静定平面桁架
静定平面桁架
当荷载向下时,M0E为正,FNCD为拉力,即简支桁 架下弦杆受拉。
退出
14:10
§6-3 截面法
结构力学
(3) 求上弦杆EF内力
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 由 力 矩 平 衡 方 程 ∑MD=0,先求EF杆的水平分力FxEF,此时力臂即为桁 高H。
30 kN 30 kN AJ M
30 kN 30 kN 30 kN 30 kN 30 kN
1
AJ M
B
G
75 kN D a E
75 kN FNEC
G
Da E
1C
5 m 6=30 m
4m 75 kN 2 m
解 (1) 求支座反力。
(2)直接求出a 杆的位置困难。首先作截面Ⅰ-Ⅰ,求 出FNEC ,然后取结点E 就可求出a 杆的轴力。
结构力学 第六章 静定平面桁架
§6-1 平面桁架的计算简图 §6-2 结点法 §6-3 截面法 §6-4 截面法与结点法的联合应用 §6-5 各式桁架比较 §6-6 组合结构的计算
退出
14:10
§6-1 平面桁架的计算简图
结构力学
桁架是由杆件相互连接组成的格构状体系,它的 结点均为完全铰结的结点,它受力合理用料省,在 建筑工程中得到广泛的应用。
F N4 F F N4 N1 F N2 F N2
F FN1
F F N2
FN3 FN3
F N2
FN1 FN3
==FFFFNNNN4231==FFNN42
FN1 = FFNN21 = FN2 FN3= FFN3= F
退出
14:10
§6-2 结点法
4 建筑结构及受力分析静定平面桁架
建筑结构及受力分析
4.1 桁架的概念及特点 4.2 结点法计算桁架杆件内力
4.3 截面法计算桁架杆件内力
目
录
4.1 桁架的概念及特点
4.1.1 桁架受力分析假定
பைடு நூலகம்通常在分析桁架内力时做以下四点假设: (1) 桁架中联接各杆件两端的铰是无摩擦的理想铰,它不能承受弯矩(各杆件可绕铰链自由转动)。 (2) 桁架中所有杆件都是直杆,且各杆的轴线都是直线并通过铰的中心。 (3) 杆件的自重不计。 (4) 荷载和支座反力都作用在结点上,并且都位于桁架平面内。
4.1.2 桁架的组成方式
常用的桁架一般按下列两种方式组成: (1) 由基础或由一个基本铰接三角形开始,依次增加二元体所组成的桁架,称为简单桁架。 (2) 几个简单桁架按照几何不变体系的组成规则联合而成的桁架,称为联合桁架。
4.2 结点法计算桁架杆件内力
4.2 结点法计算桁架杆件内力
桁架在结点荷载和支座反力的作用下处于平衡,桁架的每一结点也一定保持平衡。
4.2 结点法计算桁架杆件内力
【例 4.1】 试用结点法计算图 4.4a 所示荷载作用下的桁架中各杆的内力。
4.2 结点法计算桁架杆件内力
【例 4.2】 试判别如图4.7、图4.8所示桁架的零杆。
4.3 截面法计算桁架杆件内力
4.3 截面法计算桁架杆件内力
截面法是假想用一个截面去截开若干根杆件,将桁架分割为两个脱离体,取其中一个脱离体,绘出受力 图,再根据静力平衡方程求出杆件的未知内力。 由于截面法分割桁架的脱离体是平面一般力系,因此,截面 法的平衡方程有三个,可以求出三个未知内力。
结点法是取桁架的结点为研究对象(即取结点为脱离体),利用各结点的静力平衡条件来计算杆件内力 的方法。 杆件内部各质点间的相互作用力由于受到外力作用而引起的改变量,称为内力。
结构力学静定平面桁架
精品课件
5.6 组合结构 是指只承受轴力的二力杆和承受弯矩、剪力、轴 力的梁式杆组合而成的结构。如屋架等
钢筋混凝土
钢筋混凝土
型钢
E D C
A
B
E E
精品课件
型钢
例 计算图示组合结构的内力。
8kN
解:1)求支反力
AD
C
FAy F
E
B
MB 0 得
FBy G
2m
FAy=5kN
FBy=3kN
2.5 1.125 0.75
1.125
剪力与轴力
FS FYcosFHsin
M图( kN.m)
FN FYsinFHcos
精品s 课件 in 0 .083c5 o s0 .99
FS FY
FN
15 A
FH
2.5 1.74
剪力与轴力
FS FYcosFHsin FN FYsinFHcos
sin 0 .083c5 o s0 .99
FN
l
ly
FN
=
FX lx
= FY ly
3)、结点上两杆均为斜杆的杆件内力计算:
F1x B b
F1
F 如图,若仍用水平和竖向投影来求F1 F2, A 则需解联立方程,要避免解联立方程可用
h
F2
力矩平衡方程求解。
a
如以C为矩心,F1沿1杆在B点处分解为F1x,
C
F2x
d
则由
MC 0得: F1x=Fhd
由图(c)所示截面左侧隔离体求出截面截断的三根杆的轴 力后,即可依次按结点法求出所有杆的轴力。
精品课件
取截面II—II下为隔离体,见图(d)
§3-5 静定平面桁架
FNDE = −5.4 KN ⇒ FNDF = 37.5 KN
E
-33KN -5.4KN
∑F ∑F
x y
=0 =0
【例3.8】 试求桁架的内力图
4 4
O
7
O O O
2
3m
1 9
7 6 8 3 2
O O O6 N1 N1 N1 1 9 8 3 O N2 P
5
2m
P
5
Step2:求各杆内力
4m 4m 0
根据以上假设,理想桁架中各杆 均为二力杆(轴力杆、链杆) 实际桁架 理想桁架
按理想平面桁架计 算得到的应力 实际桁架与理想桁 架间的差异引 起的 附加内力
主内力
次内力
弦杆
上弦杆 下弦杆 竖杆 斜杆
2 桁架的组成
腹杆
节间长度、跨度、桁高 3 桁架的分类
平行弦桁架 按外形分 折弦桁架 三角形桁架 梁式桁架 (无推力桁架) 按支座反力 的性质分 拱式桁架 (有推力桁架)
综上所求,得: FNa = −16 .67 KN
FNb = −26 .67 KN FNc = 16 .67 KN
【例3.10】 试求1、2、3、4杆
的内力
P
I
Step2: 截面法求指 定杆内力
Ⅰ—Ⅰ截面
P
J 4 Ⅰ a
Ⅰ
H G 3 1 A a B a
Ⅱ P Ⅲ P
a F 2 E I
P
J
∑ MG = 0 ⇒
1 桁架定义及其特点
实际桁架 结点 轴线 荷载 材料 介于铰于刚结之间 不能绝对平、直;各杆也不一定完 全相交于一点。有个结合区 非结点荷载:自重、荷载、支反力 弹塑性材料 理想桁架(计算简图) 所有结点为理想铰,光滑、无摩擦 绝对平直、一平面内、通过铰的中心 (理想轴) 结点荷载 线弹性材料,小变形
《静定平面桁架》课件
平面桁架的应用场景
01
桥梁工程
作为桥梁的主要受力结构,承载车辆和人群的重量。
02
建筑工程
用于大型工业厂房、仓库、展览馆等建筑的屋面结构。
03
景观工程
作为景观桥梁、廊道等结构,起到连接和支撑的作用。
平面桁架的基本组成
弦杆
主要承受轴向拉力或压 力,是平面桁架的主要 承载杆件。
腹杆
连接弦杆,主要承受剪 力和扭矩,分为斜腹杆 和竖腹杆两种。
静定平面桁架的研究成果总结
静定平面桁架是一种结构形式简 单、受力性能良好的结构体系, 在桥梁、建筑等领域得到了广泛
应用。
在过去的研究中,静定平面桁架 的静力性能、稳定性、优化设计 等方面得到了深入探讨,取得了
丰硕的成果。
静定平面桁架的承载能力、刚度 和稳定性等方面得到了充分验证 ,为实际工程应用提供了可靠的
静定平面桁架
目录
• 平面桁架概述 • 静定平面桁架的分类 • 静定平面桁架的力学特性 • 静定平面桁架的设计与优化 • 静定平面桁架的实例分析 • 总结与展望
01 平面桁架概述
定义与特点
定义
平面桁架是一种由杆件组成的结 构,其所有杆件都位于同一平面 内。
特点
具有结构简单、受力明确、计算 简便等优点,广泛应用于桥梁、 建筑等领域。
D
静定平面桁架的材料选择
钢材
高强度、轻质、耐腐蚀,广泛用于大型结构 和重载静定平面桁架。
复合材料
铝合金
质轻、耐腐蚀、美观,适用于对视觉要求较 高的场合。
如玻璃纤维和碳纤维,高强度、轻质,适用 于对重量要求极高的场合。
02
01
木质
自然、美观,适用于小型、低负载的静定平 面桁架或装饰性结构。
静定平面桁架
静定平面桁架一. 学习内容和要求本节主要学习静定平面桁架结构的受力特点和结构特点以及桁架结构的内力计算方法——结点法、截面法、联合法。
通过学习,熟练掌握桁架结构计算的方法,能够判断零杆、计算桁架的轴力。
二. 主要内容(一)静定平面桁架的特点1. 静定平面桁架:由若干直杆在两端铰接组成的静定结构。
桁架在工程实际中得到广泛的应用,但是,结构力学中的桁架与实际有差别,主要进行了以下简化:(1)所有结点都是无摩擦的理想铰;(2)各杆的轴线都是直线并通过铰的中心;(3)荷载和支座反力都作用在结点上。
2. 桁架的受力特点桁架的杆件都在两端受轴向力,因此,桁架中的所有杆件均为二力杆。
3. 桁架的分类简单桁架:由一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
联合桁架:由几个简单桁架,按两刚片法则或三刚片法则所组成的几何不变体。
复杂桁架:不属于前两种的桁架。
4.桁架内力计算的方法结点法、截面法、联合法。
(二)结点法1、结点法:截取桁架的一个结点为脱离体计算桁架内力的方法。
2、结点上的荷载、反力和杆件内力作用线都汇交于一点,组成了平面汇交力系,因此,结点法是利用平面汇交力系求解内力的。
3、利用结点法求解桁架,主要是利用汇交力系求解,每一个结点只能求解两根杆件的内力,因此,结点法最适用于计算简单桁架。
4、分析时,各个杆件的内力一般先假设为受拉,当计算结果为正时,说明杆件受拉;为负时,杆件受压。
5、结点单杆的概念:在同一结点的所有内力为未知的各杆中,除结点单杆外,其余杆件均共线。
单杆结点主要有以下两种情况:(1)、结点只包含两个未知力杆,且此二杆不共线,则每杆都是单杆。
(2)、结点只包含三个未知力杆,其中有两杆共线,则第三杆是单杆。
性质及应用:A、结点单杆的内力,可由该结点的平衡条件直接求出。
B、当结点无荷载时,则单杆必为零杆。
(内力为零)C、如果依靠拆除结点单杆的方法可将整个桁架拆完,则此桁架可应用结点法按照每次只解一个未知力的方式求出各杆内力。
《静定平面桁架》课件
桁架主要由直杆组成,通过节点连接。
节点
节点是直杆的连接点,用于传递力和分散荷载。
平面桁架的应用领域
1 桥梁工程
平面桁架是大跨度桥梁的重要组成部分,如悬索桥和斜拉桥。
2 建筑结构
平面桁架在建筑中用于支撑和分散荷载,如体育场馆和大厦。
3 机械工程
平面桁架被用于构建具有高刚度和轻质化要求的机械结构。
《静定平面桁架》PPT课 件
本课件将介绍《静定平面桁架》的概念、应用领域和基本力学分析要点,使 您能全面了解这一结构,并理解其独特的特点和优势。
什么是平面桁架?
平面桁架是由直杆和节点组成的简化结构,用于支撑和分散荷载。其具有均匀分布应力和高刚度的特点, 广泛应用于桥梁、建筑和机械等领域。
平面桁架在静力平衡条件下,完全确定的节点位置和荷载作用下, 桁架各杆件受力唯一确定的平面桁架。
静定平面桁架的特点及优点
特点
静定平面桁架具有稳定的结构形态和力学性能,能够在荷载作用下保持平衡。
优点
静定平面桁架具有高刚度、轻质化、适应性强的优点,广泛应用于各种工程领域。
静定平面桁架的支座类型
1 均布荷载
均布荷载是指荷载在整个桁架结构上均匀分布的载荷。
2 点荷载
点荷载是指荷载作用在结构的一个或多个点上的载荷。
3 变动荷载
变动荷载是指荷载随时间变化的载荷,如风荷载和地震荷载。
1 铰接支座
2 固定支座
铰接支座能够提供约束水平位移,但允许 承受垂直力。
固定支座能够提供约束水平位移和阻止垂 直力的传递。
静定平面桁架的节点类型
1 钢质节点
2 铝合金节点
钢质节点适用于大跨度和复杂结构,具有 高强度和稳定性。
结构力学李廉锟版-静定平面桁架全解
第一节 平面桁架的计算简图
二、按外型分类
1. 平行弦桁架
2. 三角形桁架
3. 抛物线桁架
第一节 平面桁架的计算简图
三、按几何组成分类
1. 简单桁架 (simple truss)
2. 联合桁架 (combined truss)
第五章
静定节 结点法
第三节 截面法
第四节 截面法与结点法的联合应用 第五节 各式桁架比较 第六节 组合结构的计算
第一节 平面桁架的计算简图
桁架是由杆件相互连接组成的格构状体系,它 的结点均为完全铰结的结点,它受力合理用料省, 在建筑工程中得到广泛的应用。 1、桁架的计算简图(truss structure)
X 0 Y 0
有 所以
FNAE cos FNAG 0
20 kN 5 kN FNAE cos 0
FNAG
FNAE 15 kN 5 33.54 kN(压) 2 FNAE cos 33.5 30 kN (拉) 5
第二节 结点法
2m 5 kN
10 kN E G
10 kN C
10 kN F 5 kN
F N ED
A 20 kN
D 2 m 4=8 m
H
B 20 kN
取E点为隔离体,由
X 0
Y 0
FNEC cos FNED cos FNEA cos 0
FNEC FNED 33.54 kN FNEC sin - FNED sin FNEA sin 10 kN 0
10 kN 5 kN 2m
静定平面桁架
B
返回
作业: 第50页 3-18(b)、3-19、 3-20(c)
返回
返回
2. 桁架计算简图的基本假定 (1)各结点都是无摩擦的理想铰;(理想铰) (2)各杆轴都是直线,并在同一 平面内且通过铰的中心;(平直杆) (3)荷载只作用在结点上并在 桁架平面内。(力结点)
实际结构与计算简图的差别(主应力、次应力)
返回
铰
返回
3 .桁架的各部分名称
上弦杆 腹杆
竖杆 斜杆
节间长度d
返回
例:
Ⅰ
设支反力已求出。 求EF、ED、CD三杆的 内力。 取左部分 作截面Ⅰ-Ⅰ, 为隔离体。
M0 M0 (压) SCD = E(拉) X EF = − D CD
XEF
XED
a
RA
d
d
YED
由∑MD=0 可以证明:简支桁架在竖向荷 由∑ME=0 有有 载作用下,下弦杆受拉力,上弦杆受压力。 RAd-P1d-P2×0-SCD EFH=0 RA×2d-P1×2d-P2d+Xh=0 得由∑MO=0 Ad有P1d − P2 × 0 得 S =R − CD -RA × 20d1− P1h2(a+d)+YED(a+2d)=0 R Aa+P a+P 2d − P2d × M0 ME a − P a − P (a + d= − D X EF = − ) SCD = R A H1 H返回 YED = (拉) 2 h a + 2d
S
Y
α
X
S X Y = = L Lx Ly
L
Ly
Lx
在S、 X、Y三者中,任知其一 便可求出其余两个,无需使用 三角函数。
第五章 静定桁架
4m
a
D
A
60kN
b
M
A
0, VB 6 60 9 0
VB 90kN ()
c
B
3m 3m VB
HA
3m 3m VA
Y 0, X 0,
VA VB 60 0
VA 30kN ()
HA 0
第五章 静定桁架
[例5-3]用截面法求图示桁 架a、b、c三杆的内力。 4m
1)判别零杆 2)由结点法求内力
D
P
图5-10
B
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆 p p
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆
P P P
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆
P
第五章 静定桁架
思考/讨论:试判断下图所示桁架结构中的零杆
F 2
30
o
NAD NAC
RA 2F
N AD 3F N AC 2.598 F
(压力) (拉力)
x
第五章 静定桁架
练习:试求图示桁架的各杆内力
(2)求各杆内力
取D结点为脱离体,列结 点平衡方程: Y 0,
- F cos 30 N DC 0
2F
y
2F
x
N DC 0.866 F
第五章 静定桁架
3、按桁架受竖向荷载作用有否水平反力分为
a、梁式桁架
b、拱式桁架
第五章 静定桁架
§5-2 静定平面桁架的计算
一、结点法: 以结点作为研究对象来计算结构内力的方法 结点法的计算要点:
第5章 静定平面桁架
2. T形结点:三杆结点上无 荷载作用时如果其中有两杆 在一直线上,则另一杆必为 零杆。此结点成为T形结点
3. X形结点:四杆结点且 两两共线,并且结点上无 荷载时,则共线两杆内力 大小相等方向相同
4. K形结点:四杆结点,其中两杆 共线,而另外两杆在此直线同侧且 交角相等,并且结点上无荷载,则 非共线两杆内力大小相等方向相反
§5.4
静定结构特性
静定结构有静定梁、静定刚架、三铰拱、静定桁架等类型。 虽然这些结构形式各有不同,但它们有如下的共同特性:
1. 在几何组成方面,静定结构是没有多余联系的几何不变体 系。在静力平衡方面,静定结构的全部反力可以有静力平衡方 程求得,其解答是唯一的确定值。
2. 由于静定结构的反力和内力仅用静力平衡条件就可以确定, 不需要考虑结构的变形条件,所以静定结构的反力和内力只与 荷载、结构的几何形状和尺寸有关,而与构件所用的材料、截 面的形状和尺寸无关。
§5.2
桁架内力的计算方法
5. 对称性:首先结构对称,结构的杆件以及支座对一个轴 对称,则称该结构为对称结构。其次荷载对称,荷载的大 小、作用点、方向都关于一个轴对称。并且结构与荷载同 一个对称轴,其内力和反力也基于该对称轴对称。
§5.2
桁架内力的计算方法
上述结论都不难由结点平衡条件得到证实。在分析桁架时, 可先利用上述原则找出特殊结点,然后进行下一步的计算,使 计算变得1、平行弦桁架 图b所示桁架,上下弦受力两头小中间大,这与图5.21a所示
简支梁的上下层纤维受力相似,即与梁的弯矩分布相似。腹杆 内力与简支梁的剪力分布规律一致,两头大中间小。因此静定 平行弦桁架的受力相当于一个空腹梁。
为使得设计上的受力合理,应按杆轴力的大小选取截面大小。 所以平行弦桁架杆件的截面积变化较大,给施工带来不便。在 实际工程中,常采用标准节间,逐段改变截面的大小,把材料
第五章静定平面桁架
1 F [ F 2 dF dFd ] x E F A 1 2 2 H
M H
0 D
(压力)
结论:可证简支桁架,竖直向下荷载作用 下弦杆受拉力,上弦杆受压力 —— 对应梁,受竖直向下荷载的下、上边缘
(3)斜杆FNED EF、CD交点O,Σm0=0,FNED平移到D分解
桁架各部分名称
弦杆:上、下弦杆 腹杆:斜杆、竖杆 节间:弦杆上, 相邻结点区间 跨度、桁髙
桁架类型
(外形) a)平行弦 b)折弦 c)三角形 (是否有推力) a,b,c)无推力 d)有推力(拱式)
(几何组成方式)——与求解方法有关 (1)简单桁架(a,b,c)——二元体 (2)联合桁架(d,e)——三、二刚片规则 (3)复杂桁架(f)——非基本组成规则方式
1 F [ F aF ( ad ) ] Y E D A 1aF 2 a 2 d
(可能+、-)
2.投影(方程)法 (上、下弦杆平行) (1)求斜杆DG Ⅱ—Ⅱ截面(左) ∑Y=0 FYDG=-(FA-F1-F2-F3) =-F0SDG ——剪力法
F0SDG
截面法: ①所截杆件一般不超过三根 ——三个独立平衡方程可解 ②截面多于三个未知力, 如其中除一根外,其余均交于一点、或平行 ——可解此杆——截面单杆 ③几何组成相反次序求解
§5-6 组 合 结 构 计 算
组合结构——链杆与梁式杆,组合而成结构 (轴力杆:FN)(受弯杆件:M、FS、FN) 计算顺序:反力—链杆—梁式杆 【例5-3】 ①几何组成 ②求解次序 ③反力 FAV=5kN, FBV=3kN ④链杆 FNDE: ⑤梁式杆:受荷载、 链杆的作用力FN ⑥校核结点A/B,F/G
第五章静定平面桁架
§5-1 概述
1.桁架的计算简图
桁架----直杆铰接体系.荷载只在结点作用, 所有杆均为只有轴力的二力杆 .
简图与实际的偏差:并非理想铰接; 并非理想直杆; 并非只有结点荷载;
主内力:按计算简图计算出的内力 次内力:实际内力与主内力的差值
2.桁架各杆名称
腹杆 竖杆 斜杆
上弦杆
FN2 =3.33FP FN3 =-0.50FP
截面单杆 截面法取出的隔离体, 不管其上有几个轴力,如果某杆 的轴力可以通过列一个平衡方程 求得,则此杆称为截面单杆。 可能的截面单杆通常有相交型和 平行型两种形式。
相
交
情
FP FP FP FP FP
况
FP
a 为 截 面 单 杆
FP FP
平行情况
结点1 结点2
FN12
FP
FN13
1
FN24 2 FN23
小结:
• 以结点作为平衡对象,结点承受汇交力 系作用。
• 按与“组成顺序相反”的原则,逐次建立 各结点的平衡方程,则桁架各结点未知 内力数目一定不超过独立平衡方程数。
• 由结点平衡方程可求得桁架各杆内力。
零杆的判定
零杆:轴力为零的杆
特殊结点
平衡方程.取隔离体时一般切断的未知轴力的杆件不多余三 根.
解: 1.求支座反力 2.作1-1截面,取右部作隔离体
3.作2-2截面,取左部作隔离体
例 试用截面法求图示桁架指定杆件的内力。
nm 1
A 2.5FP
34
n2m FP Leabharlann P FP FP FPm6m B
2.5FP
FN1 =-3.75FP FN4=0.65FP
1 FN1 FN4
桁架内力的计算3.4静定平面桁架
桁架内力的计算3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b)(3)复杂桁架:不属于前两类的桁架。
(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。
截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。
第5章静定平面桁架.
截面单杆: 用截面切开后,通过一个方程可求出内力的杆.
截面上被切断的未知轴力的 杆件只有三个,三杆均为单杆.
截面上被切断的未知轴力的 杆件除一个外交于一点,该杆 为单杆.
截面上被切断的未知轴力的 杆件除一个均平行, 该杆为单 杆.
相
交
情
FP FP FP FP FP
况
FP
a 为 截 面 单 杆
FP FP
平行情况
b为截面单杆
0 -33
-33
34.8 -8
19
19
0 -33
-33
34.8
-8 -5.4
19
37.5
19
-8 kN
YDE CD 0.75 X DE CE 0.5
0 -33
-33
34.8 19
-8 -5.4 37.5
-33
-33
-8 -5.4
34.8
19
标后求
,
在 杆 件 旁 。
应 把 轴 力
出 所 有 轴 力
④梯形桁架
b.按几何组成分类: 简单桁架—在基础或一个铰结三角形上依次
加二元体构成的 联合桁架—由简单桁架按基本组成规则构成 复杂桁架—非上述两种方式组成的静定桁架
简单桁架
简单桁架
联合桁架 复杂桁架
二、桁架的内力分析 1.结点法(主要用于求解简单桁架的内力)
选取隔离体时,每个隔离体只包含一个结点 的方法。
结点法是考虑的桁架中结点的平衡,此时隔 离体上的力是平面汇交力系,只有两个独立的 平衡方程可以利用,故一般应先截取只包含两 个未知轴力杆件的结点。
分析时的注意事项: 1、尽量建立独立方程:
2、避免使用三角函数
第5章 静定平面桁架
- 23/85页 -
FP
FP 1
D
FP
C
3FP
E
1.5FP -
2
1m B 1m
A
3FP F
G
H
2m 2m 2m 2m
1.5FP
1.5FP
FP C
3FP A
F
即
FNAC
1.5FP
可由比例关系求得
Fy1
FN1
D Fx1
G
Fx2
Fy2
FN2
24
《 第5章 静定平面桁架 》
- 24/85页 -
【例】 用结点法求AC、AB杆轴力。
F6=120kN
6
4
3
F7H=120kN 7
F7V=45kN
4m
5 15kN 4m
2 15kN 4m
3m
1 15kN
按结点1,2,…,6依次计算各结点相关杆件轴力 。
结点7用于校核。
17
《 第5章 静定平面桁架 》
- 17/85页 -
2. 零杆和等力杆
(1) 关于零杆的判断 在给定荷载作用下,桁架中轴力为零的杆件, 称为零杆。 1) L形结点:成L形汇交的两杆结点无荷载作 用,则这两杆皆为零杆。
FyAC
FyAB
4m
2m
1 2
3 2
27
《 第5章 静定平面桁架 》
- 27/85页 -
【例】用结点法求各杆轴力。 解: 1)支座反力
FAy=FBy=30kN(↑)
FAx=0
2)判断零杆
3)求各杆轴力 取结点隔离体顺序为:A、E、D、C。 结构对称,荷载对称,只需计算半边结构。
28
《 第5章 静定平面桁架 》
第五章 静定平面桁架
第五章静定平面桁架§5-1 概述梁刚架:受载后主要弯矩,应力不均匀(变截面;截面形式工形拱式结构:M小N大,应力分布比较均匀;施工复杂,需要坚固的结构支承桁架:M小,应力分布均匀,适用于较大空间,用料省自重轻大跨屋架、托架、吊车梁、南京长江大桥主体结构一、桁架定义:桁架:由若干直杆在其两端全用铰连接而成的结构,当荷载只作用在结点上时,各杆只有N,截面上的应力分布均匀,可以充分发挥材料的作用。
桁架可分为{ 平面桁架:空间桁架:(网架、井架)实际桁架(较复杂、结合例子)1)}结点:焊接、铆接、近乎刚结、介于铰于刚结之间。
2)}轴线:不能绝对平、直。
3)}杆的结合区:各杆也不一定完全相交于一点。
有个结合区域、应力十分复杂。
4)}自重:非结点荷载,荷载、支反力:不全是作用在结点上。
但经过实验和工程实践证明:以上因素对于桁架属次要因素,对桁架受力影响较小。
取桁架的计算简图时,引入如下假定:(计算时)理想桁架:(计算简图)满足这些假定的桁架1)桁架结点:所有结点为理想铰,光滑、无摩擦。
2)杆件的轴线:绝对平直、一平面内、通过铰的中心(理想轴)。
3)荷载、支反力:所有外力作用于结点上并且位于桁架平面内。
(结点荷载)4)线弹性材料,小变形。
主应力(基本应力):按理想平面桁架计算得到的应力。
按理想桁架计算,可以反映桁架的主要受力性能次应力(附加应力):实际桁架与理想桁架之间的差异引起杆件弯曲,产生附加的弯曲内力由此产生的应力理想桁架,各杆只产生轴力(二力杆、轴力杆)二、桁架的组成名称(坡屋顶、房子屋架)弦杆(上弦杆、下弦杆)、腹杆(竖杆、斜杆)、端斜杆(端柱)d:节间距离,l:跨度,H:桁高三、桁架的分类(结合图例)按外形特点分:平行弦桁架三角形桁架抛物线桁架折弦桁架按支座反力的性质分:梁式桁架(无推力桁架)拱式桁架(有推力桁架)按静力特性:静定桁架(有无多余约束、计算方法)拱式桁架超静定桁架按几何组成方式分:简单桁架:由基础或一个基本的铰结三角形开始,每次用不在同一直线上的两链杆联结一新结点联合桁架:由简单桁架组成;按两刚片规则组成的联合桁架、按三刚片规则组成的联合桁架复杂桁架:凡不属于前两类的均为此类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
退出
结点法计算简化的途径:
1. 对于一些特殊的结点,可以应用平衡条件直
接判断该结点的某些杆件的内力为零。 零杆
(1) 两杆交于一点,若结点无荷载,则两杆的内力都
为零。
FN1 F N2
FN1 = F N2= 0
退出
(2) 三杆交于一点,其中两杆共线,若结点无荷载,则 第三杆是零杆,而在直线上的两杆内力大小相等,且性质相
33
33 8
5 .4
33
5 .4 8
33 34.8
34.8
FN图(kN)
37 .5 退出
指出图示桁架中轴力为零的杆。
B D
F
E
20kN
B
D
F
E
20kN
A
C
G
A
C
G
例
用结点法计算图示桁架各杆轴力。
0.5kN 1kN 1kN
2
1kN
0.5kN
B
2
1 .5
D
1 .5
FxEF=-(FA×2d-F1×2d-F2d)/H
当荷载向下时,FNEF为压力,即简支桁架 上弦杆受压。
退出
(4) 斜杆ED 取EF和CD杆的延长线交点 O为矩心,并将FNED在D 点分解为水平和竖向分力 FxED和 FyED,由力矩平衡方 程∑MO=0,先求ED杆的竖向分力FyED,此时力臂即为 a+2d。 -FAa+F1a+F2(a+d)+FyED (a+2d) =0 FyED=(FAa-F1a-F2(a+d))/ (a+2d) 再由比例关系求FNED,其拉或压需视上式右端分子 为正或为负而定。 (5) DG杆如何求?
b
P
退出
P
c
P
P
b
退出
a
P
b
P
P
P
c
b
退出
P
P
b
b
退出
在桁架的计算中,结点法和截面法一般结合起来使用。 尤其当(1)只求某几个杆力时; (2)联合桁架或复杂桁架的计算。 例5-1 试求图示 K 式桁架中a 杆和b杆的内力。
如何合理选择截面? 杆件数大于3
退出
截面法不能直接求解 截取结点K为隔离体,
利用II-II截面 ,投影法
退出
示例2:试求图示桁架a 杆的内力。
30 kN 30 kN A J M G 75 kN D
a
30 kN 30 kN 30 kN 30 kN 30 kN A J M G 75 kN D 1 B 4m 75 kN 2m
E
FN EC
a
E
1 C 5 m 6=30 m
解 (1) 求支座反力。 (2)直接求出a 杆的位置困难。首先作截面Ⅰ-Ⅰ, 求出FNEC ,然后取结点E 就可求出a 杆的轴力。 作截面Ⅰ-Ⅰ,取截面左侧部份为隔离体,由
由K形结点的特性可知(结点法)
FNa=-FNc 或 Fya=-Fyc 由截面I-I(截面法)根据∑Fy=0有 3F-F/2-F-F+Fya-Fyc=0 即 F/2+2Fya=0 由比例关系得 得Fya=-F/4 FNa=-F/4×5/3=-F/12
退出
由截面I-I(截面法)根据∑MC=0即可求得FNb, 也可作截面 II-II( 曲截面 ) 并取左半边为隔离 体,(更简捷) 由∑MD=0 FNb×6+3F×8-F/2×8-F×4=0 FNb=-(3F×8-F/2×8-F×4)/6=-8F/3
一、结点法
结点法:隔离体只包含一个结点
截面法:隔离体包含两个或两个以上结点
几 种 FN 2 特 FN 1 殊 情 FN 1 0 况
(a)
(b )
(c )
FN 3
FN 2
(d )
FN 1 FN 3
FN 1
FN 3
FN 2
FN 1
FN 4
FN 2
FN 3
FN 2 0
FN 3 0
FN 1 FN 2 FN 3 FN 4
1). 平面(二维)桁架
——所有组成桁架的杆件以及荷载的作用线都在同一 平面内
退出
2). 空间(三维)桁架 ——组成桁架的杆件不都在同一平面内
退出
二、按外型分类
1. 平行弦桁架
2. 三角形桁架
3. 抛物线桁架
退出
三、按几何组成分类
1. 简单桁架
• 二元体是结构力学中的一个模型。它是不在一直线上的两链杆 连接一个新结点的装置。
退出
退出
10 kN 5 kN 2m
10 kN C
10 kN F 5 kN
E G D 2 m 4=8 m H
A 20 kN
B 20 kN
可以看出,桁架在对称轴右边各杆的内力与左 边是对称相等的。
结论:对称结构,荷载也对称,则内力也 是对称的。
退出
小结:
•以结点作为平衡对象,结点承受汇交力系作用。 •按与“组装顺序相反”的原则,逐次建立各结点 的平衡方程,桁架各结点未知内力数目一定不超过 独立平衡方程数。 •由结点平衡方程可求得桁架各杆内力。
故
退出
30 kN 30 kN
(3) 取结点E 为隔离体,由
FN a E FN EC
FN EG
A
J
M G
75 kN D
a
E
FN EC
思考:是否还有不同的途径可以求出FNα?
退出
截面法技巧:
截面单杆: 用截面切开后,通过一个方程 可求出内力的杆. 截面上被切断的未知轴力的 杆件只有三个,三杆均为单杆.
E
1
G
I
d
A
FA 2kN
1 .5 1 .5
2.12
0 .5
0.71
1 .5
0 .5
0
C
l 4d
退出
F
H
J
FB 2kN
二、截面法
截面法:用截面切断拟求杆件,截取出一部分作为隔离
体,利用平面力系的三个平衡方程来计算杆的未知轴力。
例 用截面法计算图示桁架中杆a、b、c的轴力。
120kN
退出
桁架各部分名称:
斜杆
弦杆
下弦杆
竖杆 上弦杆
腹杆 桁高
d 节间
跨度
经抽象简化后,杆轴交于一点,且“只受结点荷 载作用的直杆、铰结体系”的工程结构—桁架
退出
桁架计算简图假定:
(1) 各杆在两端用绝对光滑而无摩擦的铰(理想铰)相互联结。
(2) 各杆的轴线都是直线,而且处在同一平面内,并且通过铰的 几何中心。
FAd-F1d-F2×0-FNCDh=0
FNCD=(FAd-F1d-F2×0)/h
当荷载向下时,FNCD为拉力,即简支桁架下弦杆受 拉。
退出
(3) 求上弦杆EF内力 取 ED 和 CD 杆的交点 D 为矩心,由力矩平衡 方程 ∑MD=0 ,先求 EF 杆的水平分力 FxEF ,此 时力臂即为桁高H。 FA×2d-F1×2d-F2d+FxEFH=0
退出
指定杆件(如斜杆)
截面法计算步骤
分类 力矩法和投影法
1. 求反力(同静定梁); 2. 作截面(用平截面,也可用曲截面)截断桁架,取隔离体; 3. (1)选取矩心,列力矩平衡方程(力矩法)(2)列投影方程(投影法); 4. 解方程。
注意事项
1、尽量使所截断的杆件不超过三根(隔离体上未知力不超过三个), 可一次性求出全部内力; 2、选择适宜的平衡方程,最好使每个方程中只包含一个未知力, 避免求解联立方程。 3、若所作截面截断了三根以上的杆件,但只要在被截各杆中,
除一杆外,其余均汇交于一点(力矩法)或均平行(投影法),则该杆
内力仍可首先求得。
退出
示例1:试求图示桁架中杆EF、ED,CD,DG的内力。
截面如何选择?
退出
解:
(1) 求出支座反力FA和FB。 (2) 求下弦杆CD内力,利用I-I截面 ,力矩法 取EF和ED杆的交点E为矩心, CD杆内力臂为竖杆 高h,由力矩平衡方程∑ME=0,可求CD杆内力。
FN1
F N4 F N2 FN3
F FN1 F N2 FN3
F F N2
FN1 = F N2 FN3 = FN4
FN1 = F N2 FN3 = FN4
退出
FN1 = F N2 FN3= F
FN1 = F N2 FN3= F
几 种 FN 2 特 FN 1 殊 情 FN 1 0 况
(a)
(b )
(3) 荷载和支座反力都作用在结点上 , 其作用线都在桁架平面内。
思考: 实际桁架是否完全符合上述假定?
主内力: 按理想桁架算出的内力,各杆只有轴力。 次内力:实际桁架与理想桁架之间的差异引起的杆件弯曲, 由此引起的内力。 实际桁架不完全符合上述假定, 但次内力的影响是次要的。
退出
2、桁架的分类
一、根据维数分类
退出
例5-2
试求图示桁架HC 杆的内力。
支座反力如图。 取截面I-I以左为隔离体,由∑MF=0可得 FNDE=90×5/4=112.5kN(拉)(截面法-力矩法)
由结点E的平衡得 FNEC=FNED=112.5kN (拉)
退出
再 取 截 面 II-II 以 右 为 隔 离 体 , 由 ∑MG=0 并 将 FNHC在C点分解为水平和竖向分力,可得
2. 联合桁架
3. 复杂桁架
退出
四、按受力特点分类
1. 梁式桁架
2. 拱式桁架
退出
二、桁架的内力计算
1. 结点法和截面法
结点法—最适用于计算简单桁架。 取结点为隔离体,建立(汇交力系)平衡方程求解。 原则上应使每一结点只有两根未知内力的杆件。