云南省蒙自市2015届九年级下学期中考一模数学试题

合集下载

2015年云南省红河州蒙自市中考一模数学试卷(解析版)

2015年云南省红河州蒙自市中考一模数学试卷(解析版)

2015年云南省红河州蒙自市中考数学一模试卷一、选择题(本大题共8个小题,每个小题只有一个正确选项,每小题3分,满分24分)1.(3分)2015的倒数是()A.﹣2015B.C.D.20152.(3分)在下列的四个几何体中,同一几何体的主视图与俯视图相同的是()A.B.C.D.3.(3分)下列运算正确的是()A.(a3)2=a6B.a2•a=a2C.a+a=a2D.a6÷a3=a2 4.(3分)已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1+x2等于()A.﹣4B.﹣1C.1D.45.(3分)不等式组整数解的个数是()A.1个B.2个C.3个D.4个6.(3分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB 的长为()A.2B.4C.6D.87.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm28.(3分)在﹣2,1,2,1,4,6中正确的是()A.平均数3B.众数是﹣2C.极差为8D.中位数是1二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为.10.(3分)如图,a∥b,∠1=55°,∠2=65°,则∠3的大小为.11.(3分)因式分解:2x2﹣8=.12.(3分)方程x2﹣3x=0的根为.13.(3分)在函数y=中,自变量x的取值范围是.14.(3分)如图,下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有三、解答题(本大题共9个小题,满分58分)15.(5分)计算:.16.(5分)如图,AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.17.(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.18.(7分)2015年3月2日云南临沧沧源发生5.5级地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为沧源灾区捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数;(2)补全条形统计图;(3)在扇形统计图中,捐款“15元人数”所在扇形的圆心角的度数;(4)若该校九年级有800人,据此样本,请你估计该校九年级学生共捐款多少元?19.(7分)为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?20.(6分)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.21.(6分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.22.(7分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)23.(9分)如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.(1)抛物线的解析式是;(2)如图(2),点P是AD上一个动点,P′是P关于DE的对称点,连接PE,=y,EF=x,求y关于x的函过P′作P′F∥PE交x轴于F.设S四边形EPP′F数关系式,并求y的最大值;(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在.请说明理由.2015年云南省红河州蒙自市中考数学一模试卷参考答案与试题解析一、选择题(本大题共8个小题,每个小题只有一个正确选项,每小题3分,满分24分)1.(3分)2015的倒数是()A.﹣2015B.C.D.2015【解答】解:2015的倒数是.故选:C.2.(3分)在下列的四个几何体中,同一几何体的主视图与俯视图相同的是()A.B.C.D.【解答】解:A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选:D.3.(3分)下列运算正确的是()A.(a3)2=a6B.a2•a=a2C.a+a=a2D.a6÷a3=a2【解答】解:A、(a3)2=a6,正确;B、错误,应为a2•a=a2+1=a3;C、错误,应为a+a=2a;D、错误,应为a6÷a3=a6﹣3=a3.故选:A.4.(3分)已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1+x2等于()A.﹣4B.﹣1C.1D.4【解答】解:∵方程x2﹣4x+1=0的两个根是x1,x2,∴x1+x2=﹣(﹣4)=4.故选:D.5.(3分)不等式组整数解的个数是()A.1个B.2个C.3个D.4个【解答】解:由(1)得x≥0,由(2)得x<3,其解集为0≤x<3,所以不等式组整数解为0,1,2,共3个.故选:C.6.(3分)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB 的长为()A.2B.4C.6D.8【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.7.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.8.(3分)在﹣2,1,2,1,4,6中正确的是()A.平均数3B.众数是﹣2C.极差为8D.中位数是1【解答】解:A、这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2,故A选项错误;B、在这一组数据中1是出现次数最多的,故众数是1,故B选项错误;C、极差6﹣(﹣2)=8,故C选项正确;D、将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5,故D选项错误.故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为 1.7×105.【解答】解:将170000用科学记数法表示为:1.7×105.故答案为:1.7×105.10.(3分)如图,a∥b,∠1=55°,∠2=65°,则∠3的大小为60°.【解答】解:如图,,∵a∥b,∠1=55°,∠2=65°,∴∠4=∠1=55°,∴∠5=180°﹣55°﹣65°=60°,∴∠3=∠5=60°,故答案为:60°.11.(3分)因式分解:2x2﹣8=2(x+2)(x﹣2).【解答】解:2x2﹣8=2(x+2)(x﹣2).12.(3分)方程x2﹣3x=0的根为x1=0,x2=3.【解答】解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.13.(3分)在函数y=中,自变量x的取值范围是x≠1.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.14.(3分)如图,下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有161【解答】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故答案为:161.三、解答题(本大题共9个小题,满分58分)15.(5分)计算:.【解答】解:原式=2﹣2+1﹣3=﹣2.16.(5分)如图,AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.【解答】证明:∵AC⊥BC,BD⊥AD,AC=BD,AB为两个直角三角形的公共斜边,∴Rt△ADB≌Rt△CBA(HL),∴BC=AD.17.(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.【解答】解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10,b=3;(2)作AC⊥x轴于点C,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),∴OB=3,∵点A的坐标是(2,5),∴AC=5,∴=5=.18.(7分)2015年3月2日云南临沧沧源发生5.5级地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为沧源灾区捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数;(2)补全条形统计图;(3)在扇形统计图中,捐款“15元人数”所在扇形的圆心角的度数;(4)若该校九年级有800人,据此样本,请你估计该校九年级学生共捐款多少元?【解答】解:(1)15÷30%=50(人);(2)15元的人数为50﹣15﹣25=10(人),补全条形统计图为:(3)10÷50=20%,捐款“15元人数”所在扇形的圆心角的度数360°×20%=72°;(4)15×5+25×10+10×15=475元,则平均每人捐款为475÷50=9.5元,估计该校九年级学生共捐款800×9.5=7600元.19.(7分)为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?【解答】解:(1)列表得:画树状图得:∴P(甲)==(2)不公平.∵P(乙)=∴P(甲)≠P(乙),∴不公平.20.(6分)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3米,∴DA=3米,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=3.∴BC=CA﹣BA=(3﹣3)米.答:路况显示牌BC是(3﹣3)米.21.(6分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.【解答】(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.22.(7分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)【解答】解:(1)设第一批T恤衫每件进价是x元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元;(2)设剩余的T恤衫每件售价y元.由(1)知,第二批购进=50(件).由题意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售价至少要80元.23.(9分)如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.(1)抛物线的解析式是y=﹣x2+2x+3;(2)如图(2),点P是AD上一个动点,P′是P关于DE的对称点,连接PE,=y,EF=x,求y关于x的函过P′作P′F∥PE交x轴于F.设S四边形EPP′F数关系式,并求y的最大值;(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在.请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)经过点C,则c=3,∵抛物线经过A,B两点,∴解得:a=﹣1,b=2,故答案为y=﹣x2+2x+3;(2)令PP′交DE于G,∵PP′∥AF,PE∥FP′,∴四边形FEP′P是平行四边形,∴PP′=EF,∴△DPP′∽△DAB,∴,又∵A(﹣1,0)、B(3,0)、D(1,4),EF=x,∴AB=4,DE=4,PP′=x,∴∴GE=4﹣x,=EF•GE,又∵S四边形EPP'F∴y=x(4﹣x)∴y=x(4﹣x)=﹣(x﹣2)2+4,x=2时,y的最大值是4.(3)假设存在满足条件的点Q(x,y),作OH⊥BC于H,∵Rt△BCQ中BC是直角边,∴Rt△BCQ的另一直角边与OH平行.又∵OC=OB,CO⊥OB,OB=3,OC=3,∴Rt△BCQ的另一直角边所在的直线可以由直线OH向上或向右平移3个单位得到(如图).由已知得直线OH的解析式是y=x,∴Rt△BCQ的另一直角边所在的直线解析式是:y=x+3或y=x﹣3①点Q为直线y=x+3和抛物线交点,则,解得:x=1,∴y=4;②点Q为直线y=x﹣3和抛物线交点,则,解得:x=﹣2,∴y=﹣5,∴存在满足条件的点Q的坐标是:(1,4)和(﹣2,﹣5).。

2015中考数学模拟试题含答案(精选5套)

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2015云南中考数学试卷

2015云南中考数学试卷

2015 年云南省初中学业水平考试数学(全卷三个大题,共23 个小题,共8 页;满分100 分,考试用时120 分钟)注意事项:1.本卷为试题卷。

考生一定在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、底稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共8 个小题,每题只有一个正确选项,每题 3 分,满分24分)1.?2 的相反数是1A.?2B.2C.1.2D22.不等式2x 6>0 的解集是A .x>1B.x<?3C.x>3D.x<33.若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是A .正方体B.圆锥C.圆柱D.球4.2011 年国家启动实行乡村义务教育学生营养改良计划,截止2014 年 4 月,我省展开营养改良试点中小学达17580 所. 17580 这个数用科学记数法可表示为A .17.58 ×103B.175.8 ×104 C .1.758 ×105 D.1.758 ×1045.以下运算正确的选项是A .a2a5a10. (3.14) 00BC.45 2 55D.( a b )2 a 2b2 6.以下一元二次方程中,没有实数根的是A .4x25x 2 0. x2 6 x 9 0]BC.5x24x 1.2D3x 4x 1 07.为加速新乡村试点示范建设,我省展开了“漂亮乡村”的评比活动,下表是我省六个州(市)介绍候选的“漂亮乡村”个数统计结果:州(市)A B C D E F介绍数362731564854(个)在上表统计的数据中,均匀数和中位数分别为A .42,B. 42 ,42C.31,42D.36,548.若扇形的面积为3,圆心角为60°,则该扇形的半径为A.3B.9C.2 3D.3 2二、填空题(本大题共 6 个小题,每题 3 分,满分 18 分)9.分解因式:3x212.10.函数y x 7 的自变量 x 的取值范围是.11.如图,直线l1∥l2,而且被直线l3、l4所截,则∠=.12.一台电视机原价是2500 元,现按原价的8 折销售,则购置 a 台这样的电视机需要元.13.如图,点A、B、C是⊙O上的点,OA AB ,则 C 的度数为.14.如图,在△ABC中,BC 1,点P1、M1分别是AB、AC边的中点,点P2、M2分别是 AP1、AM1的中点,点P3、M3分别是AP2、AM2的中点,按这样的规律下去,P n M n 的长为(n为正整数).三、解答题(本大题共9 个小题,满分58 分)15.(本小题 5 分)化简求值:x 21x,此中 x2 1 .x( x 1)x 1x116.(本小题 5 分)如图,B D ,请增添一个条件(不得增添协助线),使得△ ABC≌△ ADC,并说明原因.17.(本小题 7 分)为有效展开阳光体育活动,云洱中学利用课外活动时间进行班级篮球竞赛,每场竞赛都要决出输赢,每队胜一场得 2 分,负一场得 1 分.已知九年级一班在8 场竞赛中获得 13 分,问九年级一班胜、负场数分别是多少?18.(本小题 5 分)已知A、 B两地相距200 千米,一辆汽车以每小时60 千米的速度从 A 地匀速驶往 B 地,抵达 B 地后不再行驶.设汽车行驶的时间为x 小时,汽车与B 地的距离为y千米.(1)求y与x的函数关系式,并写出自变量x 的取值范围;(2)当汽车行驶了 2 小不时,求汽车距B地有多少千米?19.(本小题 6 分)为解决江北学校学生上学过河难的问题,乡政府决定修筑一座桥.建桥过程中需丈量河的宽度(即两平行河岸AB与 MN之间的距离).在丈量时,选定河对岸MN上的点C处为桥的一端,在河岸点A 处,测得∠CAB=30°,沿河岸AB前行 30 米后抵达B处,在以上丈量数据求出河的宽度.(参照数据:B 处测得∠2 1.41 ,CBA= 60°.请你依据3 1.73 ;结果保存整数)20.(本小题 7 分)现有一个六面分别标有数字1,2,3,4,5,6 且质地均匀的正方体骰子,还有三张正面分别标有数字1,2,3 的卡片(卡片除数字外,其它都同样).先由小明投骰子一次,记下骰子向上一面出现的数字,而后由小王从三张反面向上搁置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为 6 的概率;(2)小明和小王做游戏,商定游戏规则以下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于 7,则小王赢.问小明和小王谁赢的可能性更大?请说明原因.21.(本小题 7 分)2015 年某省为加速建设综合交通系统,对铁路、公路、机场三个重要项目加大了建设资本的投入.(1)机场建设项目中全部 6 个机场投入的建设资本金额统计以以下图,已知机场E 投入的建设资本金额是机场C、D所投入建设资本金额之和的三分之二,求机场E 投入的建设资本金额是多少亿元?并补全条形统计图.(2)将铁路、公路、机场三项建设所资投入金的资本金额绘制成以下扇形统计图以及统计表,依据扇形统计图及统计表中的信息,求得 a =;b =;c =;d=;m=.(请直接填写计算结果)铁路、公路、机公场三项投入建铁路机场路设资本总金额(亿元)投入资本300a b(亿元)所占百分mc34%6%比所占圆心216°d21.6 °角AB、CD 22.(本小题7 分)如图,在矩形ABCD中,AB 4 ,AD 6 .M、N分别是边的中点,P 是AD上的点,PNB 3 CBN .且(1)求证:PNM 2 CBN ;(2)求线段AP的长.23.(本小题9 分)如图,在平面直角坐标系中,抛物线y ax2bx c (a0 )与x 轴订交于 A 、B 两点,与 y 轴订交于点C ,直线y kx n(k0 )经过 B 、C 两点.已知 A(1, 0), C(0 ,3),且BC5.(1)分别求直线BC和抛物线的分析式(关系式);(2)在抛物线的对称轴上能否存在点P,使得以B、C、P三点为极点的三角形是直角三角形?若存在,恳求出点 P 的坐标;若不存在,请说明原因.2020-2-8。

2015中考模拟试卷数学卷和答案

2015中考模拟试卷数学卷和答案

2015年中考模拟试卷数学卷和答案
2015年中考模拟试卷数学卷
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷
试题卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.如果,那么,两个实数一定是()
A.一正一负
B.相等的数
C.互为相反数
D.互为倒数
2.下列调查适合普查的是()
A.调查2011年3月份市场上西湖龙井茶的质量
B.了解萧山电视台188热线的收视率情况
C.网上调查萧山人民的生活幸福指数
D.了解全班同学身体健康状况
3.函数,一次函数和正比例函数之间的包含关系是()
4.已知下列命题:①同位角相等;②若a0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。

从中任选一个命题是真命题的概率为()
A.B.C.D.
精心整理,仅供学习参考。

2015年中考第一次模拟考试数学试卷附答案

2015年中考第一次模拟考试数学试卷附答案

九年级数学试卷 第1页(共 10 页)2015年中考第一次模拟考试数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算231⎪⎭⎫⎝⎛-•a a 的结果是( ▲ )A .aB .5aC .6aD .4a 2.下列无理数中,在-1与2之间的是( ▲ )A .3-B .2-C .2D .53.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ▲ )A . a >bB . a >-bC .-a >b4.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC ,若S △ADE :S △ABC =4:9,则AD :AB =( ▲ )A .1∶2B .2∶3C .1∶3D .4∶95.一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .326.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行 于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是( ▲ ) A .(-4,2) B .(-4.5,2) C .(-5,2) D .(-5.5,2) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) ab(第3题) B九年级数学试卷 第2页(共 10 页)7.3-的倒数是 ▲ ;3-的相反数是▲.8.分解因式:29x y y -= ▲ ;计算:=-+⎪⎭⎫⎝⎛--12313312▲ .9.2015年3月1日傅家边梅花节在南京溧水区举办,截止4月1日约有53000名游客前来欣赏梅花.将53000用科学计数法表示为 ▲ . 10.使式子1+x +1有意义的x 的取值范围是 ▲ .11.2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 12.反比例函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为 ▲ . 13.圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度.14.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =o∠,则BAD ∠的度数为 ▲ °.15.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和为 ▲ cm .16.现有一张边长大于4cm 的正方形纸片,如图从距离正方形的四个顶点2cm 处,沿45°角画线,将正方形纸片分成5部分,则中间一块阴影部分的面积为 ▲ cm 2. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.18.(6分)化简232224a a a a a a ⎛⎫-÷⎪+--⎝⎭ 19.(8分)如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .(第15题)(第14题)(第16题)九年级数学试卷 第3页(共 10 页)(1)求证:△ABE ≌△CDF ;(2)若AB =DB ,求证:四边形DFBE 是矩形.20.(8分)某鞋店有A 、B 、C 、D 四款运动鞋,元旦期间搞“买一送一”促销活动,求下列事件的概率:(1)小明确定购买A 款运动鞋,再从其余三款鞋中随机选取一款,恰好选中C 款; (2)随机选取两款不同的运动鞋,恰好选中A 、C 两款.21.(8分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段 (小时/周)小丽抽样 人数小杰抽样 人数0~1 6 22 1~2 10 10 2~3 16 6 3~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.(8分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .ABC ADEF(第19题)九年级数学试卷 第4页(共 10 页)(1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出画法,并保留画图痕迹),并求出点A 运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)如图所示,某工人师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1m .求裁剪后剩下的阴影部分的面积.24.(8分)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1). (1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q 22,4(y a +)在抛物线上,试判断y 1与y 2的大小.(写出判断的理由)25.(8分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲汽车从B 地乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙ABO(第22题)18º九年级数学试卷 第5页(共 10 页)两车到A 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:(1)请在图①中标出 A 地的位置,并作简要的文字说明; (2)求图②中M 点的坐标,并解释该点的实际意义. (3)在图②中补全甲车的函数图象,求y 1与x 的函数关系式.26.(9分)已知,Rt △ABC 中,∠C =90°,AC =4, BC =3.以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D .(1)如图1,若⊙O 与AB 相切于点E ,求⊙O 的半径; (2)如图2,若⊙O 与AB 相交,且在AB 边上截得的弦FG=5,求⊙O 的半径.27.(11分)问题提出y (千米)x (时)乙甲图②图①B图1图2九年级数学试卷 第6页(共 10 页)把多边形的任一边向两方延长,如果其它各边都在延长线的同一旁,则这样的多边形为凸多边形.如平行四边形、梯形等都是凸多边形.我们教材中所说的多边形如没作特别说明,一般都是指凸多边形.把多边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的多边形叫做凹多边形.凹多边形会有哪些性质呢? 初步认识如图(1),四边形ABCD 中,延长BC 到M ,则边AB 、CD 分别在直线BM 的两旁,所以四边形ABCD 就是一个凹四边形.请你画一个凹五边形.(不要说明)性质探究请你完成凹四边形一个性质的证明:如图(2),在凹四边形ABCD 中,求证:∠BCD =∠A +∠B +∠D . 类比学习我们以前曾研究过凸四边形的中点四边形问题,如图(3),在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 是平行四边形.当四边形ABCD 满足一定条件时,四边形EFGH 还可能是矩形、菱形或正方形.如图(4),在凹四边形ABCD 中,AB =AD ,CB =CD ,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请判断四边形EFGH 的形状,并证明你的结论. 拓展延伸如图(5),在凹四边形ABCD 的边上求作一点P ,使得∠BPD =∠A +∠B +∠D .(不写作法、证明,保留作图痕迹)A BCMD(图1)A BCD(图2)A BCDEFG H(图3)(图4)EABC DFGH ABCD(图5)九年级数学试卷 第7页(共 10 页)2014~2015学年度第一次调研测试数学答案一、选择题(本大题共有6小题,每小题2分,共计12分.)1.A 2. C 3.C 4.B 5.D 6.A 二、填空题(本大题共10小题,每小题2分,共计20分.)7.31-,3 8.()()33-+x x y ,39- ; 9.5.3×104 ; 10.x ≥-1 ; 11.2,2; 12.k >1 ; 13.216; 14.65; 15.18 ; 16.8.三、解答题(本大题共11小题,共计88分.)17.解: 解不等式①,得x >133;…………………………2分解不等式②,得x ≤6. …………………………4分 所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6. …………………………………6分 18.解法1:原式=()()()()22222223-+÷⎪⎭⎫⎝⎛-+-+-a a a a a a a a a ………………2分 =()()()()aa a a a aa 22222822-+⨯-+-……………………………4分 = 4-a ………………………………………………………6分解法2:原式=()()222223-+÷⎪⎭⎫⎝⎛--+a a a a a a a ………………1分 =()()a a a a a a a222223-+⨯⎪⎭⎫⎝⎛--+………………2分 =()()221223+--a a …………………………4分 = 4-a ……………………………………………6分19.证明:(1)在□ABCD 中,AB =CD ,∠A =∠C .………………1分∵AB ∥CD ,∴∠ABD =∠CDB . ∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE =12∠ABD ,∠CDF =12∠CDB .∴∠ABE =∠CDF .………………………………………3分 在△ABE 和△CDF 中,∵∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF . ………………………………………4分 (2)解法1:∵□ABCD 中,∴AD ∥BC ,AD =BC∵△ABE ≌△CDF . ∴AE =CF九年级数学试卷 第8页(共 10 页)∴DE =BF ,DE ∥BF∴四边形DFBE 是平行四边形…………………………………………6分 ∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°.………7分 ∴四边形DFBE 是矩形. …………………………………………8分解法2:∵AB =DB ,BE 平分∠ABD ,∴BE ⊥AD ,即∠DEB =90°. ………5分∵AB =DB ,AB =CD ,∴DB =CD .∵DF 平分∠CDB ,∴DF ⊥BC ,即∠BFD =90°.……………………6分 在□ABCD 中,∵AD ∥BC ,∴∠EDF +∠DEB =180°.∴∠EDF =90°. ………………………………………………………7分 ∴四边形DFBE 是矩形. …………………………………………8分20. (1)因为选种B 、C 、D 三款运动鞋是等可能,所以选中C 款的概率是31…3分 (2)画树状图或列表正确……………………………………………………………6分 (只有部分正确给4分)因为选中(A B )、(A C )、(A D )、(B C )、(B D )、(C D )是等可能所以选中是(A C )的概率是61…………………………………………8分 21. (1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.……3分(2)直方图正确. …………………………………………………………………5分 (4)该校全体初二学生中有80名同学应适当减少上网的时间 …………………8分 22.解:(1)过点A 作地面的垂线,垂足为C .…………………………1分在Rt △ABC 中,∠ABC =18°,∴AC =AB ·sin ∠ABC …………………………2分=6·sin18°≈6×0.31≈1.9. ………………………3分答:另一端A 离地面的距离约为1.9 m . …………4分 (2)画图正确;画法各1分…………………………6分画法:以点O 为圆心,OA 长为半径画弧,交地面于点D ,则⌒AD 就是端点A 运动的路线.端点A 运动路线的长为2×18×π×3180=3π5(m ).(公式正确1分)答:端点A 运动路线的长为3π5m .……………8分 23.解:设大正方形的边长x m ,则小正方形的边长为(x -1)m .……1分 根据题意得:x (2x -1)=15………………………………………………4分 解得:x 1=3,x 2=25(不合题意舍去) ……………………6分 小正方形的边长为(x -1)=3-1=2 ……………………7分裁剪后剩下的阴影部分的面积=15-22-32=2(m 2)答:裁剪后剩下的阴影部分的面积2m 2…………………………………8分 24.解:(1)根据题意,得8+2b +c =1且c =1,解得b =-4,所以该二次函数的表达式是y =2x 2-4x +1. …………2分AB O 18º C九年级数学试卷 第9页(共 10 页)将y =2x 2-4x +1配方得y =2(x -1)2 -1, ………………………3分 所以该二次函数图象的顶点坐标为(1,-1), ………………4分 对称轴为过点(1,-1)平行于y 轴的直线; ………………………5分 (或:对称轴为直线x=1)(2)∵4+a 2>3+a 2>1,……………………………………………………………6分∴P 、Q 都在对称轴的右边,………………………………………………7分 又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2(如直接代入计算出y 1与y 2,并比较大小正确参照给分)……8分 25.解: ⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………… 2分(图大致正确1分,文字说明1分) ⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) …………………3分 所以点 M 表示乙车 1.2 小时到达 A 地.… 4分 ⑶甲车的函数图象如图所示. ………… 6分当01x ≤≤时,16060y x =-+;…………7分当1 2.5x <≤时,16060y x =-. …………8分26.解:(1)连接OE ,因为⊙O 与AB 相切于点E ,所以OE ⊥AB设OE =x ,则CO =x ,AO =4-x 由Rt △AO E ∽Rt △ABC ,得ABAOBC OE =∴543x x -=,解得:x =23 ∴⊙O 的半径为23………………………………4分(2)过点O 作OH ⊥AB ,垂足为点H ,……………5分则H 为FG 的中点,FH=21FG =531……6分连接OF ,设OF =x ,则OA =4-x 由Rt △AOH ∽Rt △ABC 可得OH =5312x- 在Rt △OHF 中,据勾股定理得:OF 2=FH ∴x 2=(531)2+(5312x -)2……………8解得 x 1=74, x 2=254- (舍去) 图2 图1E九年级数学试卷 第10页(共 10 页)∴⊙O 的半径为74.…………………9分 27.答:初步认识:如图(图形正确即可…………………1分 性质探究:延长BC 交AD 于点E ∵∠BCD 是△CDE 的外角∴∠BCD =∠CED +∠D ……………………………………2分 同理,∠CED 是△ABE 的外角∴∠CED =∠A +∠B ………………………………………3分 ∴∠BCD =∠A +∠B +∠D …………………………………4分 (说明:连接AC ,利用外角来说明也可) 类比学习:证明:四边形EFGH 是矩形………………………………5分 连接AC ,BD ,交EH 于点M∵E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点 ∴EF =HG =AC 21,E F ∥HG ∥AC ∴四边形EFGH 是平行四边形,…………………………6分 ∵AB=AD ,BC=DC ,∴A 、C 在BD 的垂直平分线上,∴AM ⊥EH ,………………………………………………7分 已证E F ∥AC ,同理可证FG ∥BD ,∴∠EFG =90°∴□EFGH 是矩形 ………………………………………8分证明二:∵AB =AD ,CB =CD ,∴∠ABD =∠ADB ,∠CBD =∠∴∠ABC =∠ADC ,∴△ABC ≌△ADC 。

2015云南省中考数学模拟试题(一)(含答案)

2015云南省中考数学模拟试题(一)(含答案)

2015云南省中考数学模拟试题(一)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.下列运算正确的是( )A .33623a a a =+B .236a a a =⋅C .222()a b a b -=- D .236()=a a -- 2.2014年政府工作报告中指出:今年再解决6000万农村人口的饮水安全问题,经过今明两年努力,要让所有农村居民都能喝上干净的水.将6000万用科学计数法表示为( ) A .6×107 B .6×108 C .6×104 D .60×1073.某班5位同学的身高(单位:米)为1.4,1.5,1.6,1.6,1.7,对于这组数据下列说法正确的是( )A .中位数是1.6B .平均数是1.5C .极差是0.1D .众数是1.7 4.如图,在下列四个几何体中,主视图、俯视图、左视图都相同的有( )A .1个B .2个C .3个D .4个 5.如图,平行四边形ABCD 的对角线相交于点O ,且AB=5,△OCD 的周长为23,则四边形ABCD 的两条对角线的和是( ) A .18 B .28 C .36 D .46 6.在函数x 的取值范围是( ) A .x ≤1 B .x ≥1 C .x <1D .x >17.如图,⊙O 的直径CD ⊥AB ,∠B=60°,则∠AOC 等于( ) A .30° B .40° C .50° D .60°第7题图A BOCD第5题图8.二次函数y = -x 2+bx +c 的图象如图所示,若点A (x 1 ,y 1)、B (x 2 ,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( ) A .y 1≤y 2 B .y 1<y 2 C .y 1≥y 2 D .y 1>y 2二、填空题(本大题共6个小题,每小题3分,满分18分) 9.-6的绝对值的相反数是. 10.反比函数ky x=的图像经过点(3,-1),则k 的值为 . 11.圆锥的底面半径是3cm ,高为4cm ,则圆锥的侧面积是 cm 2(结果保留π) 12.已知2a b +=,1ab =,则2332a b a b +的值为 .13.如图,AB ∥CD ,EF ⊥AB 于E ,EF 交CD 于F ,已知∠1=60°,则∠2 = .14.如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.三、解答题(本大题共9个小题,满分58分)15.(4分)计算:021201484sin 452-+-o () 16.(5分)解方程:13122x x-=-- 17.(6分)某制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人? (2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?O x =1y第8题图CDBAEF12图 第13题图BF D C EA 18.(6分)如图,点F 、B 、E 、C 在同一直线上,并且FB=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明. 提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .19.(6分)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼上的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°.若旗杆与教学楼的水平距离CD 为9m ,则旗杆的高度是多少?(结果保留根号)20.(7分)为了解我县1600名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们随机抽取了部分学生的数学成绩,将其等级情况制成不完整的统计表如下:根据以上提供的信息解答下列问题:(1)若抽取的学生的数学成绩的及格率(C 级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C 级的学生有多少人?(2)求出D 级学生的人数在扇形统计图中的圆心角. (3)请你估计全县数学成绩为A 级的学生总人数. 等级 A 级 (≥90分) B 级 (≥70分且<90分) C 级 (≥60分且<70分) D 级(<60分) 人数 22 28 18A 级B 级C 级D 级BACDE21.(7分)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张. (1)用画树状图或列表的方法写出所有可能出现的结果; (2)试求取出的两张卡片数字之积不小于5的概率;(3)若取出的两张卡片数字之积为奇数,则甲胜;取出的两张卡片数字之积为偶数,则乙胜;试分析这个游戏是否公平?请说明理由. 22.(8分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E . (1)判断四边形ACED 的形状,并说明理由;(2)若BD =2,求线段BE 的长.23.(9分)已知二次函数21342y x x =-+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.2015云南省中考数学模拟试题(一)参考答案一.选择题: 1.D 2.A 3.A 4.B 5.C 6.D 7.D 8.B 二.填空题: 9.-6 10.-3 11.15π 12.2 13.30° 14.2n+1 三.解答题:15.(4分)解:原式=1+4= -3 16.(5分)解:去分母得,4=x -2 即x =6经检验是原方程的根,则原方程的根是x =6 17.(6分)解:(1)设应安排x 名工人制作衬衫,依题意得, 3x =5(24-x ) 解得x =15 所以,24-x =24-15=9答:应安排15名工人制作衬衫,9名工人制作裤子. (2)设应安排y 名工人制作衬衫,依题意得,3×30y+5×16(24-y)≥2100 解得y ≥18 答:至少应安排18名工人制作衬衫. 18.(6分)解:不能; 选择条件:①AB=DE ; ∵FB=CE ,∴FB+BE=CE+BE , 即FE=CB ,在△ABC 和△DEF 中AB=DEABC=DEF FE=CB ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△DEF (SAS ). (也可以选择③)略19.(6分)在Rt △ACD 中, ∵tan ∠ACD =DCAD, ∴tan30°=9AD, ∴AD =33, 在Rt △BCD 中, ∵∠BCD =45° ∴BD =CD =9 ∴AB =AD +BD =33+9 答:旗杆的高度为(33+9)米。

2015年中考模拟考数学试卷附答案

2015年中考模拟考数学试卷附答案

2015年中考模拟考数学试卷(2015.5.25)(本卷共26小题,考试时间:120分钟,满分:150分)一、选择题(本题有10小题,每小题3分,共30分) 1. 关于m 的不等式-m >1的解为( )A .m >0B .m<0C .m<-1D .m >-1 2、下列电视台的台标,是中心对称图形的是( ) A ...3. 下列运算正确的是( )4、支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为( ) A 、104.7310⨯ B 、1047.310⨯ C 、94.7310⨯ D 、 947.310⨯ 5、如图,AB ∥CD ,BC ∥DE ,若∠B =40°,则∠D 的度数是( ) A .40°B .140°C .160°D .60°6、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数7. △ABC 中,a 、b 、c 分别是∠A ,∠B ,∠C 的对边,如果222a b c +=,那么下列结论正确的是( ) A 、cos b B c =B 、sin c A a =C 、tan a A b =D 、tan b B c =8. 如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么DEF ∆与ABC∆的周长比为( ) A .4︰1 B .3︰1C .2︰1D ︰1 9、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是( )A .34π B .38π C .32π D .316π10.二次函数y =ax 2+bx +c 的图象如图5所示,反比例函数y = ax与正比例函数CAB(第8题)EDF 9题图y =(b +c )x 在同一坐标系中的大致图象可能是( )图5 A B C D二,填空题(本题有10小题,每小题3分,共30分)11. 若代数式23-x 有意义,则x 的取值范围是 ▲ . 12、 若a -b =3,ab =2,则a 2b -ab 2= ▲ .13、从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 ▲ . 14.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 ▲ .15. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得432014x x -+值是 ▲ .16.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿 x 轴向右平移,当点 C 落在直线 y =2x -6上时, 线段BC 扫过的面积为 ▲ .三,解答题(本题有10小题,共96分)17.(本题满分7()011π2015()6tan302--+-︒; 18.(本题满分8分)先化简再求值:35222x x x x +⎛⎫÷+- ⎪--⎝⎭,其中x 是不等式组3(3)1,4253x x x x --≥⎧⎨-<-⎩的一个整数解.19(本题满分7分)、如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,A F ∠=∠,AB FD =。

云南省2015年中考数学标准模拟卷

云南省2015年中考数学标准模拟卷

1、 5的相反数是( ) A 、51-B 、51 C 、5-D 、52、下列运算正确的是( )A 、246x x x += B 、326()x x -= C 、D 、632x x x ÷=3、下图中所示的几何体的主视图是( )4、要使函数y=1-x 有意义,自变量x 的取值范围是( )A 、x ≥1B 、x ≤1C 、x >1D 、x <15、如图,C 是⊙O 上一点,若圆周角∠ACB =40°,则圆心角∠AOB 的度数是( ) A 、50° B 、60° C 、80° D 、90°6、如图,ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12 , BD =10, AB =m ,那么m 的取值范围是( )云南省2015年学业水平考试命题专家内部解析卷姓名:____________0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 22 2 2 2 2 2 2 33 3 3 3 3 3 3 44 4 4 4 4 4 45 5 5 5 5 5 5 56 6 6 6 6 6 6 67 7 7 7 7 7 7 7 88 8 8 8 8 8 8 9 9 9 9 9 9 9 9一、选择题:请将唯一正确答案的编号填入答卷中,本题共8题,每题3分,共24分。

A .B .C .D .A 、10<m <12B 、2<m <22C 、1<m <11D 、5<m <6 7、函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )图 A B C D8、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,a-b-c ,b+c-a ,2ba-这四个式子中,值为正数的有( ) A 、4个B 、3个C 、2个D 、1个一、选择题答案1. C2. B3. D4. A5. C6. C7. C8. A9、如果32a b =,那么a b b-= .10、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个.11、当x = 时,分式2233x x x ---的值为零.12、已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是 .13、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 米.14、若圆锥的母线长为3 cm ,底面半径为2 cm ,则圆锥的侧面展开图的面积 cm .二、填空题答案二、填空题:请将正确答案填在横线上,本题共6题,每题3分,共18分。

2015年中考数学模拟试题参考答案

2015年中考数学模拟试题参考答案

2015年中考数学模拟试题参考答案1-10:DADBBDAABB(11)2(12)1.49×810(13 )83(14)1425 (15)8(16)75° 17(1)y=-2x+4 (2)x ≤118(1)略 (2)105°19(1)P P 略P 略略略略PPPP略略P 略PPPPPp 凭PPPPPPp(2)树形图略P=81520(1)(2)略.(3)P(0,1), y=-12x+7421(1)连接BD ,OD ,作OG ⊥CD 于G ,DE ⊥AB 于E.则OG=DE=125,22221127-=2510DG OD OG =-=()()725DC DG ∴==(2)连接BD,由tan ∠BAC=12。

设BC=a,则AC=2a,222=A 2+(=52a)Baa=25 a=5 作DH ⊥BC 于H ,则3cos DCH cos 5BAD ∠=∠=设DC=x,则CH=35x ,45DH x =.由勾股定理得:222435554x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭解得5x =,负值舍去。

5DC ∴=.22.(1)设调整价格后的标价是y.元.80757520100100100100160160y -⨯=⨯⨯180y ∴=(2)(x 120)(2x 400)3000--+=12150,170x x ∴==(3)6a ≤<1023.解:⑴当k=2时AB=BC=2CD ,又E 是BC 的中点.∴BC=2BE ,∴BE=CD.又∠ABC=∠BCD.∴△ABE ≌△BCD.∴∠CBD=∠BAE ,∴∠AFB=∠CBD +∠AEB=∠BAE +∠AEB=180°-∠ABC=60°.⑵作BH ⊥AC 于H ,则CH=21AC ,又AG=3GC ,∴AC=4GC. ∴CH=2GC.∴GH=GC ,∵AB=BC ,∠ABC=120°,∴∠ACB=30°.∴∠ACD=120°-30°=90°, ∴BH ∥CD.∴1==GCGHCD BH ,∴BH=CD 设CD=BH=1,则AB=k , 又Rt △ABH 中∠BAH=30°,∴AB=2BH=2,即k=2.⑶由∠ABC=∠BCD=∠APD=120°可证△ABP ∽△PCD ∴CD BP PC AB =设CD=1,PB=x 则AB=BC=k ,PC=k -x.∴1xx k k =- ∴x 2-kx +k =0由点P 的唯一性可知方程有两个相等的实根,∴△=k 2-4k =0,∴k =4.24.解:⑴将A (-t ,0),B (3t ,0),C (0,-3)代入可求321)3)((1222--=-+=x tx t t x t x t y ⑵作DG ⊥x 轴于G ,EH ⊥x 轴于H.由y D =y C =-3得332122-=--x tx t ,∴x=0或x=2t.∴x D =2t.∴AG=3t.设E (x E ,y E ),则y E =21t (x E +t)(x E -3t),易证△AGD ∽△AHE ,∴EHDGAH AG =∴)3)((1332t x t x t t x t E E E -+=+∴x E =4t ,∴AH=5t ,∴5353===t t AH AG AE AD . ⑶t=1时y=x 2―2x ―3,设PM 的解析式为:y=kx +m ,由⎩⎨⎧--=+=322x x y m kx y 得x 2-(k +2)x -m -3=0,△=(k +2)2+4(m +3)=0,∴k +2=±23--m ,设x M >0,x N <0则x m =322--=+m k , y M =―m ―3―233---m ,x N =-3-m ,y N =-m -3+233---m .由x M +x N =0知Q为MN的中点.可得y Q =6)122(21)(21--=--=+m m y y N M ,∴QC=y Q -y C =―m ―6―(―3)=―m ―3.CP =―3―m ,∴CP =CQ.。

2015届九年级中考模拟考试数学试题及答案

2015届九年级中考模拟考试数学试题及答案

2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分...为试题...卷和答...题.卷,答案要求......写.在答..题.卷上,在....试题..卷上作答不.....给.分... 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是 A .3B .31 C .3- D . 31-2.下列运算正确的是A . 523x x x =+B .x x x =-23C .623x x x =⋅D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是A .①③B .②④C .③④D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为 A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --= 二、填空题(本大题共8小题,每小题3分,共24分)7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .①正方体 ②圆锥体 ③球体9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分)三、(本大题共4小题,每小题6分,共24分) 15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2(第12题图) CBA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四 边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l 2交于点E, BD 与l 4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2).根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;FEA(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少?六、(本大题共2小题,每小题10分,共20分) 23. 已知抛物线22232y x mx m m =-++.(1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁 7%21~30岁 39%31~40岁 20%16~20岁 16%61~65岁 3% 41~50岁 15% 图(1)24.已知:如图(1),△OAB是边长为2的等边三角形,0A在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b10、25゜ 11、8 12、74 13、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分) 15、解:原式=1212222+⨯-+…………………………………………………3分 =222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1……………………………………………4分 将2=x 代入得:221=x………………………………………………………6分 17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上手背向上……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r .∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C =90° ∴OD ∥AC ∴△OBD ∽△ABC . …………………………2分∴ODAC = OB AB,即12128r r-=解得:524=r ∴⊙O 的半径为524………………………4分A(2)四边形OFDE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF =∠B .∵∠DEF =12∠DOB ∴∠B =12∠DOB .∵∠ODB =90° ∴∠DOB +∠B =90° ∴∠DOB =60°∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形∴OD =DE ∵OD =OF ∴DE =OF ∴四边形OFDE 是平行四边形 ………7分∵OE =OF ∴平行四边形OFDE 是菱形. …………………………………8分20、(1) ∵l 2∥l 4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分 ∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分(2)(批改时注意若学生用计算器计算,中间答案会有少许不同,但最终答案一样) 过A 作AG ⊥l 4,交l 2于H ∵α=25° ∴∠ABE=25°∴ sin 0.42AHABE AB∠=≈ 解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜ ∴91.0cos ≈=∠ADAGDAG 解得:AD ≈43.96 ………………7分 ∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分 五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人) 31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分 (3) 31~40岁年龄段被抽人数是2040080100⨯=(人) 总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分 41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人, 总体印象的满意率是5388.3%88%60=≈ …………………………………8分 ∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分F EGH根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分n =(1-m )(50+10×m 0.2)+(5-3-m )(20+10×m0.2) 即 n =-100m 2+80m +90 =-100(m -0.4)2+106. ……………………………7分∴当m =0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分) 23、解:∵()m m m x m m mx x y 222322222++-=++-=∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分 当m=0时,顶点坐标为(0,0) 当m=32-时,顶点坐标为(32-,94-) ……………………………………3分 ∵第三象限的平分线所在的直线为y=x ∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分 (2)∵m>0时,m m 222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分 设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分 ∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m mn ∴当21-=m 时,n 有最小值21- …………………………………10分 24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒. ∵OC AC =,CD OA ⊥, ∴1OD DA ==.在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-; 过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t ∆=⋅=-⋅=-+. 即23142S t t =-+ .………………………………………2分(图①)(2)当23t <≤时,(如图②) OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒. ∴2113(32)222OPQ S OQ OP t t t t ∆=⋅=⋅-=-.即232S t t =-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t =-……………4分(2),0)或2(,0)3 …………………6分 (3)BMN ∆的周长不发生变化.延长BA 至点F ,使AF OM =,连结CF .(如图③)∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。

2015中考模拟考试试题数学科参考答案

2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。

(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。

2015年云南省中考数学试题及解析

2015年云南省中考数学试题及解析

2015年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分).)4.(3分)(2015•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营﹣2=7.(3分)(2015•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015•云南)分解因式:3x2﹣12=.10.(3分)(2015•云南)函数y=的自变量x的取值范围是.11.(3分)(2015•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=.12.(3分)(2015•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.13.(3分)(2015•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.14.(3分)(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).三、解答题(本大题共9小题,满分58分)15.(5分)(2015•云南)化简求值:[﹣]•,其中x=+1.16.(5分)(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.17.(7分)(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(5分)(2015•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?19.(6分)(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)20.(7分)(2015•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.21.(7分)(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=,b=,c,d,m.(请22.(7分)(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.23.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2015年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分).)4.(3分)(2015•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营n﹣2=7.(3分)(2015•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)((=3二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015•云南)分解因式:3x2﹣12=3(x﹣2)(x+2).10.(3分)(2015•云南)函数y=的自变量x的取值范围是x≥7.11.(3分)(2015•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=64°.12.(3分)(2015•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a 元.13.(3分)(2015•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为30°.∠14.(3分)(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).,=,故答案为:三、解答题(本大题共9小题,满分58分)15.(5分)(2015•云南)化简求值:[﹣]•,其中x=+1.===x==16.(5分)(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.,17.(7分)(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(5分)(2015•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?)19.(6分)(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)AD==BD==米,即x+20.(7分)(2015•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.=.,=21.(7分)(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及×=422.(7分)(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.AP=.23.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.OB=中,得:﹣﹣,y=﹣y=﹣==,斜率为3=x+3与抛物线对称轴方程联立得解得:,)的斜率为,y=x,与抛物线对称轴方程联立得:,解得:,﹣,)或,﹣。

2015年中考模拟试题(一)数学试卷附答案

2015年中考模拟试题(一)数学试卷附答案

2015年中考模拟试题(一)数学试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第二部分时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第一部分(客观题)一、选择题(本题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只 有一个选项正确)1. 2015的相反数是 A . 2015B . ﹣2015C .20151D .-201512.下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3.下列计算正确的是A .=±2B . 3﹣1=﹣C . (﹣1)2015= -1D . |﹣2|=﹣24.如图,∠1与∠2是A.对顶角B.同位角C.内错角D.同旁内角5.不等式组⎩⎪⎨⎪⎧3x +2>5,5-2x≥1的解在数轴上表示为6.某篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和平均数分别是A .18,19B .19,19C .18,19.5D .19,19.5 7.三角形在正方形方格纸中的位置如图所示,则cos α的值是A. 34B. 43C. 35D. 458.一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为x,则列方程为A.688(1+x )2=1299B. 1299(1+x )2=688C. 688(1-x )2=1299D. 1299(1-x )2=688 9.△ABC 的周长为30 cm ,把△ABC 的边AC 对折,使顶点C 和点 A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD , 若AE =4 cm ,则△ABD 的周长是A .22 cmB .20 cmC .18 cmD .15 cm10.已知二次函数y =ax 2+bx +c(a≠0)的图象如图,则下列结论:①a ,b 同号;②当x =1和x =3时,函数值相等; ③4a +b =0;④当y =-2时,x 的值只能为0, 其中正确的个数是A .1个B .2个C .3个D .4个第二部分(主观题)二、填空题(每小题3分,共24分)11.空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径 小于或等于2.5微米的颗粒物,2.5微米即0.000 002 5米.用科学记数法表示 0.000 002 5为 .12.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是 .13.函数12-+=x x y 中自变量x 的取值范围是 . 14.分解因式:x 3-xy 2=________.15.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮” 各两个,将所有棋子反面朝上放在棋盘中,任取一个不是..士、象、帅的概率是__________.16.在半径为2的圆中,弦AB 的长为2, 则弧的长等于17.如图,过y 轴上任意一点p ,作x 轴的平行线, 分别与反比例函数y =-4x 和y =2x 的图象交于A 点和B 点.若C 为x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 . 18.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,… 都是边长为2的等边三角形,边AO 在y 轴上, 点B 1,B 2,B 3,…都在直线y=x 上,则A 2015的坐标是 . 三、解答题(共96分)19.(10分)先化简,再求值:(1+)•,其中x=+1.20.(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了 名同学,其中C 类女生有 名, D 类男生有 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一 帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同 学和一位女同学的概率.20.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件, 求该企业捐给甲、乙两所学校的矿泉水各多少件?22.(12分)一艘观光游船从港口A 处以北偏东60°的方向出港观光,航行80海里至 C 处时发生了侧翻沉船事故,立即发出了求救信号.一艘在港口正东方向B 处的 海警船接到求救信号,测得事故船在它的北偏东37°方向。

2015级九年级(下)一诊模拟考试数学试题

2015级九年级(下)一诊模拟考试数学试题

第9题图2015级九年级(下)一诊模拟考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卷上,不得在试卷上直接作答.2.答题必须使用黑色碳素笔书写,字体工整、笔迹清楚,按照题号顺序在各题的答题区内作答,超出答题区域的答案无效,在草稿纸上、试卷上答题无效。

一、选择题:(本大题10个小题,每小题4分,共40分)1.9的平方根是( ) A .3 B .-3 C .±3 D .812.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( ) A .235x x x +=B .()246xx =C .623x x x ÷= D .()4520xx -=4.如图,//AB CD ,BD 平分ABC ∠,若DCB ∠=100︒, 则∠D 的度数是( ).A .040 B .050 C .030 D .045 5.不等式组2251x x >-⎧⎨-≤⎩的解集在数轴上表示正确的是( )6.下列调查中,适合采用全面调查(普查)方式的是( )A .了解一批节能灯泡的使用寿命B .了解某班同学“跳绳”的成绩C .了解全国每天丢弃的塑料袋的数量D .了解上海卫视“今晚80后”栏目的收视率 7.分式方程3211x x =-+的解是( ) A .5x =- B .5x = C .3x =- D .3x =8. 如图,点A 、B 、C 为⊙O 上的三点,连接AC ,若∠ABC =130°,则∠OCA 的度数为( ) A .030 B .050 C .040 D .0459. 如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC,若D F C B D F S S ∆∆:=1:4,则D C A B D F S S ∆∆:=( ) A.1:16 B.1:18 C.1:20 D.1:2410.一艘轮船往返于重庆、上海两地.轮船先从重庆顺流而下航行到上海,在上海停留一段时间后,又从上海逆流而上航行返回重庆(轮船在静水中的航行速度始终保持不变).设轮船从重庆出发后所用时间为t (h ),(第4题图)ABCD轮船离重庆的距离为s (km ),则s 与t 的函数图象大致是( )B .C积为2 cm 2,第2个图案面积为4 cm 2,第3个图案面积为7 cm 2…,依此规律,第8个图案面积为( )cm 2.坐标为(0 A .(3,2) B.()33,332 C.(23,4) D.()235,534二、填空题:(本大题共6个小题,每小题4分,共24分)13.据重庆市旅游局统计,2014年“十月黄金周”累计到重庆游玩的人数为2310000,这个数用科学记数法表示为___________. 14.使函数11-+=x x y 有意义的x 的取值范围是____________. 15则这个队队员年龄的中位数是_________岁.16.如图,⊙O 的半径为4,PC 切⊙O 于点C ,交直径AB 延长线于点P ,若CP 长为4, 则阴影部分的面积为 .17.小红准备了五张形状、大小完全相同的不透明卡片,正面分别写-3、-1、0、1、3,将这五张卡片的正面朝下放在桌面上,从中任意抽取一张,将卡片上的数字记为a ,再从剩下的卡片中任取一张卡片并把数字记为b ,恰好使得关于x 、y 的二元一次方程组⎩⎨⎧=+=-12y mx n y x 有整数解,且点(m ,n )落在双曲线x y 3-=上的概率为 .18.如图,正方形ABCD 的边长为3,延长CB 至点M ,使23=∆ABM S ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连接ON ,则ON 的长为 .三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡(卷)中对应的位置上.19. 计算:()303201421330sin 271-⎪⎭⎫ ⎝⎛---+--+-π 20. 如图,在Rt △ABC 中,∠C =90°,点D 是AC 边上一点, sin ∠DBC =54,且BC =6,AD =4.求cos A 的值. 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答卷中对应的位置上。

2015年初三一模数学试卷及答案

2015年初三一模数学试卷及答案

2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。

分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒙自市2015年初中学业水平第一次模拟测试数学试卷(全卷三个大题,共23个小题,共2页,满分100分,考试时间120分钟)注意事项:1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共8个小题,每个小题只有一个正确选项,每小题3分,满分24分) 1.2015的倒数是( )A .2015-B .20151-C .2015D .201512.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( )A .B .C .D .3.下列运算正确的是( )A .623)(a a =B .22a a a =⋅C .2a a a =+D .236a a a =÷4.已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x +等于( )A .4-B .1-C .1D .45.不等式组5030x x -⎧⎨->⎩≤整数解的个数是( )A .1个B .2个C .3个D .4个6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且2=CE ,8=DE ,则AB 的长为( )A .2B .4C .6D .87.已知圆锥的底面半径为cm 4,母线长为cm 5,则这个圆锥的侧面积是( )A .220cmB . 220cm πC .240cm πD .240cm8.在2-,1,2,1,4,6中正确的是( )A .平均数3B .众数是2-C .极差为8D .中位数是1二、填空题(本大题共6个小题,每小题3分,满分18分)第6题图9.我国“钓鱼岛”周围海域面积约1700002km ,该数用科学记数法可表示为 .10.如图,b a //, 551=∠,652=∠,则3∠的大小为 . 11.分解因式:=-822x . 12.方程2x 3x 0-=的根为 . 13.在函数11-=x y 中,自变量x 的取值范围是 .14.如图,下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有 .三、解答题(本大题共9个小题,满分58分)15.(5分)计算:1)31()12015(60tan 212---+-16.(5分)如图BC AC ⊥,AD BD ⊥,BD AC =,求证:AD BC =17.(6分)如图,已知在平面直角坐标系xoy 中,O 是坐标原点,点)5,2(A 在反比例函数ky x=的图象上,过点A 的直线b x y +=交x 轴于点B . (1)求k 和b 的值; (2)求AOB ∆的面积.18.(7分)2015年3月2日云南临沧沧源发生5.5级地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为沧源灾区捐款情况绘制的不完第10题图第14题图DCBA整的条形统计图和扇形统计图. (1)求该班人数; (2)补全条形统计图;(3)在扇形统计图中,捐款“15元人数”所在扇形的圆心角的度数;(4)若该校九年级有800人,据此样本,请你估计该校九年级学生共捐款多少元?19.(7分)为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回),把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来. (1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平?20.(6分)在某市地铁施工期间,交管部门在施工路段设立了矩形路况警示牌(如图所示).已知立杆AB 的高度是3米,从路侧点D 处测得路况警示牌顶端C 点和底端B 点的仰角分别是60和45,求路况警示牌宽BC 的值.(精确到0.1米)(参考数据:2≈1.41,3≈1.73)21.(6分)已知BD 垂直平分AC ,ADF BCD ∠=∠,AC AF ⊥,(1)证明ABDF 是平行四边形;(2)若5==DF AF ,6=AD ,求AC 的长.22.(7分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出54时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?(利润=售价﹣进价)23.(9分)如图(1),在平面直角坐标系xoy 中,抛物线()2y ax bx c a 0=++≠与x 轴交于()()A 1,0,B 3,0- ,与y 轴交于)3,0(C ,顶点为)4,1(D ,对称轴为DE .(1)抛物线的解析式是 ; (2)如图(2),点P 是AD 上的一个动点,P '是P 关于DE 的对称点,连结PE ,过P '作F P '∥PE 交x 轴于F . 设EPP'F y,E S F x == 四边形,求y 关于x 的函数关系式,并求y 的最大值;(3)在(1)中的抛物线上是否存在点Q ,使BCQ ∆成为以BC 为直角边的直角三角形?若存在,求出Q 的坐标;若不存在,请说明理由.蒙自市2015年初中学业水平第一次模拟测试数学答案一、选择题 (每小题3分,满分24分)题号 1 2 3 4 5 6 7 8答案 D B A D C D B C二、填空题:(每小题3分,满分18分)9. 5107.1⨯ 10.60 11.()()2x 2x 2+-12. 12x 0,x 3== 13. 1>x 14. 161三、解答题(满分共58分)15.(5分)计算:1)31()12015(60tan 212---+-16.(5分) 证明:∵BC AC ⊥,AD BD ⊥∴90=∠=∠D C ….…….1分 在ABC Rt ∆和BAD Rt ∆中,AC BDAB BA⎧=⎨=⎩ ….…….3分 ∴ABC Rt ∆≌BAD Rt ∆(HL )….…….4分 ∴AD BC = ….…….5分17. (6分)解:(1)把)5,2(A 分别代入ky x=和b x y +=,得 k522b 5⎧=⎪⎨⎪+=⎩,解得k 10b 3=⎧⎨=⎩. ∴10=k ,3=b ….…….2分解:原式=313222-+⨯-…..4分 =2-………5分(2)如图,过点A 作x AC ⊥轴于点C 由(1)得直线AB 的解析式为3+=x y ∴点B 的坐标为)0,3(-,3=OB ∵点A 的坐标是)5,2(,∴5=AC ∴AOB 1115S OB AC 35222∆=⋅=⨯⨯=….…….6分 18.(7分) 解:(1)15÷30%=50(人);……………………………………………1分 (2)15元的人数为50﹣15﹣25=10(人),补全条形统计图为:………………………3分 (3)10÷50=20%,捐款“15元人数”所在扇形的圆心角的度数360°×20%=72°;……………………5分 (4)15×5+25×10+10×15=475元,则平均每人捐款为475÷50=9.5元,………………………………………………………6分 估计该校九年级学生共捐款800×9.5=7600元.…………………………………………7分19.(7分) 解:(1)列表得:第一次第二次1 2 3 4 1 (2,1)(3,1) (4,1) 2 (1,2) (3,2)(4,2) 3 (1,3) (2,3) (4,3)4(1,4)(2,4)(3,4)∴共有12种等可能的结果,其中甲得1分的可能的结果有6种…………………3分 ∴P (甲得1分)=21126=…………………4分 (2)不公平. …………………5分∵P (乙得1分)=41…………………6分 ∴P (甲得1分)≠P (乙得1分),∴不公平 …………………7分 20.(6分)解:由题意得,在Rt △ABD 中,∠DAB =90°,∠ADB =45°,AB =3 ∴AD =AB =3 …………………2分 又∵Rt △ACD 中,∠DAC =90°,∠ADC =60°∴AC =AD ·tan ∠ADC =3·tan60°=33…………………4分 ∴BC =AC -AB =33-3≈2.2 …………………5分 答:路况警示牌宽BC 的值约为2.2米. …………………6分21.(6分)解:(1)证明:∵BD 垂直平分AC ,∴AB=BC ,AD=DC∵在△ADB 与△CDB 中,AB=BC ,AD=DC ,DB=DB ∴△ADB ≌△CDB (SSS ).∴∠BCD=∠BAD ∵∠BCD=∠ADF ,∴∠BAD=∠ADF .∴AB ∥FD ∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD∴四边形ABDF 是平行四边形 …………………3分(2)∵四边形ABDF 是平行四边形,AF=DF=5 ∴▱ABDF 是菱形.∴AB=BD=5 设BE=x ,则DE=5﹣x∴AB 2﹣BE 2=AD 2﹣DE 2∵AD=6,∴52﹣x 2=62﹣(5﹣x )2,解得:x=75,即BE=75∴2224AE AB BE 5=-= ∴==AE AC 2485…………………6分22.(7分)解:(1)设第一批T 恤衫每件进价是x 元,由题意,得……………………………1分=解得x=90 ………………………………2分 经检验x=90是分式方程的解,符合题意.………………………………3分 答:第一批T 恤衫每件的进价是90元;………………………………4分(2)设剩余的T 恤衫每件售价y 元.………………………………5分 由(1)知,第二批购进=50件.由题意,得120×50×+y×50×﹣4950≥650解得y≥80 ……………6分答:剩余的T 恤衫每件售价至少要80元.………………………………7分23. (9分)解:(1)∵抛物线()2y ax bx c a 0=++≠的顶点为D(1,4)∴可设抛物线解析式为()2y a x 14=-+ ∵抛物线()2y ax bx c a 0=++≠与y 轴交于C(0,3) ∴()23a 014=-+,解得a 1=-∴抛物线的解析式为()2y x 14=--+,即2y x 2x 3=-++……………3分(2)如答图1,令PP′交DE 于G ,∵PP′∥AF ,PE ∥FP′, ∴四边形FEPP′是平行四边形 ∴PP′= EF,△DPP′∽△DAB. ∴PP'DG DE GE ABDEDE-==.又∵A (-1,0)、B (3,0)、D (1,4),EF=x ∴AB=4,DE=4 ,PP′=x, ∴x4GE44-=.∴GE 4x =-.∴()2EPP'F y S EF GH x 4x x 4x =⋅=-=-+=四边形 ∴y 关于x 的函数关系式为()2y x 4x 0<x <4=-+ ∵()22y x 4x x 24=-+=--+∴当x=2时,y 的最大值是4 ……………6分(3)设存在满足条件的点Q (x ,y ) 如答图2,过点O 作OH ⊥BC 于H ,∵Rt △BCQ 中BC 是直角边,∴Rt △BCQ 的另一直角边与OH 平行. 又∵OC=OB ,CO ⊥OB ,OB=3,OC=3,∴Rt △BCQ 的另一直角边所在的直线可以由直线OH 向上或向下平移3个单位得到. 由已知得直线OH 的解析式是y=x,∴Rt△BCQ的另一直角边所在的直线解析式是:y=x+3或 y=x-3.由2y x2x3y x3⎧=-++⎨=+⎩解得x1y4=⎧⎨=⎩或x0y3=⎧⎨=⎩(舍去);由2y x2x3y x3⎧=-++⎨=-⎩解得x2y5=-⎧⎨=-⎩或x3y0=⎧⎨=⎩(舍去).∴存在满足条件的点Q的坐标是:(1,4)和(-2,-5)……………9分。

相关文档
最新文档