初三数学公式
9年级数学公式大全
9年级数学公式大全9年级数学公式大全在9年级数学学习中,学生需要掌握各种数学公式。
下面是9年级数学公式大全,希望对大家的学习有所帮助。
1. 二次函数公式:y=ax+bx+c,其中a≠02. 三角函数公式:正弦函数:sinθ=对边÷斜边余弦函数:cosθ=邻边÷斜边正切函数:tanθ=对边÷邻边余切函数:cotθ=邻边÷对边3. 平面向量公式:向量a=(x,y),向量b=(x,y)向量加法:a+b=(x+x,y+y)向量减法:a-b=(x-x,y-y)向量模长:|a|=√(x+y)向量点积:a·b=xx+yy向量夹角公式:cosθ=a·b/|a||b|4. 线性方程组公式:二元一次方程组:ax+by=cdx+ey=f解法:用消元法或代入法求解三元一次方程组:ax+by+cz=dex+fy+gz=hix+jy+kz=l解法:用高斯消元法或克拉默法求解5. 概率公式:基本概率公式:P(A)=n(A)/n(S)加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)乘法公式:P(A∩B)=P(A)×P(B|A)6. 等比数列公式:通项公式:an=a×q^(n-1)前n项和公式:Sn=a(1-q)/(1-q)7. 导数公式:f'(x)=lim[f(x+Δx)-f(x)]/Δx常见导数公式:常函数的导数为0幂函数的导数为n×x^(n-1)指数函数的导数为a^xlna三角函数的导数:sin'x=cosxcos'x=-sinxtan'x=secxcot'x=-cscx8. 积分公式:f(x)在[a,b]上的定积分:∫(b,a)f(x)dx基本积分公式:∫xdx=x^(n+1)/(n+1)+C∫sinx dx=-cosx+C∫cosx dx=sinx+C∫e^xdx=e^x+C以上是9年级数学公式大全,希望对你的学习有所帮助。
初3数学公式大全
初3数学公式大全初三数学作为整个初中数学教学最重要的阶段,要记忆的公式定律都有哪些呢?接下来店铺为你整理了初3数学公式大全,一起来看看吧。
初3数学公式乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h初3数学公式定律1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边。
初三数学公式
初三数学复习资料1乘法公式:(a+b)(a-b)= a – b (a±b) = a ± 2ab + b变形公式:a + b =(a+b) – 2ab2求根公式法 x =3方差:s = [(x – x) +(x – x) +….+(x + x ) ]4、n边形内角和 (n – 2).180 任意多边的外角和等于360°5、根的判别式: b – 4ac6.根与系数顶的关系: x + x = x.x =7一次函数:y=kx+b(k≠0)正比例函数:y=kx(k≠0)或 y/x=k8.反比例函数:y= 或xy=k(k≠0)。
9.二次函数 (1)一般式 y= ax + bx +c (2)顶点式 y=a(x –h) +k(3)两根式 y=a(x-x )(x-x ) (a ≠0)10二次函数形式及顶点:(1)Y= ax (2) y=ax +k (3) y=a(x-h) (4) y=a(x-h) +k (5) y=ax +bx +k顶点;(0,0)(0,k)(h,0) (h,k) ( , ) 11.特殊角的三角函数值:12.一组计算公式(1).圆周长公式 c=2∏r (2).圆面积公式 s=∏r(3).扇形面积公式 : s= 或 s=(4).弧长公式 L=(5).圆柱的侧面展开图及相关计算 (6)圆锥的侧面展开图及相关计算S(侧)=2∏rh S(侧)=∏rL13. 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a +b =c14. 有一个角等于60°的等腰三角形是等边三角形15. 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半16. 直角三角形斜边上的中线等于斜边上的一半17 定理线段垂直平分线上的点和这条线段两个端点的距离相等18平行四边形性质定理1 平行四边形的对角相等 2 平行四边形的对边相等 3 平行四边形的对角线互相平分19平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 2 两组对边分别相等的四边形是平行四边形3 对角线互相平分的四边形是平行四边形4 一组对边平行相等的四边形是平行四边形20矩形性质定理 1 矩形的四个角都是直角 2 矩形的对角线相等21矩形判定定理 1 有三个角是直角的四边形是矩形 2 对角线相等的平行四边形是矩形22菱形性质定理1 菱形的四条边都相等 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角23 菱形面积=对角线乘积的一半,即S=(a×b)÷2 或S= ah24菱形判定定理1 四边都相等的四边形是菱形 2 对角线互相垂直的平行四边形是菱形25正方形性质定理1 正方形的四个角都是直角,四条边都相等2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角26等腰梯形性质定理1 等腰梯形在同一底上的两个角相等2两条对角线相等27等腰梯形判定定理 1在同一底上的两个角相等的梯形是等腰梯形2对角线相等的梯形是等腰梯形28 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半29 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h30 相似三角形判定定理1 两角对应相等,两三角形相似2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似3 两边对应成比例且夹角相等,两三角形相似(SAS)4 三边对应成比例,两三角形相似(SSS)5 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似31 性质定理3 相似三角形面积的比等于相似比的平方32和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线33到已知角的两边距离相等的点的轨迹,是这个角的平分线34到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线35定理不在同一直线上的三点确定一个圆。
初三数学公式
初三数学公式1. 数的性质1.1 自然数的性质自然数是指从1开始的正整数,它具有以下性质:•加法性质:对于任意自然数 a、b 和 c,有 a + b = b + a 和 (a + b) + c = a + (b + c)。
•乘法性质:对于任意自然数 a、b 和 c,有 a × b = b × a 和 (a × b) × c = a × (b × c)。
•分配性质:对于任意自然数 a、b 和 c,有 a × (b + c) = a × b + a × c。
1.2 整数的性质整数包括自然数、0和负整数,它具有以下性质:•加法性质:对于任意整数 a、b 和 c,有 a + b = b + a 和 (a + b) + c = a + (b + c)。
•乘法性质:对于任意整数 a、b 和 c,有 a × b = b × a 和 (a × b) × c = a × (b × c)。
•指数性质:对于任意整数 a 和正整数 m、n,有a^m × a^n = a^(m + n) 和 (a m)n = a^(m × n)。
1.3 有理数的性质有理数包括整数和分数,它具有以下性质:•加法性质:对于任意有理数 a、b 和 c,有 a + b = b + a 和 (a + b) + c = a + (b + c)。
•乘法性质:对于任意有理数 a、b 和 c,有 a × b = b × a 和 (a × b) × c = a × (b × c)。
•除法性质:对于任意有理数 a、b 和 c(其中 b 和 c 不为0),有 a ÷ (b ÷ c) = (a ÷ b) × c。
初三数学重点公式、定理
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,-…,,.无限不环循小数叫做无理数.如:π,-…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a +b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,()º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差: 数据1x 、2x ……,nx 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根. 数据1x 、2x ……,nx 的标准差s,则s =222121.....nx xx x x xn一组数据的方差越大,这组数据的波动越大,越不稳定。
九年级数学数学公式
九年级数学数学公式
九年级数学是中学数学的重要阶段,其中数学公式是研究和理解数学的基础。
本文档将介绍九年级数学常用的数学公式。
1. 代数公式
- 二次方程的根公式:设二次方程ax^2 + bx + c = 0 (a ≠ 0),则它的根公式为:x = (-b ± √(b^2 - 4ac)) / 2a。
- 因式分解公式:两个乘积等于零的代数式可分解为两个因式相乘。
2. 几何公式
- 直角三角形的勾股定理:直角三角形中,直角边的平方等于其余两边的平方和。
- 圆的周长公式:圆的周长等于直径乘以圆周率pi (π)。
- 面积公式:矩形的面积等于长乘以宽,三角形的面积等于底乘以高的一半,圆的面积等于半径平方乘以圆周率。
3. 概率公式
- 事件的概率公式:事件 A 发生的概率为 P(A) = (A 的可能结
果数) / (总的可能结果数)。
4. 统计公式
- 平均数公式:一组数据的平均数等于所有数据的和除以数据
的个数。
- 中位数公式:一组数据按照大小排列后的中间数,如果数据
个数为偶数,则中位数是中间两个数的平均值。
以上是九年级数学常用的数学公式,希望对您的学习有所帮助。
初三数学公式大全总结
初三数学公式大全总结初三数学公式大全总结一: 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初三数学公式大全总结二:要证平行四边形,两个条件才能行一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。
初三数学公式总结归纳整理
初三数学公式总结归纳整理
以下是一些常见的初三数学公式的总结归纳:
1. 代数公式:
- 二次方程的解:对于方程 ax^2 + bx + c = 0,求解公式为 x = (-b ±√(b^2 -
4ac))/2a。
- 因式分解:将一个多项式因式分解成两个或多个较简单的多项式的乘积。
- 平方差公式:(a + b)(a - b) = a^2 - b^2。
2. 几何公式:
- 面积和周长公式:矩形的面积是长乘以宽,周长是长和宽的两倍之和;三角形的面积是底边乘以高的一半,周长是三条边的长度之和。
- 勾股定理:对于直角三角形,a^2 + b^2 = c^2,其中a和b是直角边的长度,c是斜边的长度。
- 正弦定理:在任意三角形ABC中,a/sinA = b/sinB = c/sinC,其中a、b、c是三角形的边长,A、B、C是对应的角度。
- 余弦定理:在任意三角形ABC中,c^2 = a^2 + b^2 - 2abcosC,其中a、b、c是三角形的边长,C是对应的角度。
3. 比例公式:
- 等比数列通项公式:a_n = a_1 * r^(n-1),其中a_1是首项,r是公比,a_n是第n 项。
- 速度等速公式:v = s/t,其中v是速度,s是距离,t是时间。
- 面积比公式:两个相似图形的面积比等于对应边长的平方比。
这只是对初三数学公式的部分总结,还有很多其他公式需要根据具体内容进一步补充和学习。
九年级数学公式大全
九年级数学公式大全九年级数学公式包括但不限于以下内容:1. 二次函数公式:y=ax^2+bx+c,其中a≠0。
2. 三角函数公式:正弦函数:sinθ=对边÷斜边余弦函数:cosθ=邻边÷斜边正切函数:tanθ=对边÷邻边余切函数:cotθ=邻边÷对边3. 平面向量公式:向量a=(x,y),向量b=(x,y),向量加法:a+b=(x+x, y+y)。
4. 周长公式:长方形周长=(长+宽)×2,C=2(a+b)正方形周长=边长×4,C=4a圆周长=直径×圆周率,C=2π5. 面积公式:长方形面积=长×宽,S=ab正方形面积=边长×边长,S=a²三角形面积=底×高÷2,S=ah/2平行四边形面积=底×高,S=ah梯形面积=(上底+下底)×高÷2,S=1/2(a+b)h圆形面积=半径×半径×圆周率,S=πr²扇形面积=半径×半径×圆周率×圆心角度数(n)÷360,S=nπr²/3606. 判别式公式:b²-4ac=0,注:方程有两个相等的实根;b²-4ac>0,注:方程有两个不等的实根;b²-4ac<0,注:方程没有实根,有共轭复数根。
7. 两角和公式:sin(A+B)=sinAcosB+cosAsinB。
这些公式在九年级数学中有着广泛的应用,是解决数学问题的基础。
同时,需要注意每个公式都有其特定的使用条件和范围,使用时需要加以区分和判断。
初三数学知识点总结公式
初三数学知识点总结公式
三年初级数学教育是非常重要的,也是学生升入高中数学阶段最重要的基础课程。
而初三数学一直都是学生们最害怕的学科,在掌握知识点的同时,掌握一些关键的概念和公式也十分重要。
下面就来看看初三数学中非常重要的以及必备的公式:
一、代数学公式
1、平方和公式:$a^2+b^2=(a+b)^2-2ab;$
2、一元二次方程组根式:$x_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a};$
3、有理数乘除法:$\frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd};$
二、数列求和公式
1、公差数列求和公式:$S_n=\frac{n}{2}(a_1+a_n);$
2、等比数列求和公式:$S_n=\frac{a_1(1-q^n)}{1-q};$
三、几何学公式
1、$S=a\times b (a、b为相交的两条直线的夹角的正弦的乘积);$
2、$V=\frac{1}{3}a\times b \times h (a、b、h分别为三角形三边长);$
以上就是初三数学中比较重要的公式,这些公式非常有用,学习者在面对学习任务时可以把它看作是一种技能,应用在课堂学习、习题练习和考试中。
此外,学生在巩固学习的关键知识点的同时,还要多多积累经验,熟练掌握这些公式,才能高效的提高数学水平。
初三数学公式与学习方法
初三数学公式与学习方法
初三数学涉及的公式和学习方法有很多。
以下是一些常见的初三数学公式和学习方法:公式:
1. 一元二次方程的求根公式:
x = (-b ±√(b² - 4ac)) / 2a
2. 相似三角形的性质(AAA、AA、SAS、SSS等):
两个三角形对应角相等,那么它们是相似的;两个三角形的对应边成比例,那么它
们是相似的。
3. 直角三角形的勾股定理:
a² + b² = c²,其中a和b为直角三角形的两条直角边,c为斜边。
4. 比例和百分数的转换公式:
百分数 = 比例× 100%
学习方法:
1. 理解概念:初三数学涉及的概念较多,要先理解每个概念的含义和用法,然后进行
练习和应用。
2. 多做题:数学是一个实践性很强的学科,通过大量的练习题可以加深对知识点的理
解和掌握。
3. 做题方法:对于一些较复杂的题目,可以采用分解、归纳、逆向思维等方法解决问题。
4. 建立思维框架:初三数学知识之间是有联系的,建立起一个完整的思维框架有助于
加深对知识点的理解。
5. 多思考:初三数学不仅仅是机械地运算和计算,还需要进行一些思考和推理。
多思
考问题背后的道理和原因,可以帮助提高数学思维能力。
6. 合理利用资源:可以利用数学参考书、习题集、学习视频等资源来进行学习和巩固
知识点。
7. 及时复习:数学是一个累积性很强的学科,要及时复习已学过的知识点,巩固记忆。
初三数学方程式公式大全
初三数学方程式公式大全
方程式是数学中用来描述两个量之间关系的等式。
以下是初三数学方程式公式的大全:
1.一元一次方程式公式:
ax + b = 0
其中,a和b是已知常数,x是未知数。
2.一元二次方程式公式:
ax² + bx + c = 0
其中,a、b、c是已知常数,x是未知数。
3.二元一次方程式公式:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f也是已知常数,x和y是未知数。
4.一元三次方程式公式:
ax³ + bx² + cx + d = 0
其中,a、b、c、d均是已知常数,x是未知数。
5.一元四次方程式公式:
ax⁴ + bx³ + cx² + dx + e = 0
其中,a、b、c、d、e是已知常数,x是未知数。
除了以上常见的方程式公式,还有其他更高次的方程式,以及含有复数解的方程式。
在解方程时,可以利用一系列运算和变换来求解未知数的值。
常用的解方程的方法有:消元法、因式分解法、配方法、求根公式等。
此外,对于一些特殊类型的方程式,如二次三项式、绝对值方程式、指数方程式、对数方程式等,也有相应的解题方法和公式。
总之,在数学中,方程式是一项重要的内容,它们在解决实际问题、推导出数学规律等方面起着重要作用。
熟练掌握各类方程式的公式及解题方法,能够帮助我们更好地理解和应用数学知识。
初三数学公式总结归纳
初三数学公式总结归纳初三数学中常用的公式有很多,以下是一些常见的公式总结归纳:1. 一元一次方程:ax + b = 0,其中a、b为常数,x为未知数。
解为x = -b/a。
2. 一元二次方程:ax² + bx + c = 0,其中a、b、c为常数,x为未知数。
解为x = (-b ± √(b² - 4ac))/(2a)。
3. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。
4. 二次根式求和公式:√a + √b = √(a +2√ab + b)。
5. 二次根式差积公式:√a - √b = √(a - 2√ab + b)。
6. 平方和公式:a² + b² = (a + b)² - 2ab。
7. 平方差公式:a² - b² = (a + b)(a - b)。
8. 两角和公式:sin(A + B) = sinAcosB + cosAsinB,cos(A + B) = cosAcosB - sinAsinB。
9. 两角差公式:sin(A - B) = sinAcosB - cosAsinB,cos(A - B) = cosAcosB + sinAsinB。
10. 二项式展开公式:(a + b)ⁿ = C(n,0)aⁿb⁰ + C(n,1)aⁿ⁻¹b¹ + C(n,2)aⁿ⁻²b² + ... + C(n,n-1)abⁿ⁻¹ + C(n,n)a⁰bⁿ,其中C(n,k)表示从n个元素中选取k个元素的组合数。
11. 相似三角形的边比公式:若三角形ABC与三角形DEF相似,则AB/DE = AC/DF = BC/EF。
12. 等腰三角形的性质:等腰三角形的底角相等,等腰三角形的两边相等。
中考数学知识点及公式归纳大全
中考数学知识点及公式归纳大全初三数学必背知识三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=初三数学重要的公式知识圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
初三数学知识重点1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三(九年级)数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理一条弧所对的圆周角等于它所对的圆心角的一半117 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121方差公式:平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n。