二面角的正弦值为时,求四棱锥P﹣ABCM的体积.10. (5分) (2019高一上·吉林月考) 已知正方体的棱长为,点、、分别为棱、、的中点.(1)求四面体的体积;(2)求二面角平面角的正切值.11. (10分) (2018高一上·湘东月考) 如图,在三棱柱中,,底面三角形是边长为2的等边三角形,为的中点.(1)求证:;(2)若直线与平面所成的角为,求三棱柱的体积.12. (10分) (2016高二下·黑龙江开学考) 在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2.(Ⅰ)求证:AD1⊥B1C;(Ⅱ)求二面角A1﹣BD﹣C1的正弦值.参考答案一、解答题 (共12题;共100分)1-1、1-2、2-1、2-2、2-3、3-1、4-1、4-2、5-1、6-1、6-2、7-1、7-2、8-1、10-1、10-2、11-1、11-2、12-1、。

浙江高一立体几何知识点

浙江高一立体几何知识点

浙江高一立体几何知识点高一立体几何知识点立体几何是数学中的一个重要分支,研究对象是三维空间中的几何图形。

在高一阶段,学生开始接触立体几何的基本概念和性质,为以后学习立体几何的深入知识打下基础。

本文将从平面与空间的关系、立体几何的基本概念、常见立体几何体的性质等方面介绍浙江高一立体几何的知识点。

一、平面与空间的关系在几何学中,平面与空间的关系是理解立体几何的基础。

平面是二维的,只有长度和宽度两个维度;而空间是三维的,具有长度、宽度和高度三个维度。

在立体几何中,平面可以被看作是空间的截面。

平面和空间的关系体现在各种几何体的性质中,比如平行、垂直、共面等。

二、立体几何的基本概念浙江高一立体几何的基本概念包括点、线、面、立体几何体等。

点是几何中最基本的概念,它没有大小和方向,只有位置。

线是点的集合,具有长度和方向。

面是线的集合,由无数个点和线构成,具有长度和宽度。

立体几何体是由多个面所围成的实体,比如正方体、长方体、圆柱体、圆锥体等。

每个立体几何体都有自己独特的性质和特点,学生需要熟悉它们的名称和基本性质。

三、常见立体几何体的性质1. 正方体:正方体是六个正方形所围成的立体几何体。

它的特点是六个面都相等且互相平行,每个面上的边长相等。

2. 长方体:长方体是六个矩形所围成的立体几何体。

它的特点是六个面都相等且互相平行,相对的面上的边长相等。

3. 圆柱体:圆柱体是由两个平行的圆底面和连接它们的侧面所围成的立体几何体。

它的特点是两个底面相等且平行,侧面是矩形。

4. 圆锥体:圆锥体是由一个底面和连接它与底面的侧面所围成的立体几何体。

它的特点是底面为圆形,侧面是由顶点到底面上各点的线段。

5. 球体:球体是所有点到球心的距离相等的立体几何体。

它的特点是表面光滑且没有面的边界。

四、立体几何的计算在立体几何中,计算各种几何体的体积和表面积是基本的应用。

计算体积和表面积需要根据不同几何体的性质和公式进行。

1. 体积:体积是立体几何体所包围的三维空间的容积大小。

浙江版高考数学一轮复习专题空间几何体的结构及其三视图和直观图讲

浙江版高考数学一轮复习专题空间几何体的结构及其三视图和直观图讲

第01节空间几何体的结构及其三视图和直观图【考纲解读】年考查三视图、几何体1与立体几何数学应用的【知识清单】1.空间几何体的结构特征一、多面体的结构特征二、旋转体的形成三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.对点练习:有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1 B.2 C.3 D.4【答案】A2空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.对点练习:【2017年福建省数学基地校高三复习试卷】一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( )【答案】D3.空间几何体的三视图三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.对点练习:【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)(B)(C)(D)2【答案】B【解析】【考点深度剖析】三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征.【重点难点突破】考点1:空间几何体的结构特征【1-1】如图几何体中是棱柱的有( )A.1个 B.2个 C.3个 D.4个【答案】C【1-2】下列命题中正确的有__________.①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;②存在一个四个侧面都是直角三角形的四棱锥;③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;④圆台的任意两条母线所在直线必相交;【答案】②④【解析】①不正确,因为不能保证等腰梯形的各个腰延长后交与一点.②如右图的四棱锥,底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形,故②正确;③如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形;故③错误④根据圆台的定义和性质可知,命题④正确.所以答案为②④【领悟技法】系或增加线、面等基本元素,然后再依据题意判定.三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决.【触类旁通】【变式1】一个棱柱是正四棱柱的条件是( ).A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D .每个侧面都是全等矩形的四棱柱 【答案】C【解析】 A ,B 两选项中侧棱与底面不一定垂直,D 选项中底面四边形不一定为正方形,故选C.【变式2】【2018届云南省名校月考一】已知长方体1111ABCD A B C D 的所有顶点在同一个球面上,若球心到过A 点的三条棱所在直线的距离分别是__________.考点2 空间几何体的直观图【2-1】利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号). ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 【答案】①②④【解析】①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.【2-2】在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在xOy 坐标系中,四边形ABCO 为________,面积为________ cm 2.【答案】矩形 8【领悟技法】按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=4S 原图形,S 原图形=S 直观图. 【触类旁通】【变式1】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+B. 12+C. 22+ D.1【答案】A【解析】由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为1+1, 1+2的直角梯形. 所以面积S =12(12+故选A.【变式2】如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形【答案】C【解析】将直观图还原得▱OABC ,如图, ∵O ′D ′=2O ′C ′=2 2 (cm),OD =2O ′D ′=4 2 (cm),C ′D ′=O ′C ′=2 (cm),∴CD =2 (cm), OC =CD 2+OD 2=22+422=6 (cm),OA =O ′A ′=6 (cm)=OC ,故原图形为菱形.综合点评:解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.考点3 空间几何体的三视图【3-1】【2018届河南省新乡市第一中学高三8月月考】一几何体的直观图如右图,下列给出的四个俯视图中正确的是()【答案】B【3-2】【江西卷】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )【答案】(1)D (2)D【解析】 (1)球、正方体的三视图形状都相同,大小均相等,首先排除选项A和C.对于如图所示三棱锥OABC,当OA、OB、OC两两垂直且OA=OB=OC时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同,故答案选D.(2)如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.【3-3】【2018届广东省广州市海珠区高三综合测试一】如图,点,M N 分别是正方体1111ABCD A B C D 的棱1111,A B A D 的中点,用过点,,A M N 和点1,,D N C 的两个截面截去正方体的两个角后得到的几何体的正(主)视图、侧(左)视图、俯视图依次为( )A. ①③④B. ②④③C. ①②③D. ②③④ 【答案】D【领悟技法】三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.【触类旁通】【变式1】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )【答案】C【变式2】如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).【答案】D【变式3】【武汉市部分学校2016 届高三调研】)一个简单几何体的正视图、侧视图如右图所示,则其俯视图不可能为(.....).①长方形;②正方形;③圆;④椭圆.中的A.①②B.②③C.③④D.①④【答案】B【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.综合点评:三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.【易错试题常警惕】易错典例:一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.【错解】①②⑤【错因】忽视几何体的不同放置对三视图的影响,漏选③.【正解】①三棱锥的主视图是三角形;②当四棱锥的底面是四边形放置时,其主视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的主视图是三角形;④对于四棱柱,不论怎样放置,其主视图都不可能是三角形;⑤当圆锥的底面水平放置时,其主视图是三角形;⑥圆柱不论怎样放置,其主视图也不可能是三角形.故正确答案为①②③⑤.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.在解答三视图、直观图问题中,主要是通过图形的恰当转化,明确几何元素的数量关系,进行准确的计算.如:【典例】【2017届河北省石家庄市二模】如图是一个底面半径为1的圆柱被平面截开所得的几ABB A为何体,截面与底面所成的角为45 ,过圆柱的轴的平面截该几何体所得的四边形'' AA将其侧面剪开,其侧面展开图形状大致为()矩形,若沿'A. B.C. D.【答案】A。

高中数学人教A版(浙江专版)必修模块复习精要复习课(一) 空间几何体及点、线、面的位置关系含解析

高中数学人教A版(浙江专版)必修模块复习精要复习课(一) 空间几何体及点、线、面的位置关系含解析
(2)空间几何体的三视图的考查主要有两个方面:一是由几何体考查三视图、二是由三视 图还原几何体后求表面积与体积,题型多为选择题、填空题,主要考查空间想象能力,属低 档题.
[考点精要]
1.三视图的画法规则 (1)正、俯视图都反映了物体的长度——“长对正”; (2)正、侧视图都反映了物体的高度——“高平齐”; (3)侧、俯视图都反映了物体的宽度——“宽相等”. 2.表面积 (1)多面体的表面积:多面体的各个面都是平面,表面积是各面面积之和. (2)旋转体的表面积: ①S 圆柱=2πrl+2πr2; ②S 圆锥=πrl+πr2; ③S 圆台=π(R+r)l+πr2+πR2. 3.体积 (1)柱体:V 柱体=Sh(S 为底面面积,h 为高).
ABCDA 1B C1 1D 1中的四面体 ACB D1 ;1 ②错误,因为球的直径必过球心;③错误,必须是相 邻的两个侧面.
(2)由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为 r,周长为 c,圆锥
母线长为 l,圆柱高为 h.由图得 r=2,c=2πr=4π,h=4,由勾股定理得:l= 22+ 2 3 2= 1
= 11,则球的表面积为( )
A.36π
B.64π
C.100π
D.144π
解析:选 A 三棱锥 ABCD 的三条侧棱两两互相垂直,所以把它扩展为长方体,它和三
棱锥 ABCD 的外接球是同一个,且体对角线的长为球的直径,若设球的半径为 R,则 2R=
32+42+ 11 2=6,故 R=3,∴外接球的表面积 S=4πR2=36π,故选 A.
解析:选 A 该几何体是由圆柱切割得到的,由俯视图可知正视方向和侧视方向,可进 一步画出正视图和侧视图,如图所示,故选 A.
3.一个几何体的三视图如图所示,则该几何体的表面积 S 为________.

浙江省历年高考立体几何大题总汇

浙江省历年高考立体几何大题总汇

浙江省历年高考立体几何大题总汇(题目及答案)(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.(本题满分15分)如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形。

,,E F O 分别为,,PA PB PC 的中点,16,10AC PA PC ===。

(I ) 设C 是OC 的中点,证明://PC 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离。

2.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP=m ,(Ⅰ)试确定m ,使得直线AP 与平面BDB 1D 1所成角的正切值为32; (Ⅱ)在线段A 1C 1上是否存在一个定点Q ,使得对任意的m ,D 1Q 在平面APD 1上的射影垂直于AP ,并证明你的结论。

3. 如图甲,△ABC 是边长为6的等边三角形,E ,D 分别为AB 、AC 靠近B 、C的三等分点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AEDxyz沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。

(I )求证BC ⊥平面AFG ;(II )求二面角B -AE -D 的余弦值..4在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥; (2)求CM 与平面CDE 所成的角5. 如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,3AD =2EF =.EMACBDD(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为606. 如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,AE=EB=AF=.432=FD 沿直线EF 将AEF ∆翻折成,'EF A ∆使平面⊥EF A '平面BEF.(I )求二面角C FD A --'的余弦值;(II )点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C与'A 重合,求线段FM 的长.7. 如图,在三棱锥P-ABC 中,AB =AC ,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角若存在,求出AM 的长;若不存在,请说明理由。

初三数学空间图形知识精讲浙江试题

初三数学空间图形知识精讲浙江试题

初三数学空间图形知识精讲一. 本周教学内容:空间图形二. 重点、难点:1. 理解平面的意义,理解平面的性质〔不在同一条直线上的三点确定一个平面〕,会表示平面。

2. 理解线面平行、线面垂直、面面平行、面面垂直的断定方法并能作一些简单的应用。

3. 会画程度放置的直观图,如长方体、立方体、正三棱柱、正三棱锥的直观图。

4. 能记住圆柱、圆锥、圆台的有关概念,并能应用这些概念及知识进展判断、计算、作图。

5. 掌握圆柱、圆锥、圆台的侧面积、外表积公式,应用这些公式,发挥空间想像才能,运用“数形结合〞的思想方法,进展简单的计算。

几个重要计算公式:圆柱:侧面积S ch rh ==2π;外表积()S ch S r h r =+=+22π其中h l =圆锥:侧面积S rl =π;外表积()S r l r =+π,侧面展开图圆心角θ=⋅︒r l 360 其中l r h 222=+圆台:侧面积()S R r l =+π;外表积()S Rl rl r R =+++π22侧面展开图扇环的圆心角θ=-⋅︒R r l360 其中()l R r h 222=-+【典型例题】例1. 判断以下说法是否正确,错的请改正。

〔1〕在同一平面内垂直于同一条直线的两条直线平行;〔2〕垂直于同一条直线的两条直线平行;〔3〕假如平面α内有两条直线和平面β平行,那么α∥β;〔4〕假如直线m 与平面α上的一条直线平行,那么m ∥α;〔5〕假如直线l 与平面α内的两条直线垂直,那么l ⊥α。

解:〔1〕对。

平行线的其中一条断定;〔2〕错。

同〔1〕比照缺少“在同一平面内〞这一条件,平面几何中的平行线断定公理在空间图形中不适用,可举反例证明;〔3〕错。

应改为“假如平面α内有两条相交直线都和平面β平行,那么α∥β〞; 〔4〕错;应改为“假如直线m 不在平面α内且与平面α上的一条直线平行,那么m ∥α〞;〔5〕错。

应改为“假如直线l 与平面α内的两条相交直线垂直,那么l ⊥α〞。

浙江职高高二数学空间几何知识点及典型习题

浙江职高高二数学空间几何知识点及典型习题

常考知识点及相应习题汇总一、棱锥1、正三棱锥定义:正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。

性质:1 .底面是等边三角形。

2.侧面是三个全等的等腰三角形。

3.极点在底面的射影是底面三角形的中心(也是重心、垂心、外心、心里)。

4. 常结构以下四个直角三角形(见图):说明:上述直角三角形集中了正三棱锥几乎全部元素。

在正三棱锥计算题中,经常取上述直角三角形。

其本质是,不单使空间问题平面化,并且使平面问题三角化,还使已知元素与未知元素集中于一个直角三角形中,利于解出。

练习 1:1、三棱锥 A—BCD 的棱长全相等 , E 是 AD 中点 , 则直线 CE与直线 BD 所成角的余弦值为 ( )(A)36 (B)32(C)336(D)122、正三棱锥的底面边长为 2,侧面均为直角三角形,则此三棱锥的体积为 ( ) A.2 2 B.2 C.2 D.4 23 3 33、侧棱长为 2a 的正三棱锥其底面周长为 9a,则棱锥的高为()A、aB、2aC、32aD、327a4、如图为正三棱柱的平面睁开图,该正三棱柱的各侧面都是正方形,对这个正三棱柱有以下判断:①AB1 // BC 1 ;②AC 1 与 BC 是异面直线;③AB1 与 BC 所成的角的余弦为24;④BC 1 与A1 C垂直 .此中正确的判断是 _______.5、在正三棱锥P ABC 中,AB 6, PA 5。

(1)求此三棱锥的体积V ;(2)求二面角P AB C 的正弦值。

6、正三棱锥 V-ABC 的底面边长是 a, 侧面与底面成 60°的二面角。

求( 1)棱锥的侧棱长( 2)侧棱与底面所成的角的正切值。

2、正四周体定义:正四周体是由四个全等正三角形围成的空间关闭图形,全部棱长都相等。

它有 4 个面, 6 条棱, 4 个极点。

正四周体是最简单的正多面体。

正四周体与正三棱锥的关系:正四周体属于正三棱锥,可是正三棱锥只要要底面为正三角形,其余三个面是全等的等腰三角形且极点在底面的投影是底面三角形的中心,不需要四个面全等且都是等边三角形。

浙江省历年高考立体几何大题总汇(题目与答案)

浙江省历年高考立体几何大题总汇(题目与答案)

1.(本题满分15 分)如图,平面PAC ⊥平面ABC ,ABC 是以AC 为斜边的等腰直角三角形。

E,F ,O分别为PA, PB, PC 的中点,AC 16, PA PC 10 。

(I )设 C 是OC 的中点,证明:PC // 平面BOE ;(II )证明:在ABO 内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA , OB 的距离。

zyx2.如图,在棱长为 1 的正方体ABCD -A1B1C1D1 中,P 是侧棱CC1 上的一点,CP=m ,(Ⅰ)试确定m,使得直线AP 与平面BDB 1D1 所成角的正切值为 3 2 ;(Ⅱ)在线段A1C1 上是否存在一个定点Q,使得对任意的m,D1Q 在平面APD 1 上的射影垂直于AP,并证明你的结论。

3. 如图甲,△ABC 是边长为 6 的等边三角形,E,D 分别为AB 、AC 靠近B、C 的三等分点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。

(I)求证BC⊥平面AFG ;(II)求二面角B-AE -D 的余弦值..4 在如图所示的几何体中,EA 平面ABC,DB 平面ABC,AC BC ,AC BC BD 2AE ,M是AB的中点.(1)求证:CM EM ;D(2)求CM与平面CDE所成的角ECAMB4.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BCF CEF ,AD 3,E F 2.90D(Ⅰ)求证:AE ∥平面DCF ;AC (Ⅱ)当AB 的长为何值时,二面角 A EF C 的大小为60 ?BF E(第18 题)25.如图,在矩形ABCD 中,点E,F 分别在线段AB ,AD 上,AE=EB=AF= FD 4.沿直3线EF 将AEF 翻折成A' EF , 使平面A' EF 平面BEF.(I)求二面角A' FD C 的余弦值;(II )点M ,N 分别在线段FD,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使 C与A' 重合,求线段FM 的长.6.如图,在三棱锥P-ABC 中,AB =AC,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

浙江高考数学一轮复习第八章立体几何81空间几何体的表面积与体积课件

浙江高考数学一轮复习第八章立体几何81空间几何体的表面积与体积课件

2021/4/17
浙江高考数学一轮复习第八章立体几何 81空间几何体的表面积与体积课件
16
2021/4/17
浙江高考数学一轮复习第八章立体几何 81空间几何体的表面积与体积课件
17
实践探究
例 如图,圆台的上底面半径为1,下底面半径为4,母线AB=18,从AB中点M 处拉一条绳子绕圆台侧面转到B点. (1)求绳子的最短长度; (2)求绳子最短时,上底面圆周上的点到绳子的最短距离.
②半径:r= a2 b2 c2 (a,b,c为长方体的长、宽、高).
2
(2)正方体的外接球、内切球及与各条棱都相切的球:
2021/4/17
浙江高考数学一轮复习第八章立体几何 81空间几何体的表面积与体积课件
15
①外接球:球心是正方体的中心,半径r= 3 a(a为正方体的棱长);
2
②内切球:球心是正方体的中心,半径r= a (a为正方体的棱长);
浙江高考数学一轮复习第八章立体几何 81空间几何体的表面积与体积课件
4
3.用斜二测画法画直观图的步骤 (1)画几何体的底面 在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们 画成对应的x'轴、y'轴,两轴相交于点O',且使∠x'O'y'=45°(或135°),已知图 形中平行于x轴的线段,在直观图中长度⑧ 保持不变 ,平行于y轴的线 段,长度变为⑨ 原来的一半 . (2)画几何体的高 在已知图形中过点O作z轴垂直于平面xOy,在直观图中画出对应的z'轴,垂 直于平面x'O'y',已知图形中平行于z轴的线段,在直观图中平行于z'轴且 ⑩ 长度不变 .
要的数学思维方法.

(浙江版)高考数学分项汇编专题10立体几何(含解析)理

(浙江版)高考数学分项汇编专题10立体几何(含解析)理

第十章 立体几何一.基础题组1. 【2014年.浙江卷.理3】某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm【答案】:D2. 【2013年.浙江卷.理12】若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.【答案】:243. 【2012年.浙江卷.理10】已知矩形ABCD,AB=1,BC ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直【答案】B4. 【2012年.浙江卷.理11】已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于__________ cm3.【答案】15. 【2011年.浙江卷.理3】若某几何体的三视图如图所示,则这个几何体的直观图可以是【答案】 D【解析】:A,B与正视图不符,C与俯视图不符,故选D6. 【2011年.浙江卷.理4】下列命题中错误的是(A )如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β (B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面 (D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】 D7. 【2009年.浙江卷.理5】在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .90【答案】:C8. 【2009年.浙江卷.理12】若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是3cm .【答案】:189. 【2008年.浙江卷.理14】如图,已知球O 点面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 点体积等于【答案】9π210. 【2007年.浙江卷.理6】若P 是两条异面直线,l m 外的任意一点,则(A )过点P 有且仅有一条直线与,l m 都平行 (B )过点P 有且仅有一条直线与,l m 都垂直 (C )过点P 有且仅有一条直线与,l m 都相交 (D )过点P 有且仅有一条直线与,l m 都异面 【答案】B选项D 不正确,因为过点P 与,l m 都异面的直线有数条. 故选B.11. 【2005年.浙江卷.理6】设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β. 那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题【答案】D12. 【2005年.浙江卷.理12】设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________.【答案】90° 【解析】:13. 【2015高考浙江,理2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm【答案】C.14. 【2015高考浙江,理13】如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .【答案】87.15. 【2015高考浙江,理17】如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.【答案】(1)详见解析;(2)18-.【考点定位】1.线面垂直的判定与性质;2.二面角的求解16.二.能力题组1. 【2013年.浙江卷.理10】在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( ).A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°【答案】:A∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α-l-β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直,故选A2. 【2009年.浙江卷.理17】如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .【答案】:1,12⎛⎫⎪⎝⎭3. 【2007年.浙江卷.理16】已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=︒.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥︒,则二面角AB αβ--的取值范围是_____________. 【答案】,2ππ⎡⎤⎢⎥⎣⎦【解析】4. 【2006年.浙江卷.理14】正四面体ABCD的棱长为1,棱AB∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是.【答案】1] 42【解析】5. 【2015高考浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤【答案】B.在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,三.拔高题组1. 【2014年.浙江卷.理20】(本题满分15分)如图,在四棱锥BCDE A -中,平面⊥ABC 平面======∠=∠AC BE DE CD AB BED CDE BCDE ,1,2,90,02.(1)证明:⊥DE 平面ACD ; (2)求二面角E AD B --的大小4681012141618EA【答案】(Ⅰ)详见解析;(Ⅱ)二面角E AD B --的大小是6π. 【解析】试题分析:(Ⅰ)求证:⊥DE 平面ACD ,证明线面垂直,先证线线垂直,即证线和平面内两条相交直线垂直,由已知可得DE DC ⊥,只需证明AC DE ⊥,或AD DE ⊥,由已知平面⊥ABC 平面BCDE ,只在Rt AED 中,1DE =,AD =,得AE =R t A B D中,BD =2AB =,AD =,得3BF =23AF AD =,从而23GF =,在,ABE ABG中,利用余弦定理分别可得2cos ,143BAE BG ∠==,在BFG中,222cos 22GF BF BG BFG BF GF +-∠==⋅,所以6BFG π∠=,即二面角E AD B --的大小是6π.方法二:以D 为原点,分别以射线,DE DC 为,x y 轴的正半轴,建立空间直角坐标系D xyz -如图所示,由题意可知各点坐标如下:()()()(()0,0,0,1,0,0,0,2,0,,1,1,0D E C A B ,设平面ADE 的法向量为()111,,m x y z =,平面ABD 的法向量为()222,,n x y z =,可算得(0,2,AD =-,()(1,1,0,1,2,DB AE ==-,由00m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩得,1111102020y x y ⎧-=⎪⎨-=⎪⎩,可取(0,1,m =,由00n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩得,22220200y x y ⎧--=⎪⎨+=⎪⎩,可取(1,1,2n =,于是3cos ,2m n m n m n ⋅〈〉==,由题意可知,所求二面角是锐角,故二面角E AD B --的大小是6π. 4681012141618试题点评:本题主要考查空间点,线,面位置关系,二面角等基础知识,空间向量的应用 ,同时考查空间想象能力,与推理论证,运算求解能力.2. 【2013年.浙江卷.理20】(本题满分15分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(1)证明:PQ ∥平面BCD ;(2)若二面角C -BM -D 的大小为60°,求∠BDC 的大小. 【答案】在Rt△BDM中,23BG DMHGBMθ⋅==.在Rt△CHG中,tan∠CHG=3cossin CGHGθθ==所以tan θ从而θ=60°.即∠BDC=60°.方法二:(1)证明:如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知A (0,2),B (0,0),D (0,0). 设点C 的坐标为(x 0,y 0,0).因为3AQ QC =,所以Q 00331,,4442x y ⎛⎫+⎪ ⎪⎝⎭. 因为M 为AD 的中点,故M (0,1).又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ=0033,,0444x y ⎛⎫+ ⎪ ⎪⎝⎭. 又平面BCD 的一个法向量为u =(0,0,1),故PQ ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)解:设m =(x ,y ,z )为平面BMC 的一个法向量. 由CM =(-x 00y ,1),BM =(0,1),知000,0.x x y y z z ⎧-+)+=⎪⎨+=⎪⎩ 取y =-1,得m=001,y x ⎛- ⎝. 又平面BDM 的一个法向量为n =(1,0,0),于是|cos 〈m ,n 〉|=||1||||2⋅==m n m n,即200y x ⎛= ⎝⎭① 又BC ⊥CD ,所以CB ·CD =0,故(-x 0,0y ,0)·(-x 00y ,0)=0, 即x 02+y 02=2.②联立①,②,解得000,x y =⎧⎪⎨=⎪⎩(舍去)或00,22x y ⎧=±⎪⎪⎨⎪=⎪⎩ 所以tan ∠BDC=.又∠BDC 是锐角,所以∠BDC =60°.3. 【2012年.浙江卷.理20】如图,在四棱锥P -ABCD 中,底面是边长为∠BAD =120°,且PA ⊥平面ABCD,PA =M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值. 【答案】(1)详见解析;(2.【解析】A(,0,0),B (0,-3,0),C,0,0),D (0,3,0),P(,0,),M(2-,32-),N(32),Q,0). 设m =(x,y ,z )为平面AMN的法向量.由33(22AM =-,33(22AN =,,知30230.2x y x y -+=+=,取z =-1,得m =(0,-1).设n =(x ,y ,z )为平面QMN 的法向量.由3(2QM =-,3(2QN =,知30,230.623x y z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩取z =5,得n =(,0,5).于是cos 〈m ,n〉=||||⋅=⋅m n m n . 所以二面角A ­MN ­Q 的平面角的余弦值为33. 方法二:在菱形ABCD 中,∠BAD=120°,得AC=AB=BC=CD=DA ,BD=AB .又因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AC ,PA ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点, 所以MQ =NQ ,且AM =12PB =12PD =AN . 取线段MN 的中点E ,连结AE ,EQ ,则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =PA = 故在△AMN 中,AM =AN =3,MN =12BD =3,得2AE =. 在直角△PAC 中,AQ ⊥PC,得AQ =QC =2,PQ =4,在△PBC 中,2225cos 26PB PC BC BPC PB PC +-∠==⋅,得MQ ==在等腰△MQN 中,MQ =NQMN =3,得2QE ==. 在△AEQ中,2AE =,2QE =,AQ =222cos 2AE QE AQ AEQ AE QE +-∠==⋅.所以二面角A -MN -Q 的平面角的余弦值为33. 4. 【2011年.浙江卷.理20】(本题满分15分)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-β为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

浙江省嘉兴市高考数学真题分类汇编专题16:空间几何

浙江省嘉兴市高考数学真题分类汇编专题16:空间几何

浙江省嘉兴市高考数学真题分类汇编专题16:空间几何姓名:________ 班级:________ 成绩:________一、解答题 (共12题;共100分)1. (10分) (2018高二下·齐齐哈尔月考) 如图,三棱柱中,侧面底面, ,且 ,O为中点.(1)证明:平面;(2)直线与平面所成角的正弦值.2. (10分)(2018·宣城模拟) 如图,在三棱柱中,侧棱底面,,,,,分别是,上的屮点,是线段上的一点(不包括端点).(Ⅰ)在平而内,试作出过点与平而平行的直线,并证明直线平面;(Ⅱ)设(Ⅰ)中的直线交于点,求三棱锥的体积.3. (5分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,E在B1D1上,且ED1=2B1D,AC与BD交于点O.(Ⅰ)求证:AC⊥平面BDD1B1;(Ⅱ)求三棱锥O﹣CED1的体积.4. (5分) (2016高二上·衡水期中) 如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H= .(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值.5. (10分)如图,在四棱锥P﹣ABCD中,O为AC与BD的交点,AB⊥平面PAD,△PAD是正三角形,DC∥AB,DA=DC=2AB=2a.(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;(2)求证:平面PBC⊥平面PDC;(3)求四棱锥P﹣ABCD的体积.6. (10分)如图,在直三棱柱A1B1C1﹣ABC中,侧面ABB1A1是边长为2的正方形,直角三角形边满足AC=BC,E是CB1上的点,且BE⊥平面ACB1 .(Ⅰ)求证:AC⊥平面BB1C;(Ⅱ)求二面角B﹣AB1﹣C的平面角的余弦值.7. (10分)在四棱锥P﹣ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD中点.(Ⅰ)求证:EN∥平面PCD;(Ⅱ)求证:BC⊥平面PEB;(Ⅲ)求三棱锥M﹣PBE的体积.8. (10分)(2020·阜阳模拟) 如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面 .(2)求直线与平面所成角的正弦值.9. (5分) (2016高二上·怀仁期中) 已知四边形ABCD满足AD∥BC,BA=AD=DC= BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分别为B1D,AE的中点.(1)求三棱锥E﹣ACB1的体积;(2)证明:B1E∥平面ACF;(3)证明:平面B1GD⊥平面B1DC.10. (5分) (2017·辽宁模拟) 如图,将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=(1)求证:DM⊥平面ABC;(2)求二面角C﹣BM﹣D的大小.11. (10分) (2018高一上·张掖期末) 如图,在三棱柱中,侧棱底面,,,,,点是的中点.(1)求证:平面;(2)求证:;(3)求直线与平面所成的角的正切值.12. (10分)如图所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到五棱锥P﹣ABFED,且AP= ,PB= .(1)求证:BD⊥平面POA;(2)求二面角B﹣AP﹣O的正切值.参考答案一、解答题 (共12题;共100分)1-1、1-2、2-1、3-1、4-1、4-2、5-1、5-2、5-3、7-1、8-1、8-2、9-1、9-2、9-3、10-1、10-2、11-1、11-2、11-3、12-1、12-2、。

2004—2019浙江高考真题《立体几何》汇编

2004—2019浙江高考真题《立体几何》汇编

2004−2019浙江高考真题《立体几何》汇编三视图1. (2009浙江文12理12)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .2. (2010浙江文8)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .3352cm 3B .3320cm 3C .3224cm 3D .3160cm 33. (2010浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .侧视图俯视图正视图侧视图俯视图侧视图俯视图4. (2011浙江文7)某几何体的三视图如图所示,则这个几何体的直观图可以是( )5. (2011浙江理3)某几何体的三视图如图所示,则这个几何体的直观图可以是( )6. (2012浙江文3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .13cmB .23cmC .33cmD .63cmDC BA侧视图俯视图正视图DCB A 侧视图俯视图正视图侧视图俯视图正视图7. (2012浙江理11)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于 3cm .8. (2013浙江文5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .1083cmB .1003cmC .923cmD .843cm9. (2013浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm .侧视图俯视图正视图俯视图侧视图正视图侧视图正视图3410. (2014浙江文3)某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .723cmB .903cmC .1083cmD .1383cm11. (2014浙江理3)某几何体的三视图(单位:cm )如图所示,则该几何体的表面积是( )A .902cmB .1292cmC .1322cmD .1382cm12. (2015浙江文2理2)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .403cm俯视图侧视图正视图俯视图侧视图正视图侧视图正视图13. (2016浙江理11)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .14. (2016浙江文9)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .15. (2017浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是()A .12π+B .32π+C .312π+D .332π+俯视图正视图316. (2018浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .817. (2019浙江4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( ) A .158B .162C .182D .324俯视图正视图俯视图侧视图正视图点、直线、平面位置关系18. (2005浙江文7理6)设α,β为两个不同的平面,l ,m 为两条不同的直线,且l α⊂,m β⊂.有如下两个命题:①若αβ∥,则l m ∥;②若l m ⊥,则αβ⊥.那么( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题19. (2007浙江文7理6)若P 是两条异面直线l ,m 外的任意一点,则( )A .过点P 有且仅有一条直线与l ,m 都平行B .过点P 有且仅有一条直线与l ,m 都垂直C .过点P 有且仅有一条直线与l ,m 都相交D .过点P 有且仅有一条直线与l ,m 都异面20. (2008浙江文9)对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .a α⊂,b α⊂B .a α⊂,b α∥C .a α⊥,b α⊥D .a α⊂,b α⊥21. (2009浙江文4)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若l α⊥,αβ⊥,则l β⊂B .若l α∥,αβ∥,则l β⊂C .若l α⊥,αβ∥,则l β⊥D .若l α⊥,αβ⊥,则l β⊥22. (2010浙江理6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m ∥,则m α⊥C .若l α∥,m α⊂,则l m ∥D .若l α∥,m α∥,则l m ∥23. (2011浙江文4)若直线l 不平行于平面α,且l α⊄,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都想交24. (2011浙江理4)下列命题中错误的是( )A .如果αβ平面⊥平面,那么平面α内一定存在直线平行于平面βB .如果αβ平面不垂直于平面,那么平面α内一定不存在直线垂直于平面βC .如果αγ平面⊥平面,βγ平面⊥平面,l αβ=,那么l γ⊥平面D .如果αβ平面⊥平面,那么平面α内所有直线都垂直于平面β25. (2012浙江文5)设直线l 是直线,α,β是两个不同的平面.( )A .若l α∥,l β∥,则αβ∥B .若l α∥,l β⊥,则αβ⊥C .若αβ⊥,l α⊥,则l β⊥D .若αβ⊥,l α∥,则l β⊥26. (2013浙江文4)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m α∥,n α∥,则m n ∥B .若m α∥,m β∥,则αβ∥C .若m n ∥,m α⊥,则n α⊥D .若m α∥,αβ⊥,则m β⊥27. (2014浙江文6)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m n ⊥,n α∥,则m α⊥B .若m β∥,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥28. (2015浙江文4)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂.( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若l β∥,则αβ∥D .若αβ∥,则l m ∥29. (2016浙江文2理2)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m α∥,n β⊥,则( ) A .m l ∥ B .m n ∥C .n l ⊥D .m n ⊥30. (2018浙江6)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m n ∥”是“m α∥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件小题31. (2004浙江文15)已知α平面⊥β平面,l αβ=,P 是空间一点,且P 到平行α,β的距离分别是1,2,则点P 到l 的距离为 .32. (2004浙江理16)已知平面α和平面β相交于直线l ,P 是空间一点,P A ⊥α,垂足为A ,PB ⊥β,垂足为B ,且1PA =,2PB =,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 .33. (2004浙江文10理10)如图,在正三棱柱111ABC A B C -中,已知1AB =,D 在棱1BB 上,且1BD =,若AD 与平面11AA C C 所成的角为α,则sin α=( ) ABCDDB 1A 1C 1CBA34. (2005浙江文12理12)设M ,N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE沿DE 折起,使二面角A DE B --为45°,此时点A 在平面BCDE 内的射影为点B ,则M ,N 的连线与AE 所成角的大小等于 .35. (2006浙江文8)如图,正三棱柱111ABC A B C -的各棱长都为2,E ,F 分别是AB ,11A C 的中点,则EF 的长是( ) A .2BCD36. (2006浙江理9)如图,O 是半径为1的球的球心,点A ,B ,C 在球面上,OA ,OB ,OC 两两垂直,E ,F 分别是大圆弧AB 与AC 的中点,则点E ,F 在该球面上的球面距离是( ) A .4π B .3π C .2π D.4B 1C 1A 1FE CBA37. (2006浙江文14)如图,正四面体ABCD 的棱长为1,平面α过棱AB ,且CD α∥,则正四面体上的所有点在平面α内的射影构成的图形面积是 .38. (2006浙江理14)正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .39. (2007浙江文17理16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=︒.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥︒,则二面角AB αβ--的大小是 .40. (2008浙江文15理14)如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA AB BC ===O 的体积等于 .BDACαBDACαDBCA41. (2008浙江理10)如图,AB 是平面α的斜线段...,A 为斜足.若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( ) A .圆B .椭圆C .一条直线D .两条平行直线42. (2009浙江理5)在三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是( ) A .30° B .45°C .60°D .90°43. (2009浙江理17)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD △沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是 .PABαKFDCBA44. (2012浙江理10)已知矩形ABCD ,1AB =,BC .将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对于任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直45. (2013浙江理10)在空间中,过点A 作平面π的垂线,垂足为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,()1Q f f P βα=⎡⎤⎣⎦,()2Q f f P αβ⎡⎤=⎣⎦,恒有12PQ PQ =,则( ) A .α平面与β平面垂直 B .α平面与β平面所成的(锐)二面角为45° C .α平面与β平面平行 D .α平面与β平面所成的(锐)二面角为60°46. (2014浙江文10理17)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15m AB =,25m AC =,30BCM ∠=︒,则tan θ的最大值是 .(仰角θ为直线AP 与平面ABC 所成角)PMCB A47. (2015浙江文7)如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支48. (2015浙江理8)如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成( ) A .A DB α'∠≤B .A DB α'∠≥C .A CB α'∠≤D .A CB α'∠≥49. (2015浙江理13)如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .αPBAA'DCBAMNDCBA50. (2016浙江文14)如图,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =90ADC ∠=︒.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是 .51. (2016浙江理14)如图,在△ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体PBCD 的体积的最大值是 .52. (2017浙江9)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角 为α,β,γ,则( ) A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<D'DC APDCBARCQBP A D53. (2018浙江8)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤54. (2019浙江8)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<大题55. (2004浙江文19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求证:AM ⊥平面BDF ; (3)求二面角A DF B --的大小.M FEDCBA56. (2004浙江理19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求二面角A DF B --的大小;(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60︒.57. (2005浙江文18)如图,在三棱锥P ABC -中,AB BC ⊥,12AB BC PA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)求直线OD 与平面PBC 所成角的大小.58. (2005浙江理18)如图,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC . (1)求证:OD ∥平面PAB ;(2)当12k =,求直线PA 与平面PBC 所成角的大小;(3)当k 取何值时,O 在平面PBC 内的射影恰好为PBC △的重心?MFEDCBA59. (2006浙江文17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求BD 与平面ADMN 所成角.60. (2006浙江理17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求CD 与平面ADMN 所成的角.61. (2007浙江理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求CM 与平面CDE 所成的角.62. (2007浙江文20)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求DE 与平面EMC 所成角的正切值.63. (2008浙江文20理18)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,90BCF CEF ∠=∠=︒,AD ,2EF =.(1)求证:AE DCF ∥平面;(2)当AB 的长为何值时,二面角A EF C --的大小为60°?64. (2009浙江文19)如图,DC ⊥平面ABC ,EB DC ∥,22AC BC EB DC ====,120ACB ∠=︒,P ,Q 分别为AE ,AB 的中点. (1)证明:PQ ACD ∥平面;(2)若AD 与平面ABE 所成角的正弦值.FEDCBA QPCDEBA65. (2009浙江理20)如图,平面PAC ⊥平面ABC ,ABC △是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为P A ,PB ,AC 的中点,16AC =,10PA PC ==. (1)设G 是OC 的中点,证明:FG ∥平面BOE ;(2)证明:在ABO △内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.66. (2010浙江文20)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE △沿直线DE 翻折成A DE '△,使平面A DE '⊥平面BCD ,F 为线段A C '的中点. (1)求证:BF ∥平面A DE ';(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.67. (2010浙江理20)如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,243AE EB AF FD ====, 沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF . (1)求二面角A FD C '--的余弦值;(2)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '中和,求线段FM 的长.GF EPOCBAA'MFED CBANM A'F EDCB A68. (2011浙江文20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (1)证明:AP BC ⊥;(2)已知8BC =,4PO =,3AO =,2OD =,求二面角B AP C --的大小.69. (2011浙江理20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知8BC =,4PO =,3AO =,2OD =. (1)证明:AP BC ⊥;(2)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.70. (2012浙江文20)如图,在侧棱垂直底面的四棱柱1111ABCD A B C D -中,AD ⊥AB,AB =2AD =,4BC =,12AA =,E 是1DD 的中点,F 是平面11B C E 与直线1AA 的交点.(1)证明:(i )11EF A D ∥;(ii )111BA B C EF ⊥平面;(2)求1BC 与11B C EF 平面所成角的正弦值.OPDCBAOPDCBAD 1C 1B 1A 1EF B D CA71. (2012浙江理20)如图,在四棱锥P ABCD -中,底面是边长为的菱形,120BAD ∠=︒,且PA ABCD ⊥平面,PA =,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ PC ⊥,垂足为点Q ,求二面角A MN Q --的平面角的余弦值.72. (2013浙江文20)如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,2AB BC ==,AD CD ==PA 120ABC ∠=︒.G 为线段PC 上的点. (1)证明:BD ⊥平面P AC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PGGC的值.73. (2013浙江理20)如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,BD =.M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. (1)证明:PQ BCD ∥平面;(2)若二面角C BM D --的大小为60°,求BDC ∠的大小.QMNDABPGDB APQPMDBA74. (2014浙江文20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)证明:AC BCDE ⊥平面;(2)求直线AE 与平面ABC 所成角的正切值.75. (2014浙江理20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC(1)证明:DE ACD ⊥平面; (2)求二面角B AD E --的大小.76. (2015浙江文18)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求直线1A B 和平面11BB C C 所成的角的正弦值.BED CABED CAC 1B 1A 1DC BA77. (2015浙江理17)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求二面角11A BD B --的平面角的余弦值.78. (2016浙江文18)如图,三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.79. (2016浙江理17)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求二面角B AD F --的平面角的余弦值.C 1B 1A 1DC BA80. (2017浙江19)如图,已知四棱锥P −ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,22PC AD DC CB ===,E 为PD 的中点. (1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值.81. (2018浙江19)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===. (1)证明:1111AB A B C ⊥平面;(2)求直线1AC 与平面1ABB 所成的角的正弦值.82. (2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11A B 的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.ED CBAPC 1B 1A 1CBAC 1B 1A 1FECBA。

考点19 三视图、空间几何体的表面积与体积-2019-2020学年浙江数学学业水平测试之考点解密

考点19 三视图、空间几何体的表面积与体积-2019-2020学年浙江数学学业水平测试之考点解密

考点19 三视图、空间几何体的表面积与体积考点梳理1.柱、锥、台、球的结构特征(1)棱柱、棱锥、棱台①棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.②棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.③棱台:用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个称为棱台.(2)圆柱、圆锥、圆台、球①将矩形、直角三角形、直角梯形分别绕着一条边、一条直角边、垂直于底边的腰所在直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台.这条直线叫做轴,垂直于轴的边旋转一周而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,不垂直于轴的边都叫做母线.②一般地,一条平面曲线绕着它所在平面内的一条直线旋转形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体,圆柱、圆锥、圆台、球都属于旋转体.③球的定义:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面.球面所围成的几何体叫做球体,简称球.半圆的圆心叫做球心,连接球心和球面上任意一点的线段叫做球的半径.2.空间几何体的三视图和直观图(1)平行投影与中心投影①立体几何中,投影是光线(投射线)通过物体向选定的面(投射面)投射,并在该面上得到图形的一种方法.②中心投影:光由一点向外散射形成的投影叫做中心投影.③平行投影:在一束平行光线照射下形成的投影叫做平行投影.(2)空间几何体的三视图①三视图的安排规则是:正视图与侧视图分别在左右两边,俯视图画在正视图的下方.②画简单几何体的三视图(ⅰ)画几何体的三视图时,可以把垂直投射面的视线想象成平行光线,体会可见的轮廓线(包括被遮挡的,但可以经过想象透视到的光线)的投影就是要画出的视图,可见的轮廓线要画成实线,不可见的轮廓线要画成虚线.(ⅱ)对于简单几何体的组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的生成方式,特别应注意它们的交线的位置.(3)空间几何体的直观图①用斜二测画法画直观图(ⅰ)画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.为了增强立体感,被挡住的部分通常用虚线表示.(ⅱ)画图时要紧紧把握住“一斜”——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°或135°;“二测”——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.②三视图和直观图有着密切的联系,我们能够由空间几何体的三视图得到它的直观图.同时,也能够由空间几何体的直观图得到它的三视图.从投影的角度看,三视图和用斜二测画法画出的直观图都是在平行投影下画出来的空间图形.3.空间几何体的表面积与体积 空间几何体的表面积与体积公式:(1)圆柱的表面积公式:S =2πr 2+2πrl =2πr (r +l ); (2)圆锥的表面积公式:S =πr 2+πrl =πr (r +l ); (3)圆台的表面积公式:S =π(r ′2+r 2+r ′l +rl ); (4)柱体的体积公式:V =Sh (S 为底面积,h 为柱体高); (5)锥体的体积公式:V =13Sh (S 为底面积,h 为锥体高);(6)台体的体积公式:V =13(S ′+SS ′+S )h (S ′、S 分别为上、下底面的面积,h 为台体的高);(7)球的表面积公式:S =4πR 2; (8)球的体积公式:V =43πR 3.例题讲解【例1】如图,某简单组合体由半个球和一个圆台组成,则该几何体的侧视图为( )A B C D 【解析】由三视图的概念可知,该几何体的侧视图为两个实线的圆,故选B.【变式训练】如图,在三棱锥A -BCD 中,侧面ABD ⊥底面BCD ,BC ⊥CD ,AB =AD =4,BC =6,BD =43,该三棱锥三视图的正视图为( )A B C D【答案】C 【分析】如图,过点C作CE⊥BD,交BD于点E,∵BC⊥CD,∴∠BCD=90°,∴cos∠CBD=BCBD=643=32,∴BE=BC cos∠CBD=6×32=33,DE=BD-BE=43-33=3,∴三棱锥三视图的正视图为C选项,故选C.【例2】如图,在矩形ABCD中,E为边AD的中点,AB=1,BC=2,分别以A,D为圆心,1为半径作圆弧EB,EC.若由两圆弧EB,EC及边BC所围成的平面图形绕直线AD旋转一周,则所形成的几何体的表面积为____________.【解析】如图,旋转后是一个两底面为向里凹的半球,侧面为一个圆柱的侧面,所以表面积为2πrh+4πr22×2=8π.故答案为8π.【变式训练】某几何体的三视图如图所示,该几何体的表面积是____________.【答案】92 【分析】由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD 中,作DE ⊥AB ,垂足为E ,则DE =4,AE =3,则AD =5.所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.故答案为92.【例3】某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.23cm 3 B.223cm 3 C.2cm 3 D .22cm 3 【解析】从几何体的三视图可知,该几何体为直三棱锥(其中一条侧棱与底面垂直),则该三棱锥的体积为V =13S ·h =13×12×2×1×2=23cm 3,故选A.【变式训练】如图(1),把棱长为1的正方体沿平面AB 1D 1和平面A 1BC 1截去部分后,得到如图(2)所示几何体,该几何体的体积为( )(1) (2) A.34 B.1724 C.23 D.12【答案】B 【分析】 由题意知V =V 正方体ABCD -A 1B 1C 1D 1-V 四面体A 1-AB 1D 1-V 四面体B 1-A 1BC 1+V 四面体M -A 1B 1N =1×1×1-13×12×1×1×1-13×12×1×1×1+13×12×1×12×12=1-16-16+124=1724,故选B.【例4】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2 B.1+22 C.2+22D .1+ 2【解析】恢复后的原图形为直角梯形,所以S =12(1+2+1)×2=2+2,故选A.【变式训练】 已知正三角形ABC 的边长为a ,以它的一边为x 轴,对应的高线为y 轴,画出它水平放置的斜二测直观图△A ′B ′C ′,则△A ′B ′C ′的面积是( )A.34a 2 B.38a 2 C.68a 2 D.616a 2 【答案】D 【分析】 原图形的面积=12a 2sin60°=34a 2,所以直观图的面积=34a 2·24=616a 2.故选D.巩固训练一、选择题1.某几何体的三视图如图所示,则该几何体为( ) A .圆锥 B .三棱柱 C .三棱锥 D .四棱锥【答案】 A 【分析】 由俯视图可以看出该几何体底面是一个圆,又由于正视图、侧视图为三角形,则可以判断出是一个圆锥.故选A.2.一个几何体的三视图如图所示,则该几何体的体积为( ) A .π B .2π C .4π D .8π【答案】B 【分析】 由该几何体的三视图可知该几何体为圆柱,体积V =πr 2h =2π.故选B.3.某圆台如图所示放置,则该圆台的俯视图是( )A B C D【答案】D 【分析】该圆台的俯视图外面是个实线圆,而里面应该是一个虚线圆.故选D.4.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3 C.2 2 D.2【答案】B 【分析】由题意得四棱锥的直观图如图所示,知该四棱锥A-CDD′C′的棱AC′最长,且AC′=AC2+CC′2=(22)2+22=2 3.故选B.5.如图,正三棱柱ABC-A1B1C1的各棱长均为2,其正视图如图所示,则此三棱柱侧视图的面积为( )A. 3 B.2 2 C.2 3 D.4【答案】C 【分析】依题意得此三棱柱的左视图是边长分别为2,3的矩形,故其面积是2 3.故选C.6.一个正方体内接于一个球,经过球心作一个截面,则截面不.可能的图形为( )A B C D【答案】D 【分析】 当截面与正方体的某一面平行时,可得A ,将截面旋转可得B ,继续旋转,过正方体两顶点时可得C ,即正方体的对角面,不可能得D.故选D.二、填空题7.若球O 的体积为36πcm 3,则它的表面积为__________cm 2.【答案】36π 【分析】 由球的体积公式V =43πR 3=36π得球的半径为R =3cm ,所以它的表面积为S =4πR 2=36π.故答案为36π.8.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是____________.【答案】26 【分析】 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26.故答案为26.9.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC 、AD 平行于x 轴.已知四边形ABCD 的面积为22cm 2,则原平面图形的面积为__________cm 2【答案】8 【分析】 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC 、AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8cm 2.故答案为8.三、解答题10.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积及体积.【解】 由已知得,CE =2,DE =2,CB =5.S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π, V =V 圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π.。

高考数学浙江版8.5 空间角、空间向量及其应用

高考数学浙江版8.5 空间角、空间向量及其应用

BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,
z轴的正方向,建立空间直角坐标系O-xyz.
由题意得B(1,0,0),C(-1,0,0),K(0,0, 3

),A(-1,-3,0),E

1 2
,
0,
3 2


,F


1 2
故有tan θ1≥tan θ3≥tan θ2.
由图可知θ1,θ2,θ3∈
0,
2

,∴θ1≥θ3≥θ2,故选D.
思路分析 (1)判断四棱锥的形状,作出高线. (2)作出异面直线SE与BC所成的角,直线SE与平面ABCD所成的角,二面角S-AB-C的平面角. (3)根据公共边找等量关系,选择求三个角的正弦值、余弦值还是正切值. (4)比较所求三角函数值的大小,得三个角的大小关系.
从而直线PR的方程为x+ 2 y+1=0,∴d1= 3
1 = 3 .
1 4 7
3
直线PQ的方程为2 3 x-y- 23 =0,∴d2= 2
3.
13
直线RQ的方程为x- 3 y+1=0,∴d3= 12 .
又d2<d3<d1,∴tan β>tan γ>tan α,
而α,β,γ均为锐角,∴β>γ>α.故选B.
y1

6z1 0,
y1 6z1,
取z1=1,得m1=(2 2 ,- 6 ,1).
∴cos α=|cos<n,m1>|= | n m1 | = 1 . | n | | m1 | 15
设平面DPQ的法向量为m2=(x2,y2,z2),

06-14年浙江省立体几何高考题

06-14年浙江省立体几何高考题

1浙江省历年立体几何高考题(文)06年(8)如图,正三棱柱ABC—A1B1C1的各棱长都为2,E、F分别为(A)2 (B)3(C)5(D)7(14)如上右图,正四面体ABCD的棱长为1,平面α过棱AB,且CD∥α,则正四面体上的所有点在平面α内的射影构成的图形面积是。

(17)如图,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点。

(Ⅰ)求证:PB⊥DM;(Ⅱ)求BD与平面ADMN所成的角。

07年(7)若P是两条异面直线l、m外的任意一点,则(A)过点P有且仅有一条直线与l、m都平行(B)过点P有且仅有一条直线与l、m都垂直(C)过点P有且仅有一条直线与l、m都相交1(D )过点P 有且仅有一条直线与l 、m 都异面(17)已知点O 在二面角βα--AB 的棱上,点P 在α内,且45=∠POB ,若对于β内异于O 的任意一点Q ,都有45≥∠POQ ,则二面角βα--AB 的大小是 .(20)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (Ⅰ)求证:CM ⊥EM ;(Ⅱ)求DE 与平面EMC 所成角的正切值.08年(9)对两条不相交的空间直线a 与b ,必存在平面α,使得 (A )αα⊂⊂b a , (B )b a ,α⊂∥α(C )αα⊥⊥b a ,(D)αα⊥⊂b a ,(15)如图,已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC 。

AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 。

(20)(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ∠BCF =∠CEF =90°,AD =.2,3=EF(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A-EF-C 的大小为60°?09年4.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm . 19.(本题满分14分)已知DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.10年(8)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3(C)2243cm3(D)1603cm3(20)(本题满分14分)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°。

专题09 立体几何与空间向量-高考数学复习必备之2015-2019年浙江省高考试题分项解析(解析版)

专题09 立体几何与空间向量-高考数学复习必备之2015-2019年浙江省高考试题分项解析(解析版)

第九章 立体几何与空间向量一、选择题1.(2019年浙江卷)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A. ,βγαγ<<B. ,βαβγ<<C.,βαγα<<D.,αβγβ<<【答案】B 【解析】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=B. 2.(2019年浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 32【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.3.(2018年浙江卷)已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ1【答案】D【解析】设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.4.(2018年浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A .2B .4C .6D .8 【答案】C 【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.5.(2018年浙江卷)已知直线,和平面,,则“”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】D 【解析】 直线,平面,且,若,当时,,当时不能得出结论,故充分性不成立;若,过作一个平面,若时,则有,否则不成立,故必要性也不成立.由上证知“”是“”的既不充分也不必要条件,故选D .6.(2017年浙江卷)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<,所以选B .7.(2017年浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:)是A .B .C .D .【答案】A【解析】由三视图可知几何体为半个圆锥和一个三棱锥的组合体,∴=,故选A.8.(2016年浙江文)已知互相垂直的平面αβ, 交于直线l.若直线m ,n 满足m∥α,n⊥β,则 A .m∥l B.m∥n C.n⊥l D.m⊥n 【答案】C 【解析】 由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C.9.(2016年浙江理)已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C 【解析】 由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .10.(2015年浙江文)如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是A .直线B .抛物线C .椭圆D .双曲线的一支 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的绕旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C.11.(2015年浙江文)设,是两个不同的平面,,是两条不同的直线,且,( )A .若,则B .若,则C .若,则D .若,则【答案】A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得12.(2015年浙江文)某几何体的三视图如图所示(单位: cm ),则该几何体的体积是( )A .8 3cmB .12 3cm C .323 3cm D .4033cm 【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 13.(2015年浙江理)某几何体的三视图如图所示(单位:),则该几何体的体积是( )A .B .C .D .【答案】C【解析】由三视图可知该几何体是四棱柱与同底的四棱锥的组合体,所以其体积为,故应选C.14.(2015年浙江理)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A.A DB α'∠≤B.A DB α'∠≥C.A CB α'∠≤D.A CB α'∠≤ 【答案】B. 【解析】设ADC θ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M ,过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND '∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=, 同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==, 显然BP ⊥面A NP ',故BP A P '⊥,在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222cos cos 2A N NP A P A NP A N NP α''+-'=∠='⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--'==+=∠+, ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α'≥∠(当2πθ=时取等号), ∵α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.二、填空题15.(2016年浙江文)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.16.(2016年浙江文)如图,已知平面四边形ABCD ,AB=BC=3,CD=1,,∠ADC=90°.沿直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.【解析】如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则A ⎛⎫ ⎪ ⎪⎝⎭, B ⎫⎪⎪⎝⎭, 0,C ⎛⎫⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H翻折过程中, 'D H 始终与AC 垂直, 则2CD CH CA ===则OH = DH ==因此'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α),则'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==,所以cos 1α=-时, cos θ取得最大值,为6.17.(2016年浙江理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 ,32 【解析】几何体为两个相同长方体组合,长方体的长、宽、高分别为4,2,2,所以体积为32(224)32cm ⨯⨯⨯=,由于两个长方体重叠的部分为一个边长为2的正方形,所以表面积为2(222⨯⨯⨯+244)2(22)72⨯⨯-⨯=2cm .18.(2016年浙江理)如图,在ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而的面积.当平面PBD⊥平面BDC时:四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为19.(2015年浙江理)如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】78【解析】如下图,连结DN ,取DN 中点P ,连结PM , PC ,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.三、解答题20.(2019年浙江卷)如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【答案】(1)证明见解析;(2)35. 【解析】(1)如图所示,连结11,A E B E ,等边1AAC △中,AE EC =,则sin 0sin 2B A ,≠∴= 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =, 由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =,由线面垂直的判定定理可得:BC ⊥平面11A B E ,结合EF ⊆平面11A B E ,故EF BC ⊥.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则AE EC ==11AA CA ==3BC AB ==,据此可得:()()()130,,,0,0,3,2A B A C ⎛⎫ ⎪ ⎪⎝⎭,由11AB A B =可得点1B的坐标为132B ⎛⎫ ⎪⎝⎭,利用中点坐标公式可得:34F ⎛⎫ ⎪⎝⎭,由于()0,0,0E , 故直线EF的方向向量为:34EF ⎛⎫=⎪⎝⎭ 设平面1A BC 的法向量为(),,m x y z =,则:()()133,,,330222233,,,02222m A B x y z x y z m BC x y z x y ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()1,3,1m =,34EF ⎛⎫= ⎪⎝⎭此时4cos ,5EF mEF m EF m ⋅===⨯,设直线EF与平面1A BC所成角为θ,则43 sin cos,,cos55EF mθθ===.21.(2018年浙江卷)如图,已知多面体ABCA 1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.22.(2017年浙江卷)如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(I)证明:CE∥平面PAB;(II)求直线CE与平面PBC所成角的正弦值【答案】(I)见解析;(II).8【解析】(Ⅰ)如图,设PA 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,PA 中点,所以//EF AD 且12EF AD =, 又因为//BC AD , 12BC AD =,所以//EF BC 且EF BC =, 即四边形BCEF 为平行四边形,所以//CE BF ,因此//CE 平面PAB .(Ⅱ)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ//CE .由△PAD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,得CE ,在△PBN 中,由PN =BN =1,PB QH =14,在Rt△MQH 中,QH=14,MQ ,所以sin∠QMH =8,所以直线CE 与平面PBC 23.(2016年浙江文)如图,在三棱台ABC –DEF 中,平面BCFE⊥平面ABC ,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.【答案】(1)证明详见解析;(2)7. 【解析】(Ⅰ)延长,,AD BE CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以 AC ⊥平面BCK ,因此, BF AC ⊥.又因为//EF BC , 1BE EF FC ===, 2BC =,所以 BCK 为等边三角形,且F 为CK 的中点,则BF CK ⊥所以BF ⊥平面ACFD .(Ⅱ)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角.在Rt BFD 中, 32BF DF ==,得cos 7BDF ∠=.所以,直线BD 与平面ACFD 所成的角的余弦值为7.24.(2016年浙江理)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠︒,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD ;(Ⅱ)求二面角B -AD -F 的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ) 4.【解析】(Ⅰ)延长AD , BE , CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥. 又因为//EF BC , 1BE EF FC ===, 2BC =,所以BCK 为等边三角形,且F 为CK 的中点,则F C B ⊥K .所以F B ⊥平面ACFD .(Ⅱ)方法一:过点F 作FQ AK ⊥于Q ,连结BQ .因为F B ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF ,所以BQ AK ⊥.所以BQF ∠是二面角B AD F --的平面角.在Rt ACK 中, 3AC =, 2CK =,得FQ =在Rt BQF 中, 13FQ = BF =cos 4BQF ∠=.所以二面角B AD F -- 方法二:如图,延长AD , BE , CF 相交于一点K ,则BCK 为等边三角形.取BC 的中点O ,则KO BC ⊥,又平面BCFE ⊥平面ABC ,所以, KO ⊥平面ABC .以点O 为原点,分别以射线OB , OK 的方向为x , z 的正方向,建立空间直角坐标系Oxyz .由题意得()1,0,0B , ()1,0,0C -,(K , ()1,3,0A --,12E ⎛ ⎝⎭,1F(,0,22-. 因此, ()0,3,0AC =,(AK =, ()2,3,0AB =. 设平面ACK 的法向量为,平面ABK 的法向量为. 由0{ 0AC m AK m ⋅=⋅=,得111130{ 30y x y =++=,取)1m =-; 由0{ 0AB n AK n ⋅=⋅=,得22222230{ 30x y x y +=++=,取. 于是,cos ,m n m n m n ⋅〈〉==⋅. 所以,二面角B AD F --25.(2015年浙江文)如图,在三棱锥中,在底面ABC 的射影为BC 的中点,D 为的中点.(1)证明:; (2)求直线和平面所成的角的正弦值.【答案】(1)见解析;(2)【解析】(1)设为中点,由题意得平面,所以. 因为,所以.所以平面.由,分别为的中点,得且,从而且, 所以是平行四边形,所以. 因为平面,所以平面.(2)作,垂足为,连结. 因为平面,所以. 因为,所以平面. 所以平面. 所以为直线与平面所成角的平面角.由,得.由平面,得.由,得. 所以 26.(2015年浙江理)如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.【答案】(1)详见解析;(2)18-. 【解析】(1)设E 为BC 的中点,由题意得1A E ⊥平面ABC ,∴1A E AE ⊥,∵AB AC =, ∴AE BC ⊥,故AE ⊥平面1A BC ,由D ,E 分别11B C ,BC 的中点,得1//DE B B 且 1DE B B =,从而1//DE A A ,∴四边形1A AED 为平行四边形,故1//A D AE ,又∵AE ⊥ 平面11A BC ,∴1A D ⊥平面11A BC ;(2)作1A F BD ⊥,且1A F BD F =,连结1B F ,由AE EB ==1190A EA A EB ∠=∠=,得114A B A A ==,由11A D B D =, 11A B B B =,得11A DB B DB ∆≅∆,由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1A D =14A B =,190DA B ∠=,得BD = 1143A FB F ==,由余弦定理得,111cos 8A FB ∠=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1
上,
且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则α= (A)3π
(B)4
π
(C)
(D)
2. 如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,
M 是线段EF 的中点。

(1)求证AM //平面BDE ;
(2)求二面角A -DF -B 的大小;
(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60︒。

3.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:
①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.
那么
(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题
C
C
1 1
D
4设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于
_________.
5如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kP A ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .
(Ⅰ)求证:OD ∥平面P AB ; (Ⅱ)当k =
2
1
时,求直线P A 与平面PBC 所成角的大小; (Ⅲ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?
6.如图,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在该球面上的球面距离是
(A)
4π (B)3π (C)2π (D)4

A
B
C
D
O
P
7正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .
8如图,在四棱锥P-ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD ,且PA =AD=AB=2BC,M 、N 分别为PC 、PB 的中点.
(Ⅰ)求证:PB ⊥DM;
(Ⅱ)求CD 与平面ADMN 所成的角
9若P 两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交D.过点P 有且仅有一条直线与l m ,都异面
10已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥,则二面角AB αβ--的大小是
A
B
C
D 11如图,AB 是平面a 的斜线段...,A 为斜足,若点P 在平面a 内运动, 使得△ABP 的面积为定值,则动点P 的轨迹是( ) (A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线
12如图,已知球O 点面上四点A 、B 、C 、D , DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3, 则球O 点体积等于___________。

13在三棱柱
111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11
BB C C 的中心,则AD 与平面
11BB C C 所成角的大小是 ( )
A .
30 B .
45 C .
60 D .
90
17如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D ,作DK AB ⊥,K 为垂足.设A K t =,则t 的取值范围是 .
18如图,平面PAC ⊥平面ABC ,ABC ∆
是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,
PB ,AC 的中点,16AC =,10PA PC ==.
(I )设G 是OC 的中点,证明://FG 平面BOE ; (II )证明:在ABO ∆内存在一点M ,使FM ⊥平面
BOE ,并求点M 到OA ,OB 的距离.
19设,是两条不同的直线,是一个平面,则下列命题正确的是 (A )若,,则 (B )若,,则 (C )若,,则 (D )若,,则
20下列命题中错误的是
(A )如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β (B )如果平面不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面 (D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β
21已知矩形ABCD ,AB =1,BC
ABD 沿矩形的对角线BD 所在的直
线进行翻着,在翻着过程中,
A .存在某个位置,使得直线AC 与直线BD 垂直
B .存在某个位置,使得直线AB 与直线CD 垂直
C .存在某个位置,使得直线A
D 与直线BC 垂直
D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直
l m αl m ⊥m α⊂l α⊥l α⊥l m //m α⊥l α//m α⊂l m //l α//m α//l m //∆
20如图,在四棱锥P —ABCD 中,底面是边长为
BAD =120°,

P A ⊥平面ABCD ,P A =M ,N 分别为PB ,PD 的中点. (Ⅰ)证明:MN ∥平面ABCD ;
(Ⅱ) 过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A —MN —Q 的平面角的余弦值
17在长方体ABCD -A 1B 1C 1D 1中,AB =1,AD =2.若
存在各棱长均相等的四面体P 1P 2P 3P 4,其中P 1,P 2,P 3,P 4分别在棱AB ,A 1B 1,C 1D 1,CD 所在的直线上,则此长方体的体积为 . 20.(本题满分15分) 如图,平面ABCD ⊥平面ADEF ,
其中ABCD 为矩形,ADEF 为梯形, AF ∥DE ,AF ⊥FE ,AF =AD =2 DE =2.
(Ⅰ) 求异面直线EF 与BC 所成角的大小;
(Ⅱ) 若二面角A -BF -D 的平面角的余弦值为1
3
,求AB
的长.
已知α,β,γ是三个不同的平面,α∩γ=m ,β∩γ=n .
A .若m ⊥n ,则α⊥β
B .若α⊥β,则m ⊥n
C .若m ∥n ,则α∥β
D .若α∥β,则m ∥n
A
B
C
D A 1
B 1
C 1
D 1
(第17题图) (第20题图)。

相关文档
最新文档