【数学】2014年普通高等学校招生全国统一考试新课标卷Ⅰ(理)Word版含答案13
2014年高考新课标1全国卷理科数学试题及答案
2014年普通高等学校招生全国统一考试全国新课标1理科数学第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ). A .[]2,1-- B .[)1,2- C .[]1,1- D .[)1,22.32(1)(1)i i +=-( ). A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ).A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()g x f x 是奇函数D .()()f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ).A .203B . 72C . 165D .158 8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A .32παβ-=B . 32παβ+=C .22παβ-=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( ).A .2p ,3PB .1p ,2pC .1p ,4pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =( ).A .72B . 3C .52D .211.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ).A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( ).A .62B .6C .42D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年高考全国卷1理科数学试题及标准答案-(word版)
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A ={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)2. 32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3. 设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-= B .22παβ-=C .32παβ+=D .22παβ+= 9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72B .52C .3D .2 11. 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4第Ⅱ卷。
2014年全国一卷高考理科数学试卷及答案
2014年普通高等学校招生全国统一考试全国课标I 理科数学第Ⅰ卷 (选择题 共60分)一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[—2,—1]B 。
[-1,2)C .[-1,1]D .[1,2) 2.32(1)(1)i i +-= A .1i + B .1i - C 。
1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B 。
|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B 。
3C 。
3mD 。
3m5。
4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C 。
58D 。
786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7。
执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A 。
203 B 。
165 C .72D 。
1588。
设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C 。
32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D 。
2014年全国一卷高考理科数学试卷及答案
2014年普通高等学校招生全国统一考试全国课标I 理科数学第Ⅰ卷 〔选择题 共60分〕一.选择题:共12小题,每题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2〕C .[-1,1]D .[1,2〕 2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则以下结论正确的选项是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行以下图的程序框图,假设输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3pC :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,假设4FP FQ =,则||QF =A .72B .52 C .3 D .2 ()f x =3231ax x -+,假设()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .〔2,+∞〕B .〔-∞,-2〕C .〔1,+∞〕D .〔-∞,-1〕 12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4第Ⅱ卷〔非选择题 共90分〕本卷包括必考题和选考题两个部分。
2014年高考新课标1全国卷理科数学试题及答案
2014年普通高等学校招生全国统一考试全国新课标1理科数学 第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--…,{|22}B x x =-<…,则A B ⋂=( ).A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,22.32(1)(1)i i +=-( ). A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ).A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()g x f x 是奇函数D .()()f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A B .3 C D .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ).A .203 B . 72 C . 165 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A .32παβ-=B . 32παβ+=C .22παβ-=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( ).A .2p ,3PB .1p ,2pC .1p ,4pD .1p ,3P4FP FQ =,则||QF =( ).A .72 B . 3 C .52D .211.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ).A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( ).A .B .6C .D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年普通高等学校招生全国统一考试数学理试题(新课标Ⅰ,含解析)
2014年高招全国课标1(理科数学解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i +=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d =A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C .58 D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作QM ⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3Q F Q M== 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014年全国一卷高考理科数学试卷及答案
2014年全国一卷高考理科数学试卷及答案2014年普通高等学校招生全国统一考试全国课标I理科数学第Ⅰ卷(选择题共60分)一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x|x-2x-3≥0},B={x|-2≤x<2},则A∩B=A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)2.(1+i)³/(1-i)²=A.1+iB.1-iC.-1+iD.-1-i3.设函数f(x),g(x)的定义域都为R,且f(x)时奇函数,g(x)是偶函数,则下列结论正确的是A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.已知F是双曲线C:x-my=3m(m>0)的一个焦点,则点F 到C的一条渐近线的距离为A.3B.3mC.3D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率=A.1/3B.5/8C.7/8D.16.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]上的图像大致为图片无法显示)7.执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=图片无法显示)A.2016B.715C.35D.288.设α∈(0,π/2),β∈(0,π/2),且tanα=(1+sinβ)/cos²β,则3α-β=A.2α-βB.2α+βC.3α+βD.3α-β9.不等式组{x+y≥1,x-2y≤4}的解集记为D。
有下面四个命题:p1:对于任意的(x,y)∈D,有x+2y≥-2;p2:存在(x,y)∈D,使得x+2y≥2;p3:对于任意的(x,y)∈D,有x+2y≤3;p4:存在(x,y)∈D,使得x+2y≤-1.其中真命题是A.p2,p3B.p1,p4C.p1,p2D.p1,p310.已知抛物线C:y=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个焦点,若2FP=4FQ,则|QF|=A.7/5B.3C.√3D.21.已知函数$f(x)=ax-3x+1$,若$f(x)$存在唯一的零点$x$,且$x>0$,则$a$的取值范围为$\textbf{(C)}$($1$,$+\infty$)。
2014年高考新课标-I-理科数学试题及答案(精校版)
2014年普通高等学校招生全国统一考试(全国课标1)理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= A . [-2,-1] B . [-1,2) C . [-1,1] D . [1,2)2. 32(1)(1)i i +-= A . 1i + B . 1i - C . 1i -+ D .1i --3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B . |()f x |()g x 是奇函数C .()f x |()g x |是奇函数D . |()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B . 3C .3mD .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B . 38 C . 58 D . 786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B . 165 C . 72 D . 1588. 设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .32παβ+=C . 22παβ-=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,2pC .1p ,4pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A . 72B . 3C . 52D . 211. 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A . 62B . 6C . 42D . 4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年高考全国Ⅰ理科数学试题及答案(word解析版)
2014 年一般高等学校招生全国一致考试(全国Ⅰ)数学(理科)第 Ⅰ 卷一、选择题:本大题共 12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.( 1)【 2014 年全国Ⅰ,理 1, 5 分】已知会集 Ax x 22x 30 , Bx 2x 2,则AB =()(A ) 2,1 (B ) 1,2 (C )1,1 (D ) 1,2【答案】 A【剖析】∵ Ax x 22x 3 0x x1 或 x3 , B x 2 x 2 ,∴ A B x 2 x 1 ,应选 A .3( 2)【 2014 年全国Ⅰ,理2,5 分】 1 i1 2i (A )1i ( B ) 1 i ( C ) 1i (D ) 【答案】 D()1 i【剖析】∵(1i) 32i(1 i)2 1 i ,应选 D . (1 i) 2i( 3)【 2014 年全国Ⅰ,理 3, 5 分】设函数 f x , g x 的定义域为 R ,且 fx 是奇函数, g x 是偶函数,则以下结论中正确的选项是()( A ) f ( x) g (x) 是偶函数( B ) f (x) g( x) 是奇函数( C ) f ( x) | g( x) |是奇函数( D ) | f (x)g ( x) | 是奇函数【答案】 C【剖析】∵ f x 是奇函数, g x 是偶函数,∴f (x) 为偶函数, g( x) 为偶函数.再依照两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f (x) | g (x) | 为奇函数,应选 C .( 4)【 2014 年全国Ⅰ,理 4, 5 分】已知 F 是双曲线 C : x 2my 23m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为()( A ) 3 ( B ) 3(C ) 3m ( D ) 3m 【答案】 A 【剖析】由 C : x 2my 23m(m0) ,得 x 2y 2 1 , c 2 3m 3,c3m 3,设 F3m 3,0 ,一条渐近线3m3y3my0 ,则点 F 到 C 的一条渐近线的距离d3m33 ,应选 A .x ,即 x1 m3m( 5)【 2014 年全国Ⅰ,理 5, 5 分】 4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率() ( A ) 1(B ) 3(C )5(D )78 8 88 【答案】 D【剖析】由题知 F 13,0 , F 23,0 且x 02y 0 2 1,因此 MF 1 MF 23 x 0 , y 03 x 0 , y 02x 02 y 023 3y 021 0 ,解得3 y 0 3,应选 D .3 3( 6)【 2014 年全国Ⅰ,理 6,5 分】如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角x 的始边为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP的距离表示为 x 的函数 f (x) ,则 y f ( x) 在 0, 上的图像大体为()(A ) (B )( C )(D )【答案】 B【剖析】如图:过 M 作 MDOP 于D ,则 PM sin x , OMcos x ,在 Rt OMP 中,OM PMcos x sin x1 1 MDcos x sin x sin 2 x ,∴f xsin 2x (0 x ) ,OP122应选 B .( 7)【 2014 年全国Ⅰ,理 7, 5 分】执行以下列图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的M ()( A ) 20(B ) 16(C ) 7 (D ) 1535 28【答案】 D【剖析】输入 a1, b 2, k 3 ; n 1时:M 11 3 , a 2,b 3 ;222n 2 时: M 228, a3,b8; n 3时: M3 3 15 , a 8,b 15 ;33 2328 8 38n 4 时:输出 M15,应选 D .81sin( 8)【 2014 年全国Ⅰ,理 8, 5分】设(0,) , (0, ) ,且 tan,则()cos22 (A ) 3(B ) 2(C ) 3 2 (D ) 2 2【答案】 B 22【剖析】∵ tansin 1 sin coscoscos sin, sincossin,coscos ,∴ sin222 ,0 2,∴2,即 2,应选 B .22x y 1的解集记为 D .有下面四个命题: p 1 : ( x, y) D , x 2 y 2 ,( 9【) 2014 年全国Ⅰ,理 9,5 分】不等式组2y 4 xp 2 : (x, y) D, x 2 y 2 , P 3 : ( x, y) D , x 2 y 3 , p 4 : (x, y)D , x 2 y 1 .其中真命题是()( A ) p 2 , p 3 ( B ) p 1 , p 4 (C ) p 1 , p 2 ( D ) p 1 ,p 3 【答案】 C【剖析】作出可行域如图: 设 x 2 y z ,即 y1x z,当直线过 A 2, 1 时,zmin2 2 0 ,2 2∴ z 0 ,∴命题 p 1 、 p 2 真命题,应选 C .( 10)【 2014 年全国Ⅰ,理 10,5 分】已知抛物线 C : y 28x 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线 PF 与 C 的一个交点,若FP4FQ ,则 |QF |()( A ) 7 (B ) 5(C )3(D )22 2【答案】 C【剖析】过 Q 作 QMl 于 M ,∵ FPPQ 3 ,又QM PQ 3 3 ,4FQ ,∴44PF,∴ QMPF4由抛物线定义知 QF QM3,应选 C .( 11)【 2014 年全国Ⅰ,理 11,5 分】已知函数 fxax 3 3x 2 1 ,若 f ( x) 存在唯一的零点 x 0 ,且 x 00 ,则 a的取值范围为()(A ) 2,(B ), 2 (C ) 1,( D ), 1【答案】 B【剖析】解法一:由已知 a0 , f ( x)3ax 26 x ,令 f (x) 0 ,得 x 0 或 x2 ,a当 a0 时, x,0 , f (x) 0; x0,2, f ( x) 0; x2 , , f (x) 0 ;aa且 f (0) 10 , f (x) 有小于零的零点,不吻合题意.当 a0 时, x2 0; x2 , f (x) 0; x0,, f (x),, f ( x) ,0aa要使 f (x) 有唯一的零点x 0 且 x 00 ,只需 2) 0 ,即 a2, a2 ,应选 B .f ( 4a解法二:由已知 a0 , f x ax33x21 有唯一的正零点,等价于a 3 1 13 有唯一的正零根,令 t1,则t 3t 3 x xx 问题又等价于 a3t 有唯一的正零根,即y a 与 y3t 有唯一的交点且交点在在 y 轴右侧记f (t )t 3 3t , f (t)3t 2 3 ,由 f (t )0 , t 1 , t, 1 , f (t) 0;t1,1 , f (t )0; ,t 1,, f (t ) 0 ,要使 a33t 有唯一的正零根,只需 af ( 1)2 ,应选 B .t ( 12)【 2014 年全国Ⅰ,理 12, 5 分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()( A ) 6 2 (B ) 4 2 (C )6(D )4【答案】 C【剖析】以下列图,原几何体为三棱锥D ABC ,其中 ABBC 4,AC 4 2,DB DC 2 5,26 ,应选 C .DA4 24 6 ,故最长的棱的长度为 DA第II 卷本卷包括必考题和选考题两部分.第( 13)题 ~第( 21)题为必考题,每个试题考生都必定作答.第( 22)题 ~第( 24)题为选考题,考生依照要求作答.二、填空题:本大题共 4 小题,每题 5 分( 13)【 2014 年全国Ⅰ,理 13, 5 分】 (x y)( xy)8的张开式中 x 2 y 2 的系数为.(用数字填写答案)【答案】 20【剖析】 (x y)8 张开式的通项为T r 1 C 8r x 8 r y r (r0,1, ,8) ,∴ T 8C 87 xy 7 8xy 7 , T 7 C 86 x 2 y 628x 2 y 6 ,∴ (xy)( x y)8 的张开式中 x 2 y 7 的项为 x 8 xy 7 y 28 x 2 y 6 20 x 2 y 7 ,故系数为20 .( 14)【 2014 年全国Ⅰ,理 14, 5 分】甲、乙、丙三位同学被问到可否去过 A 、 B 、 C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由 此可判断乙去过的城市为. 【答案】 AA 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B【剖析】由乙说:我没去过 C 城市,则乙可能去过 城市,则乙只能是去过 A , B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的 城市为 A . ( 15)【 2014 年全国Ⅰ,理 15,5 分】已知 A , B , C 是圆 O 上的三点,若 AO1(ABAC),则 AB 与 AC 的2夹角为.【答案】 900【剖析】∵ AO 1 ( AB AC) ,∴ O 为线段 BC 中点,故 BC 为 O 的直径,∴BAC 900,∴ AB 与 AC 的夹2角为 90 0 .a,b,c 分别为A,B,C 的对边, a( 16 )【 2014 年全国Ⅰ,理16, 5 分】已知ABC 的三个内角2 ,且(2 b )(sin AsinB ) c ( b ) sinC ,则 ABC 面积的最大值为.【答案】 3【剖析】由 a2且(2 b)(sin A sin B)(c b)sin C ,即 (a b)(sin A sin B) (cb)sin C ,由及正弦定理得:2221,∴(a b )(ab) (c b)c ,∴ b 2c 2 a 2bc ,故 cos Abc a A 600 ,∴ b 2c 2 4 bc ,12bc24 b 2 c 2 bcbc ,∴ S ABCbc sin A3 . 2三、解答题:解答应写出文字说明,证明过程或演算步骤.( 17)【 2014 年全国Ⅰ,理 17,12 分】已知数列 a n 的前 n 项和为 S n , a 11 , a n 0 , a n a n 1S n 1,其中为常数.( 1)证明: a n 2 a n;( 2)可否存在 ,使得 a n 为等差数列?并说明原由.解:( 1)由题设 a n a n 1S n 1 , a n 1 a n 2S n 1 1,两式相减 a n 1an 2a na n 1 ,由于 a n0 ,因此 a n 2 a n.6分( 2)由题设 a 1 1 , a 1a 2S 1 1,可得 a 211,由( 1)知 a 31假设 a n 为等差数列,则 a 1 ,a 2 ,a 3 成等差数列,∴ a 1 a 3 2a 2 ,解得4 ;证明4 时, a n 为等差数列:由 a n2a n 4 知:数列奇数项构成的数列a2 m 1是首项为 1,公差为4 的等差数列 a 2m14m 3 ,令 n 2m 1, 则 m n 1,∴ a n 2n 1 ( n 2m 1)2n ,数列偶数项构成的数列 a2m 是首项为 3,公差为 4 的等差数列 a 2m 4m 1 ,令 n 2m, 则 m ∴2 1 ,∴ ( * ),2a n n ( n 2m) a n2n 1 n n 1a n2N a因此,存在存在4 ,使得 a n 为等差数列.12 分( 18)【 2014 年全国Ⅰ,理 18, 12 分】从某企业的某种产品中抽取 500 件,测量这些产品的一项质量指标值,由测量结果得以下频率分布直方图:( 1)求这 500 件产质量量指标值的样本平均数x 和样本方差 s 2 (同一组数据用该区间的中点值作代表) ;( 2)由频率分布直方图可以认为,这种产品的质量指标值Z 遵从正态分布 N ( , 2 ) ,其中 近似为样本平均数 x , 2 近似为样本方差 s 2 .( i )利用该正态分布,求 P(187.8 Z 212.2) ;( ii )某用户从该企业购买了 100 件这种产品,记 X 表示 100 件产品中质量指标值为区间(187.8,212.2 )的产品件数,利用( i )的结果,求 EX .附: 15012.2 .若 Z N ( , 2) ,则 P(Z) 06826.,P(2Z2 ) =0.9544.解:( 1)抽取产质量量指标值的样本平均数x 和样本方差 s 2 分别为:x 170 0.02 1800.09 1900.22 200 0.33 2100.24 220 0.08 2300.02 200s 230 220.0920.22 00.33 10220.08302150 .0.0220100.24200.02 6 分( 2)(ⅰ)由(1)知 Z N(200,150),从而 P(187.8 Z212.2) P(200 12.2 Z200 12.2)0.6826. 9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为 0.6826依题意知 X B(100,0.6826),因此 EX 100 0.6826 68.26 .12 分( 19)【 2014 年全国Ⅰ,理 19, 12 分】如图三棱柱ABC A 1 B 1C 1 中,侧面 BB 1C 1C 为菱形, ABB 1C .( 1)证明: AC AB 1 ;( 2)若 ACAB 1 ,CBB 1 60 o, AB BC ,求二面角 A A 1B 1 C 1 的余弦值.解:( 1)连结 BC 1 ,交 B 1C 于 O ,连结 AO .由于侧面 1 1 为菱形, 因此 B 1CBC 1 ,BBC C且O 为 B 1C 与 BC 1 的中点.又 AB B 1C ,因此 B 1C 平面 ABO ,故 B 1 C AO又 B 1O CO ,故 AC AB 1 . 6分( 2)由于 AC AB 1 且 O 为 B 1C 的中点,因此 AOCO ,又由于 AB BC ,因此 BOABOC ,故 OA OB ,从而 OA , OB , OB 1 两两互相垂直. 以 O 为坐标原点, OB 的方向为 x 轴正方 向,OB 为单位长,建立以下列图空间直角坐标系O xyz .由于CBB 1 600 , 因此 CBB 1 为等边三角形. 又 ABBC ,则 A 0,0,3,B 1,0,0, 0,3 ,B 1,033C 0,3 ,0 , AB 1 0, 3 , 3, A 1B 1 AB1,0,3 ,33 33B C1 BC1, 3 ,0 ,设 nx, y, z 是平面的法向量,则n AB 1,即13n A 1B 13y3 03zm A 1 B 13因此可取 n1, 3,3 ,设 m 是平面的法向量,则,同理可取3n B 1C 1xz 03m1,3, 3 ,则 cos n, mn m 1 ,因此二面角 AA 1B 1C 1 的余弦值为1.12分n m 77223,F 是( 20)【 2014 年全国Ⅰ,理 20, 12 分】已知点 A 0, 2 ,椭圆 E :xy 1(a b 0) 的离心率为a 2b 22椭圆的焦点,直线 AF 的斜率为23, O 为坐标原点.( 1)求 E 的方程;3( 2)设过点 A 的直线 l 与 E 订交于 P,Q 两点,当OPQ 的面积最大时,求 l 的方程.解:( 1)设 F c,0 ,由条件知2 2 3,得 c 3 ,又c3 ,c 3a 2因此 a2 , b2a2c21,故 E 的方程x 2y 21 . 6分42( 2)依题意当 lx 轴不合题意, 故设直线 l :y kx 2 ,设 P x 1y, 1 Q, x y 2 , 2,将 y kx 2 代入xy 2 1 ,4得 14k 2x216kx12 0 ,当16(4 k23)0 ,即 k23时, x 1,2 8k 2 4 k 2 341 4k 2从而 PQk21 x 1x 24 k21 4k 23,又点 O 到直线 PQ 的距离 d2 ,因此 OPQ 的1 4k 2k 2 1 面积 S OPQ14 4k 2 3,设4k 23 t ,则 t0 ,S OPQ4t41 ,d PQ12t 2 4424ktt当且仅当 t2 , k7等号建立,且满足0 ,因此当 OPQ 的面积最大时,l 的方程为:2y77x 2 或 yx 2 ..12 分22be x 1( 21)【 2014 年全国Ⅰ,理 21, 12 分】设函数 f xae x ln x,曲线 y f ( x) 在点 1, f 1 处的切线为xy e(x 1) 2 .( 1)求 a, b ;( 2)证明: f ( x) 1.解:( 1)函数 f (x) 的定义域为 0,,xa xb x 1 b x 1xex 2exef (x) ae ln x由题意可得 f (1)2, f (1) e ,故 a 1,b2 . 6分x2e x 1 x2( 2)由( 1)知, f (x)ln x,从而 f ( x) 1 等价于 x ln x xex ln x ,则ex,设函数 g( x)eg (x) xln x ,因此当 x0, 1 时, g ( x) 0 ,当 x1 ,时, g (x) 0,故 g( x) 在 0,1单调减,eee在1,单调递加,从而 g( x) 在 0,的最小值为g( 1)1. 8分eee设函数 h(x)xex2,则 h (x) ex1 x,因此当 x0,1 时, h (x)0 ,当 x1,时, h ( x) 0 ,e故 h(x) 在 0,1 单调递加,在 1,单调递减,从而 h( x) g( x) 在 0,的最小值为 h(1)1 . 综上:当 x0 时, g( x)h( x) ,即 f ( x) 1.12e分请考生在( 22)、( 23)、( 24)三题中任选一题作答.注意:只能做所选定的题目.若是多做,则按所做第一个题目计分,做答时,请用 2B 铅笔在答题卡大将所选题号后的方框涂黑. ABCD 是( 22)【 2014 年全国Ⅰ,理 22,10 分】(选修 4-1:几何证明选讲)如图,四边形O 的内接四边形, AB 的延长线与 DC 的延长线交于点 E ,且 CBCE .( 1)证明: D E ;( 2)设 AD 不是O 的直径, AD 的中点为 M ,且 MBMC ,证明: ABC 为等边三角形.解:( 1)由题设得, A , B , C , D 四点共圆,因此, D CBE又 CB CE , CBE E ,因此 D E5 分( 2)设 BC 的中点为 N ,连结 MN ,则由 MB MC 知MN BC ,故 O 在直线 MN 上,又AD 不是 O 的直径, M 为 AD 的中点,故 OM AD ,即 MN AD ,因此 AD / /BC ,故 A CBE ,又 CBE E ,故 A E ,由( 1)知, D E ,因此 ADE 为等边三角形.10 分2 2( 23)【 2014 年全国Ⅰ,理 23,10 分】(选修 4-4:坐标系与参数方程)已知曲线C :xy1 ,49直线 l : x 2 t ( t 为参数).y 2 2t( 1)写出曲线 C 的参数方程,直线l 的一般方程;( 2)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A ,求 PA 的最大值与最小值.解:( 1)曲线 C 的参数方程为x 2cos (为参数)直线 l 的一般方程为 2xy 60 . 5分y3sin( 2)曲线 C 上任意一点 P(2cos,3sin) 到 l 的距离为 d5| 4cos3sin6 |,5则|PA|d2 5 | 5sin() 6| ,其中为锐角,且 tan4 ,sin3053当 sin()1时, | PA | 获取最大值,最大值为2255当 sin() 1时, | PA | 获取最小值,最小值为 25 .10 分50 且11( 24)【 2014 年全国Ⅰ,理 24, 10 分】(选修 4-5:不等式选讲)若 a0 , bab .( 1)求 a 3 b 3 的最小值;ab( 2)可否存在 a, b ,使得 2a 3b 6?并说明原由.解:( 1)由 ab 1 1 2,得 ab 2 ,且当 a b 2 时等号建立.a bab故 a 3 b 32 a3 b 34 2 ,且当 a b 2 时等号建立,因此a 3b 3 的最小值为 4 2 .5分( 2)由( 1)知, 2a 3b 2 6 ab 4 3,由于 4 3 6 ,从而不存在 a,b ,使得 2a 3b 6 .10 分。
2014年全国一卷高考理科数学试卷及答案
2014年普通高等学校招生全国统一考试全国课标I 理科数学第Ⅰ卷 (选择题 共60分)一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[—2,—1]B 。
[-1,2)C .[-1,1]D .[1,2) 2.32(1)(1)i i +-= A .1i + B .1i - C 。
1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B 。
|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B 。
3C 。
3mD 。
3m5。
4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C 。
58D 。
786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7。
执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A 。
203 B 。
165 C .72D 。
1588。
设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C 。
32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D 。
2014年全国高考数学(理科)试题及答案-新课标1卷(解析版)
2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<, ∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i+=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d = A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作M D ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x = 1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ =∴34PQ PF=,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014年普通高等学校招生统一考试数学试卷(新课标Ⅰ理)已校对,无错误
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回. 第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2}=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .B .3CD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年普通高等学校招生全国统一考试新课标1卷(数学理)-推荐下载
第 1 页 共 12 页
【答案】:A
【解析】:由 C : x2 my2 3m(m 0) ,得 x2 y2 1, c2 3m 3, c 3m 3 3m 3
设 F 3m 3, 0,一条渐近线 y 3 x ,即 x m y 0 ,则点 F 到 C 的一条渐近线的距离 3m
2
2014 年普通高等学校招生全国统一考试(全国 1 卷)
2
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014年全国一卷高考理科数学试卷及答案
2014年普通高等学校招生全国统一考试全国课标I 理科数学第Ⅰ卷 (选择题 共60分)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[—2,—1]B 。
[-1,2) C 。
[—1,1] D 。
[1,2) 2.32(1)(1)i i +-= A 。
1i + B .1i - C .1i -+ D 。
1i --3。
设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A 。
()f x ()g x 是偶函数B 。
|()f x |()g x 是奇函数C 。
()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4。
已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A 。
3B 。
3C 。
3mD 。
3m5。
4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C 。
58D 。
786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A 。
203 B 。
165 C 。
72 D 。
1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC 。
2014年高考真题——理科数学(新课标卷Ⅰ)解析版 Word版含答案
2014年高招全国课标1(理科数学word 解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<, ∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i+=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d = A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作M D ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x = 1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ = ∴34PQ PF=,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014年高考全国Ⅰ卷理科数学试题(含答案解析)
绝密★启用前2014年普通高等学校招生全国统一考试理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至6页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后.将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A ={x |2230x x --≥},B ={x |−2≤x <2},则A∩B =(A )[−2, −1](B )[−1, 2)(C )[−1, 1](D )[1, 2)(2)32(1)(1)i i +-= (A )1i +(B )1i -(C )1i -+(D )1i --(3)设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是(A )()f x ()g x 是偶函数 (B )|()f x |()g x 是奇函数 (C )()f x |()g x |是奇函数(D )|()f x ()g x |是奇函数(4)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为(A (B )3 (C (D )3m(5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率(A )18(B )38(C )58(D )78(6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线, 垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为(A ) (B )(C ) (D )(7)执行下图的程序框图,若输入的,,a b k 分别为1, 2, 3,则输出的M = (A )203(B )165 (C )72(D )158(8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则(A )32παβ-= (B )32παβ+= (C )22παβ-=(D )22παβ+=(9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-. 其中真命题是(A )2p ,p 3 (B )1p ,4p (C )1p ,2p(D )1p ,p 310.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = (A )72(B )52(C )3 (D )211.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为(A )(2,+∞) (B )(−∞,−2) (C )(1,+∞)(D )(−∞,−1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 (A )62 (B )42 (C )6 (D )4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年全国卷1(理科数学)含答案
绝密★启用前2014年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={|},B={|-2≤<2=,则=【A 】.[-2,-1] .[-1,2) .[-1,1] .[1,2)2.=【D 】. . . .3.设函数,的定义域都为R ,且时奇函数,是偶函数,则下列结论正确的是【B 】.是偶函数 .||是奇函数.||是奇函数 .||是奇函数x 2230x x --≥x x A B ⋂A B C D 32(1)(1)i i +-A 1i +B 1i -C 1i -+D 1i --()f x ()g x ()f x ()g x A ()f x ()g x B ()f x ()g x C ()f x ()g x D ()f x ()g x4.已知是双曲线:的一个焦点,则点到的一条渐近线的距离为【A】..3 ..5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率【D】....6.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示为的函数,则=在[0,]上的图像大致为【B】7.执行下图的程序框图,若输入的分别为1,2,3,则输出的=【D】....F C223(0)x my m m-=>F CA3B C3m D3mA18B38C58D78x OA OP P OA M M OPx()f x y()f xπ,,a b k MA203B165C72D1588.设,,且,则【B 】 ....9.不等式组的解集记为.有下面四个命题::,:,:,:.其中真命题是【C 】., ., ., .,10.已知抛物线:的焦点为,准线为,是上一点,是直线与的一个焦点,若,则=【C 】. . .3 .211.已知函数=,若存在唯一的零点,且>0,则的取值范围为【C 】.(2,+∞) .(-∞,-2) .(1,+∞) .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为【C 】. . .6 .4第Ⅱ卷本卷包括必考题和选考题两个部分。
2014年高考新课标1全国卷理科数学试题及答案
2014年普通高等学校招生全国统一考试全国新课标1理科数学第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ). A .[]2,1-- B .[)1,2- C .[]1,1- D .[)1,22.32(1)(1)i i +=-( ). A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ). A .()()f x g x 是偶函数 B .()()f x g x 是奇函数C .()()g x f x 是奇函数D .()()f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ).A .203B . 72C . 165D .158 8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A .32παβ-=B . 32παβ+=C .22παβ-=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( ).A .2p ,3PB .1p ,2pC .1p ,4pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =( ).A .72B . 3C .52D .211.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ).A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( ).A .62B .6C .42D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年高招全国课标1(理科数学word 解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i +=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y ,即0x =,则点F 到C 的一条渐近线的距离d = A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58 D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作M D ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===; 4n =时:输出158M =. 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B 9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ = ∴34PQ PF=,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭要使()f x 有唯一的零点0x 且0x >0,只需2()0f a>,即24a >,2a <-.选B 【解析2】:由已知0a ≠,()f x =3231ax x -+有唯一的正零点,等价于3113a x x =- 有唯一的正零根,令1t x=,则问题又等价于33a t t =-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->,()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,选B12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4【答案】:C【解析】:如图所示,原几何体为三棱锥D ABC -,其中4,AB BC AC DB DC =====6DA ==,故最长的棱的长度为6DA =,选C第Ⅱ卷本卷包括必考题和选考题两个部分。
第(13)题-第(21)题为必考题,每个考生都必须作答。
第(22)题-第(24)题为选考题,考生根据要求作答。
二.填空题:本大题共四小题,每小题5分。
13.8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) 【答案】:-20【解析】:8()x y +展开式的通项为818(0,1,,8)r r r r T C x y r -+==,∴777888T C xy xy ==,626267828T C x y x y ==∴8()()x y x y -+的展开式中27x y 的项为7262782820x xy y x y x y -=-,故系数为-20。
14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 【答案】:A【解析】:∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市 ∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【答案】:090 【解析】:∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径,∴090BAC ∠=,∴AB 与AC 的夹角为090。
16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【答案】【解析】:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤三.解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.【解析】:(Ⅰ)由题设11n n n a a S λ+=-,1211n n n a a S λ+++=-,两式相减()121n n n n a a a a λ+++-=,由于0n a ≠,所以2n n a a λ+-= …………6分(Ⅱ)由题设1a =1,1211a a S λ=-,可得211a λ=-,由(Ⅰ)知31a λ=+ 假设{n a }为等差数列,则123,,a a a 成等差数列,∴1322a a a +=,解得4λ=; 证明4λ=时,{n a }为等差数列:由24n n a a +-=知数列奇数项构成的数列{}21m a -是首项为1,公差为4的等差数列2143m a m -=- 令21,n m =-则12n m +=,∴21n a n =-(21)n m =-数列偶数项构成的数列{}2m a 是首项为3,公差为4的等差数列241m a m =- 令2,n m =则2nm =,∴21n a n =-(2)n m = ∴21n a n =-(*n N ∈),12n n a a +-=因此,存在存在4λ=,使得{n a }为等差数列. ………12分18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i)利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544. 【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数x 和样本方差2s 分别为1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150= …………6分(Ⅱ)(ⅰ)由(Ⅰ)知Z ~(200,150)N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+= ………………9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826 依题意知(100,0.6826)X B ,所以1000.682668.26EX =⨯= ………12分19. (本小题满分12分)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB=BC 求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO⊥又 1B O CO =,故1AC AB = ………6分(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以AO= 又因为AB=,所以BOA BOC ∆≅∆故O A ⊥,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB=,则A ⎛ ⎝⎭,()1,0,0B,1B ⎛⎫ ⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭10,33AB ⎛=- ⎝⎭,111,0,,3A B AB ⎛==- ⎝⎭111,3B C BC ⎛⎫==-- ⎪ ⎪⎝⎭设(),,n x y z =是平面的法向量,则11100n AB nA B ⎧=⎪⎨=⎪⎩,即003y z x z =⎨⎪-=⎪⎩所以可取(1,3,n =设m 是平面的法向量,则11110m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m =则1cos ,7n m n m n m==,所以二面角111A ABC --的余弦值为17.20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】:(Ⅰ) 设(),0F c,由条件知23c =c =又2c a =, 所以a=2,2221b a c =-= ,故E 的方程2214x y +=. ……….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,1,2x =从而212143k PQ x -=-=又点O 到直线PQ 的距离d =,所以∆OPQ 的面积12OPQS d PQ ∆== ,t =,则0t >,244144OPQ t S t t t∆==≤++,当且仅当2t =,k =等号成立,且满足0∆>,所以当∆OPQ 的面积最大时,l 的方程为:22y x =- 或22y x =--. …………………………12分21. (本小题满分12分)设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 【解析】:(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln xx x x a b b f x ae x e e e x x x--'=+-+ 由题意可得(1)2,(1)f f e '==,故1,2a b == ……………6分(Ⅱ)由(Ⅰ)知,12()ln x xe f x e x x-=+,从而()1f x >等价于2ln xx x xe e ->-设函数()ln g x x x =,则()ln g x x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g e e=-. ……………8分设函数2()x h x xe e-=-,则()()1xh x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值为1(1)h e=-.综上:当0x >时,()()g x h x >,即()1f x >. ……………12分请考生从第(22)、(23)、(24)三题中任选一题作答。