3.4 数列综合应用

合集下载

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。

在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。

一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。

对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。

1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。

设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。

(1)等差数列中,任意三项可以构成一个等差数列。

(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。

与等差数列不同的是,等比数列中的任意两项的比值都相等。

2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。

设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。

(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。

(完整word版)数列综合应用(放缩法)

(完整word版)数列综合应用(放缩法)

(完整word 版)数列综合应用(放缩法)数列综合应用(1)—-——用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式;(2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B2。

先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=。

(1) 求证:2214n n n a a S ++<;(2) 求证<⋅⋅⋅+②.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nnn a ab -=12,数列{b n }前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,(完整word 版)数列综合应用(放缩法) )3,2,1()21(1 =+=+n a na n n n .求证:④.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令nn n nn a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,…。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。

通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。

1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。

通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。

第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。

通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。

2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。

通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。

第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。

通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。

3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。

通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。

第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。

通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。

4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。

通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。

第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。

通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。

5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。

通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。

第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。

2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。

3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。

二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。

2. 等比数列的应用举例:例如计算复利、人口增长等问题。

3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。

4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。

5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。

三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。

2. 教学难点:数列的通项公式的理解和应用。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。

2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。

3. 组织小组讨论,培养学生的合作能力和思维能力。

五、教学安排:1. 第一课时:等差数列的应用举例。

2. 第二课时:等比数列的应用举例。

3. 第三课时:数列的求和公式及应用。

4. 第四课时:数列的通项公式的应用。

5. 第五课时:数列在函数中的应用。

6. 剩余课时:进行课堂练习和课后作业的辅导。

六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。

2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。

3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。

七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。

2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。

3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。

八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。

高中数学-数列综合应用

高中数学-数列综合应用

数列综合应用知识精要一、数列求和数列求和的常用方法1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和;①等差数列的前n 项和公式:②等比数列的前n 项和公式:(2)一些常见的数列的前n 项和:○1(1)12342n n n ++++++=; ○22222(1)(21)1236n n n n ++++++=; ○32462(1)n n n ++++=+; ○4213521n n ++++-=; ○52233332(1)(1)123[]24n n n n n ++++++==。

2、倒序相加法如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;4、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。

5、分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;6、并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和。

形如(1)()n n a f n =-类型,可采用两项合并求解。

二、数列的综合应用1、解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意;(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么;(3)求解——求出该问题的数学解;(4)还原——将所求结果还原到实际问题中。

2、数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差;(2)等比数列:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比。

数列的综合应用

数列的综合应用

数列的综合应用1、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。

⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅L (2)n ≥。

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

(2)形如11n n n a a ka b --=+的递推数列都可以用倒数法求通项。

注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。

2、数列求和的常用方法:(1)公式法:①等差数列求和公式; ②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.; ③常用公式:1123(1)2n n n ++++=+L222112(1)(21)6n n n n +++=++L ,33332n(n+1)1+2+3++n =[]2L .(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性 ,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ; ⑤2122(1)2(1)11n n n n n n n n n +-=<<=--+++-.(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

数列的综合运用新

数列的综合运用新
A.若{an}>M,则数列{an}的各项均大于等于M B.若{an}>M,{bn}>M,则{an+bn}>2M C.若{an}>M,则{a}>M2 D.若{an}>M,则{2an+1}>2M+1
解析:对于A,即若{an}>M,an与an+1中至少有一个 不小于M,则数列{an}的各项不一定都大于M,错误;对于 B,若{an}>M,an与an+1中至少有一个不小于M,{bn}>M, bn与bn+1中至少有一个不小于M,但它们不一定是同一个n 值,则{an+bn}>2M不成立;对于C,若{an}>M,数列各项 的正负及M的正负不确定,则{a}>M2不成立;则只有D成立,
(4)数列的实际应用:现实生活中涉及利率,产品利润, 工作效率,人口增长,常常考虑用数列知识加以解决.
1.某种细菌在培养过程中,每20分钟分裂一次(1个分
裂成2个),经过3小时,这种细菌由1个可以繁殖成 ( )
A.511个
B.512个
C.1023个
D.1024个
解析:由题意知,细菌繁殖过程可以看作一个首项为
1,公比为2的等比数列模型,所以a10=a1q9=29=512.故应 选B.
答案:B
2 . 数 列 {an} 的 通 项 公 式 是 关 于 x 的 不 等 式 x2 -
x<nx(n∈N*)的解集中的整数个数,则数列{an}的前n项和Sn

()
A.n2
B.n(n+1)
C.
D.(n+1)(n+2)
解析:由x2-x<nx,得0<x<n+1(n∈N*), 因此an=n, Sn=
故选D.
答案:D
1.在解决数列综合问题时要注意以下方面 (1)用函数的观点和思想认识数列,将数列的通项公式 与求和公式都看作自变量为正整数的函数. (2)用方程思想去处理数列问题,把通项公式与求和公 式 看作列方程的等量关系. (3)用转化思想去处理数学问题,将实际问题转化为等 差数列或等比数列问题. (4)用猜想与递推的思想去解决数学问题.

数列的综合应用总结

数列的综合应用总结

数列的综合应用总结数列作为数学中常见的一种数学对象,在各个领域中都有着广泛的应用。

本文将对数列的综合应用进行总结和分析,包括数列的定义、数列求和的方法以及数列在实际问题中的应用等方面。

一、数列的定义数列是由一系列按照一定规律排列的数所组成的有序集合。

一般用an表示数列中的第n个数,其中n为正整数,称为项号。

数列的通项公式表示了数列中任意一项与项号之间的关系。

二、数列求和的方法1.等差数列求和等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

等差数列的前n项和Sn可以通过等差数列求和公式来计算,即Sn =(a1 + an) * n / 2。

2.等比数列求和等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。

等比数列的前n项和Sn可以通过等比数列求和公式来计算,即Sn =(a1 * (1 - q^n)) / (1 - q),当|q| < 1时成立。

3.其他数列求和方法除了等差数列和等比数列,还存在一些特殊的数列,它们的求和方法也各不相同。

比如斐波那契数列、调和数列等,它们的求和方法需要根据具体的问题和数列的规律来确定。

三、数列在实际问题中的应用数列的应用广泛存在于实际问题的建模和解决过程中。

下面以几个具体的应用场景来说明数列在实际问题中的应用。

1.金融领域在金融领域中,利率、投资回报率等与时间相关的指标可以使用数列进行建模。

比如等额本息还款方式下,每期的还款金额就可以通过等差数列求和来计算。

2.物理学领域在物理学中,许多物理现象的变化过程可以用数列进行描述。

比如自由落体运动的位移、速度、加速度等物理量随时间的变化可以用等差数列或等比数列来表示和推导。

3.计算机科学领域在算法设计和数据处理中,数列也有着重要的应用。

比如在排序算法中,快速排序、归并排序等算法利用了数列的递推和分治思想来实现高效的排序。

四、总结数列作为一种常见的数学对象,具有广泛的应用价值。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标1. 理解数列的概念及其性质2. 掌握数列的通项公式和求和公式3. 能够运用数列解决实际问题二、教学内容1. 数列的概念及其性质2. 数列的通项公式和求和公式3. 数列在实际问题中的应用三、教学重点与难点1. 教学重点:数列的概念、性质、通项公式和求和公式2. 教学难点:数列在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解数列的概念和性质2. 采用示例法,教授数列的通项公式和求和公式3. 采用案例分析法,让学生学会运用数列解决实际问题五、教学过程1. 引入:通过生活中的实例,如等差数列“每月工资”、“每分钟心跳次数”等,引导学生认识数列的概念和性质。

2. 讲解:讲解数列的概念、性质、通项公式和求和公式,通过示例让学生理解并掌握这些知识点。

3. 练习:布置一些练习题,让学生运用所学的数列知识解决问题,巩固所学内容。

4. 案例分析:选取一些实际问题,如“等差数列投资”、“数列在数据处理中的应用”等,让学生学会运用数列知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调数列在实际中的应用价值。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评估学生对数列概念和性质的理解程度。

2. 练习题评价:通过学生完成的练习题,检查学生对数列通项公式和求和公式的掌握情况。

3. 案例分析评价:评估学生在案例分析中的表现,判断其能否将数列知识应用于实际问题中。

七、教学拓展1. 数列在数学其他领域的应用:介绍数列在代数、几何、概率等领域中的应用,激发学生的学习兴趣。

2. 数列与其他学科的交叉:探讨数列在其他学科如物理、化学、生物等方面的应用,拓宽学生的知识视野。

八、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习兴趣、教学方法的适用性、学生对数列知识的掌握程度等,以便对后续教学进行调整和改进。

九、课后作业布置一些有关数列的练习题,包括填空题、选择题和解答题,让学生巩固所学知识,提高解题能力。

数列的综合应用经典教案【强烈推荐】

数列的综合应用经典教案【强烈推荐】

第5讲数列的综合应用一、考点、热点回顾1.考查数列的函数性及与方程、不等式、解析几何相结合的数列综合题。

2.考查运用数列知识解决数列综合题及实际应用题的能力。

【复习指导】1.熟练把握等差数列与等比数列的基本运算。

2.掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等。

3.注意总结相关的数列模型以及建立模型的方法。

基础梳理1.等比数列与等差数列比较表不同点相同点等差数列(1)强调从第二项起每一项与前项的差;(2)a1和d可以为零;(3)等差中项唯一(1)都强调从第二项起每一项与前项的关系;(2)结果都必须是同一个常数;(3)数列都可由a1,d或a1,q确定等比数列(1)强调从第二项起每一项与前项的比;(2)a1与q均不为零;(3)等比中项有两个值2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意。

(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么。

(3)求解——求出该问题的数学解。

(4)还原——将所求结果还原到原实际问题中。

3.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差。

(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比。

(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n +1的递推关系,还是S n与S n+1之间的递推关系。

一条主线数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解。

两个提醒(1)对等差、等比数列的概念、性质要有深刻的理解,有些数列题目条件已指明是等差(或等比)数列,但有的数列并没有指明,可以通过分析,转化为等差数列或等比数列,然后应用等差、等比数列的相关知识解决问题.(2)数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注.三种思想(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)数列与不等式结合时需注意放缩.(3)数列与解析几何结合时要注意递推思想.双基自测1.(人教A 版教材习题改编)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2的值为( ). A .-4 B .-6 C .-8 D .-10解析 由题意知:a 23=a 1a 4.则(a 2+2)2=(a 2-2)(a 2+4),解得:a 2=-6. 答案 B 2.(·运城模拟)等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q =2.∴S 4=1-241-2=15. 答案 C3.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 解析 记等比数列{a n }的公比为q (q >0),由数列{b n }为等差数列可知b 4+b 10=2b 7,又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6⎝⎛⎭⎫1+q 6q 3=b 7⎝⎛⎭⎫1+q 6q 3,又1+q 6q 3=1q 3+q 3≥2(当且仅当q =1时,等号成立),∴a 3+a 9≥2b 7,即a 3+a 9≥b 4+b 10. 答案 B4.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( ). A .4 B .2 C .-2 D .-4解析 由c ,a ,b 成等比数列可将公比记为q ,三个实数a ,b ,c ,待定为cq ,cq 2,c .由实数a 、b 、c 成等差数列得2b =a +c ,即2cq 2=cq +c ,又等比数列中c ≠0,所以2q 2-q -1=0,解一元二次方程得q =1(舍去,否则三个实数相等)或q =-12,又a +3b +c =a +3aq +a q =-52a =10,所以a =-4.答案 D 5.(·苏州质检)已知等差数列的公差d <0,前n 项和记为S n ,满足S 20>0,S 21<0,则当n =________时,S n 达到最大值.解析 ∵S 20=10(a 1+a 20)=10(a 10+a 11)>0, S 21=21a 11<0,∴a 10>0,a 11<0, ∴n =10时,S n 最大. 答案 10考向一 等差数列与等比数列的综合应用【例1】►在等差数列{a n }中,a 10=30,a 20=50. (1)求数列{a n }的通项a n ;(2)令b n =2a n -10,证明:数列{b n }为等比数列.[审题视点] 第(1)问列首项a 1与公差d 的方程组求a n ;第(2)问利用定义证明. (1)解 由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.∴a n =12+(n -1)·2=2n +10.(2)证明 由(1),得b n =2a n -10=22n+10-10=22n =4n ,∴b n +1b n =4n +14n =4.∴{b n }是首项是4,公比q =4的等比数列.对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.【训练1】 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (2)设{b n }的公差为d ,由T 3=15,b 1+b 2+b 3=15,可得b 2=5,故可设b 1=5-d ,b 3=5+d ,又a 1=1,a 2=3,a 3=9, 由题意可得(5-d +1)(5+d +9)=(5+3)2, 解得d 1=2,d 2=-10.∵等差数列{b n }的各项为正,∴d >0,∴d =2,b 1=3,∴T n =3n +n (n -1)2×2=n 2+2n .考向二 数列与函数的综合应用【例2】►等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值;(2)当b =2时,记b n =n +14a n(n ∈N *),求数列{b n }的前n 项和T n .[审题视点] 第(1)问将点(n ,S n )代入函数解析式,利用a n =S n -S n -1(n ≥2),得到a n ,再利用a 1=S 1可求r . 第(2)问错位相减求和.解 (1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1·(b -1),由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列,又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1.(2)由(1)知,n ∈N *,a n =(b -1)b n -1=2n -1,所以b n =n +14×2n -1=n +12n +1.T n =222+323+424+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=34-12n +1-n +12n +2, ∴T n =32-12n -n +12n +1=32-n +32n +1.此类问题常常以函数的解析式为载体,转化为数列问题,常用的数学思想方法有“函数与方程”“等价转化”等.【训练2】 (·福建)已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.解 (1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin ⎝⎛⎭⎫2×π6+φ=1. 又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π6. 考向三 数列与不等式的综合应用【例3】►(·惠州模拟)在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ;(3)是否存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.[审题视点] 第(1)问由等比数列的性质转化为a 3+a 5与a 3a 5的关系求a 3与a 5;进而求a n ;第(2)问先判断数列{b n },再由求和公式求S n ;第(3)问由S n n 确定正负项,进而求S 11+S 22+…+S nn的最大值,从而确定k 的最小值.解 (1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5,又a 3与a 5的等比中项为2, ∴a 3a 5=4,而q ∈(0,1),∴a 3>a 5,∴a 3=4,a 5=1,∴q =12,a 1=16,∴a n =16×⎝⎛⎭⎫12n -1=25-n. (2)∵b n =log 2a n =5-n , ∴b n +1-b n =-1,b 1=log 2a 1=log 216=log 224=4,∴{b n }是以b 1=4为首项,-1为公差的等差数列,∴S n =n (9-n )2.(3)由(2)知S n =n (9-n )2,∴S n n =9-n2.当n ≤8时,S n n >0;当n =9时,S nn =0;当n >9时,S nn<0.∴当n =8或9时,S 11+S 22+S 33+…+S nn =18最大.故存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,k 的最小值为19.解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理. 【训练3】 (·岳阳模拟)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.(1)解 设等比数列{a n }的首项为a 1,公比为q .依题意,有2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28, 可得a 3=8,∴a 2+a 4=20,所以⎩⎪⎨⎪⎧ a 1q 2=8,a 1q +a 1q 3=20,解之得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32. 又∵数列{a n }单调递增,所以q =2,a 1=2, ∴数列{a n }的通项公式为a n =2n .(2)因为b n =2n log 122n =-n ·2n ,所以S n =-(1×2+2×22+…+n ·2n ),2S n =-[1×22+2×23+…+(n -1)·2n +n ·2n +1], 两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1.要使S n +n ·2n +1>50,即2n +1-2>50,即2n +1≥52.易知:当n ≤4时,2n +1≤25=32<50;当n ≥5时,2n +1≥26=64>50.故使S n +n ·2n +1>50成立的正整数n 的最小值为5.难点突破14——数列与解析几何、三角的交汇问题从近几年新课标高考试题可以看出,不同省市的高考对该内容要求的不尽相同,考生复习时注意把握.数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决. 一、数列与解析几何交汇 【示例】► (·陕西)如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n .记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.二、数列与三角交汇【示例】►(·安徽)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,再令a n=lg T n,n≥1.(1)求数列{a n}的通项公式;(2)设b n=tan a n·tan a n+1,求数列{b n}的前n项和S n.。

高三总复习优秀资源课件:第34讲 数列的综合应用

高三总复习优秀资源课件:第34讲 数列的综合应用

4 5
)构造新
的等比数列.
n年后
解题过程
(2)解法
3
由 an1=
4 5
an
+
4 25
,可得
an1

4 5
=
4 5
( an

4 5
).
数列{an

4 5
}是以a1

4 5
为首项公比为
4 5
的等比数列.
an

4 5
=( a1

4 5
)(
4 5
)n1,
故有an
=
1 2
(
4 5
)n1

4 5
.
n-1年后
则第四个数为 16-(a-d).列出方程组
解二元二次 方程组
a a d 12, (a d )2 a[16 (a d )].
可以一试!
思路分析
例 1 有四个数,其中前三个数成等差数列,后三 个数成等比数列,且第一个数与第四个数的和是 16, 第二个数与第三个数的和为 12,求这四个数. 思路 3:设后三个数为 a ,a,aq.
例 1 有四个数,其中前三个数成等差数列,后三 个数成等比数列,且第一个数与第四个数的和是 16, 第二个数与第三个数的和为 12,求这四个数.
思路分析
例 1 有四个数,其中前三个数成等差数列,后三 个数成等比数列,且第一个数与第四个数的和是 16, 第二个数与第三个数的和为 12,求这四个数.
思路 1:设这四个数分别为 x,y,m,n.
q 则第一个数为 16-aq,这样列出的方程组为
解二元 方程组
16 aq a

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。

2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学思维水平。

3. 通过对数列综合应用的学习,培养学生分析问题、解决问题的能力,提高学生的综合素质。

二、教学内容1. 等差数列的应用:等差数列的求和公式、等差数列的通项公式等。

2. 等比数列的应用:等比数列的求和公式、等比数列的通项公式等。

3. 数列的极限:数列极限的定义、数列极限的性质等。

4. 数列的收敛性:收敛数列的定义、收敛数列的性质等。

5. 数列的应用举例:如数列在实际问题中的应用,如人口增长、放射性衰变等。

三、教学方法1. 采用讲授法,讲解数列的基本概念、性质和应用。

2. 运用案例分析法,分析数列在实际问题中的应用。

3. 组织学生进行小组讨论,培养学生的团队协作能力。

4. 设置课后习题,巩固所学知识,提高学生的实际应用能力。

四、教学步骤1. 引入数列的基本概念,讲解等差数列和等比数列的定义和性质。

2. 引导学生运用数列知识解决实际问题,如人口增长、放射性衰变等。

3. 讲解数列的极限和收敛性,分析数列在实际中的应用。

4. 组织学生进行小组讨论,分享数列在实际问题中的应用案例。

5. 通过课后习题,检查学生对数列知识的掌握程度。

五、教学评价1. 课后习题的完成情况,检验学生对数列知识的掌握。

2. 课堂讨论的参与度,评估学生的团队协作能力和思维水平。

3. 学生对数列应用案例的分析,评估学生的实际应用能力。

4. 定期进行教学质量调查,了解学生的学习需求,调整教学方法。

六、教学资源1. 教学PPT:制作数列综合应用的教学PPT,包含数列的基本概念、性质、应用案例等内容。

2. 案例素材:收集数列在实际问题中的应用案例,如人口增长、放射性衰变等。

3. 课后习题:编写具有代表性的课后习题,检验学生对数列知识的掌握。

4. 教学视频:寻找相关的教学视频,如数列的极限、收敛性的讲解等,辅助学生理解难点内容。

数列综合应用

数列综合应用

数列求和求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d . ②等比数列的前n 项和公式(ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解选择题:数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130解析 ∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ) A .9 B .8 C .17 D .16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100解析 ∵S nn =n +2,∴⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N +),则S 2 016=( )A .22 016-1B .3·21 008-3C .3·21 008-1D .3·21 007-2 解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2015+a 2016=(a 1+a 3+a 5+…+a 2015)+(a 2+a 4+a 6+…+a 2016)=1-21 0081-2+2(1-21 008)1-2=3·21008-3已知S n 为数列{a n }的前n 项和,且满足a 1=1,a 2=3,a n +2=3a n ,则S 2017等于( )A .31009-2B .2×31007C.32014-12D.32014+12解析 由a n +2=3a n 可得数列{a n }的奇数项与偶数项分别构成等比数列,∴S 2017=(a 1+a 3+…+a 2017)+(a 2+a 4+…+a 2016)=1-310091-3+3(1-31008)1-3=31009-2设函数()f x =x m+ax 的导函数为()f x '=2x +1,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )(n ∈N +)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1 D.n +1n 解析 ()f x '=mx m -1+a ,∴a =1,m =2,∴()f x =x 2+x ,1f (n )=1n (n +1)=1n -1n +1,∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=252,则数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为( )A .1-n +22n +1 B .2-n +42n +1 C .2-n +42n D .2-n +22n +1解析 设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,∵S 3=6,S 5=252,∴⎩⎪⎨⎪⎧3a 1+3d =6,5a 1+10d =252,解得⎩⎪⎨⎪⎧a 1=32,d =12,∴a n =12n +1,a n 2n =n +22n +1,设数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为T n ,则T n =322+423+524+…+n +12n +n +22n +1,12T n =323+424+525+…+n +12n +1+n +22n +2,两式相减得12T n =34+⎝ ⎛⎭⎪⎫123+124+…+12n +1-n +22n +2=34+14⎝ ⎛⎭⎪⎫1-12n -1-n +22n +2,∴T n =2-n +42n +1.数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80 D .82解析 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78已知函数f (n )=⎩⎨⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10200解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100填空题:若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为S n =________ 解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________解析 由题意知所求数列的通项为1-2n1-2=2n -1,故由分组求和法及等比数列的求和公式可得和为2(1-2n )1-2-n =2n +1-2-n .数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2017=________解析 因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4. 故S 4=a 1+a 2+a 3+a 4=2,∴S 2017=S 2016+a 2017=20164×2+2017·cos 20172π=1008数列{a n }满足a n +a n +1=12(n ∈N +),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________ 解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n , 则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20,∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21)=1+10×12=6已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n-1已知函数f (x )=x a 的图像过点(4,2),令a n =1f (n +1)+f (n ),n ∈N +,记数列{a n }的前n 项和为S n ,则S 2017=________.解析 f (4)=2可得4a=2,得a =12,则()12f x x =,∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2017=a 1+a 2+a 3+…+a 2017=(2-1)+(3-2)+(4-3)+…+(2017-2016)+(2018-2017)=2018-1在数列{a n }中,若对任意的n 均有a n +a n +1+a n +2为定值,且a 4=1,a 12=3,a 95=5,则数列{a n }的前100项和S 100=________.解析 由题意可得a n +a n +1+a n +2=a n +1+a n +2+a n +3,则a n =a n +3,∴a 4=1=a 1,a 12=3=a 3,a 95=5=a 2,∴数列{a n }的前100项和S 100=33(a 1+a 2+a 3)+a 1=33×9+1=198解答题:已知数列{a n }的前n 项和S n =n 2+n2,n ∈N + (1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和.解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=na 1也满足a n =n ,故数列{a n }的通项公式为a n =n (2)由(1)知a n =n ,故b n =2n +(-1)n n记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2已知数列{a n }的各项均为正数,S n 是数列{a n }的前n 项和,且4S n =a 2n +2a n -3. (1)求数列{a n }的通项公式;(2)已知b n =2n ,求T n =a 1b 1+a 2b 2+…+a n b n 的值. 解 (1)当n =1时,a 1=S 1=14a 21+12a 1-34,解得a 1=3.又∵4S n =a 2n +2a n -3,①;当n ≥2时,4S n -1=a 2n -1+2a n -1-3.② ①-②,得4a n =a 2n -a 2n -1+2(a n -a n -1),即a 2n -a 2n -1-2(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1-2)=0.∵a n +a n -1>0,∴a n -a n -1=2 (n ≥2),∴数列{a n }是以3为首项,2为公差的等差数列. ∴a n =3+2(n -1)=2n +1.(2)T n =3×21+5×22+…+(2n +1)·2n ,③;2T n =3×22+5×23+…+(2n -1)·2n +(2n +1)2n +1,④ ④-③,得T n =-3×21-2(22+23+…+2n )+(2n +1)2n +1=-6+8-2·2n +1+(2n +1)·2n +1=(2n -1)2n +1+2.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +.(1)求a 1的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.(1)解 由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2,即a 1=-3或2,又a n 为正数,所以a 1=2.(2)解 由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3,又数列{a n }的各项均为正数,∴S n =n 2+n ,S n -1=(n -1)2+(n -1). ∴当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n 又a 1=2=2×1,∴a n =2n (3)证明 当n =1时,1a 1(a 1+1)=12×3=16<13成立;当n ≥2时,1a n (a n +1)=12n (2n +1)<1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, ∴1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<16+12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =16+12⎝ ⎛⎭⎪⎫13-12n +1<16+16=13 ∴对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12 (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12, 即2S n -1S n =S n -1-S n ,①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n=1+2(n -1)=2n -1,∴S n =12n -1(2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫9-2a n 2n 的前n 项和T n解 (1)当n =k ∈N +时,S n =-12n 2+kn 取得最大值(二次函数性质), 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立,综上,a n =92-n (2)∵9-2a n 2n =n2n -1, ∴T n =1+22+322+…+n -12n -2+n 2n -1,①;2T n =2+2+32+…+n -12n -3+n2n -2.②②-①得:2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1,故T n =4-n +22n -1已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n解 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n +1.(2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n ,则2T =22+2×23+3×24+…+n ·2n +1两式相减,得-T =2+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1,∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1∵1+2+3+…+n =n (n +1)2,∴T n =(n -1)·2n +1+n 2+n +42.已知数列{a n }是首项为正数的等差数列,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n ·a n +1的前n 项和为n2n +1(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2n a ,求数列{b n }的前n 项和T n 解 (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,∴a 1a 2=3.令n =2,得1a 1a 2+1a 2a 3=25,∴a 2a 3=15解得a 1=1,d =2,∴a n =2n -1,经检验,符合题意 (2)由(1)知b n =2n ·22n -1=n ·4n , ∴T n =1·41+2·42+…+n ·4n , ∴4T n =1·42+2·43+…+n ·4n +1,两式相减,得-3T n =41+42+…+4n -n ·4n +1=4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43∴T n =3n -19×4n +1+49=4+(3n -1)4n +19.专项能力提升已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( ) A.n n +1 B.4n n +1 C.3n n +1 D.5n n +1解析 ∵a n =1+2+3+…+n n +1=n 2,∴b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=4⎣⎢⎡⎦⎥⎤1-1n +1=4n n +1已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A .5B .6C .7D .16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,∴此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0, 又∵16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7已知数列2008,2009,1,-2008,-2009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2016项之和S 2016等于( ) A .2008 B .2010 C .1 D .0 解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2008,2009,1,-2008,-2009,-1,2008,2009 由此可知数列为周期数列,周期为6,且S 6=0 ∵2016=6×336,∴S 2016=0在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n 的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是________解析 由题意可得,a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0,又a n >0,∴2a n +1-a n a n +1-1=0,又2-a n ≠0,∴a n +1=12-a n ⇒a n +1-1=a n -12-a n ,又可知a n ≠1,∴1a n +1-1=1a n -1-1,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是以-2为首项,-1为公差的等差数列,∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a n n 2=1n (n +1)=1n -1n +1,∴a 1+a 222+a 332+a 442+…+a 1001002=1-12+12-13+13-14+14-15+…+1100-1101=100101已知数列{a n }的通项公式为a n =1(n +1)n +n n +1(n ∈N +),其前n 项和为S n ,则在数列S 1,S 2,…,S 2016中,有理数项的项数为( )A .42B .43C .44D .45解析 a n =1(n +1)n +n n +1=(n +1)n -n n +1[(n +1)n +n n +1][(n +1)n -n n +1]=nn -n +1n +1∴S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝⎛⎭⎪⎫n n -n +1n +1=1-n +1n +1, ∵S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2),∴n 2-1≤2016,且n ≥2, ∴2≤n ≤44,∴有理项的项数为43设()f x =4x4x +2,若S =122014201520152015f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则S =________ 解析 ∵()f x =4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x=1S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,①S =f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+f ⎝ ⎛⎭⎪⎫12 015,②①+②得,2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫2 0142 015+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫12 015=2 014,∴S =2 0142=1007整数数列{a n }满足a n +2=a n +1-a n (n ∈N +),若此数列的前800项的和是2013,前813项的和是2000,则其前2015项的和为________解析 由a n +2=a n +1-a n ,得a n +2=a n -a n -1-a n =-a n -1,即3n n a a +=-,则该数列是周期为6,又a n11+2+a n -1=0,即30n n a a ++=,1234560a a a a a a +++++=,那么S 800=a 1+a 2=2013,S 813=a 1+a 2+a 3=2000,∴⎩⎨⎧ a 3=a 2-a 1=-13,a 2+a 1=2013,∴⎩⎨⎧a 1=1013,a 2=1000, 由此可得:S 2015=S 5=12345313a a a a a a ++++==-已知数列{a n }满足:a 1=12,a n +1=a 2n +a n ,用[]x 表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2015+1的值等于________ 解析 由a n +1=a 2n +a n ,得1a n +1=1a n (a n +1)=1a n -1a n +1,∴11n a +=1n a -1a n +1,∴1a 1+1+1a 2+1+…+1a 2015+1=1a 1-1a 2+1a 2-1a 3+…+1a 2015-1a 2016=2-1a 2016,又a n +1=a 2n +a n ,∴a n +1-a n =a 2n >0, ∴{a n }是正项递增的数列.又∵a 3=2116>1,∴a 2016>1,即0<1a 2016<1,∴⎣⎢⎡⎦⎥⎤2-1a 2016=1。

2008年普通高等学校招生全国统一考试数学试卷分类汇编3.4 数列综合应用

2008年普通高等学校招生全国统一考试数学试卷分类汇编3.4 数列综合应用

第三章 数列四 数列综合应用【考点阐述】 数列综合应用 【考试要求】(4)运用等差数列、等比数列及求和知识解决数列综合问题。

【考题分类】(一)解答题(共35题)1.(安徽卷理21)设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; (Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c++>+-∈- 解 (1) 必要性 :120,1a a c ==-∵∴ ,又 2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设[0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈ 当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设 103c <<,当1n =时,10a =,结论成立 当2n ≥ 时,3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴103C <<∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-= ∴1*1(3)()n n a c n N -≥-∈∴(3) 设 103c <<,当1n =时,2120213a c=>--,结论成立 当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴ 222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++ ∴2(1(3))2111313n c n n c c-=+->+---2.(安徽卷文21)设数列{}n a 满足*01,1,,n n a a a ca c c N +==+-∈其中,a c 为实数,且0c ≠(Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设11,22a c ==,*(1),n n b n a n N =-∈,求数列{}n b 的前n 项和n S ; (Ⅲ)若01n a <<对任意*n N ∈成立,证明01c <≤ 解 (1) 方法一: 11(1)n n a c a +-=-∵∴当1a ≠时,{}1n a -是首项为1a -,公比为c 的等比数列。

数列综合应用教案

数列综合应用教案

数列综合应用教案【篇一:《数列的综合应用》教案】个性化教案授课时间年级高三备课时间学生姓名教师姓名课题数列的进一步认识教学目标(1)熟练掌握等差数列、等比数列的前n项和公式,以及非等差数列、等比数列求和的几种常见方法。

教学重点教学设计教学内容(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题一、检查并点评学生的作业。

检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。

二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。

三、讲授新内容数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n项公式求和;(2)一些常见的数列的前n项和:n∑k=n(n+1)k=12n∑k2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=12、倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法。

等差数列的前n项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的;例:sn=1*2+2*4+3*8+??+n*2n①2sn=1*4+2*8+3*16+??+(n-1)*2n+n*2n+1②①-②得 -sn=2-(4+8+16+??+2n)-n*2n+1 即:sn=(n-1)2n+1-64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。

数列综合应用

数列综合应用

精心整理第四节数列求和与数列的综合应用自|主|排I查1•公式法与分组求和法(1)公式法:直接利用等差数列、等比数列的前n项和公式求和。

①等差数列的前n项和公式:$== na i+ d。

②等比数列的前n项和公式:$=(2)分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减。

2.倒序相加法与并项求和法 (1)倒序相加法如果一个数列的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的。

(2)并项求和法J P -_.l ..-^i '、 / -在一个数列的前n项和中,可两两结合求解,则称之为并项求和。

形如a n= ( — 1) n f (n)类型,可采用两项合并求解。

2 2 2 2 2 2 2 2 22 22例如,S= 100 — 99 + 98 —97 +…+ 2 — 1 = (100 — 99 ) + (98 —97 ) +…+ (2 — 1 ) = (100 + 99) + (98 + 97) + …+ (2 + 1) = 5050。

3•裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

(2)常见的裂项技巧:心=—。

笑=。

③=。

@= 一。

4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的。

微点提醒1 •使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏V L (I)写未被消去的项,未被消去的项有前后对称的特点。

2.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解。

小|题|快|练一、走进教材1•(必修5P47B组T4改编)数列{a n}的前n项和为S,若a n=,则S5等于( )A. 1B.C.D.2 n一 12.(必修 5P61A组 T4(3)改编)1 + 2x + 3x+…+ nx = ___________ ( x^0 且 X 1)。

第四讲数列的综合应用

第四讲数列的综合应用

等差数列的通项公式、前n项和的最 值
叠加法求数列的通项、错位相减求前 n项和
等比数列基本知识和等差数列应用

2012 文 理
0+0+1
1+1+0 1+1+0
等比数列的通项公式、对数函数的性 质、裂项相消求数列的前n项和
求数列前n项和 等比数列的前n项和
等比数列的通项 求数列前n项和(同 文选择题)
2012考纲要求
例(2010湖北文)已知某地今年年初拥有居 民住房的总面积为a(单位:m2),其中有
部分旧住房需要拆除。当地有关部门决定每 年以当年年初住房面积的10%建设新住房, 同事也拆除面积为b(单位:m2)的旧住房。 (Ⅰ)分别写出第一年末和第二年末的实际 住房面积的表达式:
(Ⅱ)如果第五年末该地的住房面积正好比 今年年初的住房面积增加了30%,则每年拆 除的旧住房面积b是多少?(计算时取 1.15=1.6)
并且这三个数分别加上2、5、13后成为
等比数列 中{b的n }b3、b4、b5.
(I) 求数列{bn }的通项公式;
(II) 数列 {bn 数列 {Sn
}5的}是前等n比项数和列为.Sn,求证: 4
考点二.等差、等比数列的实际应用 1.解等差、等比数列应用题时,首先要 认真审题,深刻理解问题的实际背景, 理解蕴含在语言中的数学关系,把应用 问题抽象为数学中的等差、等比数列, 使关系明朗化、标准化,然后用等差、 等比数列的知识求解。
综合运用数列,特别是等差数列、
等比数列的有关知识,解答数列综合问 题和实际问题,考查理解能力、数学建 模能力和运算能力。数列是特殊的函数, 是高考中的常考点,在各种题型中均有 出现。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与性质1.1 数列的定义引导学生理解数列的概念,理解数列是一种特殊的函数。

通过实例让学生了解数列的基本形式,如等差数列、等比数列等。

1.2 数列的性质引导学生学习数列的基本性质,如数列的项数、首项、末项、公差、公比等。

通过实例让学生掌握数列的性质,并能够运用性质解决实际问题。

第二章:数列的求和2.1 等差数列的求和引导学生学习等差数列的求和公式,理解公差、首项、末项与求和的关系。

通过实例让学生掌握等差数列的求和方法,并能够运用求和公式解决实际问题。

2.2 等比数列的求和引导学生学习等比数列的求和公式,理解公比、首项、末项与求和的关系。

通过实例让学生掌握等比数列的求和方法,并能够运用求和公式解决实际问题。

第三章:数列的极限3.1 数列极限的概念引导学生理解数列极限的概念,理解数列极限与数列收敛的关系。

通过实例让学生了解数列极限的性质,如保号性、单调性等。

3.2 数列极限的计算引导学生学习数列极限的计算方法,如夹逼定理、单调有界定理等。

通过实例让学生掌握数列极限的计算方法,并能够运用极限的概念解决实际问题。

第四章:数列的应用4.1 数列在数学分析中的应用引导学生学习数列在数学分析中的应用,如级数、积分等。

通过实例让学生了解数列在数学分析中的重要性,并能够运用数列解决实际问题。

4.2 数列在其他学科中的应用引导学生学习数列在其他学科中的应用,如物理学、经济学等。

通过实例让学生了解数列在不同学科中的作用,并能够运用数列解决实际问题。

第五章:数列的综合应用5.1 数列在经济管理中的应用引导学生学习数列在经济管理中的应用,如库存管理、成本分析等。

通过实例让学生了解数列在经济管理中的重要性,并能够运用数列解决实际问题。

5.2 数列在工程科技中的应用引导学生学习数列在工程科技中的应用,如信号处理、结构分析等。

通过实例让学生了解数列在工程科技中的作用,并能够运用数列解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 6.( 21) 6.(广东卷理 21)设 p,q 为实数, α,β 是方程 x − px + q = 0 的两个实根,数列
2 3
s + t = p , st = q
消去 t ,得 s 2 − ps + q = 0 , ∴s 是方程 x 2 − px + q = 0 的根,由题意可知,
s1 = α , s2 = β
2 (Ⅰ) n}是正数组成的数列, n 项和为 Sn, 设{a 前 其中 a1=3.若点 (an , an +1 − 2an +1 ) (n
∈N*)在函数 y=f′(x)的图象上,求证:点(n,Sn)也在 y=f′(x)的图象上; (Ⅱ)求函数 f(x)在区间(a-1,a)内的极值. 解:(Ⅰ)证明: 因为 f ( x) =
{xn } 满足 x1 = p , x2 = p 2 − q , xn = pxn −1 − qxn − 2 ( n = 3, …) 4, .
(1)证明: α + β = p , αβ = q ; (2)求数列 {xn } 的通项公式;
1 (3)若 p = 1 , q = ,求 {xn } 的前 n 项和 S n . 4
*
3.对于每项均是正整数的数列 A:a1,a2, ,an ,定义变换 T1 , T1 将数列 A 变换成 L 3. 数 列 T1 ( A):n,a1 − 1,a2 − 1, ,an − 1 . 对 于 每 项 均 是 非 负 整 数 的 数 列 L
从而对于任意给定的数列 A0 ,由 Ak +1 = T2 (T1 ( Ak ))( k = 0,2, ) 1, L 可知 S ( Ak +1 ) ≤ S (T1 ( Ak )) .
b2 k = (2k ) 2 + 2k − λ > 0 记 n0 = 2k ( k = 1, L) ,则 λ 满足 2, . 2 b2 k −1 = (2k − 1) + 2k − 1 − λ < 0
故 λ 的取值范围是 4k 2 − 2k < λ < 4k 2 + 2k ( k ∈ N* ) . 5.已知函数 f ( x) = 5.
*
(Ⅰ)求数列 {an } 的通项公式( an = ( a − 1)c
n −1
+1 )
k ≥ K 时, S ( Ak +1 ) = S ( Ak ) .
证明:设 A 是每项均为非负整数的数列 a1,a2, ,an . L 当存在 1 ≤ i < j ≤ n ,使得 ai ≤ a j 时,交换数列 A 的第 i 项与第 j 项得到数列 B , 则 S ( B ) − S ( A) = 2(ia j + jai − iai − ja j ) = 2(i − j )(a j − ai ) ≤ 0 . 当存在 1 ≤ m < n ,使得 am +1 = am + 2 = L = an = 0 时,记数列 a1,a2, ,am 为 C , L 则 S (C ) = S ( A) . 所以 S (T2 ( A)) ≤ S ( A) .
1 1 (Ⅱ)设 a = , c = , bn = n(1 − an ), n ∈ N * ,求数列 {bn } 的前 n 项和 S n ; 2 2 1 (∴ S n = 2 − (2 + n)( ) n ) 2
(Ⅲ)若 0 < an < 1 对任意 n ∈ N 成立,证明 0 < c ≤ 1 (提示:用反证法)
①当 α ≠ β 时,此时方程组
s1 = α s2 = α s + t = p 或 的解记为 st = q t1 = β t2 = β
∴ xn − α xn −1 = β ( xn −1 − α xn − 2 ), xn − β xn −1 = α ( xn −1 − β xn − 2 ),
S ( Ak ) = S ( Ak +1 ) = S ( Ak + 2 ) = L .
1 3 x + x2 − 2 . 3
即存在正整数 K ,当 k ≥ K 时, S ( Ak +1 ) = S ( Ak ) 4.数列 {an } 满足 a1 = 1 , an +1 = ( n 2 + n − λ ) an ( n = 1 2, ) λ 是常数. ,L , 4. (Ⅰ)当 a2 = −1 时,求 λ 及 a3 的值; λ = 3 ;a3 =--3) ( (Ⅱ)数列 {an } 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说 明理由; (数列 {an } 不可能为等差数列。 ) (Ⅲ)求 λ 的取值范围,使得存在正整数 m ,当 n > m 时总有 an < 0 . 证明:记 bn = n 2 + n − λ ( n = 1, L) ,根据题意可知, b1 < 0 且 bn ≠ 0 ,即 λ > 2 2, 且 λ ≠ n 2 + n( n ∈ N* ) ,这时总存在 n0 ∈ N * ,满足:当 n ≥ n0 时, bn > 0 ; 当 n ≤ n0 − 1 时,bn < 0 . 所以由 an +1 = bn an 及 a1 = 1 > 0 可知, n0 为偶数, 若 则 an0 < 0 ,从而当 n > n0 时, an < 0 ;若 n0 为奇数,则 an0 > 0 , 从而当 n > n0 时 an > 0 .因此“存在 m ∈ N * ,当 n > m 时总有 an < 0 ” 的充分必要条件是: n0 为偶数,
1
B:b1,b2, ,bm ,定义变换 T2 , T2 将数列 B 各项从大到小排列,然后去掉所有 L
厦门汇利商业学习中心
又由(Ⅱ)可知 S (T1 ( Ak )) = S ( Ak ) ,所以 S ( Ak +1 ) ≤ S ( Ak ) . 即对于 k ∈ N ,要么有 S ( Ak +1 ) = S ( Ak ) ,要么有 S ( Ak +1 ) ≤ S ( Ak ) − 1 . 因为 S ( Ak ) 是大于 2 的整数, 所以经过有限步后,必有
即∴ xn = α xn −1 + α n , 等式两边同时除以 α n , 得
所以 an +1 − an = 2 , an } 是 a1 = 3, d = 2 的等差数列 所 以 S n = 3n +
{
n( n − 1) × 2=n 2 + 2n , 又 因 为 f ' (n) = n 2 + 2n , 所 以 2
Sn = f ′(n) ,
故点 ( n, S n ) 也在函数 y = f ' ( x) 的图象上. (Ⅱ)解: f ′( x) = x 2 + 2 x = x( x + 2) ,令 f ′( x ) = 0, 得 x = 0或x = −2 . 当 x 变化时, f ′( x ) ﹑ f ( x ) 的变化情况如下表:
(Ⅰ)证明: an ∈ [0,1] 对任意 n ∈ N * 成立的充分必要条件是 c ∈ [0,1] ; (提示:充分性 充分性用数学归纳法) 充分性 (Ⅱ)设 0 < c <
数列,令 Ak +1 = T2 (T1 ( Ak ))( k = 0,2, ) . 1, L (Ⅰ)如果数列 A0 为 5,3,2,写出数列 A1,A2 ; ( A1 = T2 (T1 ( A0 )): 3,1 ; A2 = T2 (T1 ( A1 )): 3,1 ) 4,2, 4,2, (Ⅱ)对于每项均是正整数的有穷数列 A ,证明 S (T1 ( A)) = S ( A) ; (提示:用比较法) (Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列 A0 ,存在正整数 K ,当
2
厦门汇利商业(-∞,-2) + ↗
-2 0 极大值
(-2,0) ↘
0 0 极小值
(0,+∞) + ↗
p − p 2 − 4 q p + p 2 − 4q αβ = × =q 2 2
( 2 ) 设 xn − sxn−1 = t(xn−1 − sxn−2 ) , 则 xn = (s +t)xn−1 − stxn−2 , 由 xn = pxn−1 − qxn−2 得
即 { xn − t1 xn −1} 、 { xn − t2 xn −1} 分别是公比为 s1 = α 、 s2 = β 的等比数列, 由等比数列性质可得 xn − α xn −1 = ( x2 − α x1 ) β n − 2 , xn − β xn −1 = ( x2 − β x1 )α n − 2 , 两式相减,得 ( β − α ) xn −1 = ( x2 − α x1 ) β n − 2 − ( x2 − β x1 )α n − 2
(1)求数列 {an } 和 {bn } 的通项公式; (2)记 cn = nan bn ( n = 1, 2,L) ,求数列 {cn } 的前 n 项和 S n 。 【解析】 (1)由 an =
xn − α xn −1 = ( x2 − α x1 ) β n − 2 ,Q α = β ,∴ xn − α xn −1 = ( x2 − α x1 )α n − 2 = α n
1 ,证明: an ≥ 1 − (3c ) n −1 , n ∈ N * ; 3
(提示:放缩后累加)
1 2 2 2 (Ⅲ)设 0 < c < ,证明: a12 + a2 + L an > n + 1 − ,n∈ N* 3 1 − 3c
(提示:用放缩法) 2.设数列 {an } 满足 a0 = a, an +1 = can + 1 − c, c ∈ N , 其中 a , c 为实数,且 c ≠ 0 2.
相关文档
最新文档