第三章离散系统时域分析
微积分讲座---Z3.15 单位阶跃响应与单位脉冲响应的关系
k
(k) (i) i
k
g(k) h(i) i
由于
(k) (k) (k) (k 1)
那么
h(k) g(k) g(k) g(k 1)
2
3.2 基本信号与基本响应
第三章 离散系统的时域分析
例3 某离散系统的差分方程如下,求单位脉冲响应h(k) 和单位阶跃响应g(k)。
y(k) y(k 1) 2y(k 2) f (k)
解:(1)先求h(k)
h(k) h(k 1) 2h(k 2) (k)
初始条件:h(1) h(2) 0
由迭代得:
h(0) 1,h(1)=1
代入初始值求: h(k) C1(1)k C2(2)k,k 0
h(k) 1 (1)k 2 响应
第三章 离散系统的时域分析
(2)再求g(k)
h(k) 1 (1)k 2 (2)k,k 0
3
3
g(k) k h(i) 1 k (1)i 2 k (2)i
i
3 i0
3 i0
由级数求和公式得:
k (1)i 1 (1)k1 1 [1 (1)k ]
i0
3.2 基本信号与基本响应
知识点Z3.15
第三章 离散系统的时域分析
单位阶跃响应与单位脉冲响应的关系
主要内容:
单位阶跃响应与单位脉冲响应之间的关系
基本要求:
掌握 g(k) 和 h(k) 之间的关系
1
3.2 基本信号与基本响应
第三章 离散系统的时域分析
Z3.15 单位阶跃响应与单位脉冲响应的关系
由于 那么
1 (1) 2
k (2)i 1 (2)k1 2(2)k 1
i0
1 2
得单位阶跃响应为:
信号与线性系统分析第三章
系统描述 分析方法
连续系统 微分方程 卷积积分 变换域(傅氏、s) 系统函数
离散系统 差分方程 卷积和 变换域(离散傅氏、z) 系统函数
第 2页
§2.1 LTI离散系统的响应
• 差分与差分方程 —前向差分、后向差分以及差分方程
• 差分方程解 —数值解、经典解,以及不同特征根对应的齐 次解和不同激励对应的特解
yzi (-2) = y(-2)
-----------
yzi (n) = ?
----------------yzi (-n) = y(-n)
第 13 页
零输入举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;初始状态 y(–1)=0, y(–2)=1/2 求系统的零输入响应
解:yzi(k)零输入响应满足:
yzi(k) + 3yzi(k –1)+ 2yzi(k –2)= 0
yzi(–1)= y(–1)= 0 yzi(–2) = y(–2) = 1/2 递推求 yzi(0)、 yzi(1) yzi(k)= – 3yzi(k –1) –2yzi(k –2)
yzi(0)= –3yzi(–1) –2yzi(–2)= –1
yzs(0)、yzs(1)、---yzs(n)=? 借助微分方程
n
若其特征根均为单根: yzk (k ) Czsjkj y p (k ) j 1
第 16 页
零状态举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;求系统的零状态响应 解:零状态响应yzs(k) 满足
离散系统时域分析
z = eTs = eT e jT
写成极坐标形式为
z = z e j = eT e jT s的实部只影响z的模,s的虚部只影响z的相角。
s平面与z平面的映射关系为
s平面
映射
z平面
0 右半平面 =0 虚轴 0 左半平面
z 1 单位园外
z =1 单位园周
cr
pr k
cr
pr k
cr cr e jr , cr cr e jr
cr
pr k
cr
1
pr
k 1
cr
e jr
pr ek jkr
cr e jr
p ek jkr r
c p e e k j(kr r )
j(kr r )
r
r
r(t)
+-
100 c(t) s(s+10)
解:由已知的G(s)可求出开环脉冲传递函数
10z(1 e10T ) G(z) (z 1)( z e10T )
闭环特征方程为
z2 + 3.5z + 0.5 = 0
z1 = 0.15 z2 = 3.73
因为 z2 1,所以该系统是不稳定的。
8.6 离散系统的时域分析
对于离散系统的z变换理论,如前所述,它仅限于采样值的分
析。对于离散系统的性能分析的讨论也只限于在采样点的值。然
而,当采样周期T 选择较大时,采样间隔中隐藏着振荡,可能反
映不出来,这造成实际连续信号和采样值变化规律不一致,会得
出一些不准确的分析结果。因此,必须注意采样周期T是否小于系
z 1 w 或 z w1
吴大正第3章离散系统的时域分析
•
• 作业 • P110 3.6 (2) (5)
•
3.2 单位序列和单位序列响应
• 一、离散系统的零状态响应 • 二、复习离散信号有关知识
• 三、单位序列和单位阶跃序列
• 四、单位序列响应和阶跃响应
•
一、离散系统的零状态响应
• 零状态响应: 当系统的初始状态为零,仅由激励 f(k)所产生的响应。用yzs(k)表示,满足如下方程 :
•
•??
•
•
列表法求卷积和
f(k) =f1(k)*f2(k)= f1(i)f2(k-i)
•序号:i+k-i=k
•f(k)
•卷积和长度: N=L+M-1 (L+M是原序列长) •见书p104
•
四、卷积和的性质
• 1. 满足乘法的三律:(1) 交换律, (2) 分配律,(3) 结合律.
• 2. f(k)*δ(k) = f(k) , f(k)*δ(k– k0) = f(k – k0)
的零状态响应为单位序列响应,用h(k)表示。 和连续系统的h(t)相类似。 • 求h(k)的方法: • 解差分方程;z变换法(第六章) • 由于(k)仅在k=0时等于1,而在k>0时为零, 因而在k>0时,系统的h(k)和系统的零输入响应 的函数形式相同。
• 因此,求h(k)的问题转化为求差分方程的齐次 解的问题,而h(0)可按零状态的条件由差分方 程确定。
•
一、差分与差分方程
•1、前向差分与后向差分 •一阶前向差分
•一阶后向差分
•
2、前向差分与后向差分的关系
•3、差分方程的一般形式
•将各阶差分写为y(k)及其各移位序列的线性组合: •常系数差分方程,用来描述LTI离散系统; •变系数差分方程
离散系统的时域分析_OK
pk[c cos k Dsin k] 或Apk cos(k )
其 中
Ae j
C
jD
Ar1k r1 k cos( k r1) Ar2k r2 k cos( k r2) ... A0 k cos( k 0)
8
2. 特解
激励 f (k)
特解 yp (k)
km
Pmk m Pm1k m1 ... P1k P0 k r Pmk m Pm1k m1 ... P1k P0
y
f
(1)
3y f
(0) 2 y f
(1)
f
(1)
1
14
系统的零状态响应是非齐次差分方程的全解,分别求出方程
的齐次解和特解,得
yf
(k)
C f1
(1)k
C f2
(2)k
yp (k)
C f1
(1)k
C f2
(2)k
1 3
(2)k
将初始值代入上式,得
y
f
(0)
C
f
1
C
f
2
1 3
1
yf
(1)
1C f
yx
(1)
y(1)
0,
yx
2
y
2
1 2
yx (0) 3 yx (1) 2 yx 2 1
yx 1 3yx 0 2 yx 1 3
2021/9/5
求得初始值
13
1 1, 1 2
yx
(k)
Cx1
(1)k
Cx2
(2)k
yx yx
(0) (1)
Cx1 Cx2 Cx1 2Cx2
差分方程与微分方程的求解方法在很大程度上是相互对 应的.
《信号与系统》第三章 离散系统的时域分析
h(k) = h1(k) – h1(k – 2) =[(1/3)(– 1)k + (2/3)(2)k]ε(k) – [(1/3)(– 1)k –2 + (2/3)(2)k–2]ε(k – 2)
f (i)h(k i) ai (i)bki (k i)
i
i
当i < 0,ε(i) = 0;当i > k时,ε(k - i) = 0
1
a
k
1
yzs
(k
)
k i0
aibk
i
(k
)
bk
k i0
a b
i
(k
)
bk
bk
b 1 a
b (k 1)
注:ε(k)*ε(k) = (k+1)ε(k)
当ik时ki0???????????????iikiiikbiaikhif?????????????????????????????????????????????????bakbbabababkbabkbakykkkkiikkiikizs111100??注
《信号与系统》 第三章 离散系统的时域分析
λ n + an-1λn– 1 + … + a0 = 0 其根λi( i = 1,2,…,n)称为差分方程的特征根。 齐次解的形式取决于特征根。
参看教材第87页 表3-1。
2. 特解yp(k): 特解的函数形式与激励的函数形式有关
实验三___离散时间系统的时域分析
实验三 离散时间系统的时域分析1.实验目的(1)理解离散时间信号的系统及其特性。
(2)对简单的离散时间系统进行分析,研究其时域特性。
(3)利用MATLAB对离散时间系统进行仿真,观察结果,理解其时域特性。
2.实验原理离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示:(1)线性系统线性系统就是满足叠加原理的系统。
如果对于一个离散系统输入信号为时,输出信号分别为,即:。
而且当该系统的输入信号为时,其中a,b为任意常数,输出为,则该系统就是一个线性离散时间系统。
(2)时不变系统如果系统的响应与激励加于系统的时刻无关,则该系统是时不变系统。
对于一个离散时间系统,若输入,产生输出为,则输入为,产生输出为,即:若,则。
通常我们研究的是线性时不变离散系统。
3.实验内容及其步骤(1)复习离散时间系统的主要性质,掌握其原理和意义。
(2)一个简单的非线性离散时间系统的仿真系统方程为:x = cos(2*pi*0.05*n);x1[n] = x[n+1]x2[n] = x[n]x3[n] = x[n-1]y = x2.*x2-x1.*x3;或者:y=x*x- x[n+1]* x[n-1] 是非线性。
参考:% Generate a sinusoidal input signalclf; n = 0:200; x = cos(2*pi*0.05*n);% Compute the output signalx1 = [x 0 0]; % x1[n] = x[n+1]x2 = [0 x 0]; % x2[n] = x[n]x3 = [0 0 x]; % x3[n] = x[n-1]y = x2.*x2-x1.*x3; y = y(2:202);% Plot the input and output signalssubplot(2,1,1) plot(n, x)xlabel('Time index n'); ylabel('Amplitude');title('Input Signal')subplot(2,1,2) plot(n,y)xlabel('Time index n'); ylabel('Amplitude');title('Output signal');(3)线性与非线性系统的仿真x1 = cos(2*pi*0.1*n);x2 = cos(2*pi*0.4*n); a*y1 + b*y2y = a*x1 + b*x2; 该系统是线性系统。
信号与线性系统分析--第三章
第三章 离散系统的时域分析
本章概述
离散时间域的方程求解
连续时间域 时间函数 微分方程 卷积积分 离散时间域 离散序列 差分方程 卷积求和
求解方法
迭代法 经典法 卷积法
连续时间信号、连续时间系统
连续时间信号
f(t)是连续变化的t的函数,除若干不连续点之外 对于任意时间值都可以给出确定的函数值。函数 的波形一般具有平滑曲线的形状,一般也称模拟 信号
f (n) .... f (1) (n 1) f (0) (n) f (1) (n 1) ...
i
f (i) (n i)
f(k ) f(2) f(-1) f(1) f(0) … 1 2 i f(i) … k
可推出:离散系统的零状态响应
y zs (n)
m
f (m) (n m)
单位阶跃序列
与阶跃函数的不同?
延时的单位阶跃序列
用单位样值序列来表示
u( n) ( n) ( n 1) ( n 2) ( n 3) (n k )
k 0
( n) u(n) u( n 1)
题目中 y0 y1 0 ,是激励加上以后的,不是初始状 态,需迭代求出 y 1, y 2 。
n 1 y1 3 y0 2 y 1 2u 1 2 u 0
0
0 0 2 y1 2 1 1
1 y 1 2
n0
y0 3 y 1 2 y 2 2 u 0 2 u 1
0 1
0 3 y 1 2 y 2 1
y 2 5 4
将初始状态代入方程求系数
《信号分析与处理》备课教案(第三章)(1)
上一章回顾上一章“单输入单输出系统的时域分析”,其实质是在时域中进行系统分析的任务,也就是说解决在给定的时域输入信号激励作用下,系统在时域中将产生什么样响应的问题。
之所以称为时域分析,是由于在系统分析的过程中,所涉及的函数变量均为时间t,故这一方法称之为“时域分析法”。
这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。
上一章所讲授的主要内容,可以概括为如下几个方面:1、时域分析的基本概念系统时域响应的概念和四种主要响应形式。
2、离散系统的时域分析差分和差分方程的含义和建立;差分方程的经典解法,以及各种响应的具体求解。
3、单位冲击响应与单位样值响应单位冲击响应和单位样值响应的概念和实质;通过微分方程或差分方程的具体求解方法。
4、卷积积分卷积积分的基本概念和意义;采用定义法和图解法进行求解的方法和步骤;卷积积分的重要性质。
5、卷积和卷积和的基本概念和意义;通过定义、性质以及图解法和不进位乘法熟练进行求解的方法和步骤。
上次课“思考题”:1.“卷积积分”与“卷积和”的相似之处与区别是什么?2.不进位乘法求“卷积和”需要注意的地方是什么?从本次课开始,我们将进入信号与系统的“变换域分析”变换域一般指:频域、S域和Z域;也就是通过各种数学变换,将时域的信号与系统变换到频域、S域和Z域中进行分析和观察,这样不仅能够简化信号与系统在时域分析中的复杂计算,更主要的是:可以使我们观察到,信号与系统在时域分析中所无法看到的一些奇妙的现象和特性,从而使我们可以多角度地对信号与系统有更深刻的认识和更全面的把握。
本章所讲授的“傅立叶”变换,就是信号与系统在“频域”中的分析原理、方法和特性。
第三章:傅里叶变换3.1.概述时域分析的要点是,以冲激信号或单位信号为基本信号,任意输入信号可分解为一系列冲激函数或单位函数;且,)()()(t f t h t y f *= 对于连续时间系统)()()(k f k h k y f *= 对于离散时间系统鉴于离散时间系统的“傅立叶变换”,属于“数字信号处理”课程的内容,因此在本章下面的分析中,所指的信号和系统均为连续时间信号和连续时间系统。
离散时间系统的时域分析实验报告
3. clf; h=[-6 5 2 3 -2 0 1 0 5 -3 4 2 -1 -3 2]; %冲激 x=[2 4 -1 3 -5 2 0 -1 2 -1]; %输入序列 y=conv(h,x); n=0:23; subplot(2,1,1); stem(n,y);
4. clf; n=0:301; x=cos((0.5*pi/600)*n.*n+0*n); %计算输出序列 num1=[0.5 0.27 0.77]; y1=filter(num1,1,x);%系统#1 的输出 den2=[1 -0.35 0.46]; num2=[0.45 0.5 0.45]; y2=filter(num2,den2,x);%系统#2 的输出 %画出输入序列 subplot(3,1,1); plot(n,x); axis([0 300 -2 2]); ylabel('振幅'); title('系统的输入'); grid;
四、实验结果与分析
图一 图二
2
图三
图四
五、实验小结
通过这次实验,我熟悉 MATLAB 中产生信号和绘制信号的基本命令,学会 通过 MATLAB 仿真一些简单的离散时间系统,并研究了它们的时域特性。
经过了两次实验课,对于 MATLAB 的一些命令语句的格式熟悉多了。在完 成实验时比第一次更顺利了些。
subplot(3,1,3) d=d(2:42); stem(n,d);
2. clf; n=0:40; D=10; a=3.0; b=-2; x=a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; nd=0:length(xd)-1; y=(n.*x)+[0 x(1:40)]; yd=(nd.*xd)+[0 xd(1:length(xd)-1)]; d=y-yd(1+D:41+D);
信号与系统第3章,甘俊英
(n) u(n) u(n 1) u(n)
u(n) (n) (n 1) (n 2) L (n m) m0
n
或 u(n) (k) k
3.矩形序列 1, 0 n N 1
RN (n) 0, n 0
RN (n) 1
0 1 2 N 1
n
N表示矩形序列的长度, RN (n) 还可以表示为
是连续正弦信号 xa (t) 的角频率,称为模拟域频率。
Ts
2 f
fs
又称为归一化频率。
3.2.4 序列的周期性
对于所有 n 值,若存在一个最小正整数 N ,满足
x(n) x(n N) 则称序列 x(n)为周期序列,最小周期为 N
下面讨论正弦序列 x(n) Asin(n ) 的周期性。
x(n N) Asin[(n N) ] Asin(n N )
RN (n) u(n) u(u N )
4.实指数序列 x(n) an , n
通常,单边实指数序列应用更广。单边实指数序列定义为
an , n 0 x(n)
或
0, n 0
x(n) anu(n)
a 1 ,序列是发散的。 a 0 序列的所有样值都为正值
a 1 ,序列是收敛的
a 0 序列正、负摆动
(n) 是一个确定的物理量,在 n 0时取值为1 ,在其它非零的
离散时间点上取值为零
(t) 不是一个物理量,只是一个数学抽象。
任何序列都可以用一些延迟的单位取样序列的加权和来表示,即
x(n) x(k) (n k) k
【例3-2-6】已知序列x(n) 如图所示,利用单位取样序列 (n) 写出
x(n
1)
(
1 2
)n
1
new第三章离散时间系统的时域分析
3. 举例 • 例1 已知 x(n)=(n),y(-1)=0, 用迭代法解方程:
y(n) ay(n 1) x(n)
• 解:y(0)=ay(-1)+1=1 • y(1)=ay(0)+0=a • y(2)=ay(1)+0=a2 • • y(n)=ay(n-1)+0=an • y(n)=ay(n-1)+0=anu(n)
n y(n) 0.45(0.9) u(n) 0.5u(n) 自由响应 强迫响应
• 零输入响应和零状态响应
用边界条件求系数
C1
5
1
, C2
n
5
1
最终解
1 1 5 1 1 5 y ( n) 5 2 5 2
n
例3 求 y(n)+6y(n-1)+12y(n-2)+8y(n-3)=x(n) 的齐次解 • 解(有重根)
差分方程特解的形式 • • • • • • • • • 激励 x(n) 特解 yp(n)的形式 A(常数) C(常数) An C1n+C2 nk C1 nk+ C2 nk-1++ Ck+1 nkan an(C1 nk+ C2 nk-1++ Ck+1 ) sin(bn)或 C1sin(bn)+C2cos(bn) con(bn) an [sin(bn)或 an[C1sin(bn)+C2cos(bn)] cos(bn)]
– 常系数线性差分方程(递归关系式) – 后向(或右移) 差分方程;前向(或左移) 差分方程
例2 已知离散时间系统如图示,写出 系统的差分方程。
信号与系统-吴大正PPT课件
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。
▲
■
第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程
■
第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》
▲
■
第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006
▲
■
第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析
离散系统的时域和Z域分析
三、收敛域 :
ZT 存在的条件: f k z
k
k
在此条件下 z 的取值范围称为ZT的收敛域。 f k k 2、f k 1, 2, 3, 2, 1 例:求ZT。1、 解:1、Fb z
Fb z 2、
k 1
1 k 2 f 2 6 1 k 3 f 3 6 k 4 f 4 5 2 k 5 f 5 3
3
3
3
3
f k 0, 1 , 3, 6, 6, 5, 3, 0 f k
1
f 2 k
k 0
2
3 3
1
1
0
k 2 k 3
第六章
离散系统的Z 域分析
T t
f s t
6.1 Z变换(ZT) f t 一、从 LT 到 ZT : f s t f t T t f t t nT
k k k skT
f t t f 0 t
f k k k0 f k0 k k0
k
f k k f 0
k
f k k k f k
0 0
k k k 1
1
2
3
4
k
1
1
0
1
2
k
3、乘积计算法
1
f1 k
1
0
f 2 k
2
3 3
1
2
3
4
k
离散时间系统的时域分析
离散时间系统的时域分析离散时间系统是指系统输入和输出信号都是在离散的时间点上进行采样的系统。
时域分析是分析系统在时域上的性质和特征。
在离散时间系统的时域分析中,常用的方法包括冲击响应法、单位样值法和差分方程法等。
冲击响应法是通过对系统施加单个冲击信号,观察系统在输出上的响应来分析系统的时域特征。
冲击响应法的基本思想是将系统的输出表示为输入信号与系统的冲击响应之间的卷积运算。
冲击响应法适用于线性时不变系统,在实际应用中可以使用软件工具进行计算。
单位样值法是通过将系统输入信号取为单位样值序列,观察系统在输出上的响应来分析系统的时域特征。
单位样值法的基本思想是将系统的输出表示为输入信号与系统的单位样值响应之间的卷积运算。
单位样值法适用于线性时不变系统,可以用来计算系统的单位样值响应和单位样值响应序列。
差分方程法是通过建立系统输入和输出之间的差分方程来分析系统的时域特征。
差分方程法的基本思想是根据系统的差分方程,利用系统的初始条件和输入序列,递推计算系统的输出序列。
差分方程法适用于线性时不变系统,可以用来计算系统的单位样值响应和任意输入信号下的输出序列。
以上所述的方法是离散时间系统时域分析中常用的方法,通过这些方法可以获得系统的冲击响应、单位样值响应和任意输入信号下的输出序列,进而分析系统的时域特征和性质。
在实际应用中,根据系统的具体情况和需求,选择合适的方法进行时域分析,能够更好地理解离散时间系统的动态行为和响应特性。
离散时间系统的时域分析是研究系统在离散时间上的动态行为和响应特性的关键方法。
通过分析系统的时域特征,可以深入了解系统的稳定性、响应速度、频率选择性和滤波特性等方面的性能。
冲击响应法是离散时间系统常用的时域分析方法之一。
它通过施加一个单个的冲击信号,即输入信号序列中只有一个非零元素,然后观察系统在输出上的响应。
这样可以得到系统的冲击响应序列,它描述了系统对单位幕函数输入信号的响应情况。
冲击响应法的核心思想是将系统的输出表示为输入信号序列与系统的冲击响应序列之间的卷积运算。
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
离散时间系统的时域特性分析
离散时间系统的时域特性分析离散时间系统是指输入和输出均为离散时间信号的系统,如数字滤波器、数字控制系统等。
时域分析是研究系统在时间上的响应特性,包括系统的稳定性、响应速度、能否达到稳态等。
在时域分析中,我们通常关注系统的单位采样响应、阶跃响应和脉冲响应。
1. 单位采样响应单位采样响应是指当输入信号为单位脉冲序列时,系统的输出响应。
在时间域上,单位脉冲序列可以表示为:$$ u[n] = \begin{cases}1 & n=0\\ 0 & n \neq 0\end{cases} $$系统的单位采样响应可以表示为:$$ h[n] = T\{ \delta[n]\} $$其中,$T\{\}$表示系统的传输函数,$\delta[n]$表示单位脉冲序列。
通常情况下,我们可以通过借助系统的差分方程求得系统的单位采样响应。
对于一种具有一阶差分方程的系统,其单位采样响应可以表示为:2. 阶跃响应其中,$\alpha$为系统的传递常数。
3. 脉冲响应脉冲响应是指当输入信号为任意离散时间信号时,系统的输出响应。
其主要思路是通过将任意输入信号拆解成单位脉冲序列的线性组合,进而求得系统的输出响应。
设输入信号为$x[n]$,系统的脉冲响应为$h[n]$,则系统的输出信号$y[n]$可以表示为:$$ y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] $$在实际计算中,通常采用卷积算法实现脉冲响应的计算,即将输入信号和脉冲响应进行卷积运算。
总之,时域特性分析是对离散时间系统进行分析和设计时的基础。
对于实际工程应用中的系统,需要综合考虑其时域和频域特性,进而选择合适的滤波器结构、控制算法等来实现系统的优化设计。
离散信号与系统的时域分析实验报告
离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。
本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。
在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。
2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。
通过设置函数发生器的频率和振幅,我们可以产生不同的信号。
接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。
使用合适的采样率,我们可以准确地获取模拟信号的离散样本。
最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。
2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。
通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。
通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。
2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。
例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。
通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。
此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。
3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。
例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。
而当信号频率小于采样率的一半时,可以还原原始信号。
此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。
4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。
离散系统的时域分析实验报告
实验2 离散系统的时域分析一、实验目的1、熟悉并掌握离散系统的差分方程表示法;2、加深对冲激响应和卷积分析方法的理解。
二、实验原理在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下:其输入、输出关系可用以下差分方程描述:输入信号分解为冲激信号,记系统单位冲激响应,则系统响应为如下的卷积计算式:当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。
三、实验内容1、用MATLAB求系统响应1)卷积的实现线性移不变系统可由它的单位脉冲响应来表征。
若已知了单位脉冲响应和系统激励就可通过卷积运算来求取系统响应,即程序:x=input(‘Type in the input sequence=’); %输入xh=input(‘Type in the impulse response sequence=’); %输入hy=conv(x,h); % 对x,h进行卷积N=length(y)-1; %求出N的值n=0:1:N; %n从0开始,间隔为1的取值取到N为止disp(‘output sequence=’); disp(y); %输出ystem(n,y); %画出n为横轴,y为纵轴的离散图xlabel(‘Time index n’); ylable(‘Amplitude’); % 规定x轴y 轴的标签输入为:x=[-2 0 1 -1 3]h=[1 2 0 -1]图形:2)单位脉冲响应的求取线性时不变因果系统可用MATLAB的函数filter来仿真y=filter(b,a,x);其中,x和y是长度相等的两个矢量。
矢量x表示激励,矢量a,b 表示系统函数形式滤波器的分子和分母系数,得到的响应为矢量y。
例如计算以下系统的单位脉冲响应y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3)程序:N=input(‘Desired impuse response length=’);b=input(‘Type in the vector b=’);a=input(‘Type in the vector a=’);x=[1 zeros(1,N-1)];y=filter(b,a,x);k=0:1:N-1;stem(k,y);xlabel(’Time index n’); ylable(‘Amplitude’);输入:N=41b=[0.8 -0.44 0.36 0.02]a=[1 0.7 -0.45 -0.6]图形:2、以下程序中分别使用conv和filter函数计算h和x的卷积y和y1,运行程序,并分析y和y1是否有差别,为什么要使用x[n]补零后的x1来产生y1;具体分析当h[n]有i个值,x[n]有j个值,使用filter完成卷积功能,需要如何补零?程序:clf;h = [3 2 1 -2 1 0 -4 0 3]; %impulse responsex = [1 -2 3 -4 3 2 1]; %input sequencey = conv(h,x);n = 0:14;subplot(2,1,1);stem(n,y);xlabel('Time index n'); ylabel('Amplitude');title('Output Obtained by Convolution'); grid;x1 = [x zeros(1,8)];y1 = filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('Time index n'); ylabel('Amplitude');title('Output Generated by Filtering'); grid;图形:因为在y=filter(b,a,x)中,利用给定矢量a和b对x中的数据进行滤波,结果放入y矢量中,y与x长度要相等,所以要使用x[n]补零后的x1来产生y1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.3 卷积和 ( Convolution Sum)
LTI离散系统的零状态输出响应
δ(k) ∑Aδ(k-i) δ(k-n)
任意信号: 线性非时变 离散系统 (零状态)
h (k) ∑Ah (k-i) h (k-n)
零状态响应:
f (k) = ∑ f (i)δ (k −i)
∞
= f (k) ∗δ (k)
例3.求信号的卷积和: f (k) = ( 1 )k ε (−k) ∗(3)k [ε (k) −ε (k − 2)] 3.求信号的卷积和: 2 解: Q [ε (k) −ε (k − 2)] = δ (k) +δ (k −1)
∴ f (k) = ( 1 )k ε (−k) ∗[δ (k) + 3δ (k −1)] 2
长春理工大学
§3.2 单位序列和单位序列响应 单位脉冲序列和单位阶跃序列: 一、单位脉冲序列和单位阶跃序列:
定义
δ (k) =
0
1
δ (k)
k ≠0
k =0
1 −1 0 12 3
k
延迟的δ(k)
δ (k − 3) =
0
1
δ (k − 3)
k ≠3
k =3
1 −1 0 12 3 4
k
门函数
1
f (k)
第三章 离散时间系统的时域分析
本章要点: 本章要点:
1.LTI离散系统的响应: LTI离散系统的描述方法 差分方程) 离散系统的描述方法( 1.LTI离散系统的响应: LTI离散系统的描述方法(差分方程)及 离散系统的响应 零输入响应和零状态响应的概念。 零输入响应和零状态响应的概念。 2.单位序列和单位序列响应 单位序列和单位序列响应: 2.单位序列和单位序列响应:概念 3.卷积和 时域分析的核心,理解其概念,会计算简单的卷积。 卷积和: 3.卷积和:时域分析的核心,理解其概念,会计算简单的卷积。 4.* 4.*反卷积 重点: 重点:卷积和
例2:求 y(k)=(0.5)k ε(k) ∗ [ε(k)- ε(k-5)] 解: y1(k) = (0.5) ε(k) ∗ε (k) = ∑(0.5)i ε (i)ε (k −i)
k k i =0 k +1
∑ai =
i=1
n
a1 − qan 1− q
= ∑(0.5)i =
i =0
k
1− (0.5) ε (k) = [2 − (0.5)k ]ε (k) 1− 0.5
长春理工大学
LTI离散系统的响应 §3.1. LTI离散系统的响应
一、差分与差分方程
序列的差分与累加:(离散)差分→微分(连续) 序列的差分与累加:(离散)差分→微分(连续) :(离散 离散)累加→积分(连续) (离散)累加→积分(连续) 一阶前向(左移)差分: 一阶前向(左移)差分: 一阶后向(右移)差分: 一阶后向(右移)差分:
0
1
ε (k − 3)
1
k <3
k ≥3
L
−1 0 12 3 4 5 6
k
门函数
1
ε (k − 2) −ε (k − 6)
−1 0 12 3 4 5 6
k
长春理工大学
§3.2 单位序列和单位序列响应
δ (k) = ∇ε (k) = ε (k) − ε (k −1)
0, k < 0 ε (k) = ∑δ (i) = 1 i =−∞ , k ≥0
k
求:
− ∞ < k < ∞,
(1) f1 ( k ) ∗ f 2 ( k ) (2 ) f1 ( k ) ∗ f 2 ( k )
长春理工大学
§3.3 卷积和
例1:求 y(k)= ε(k) ∗ ε(k) 解: y(k) = ∑ε (i)ε (k − i) =∑ = (1+ k)ε (k) 1
i =0 i=0 k k
∑a
j =0
n
n− j
y zi (k − j ) = 0
长春理工大学
LTI离散系统的响应 §3.1 LTI离散系统的响应
四、零状态响应 零状态响应
系统的初始状态为零时,仅由输入信号 f (k ) 引起的响应, m 用 y zs (k ) 表示。 n
∑a
j =0
n− j
y zs (t ) = ∑ bm − i f (k − i )
h(k ) = ∇g (k ) = g (k ) − g (k − 1)
g (k ) =
i = −∞
∑ h(i ) = ∑ h(k − j )
j =0
k
∞
长春理工大学
§3.3 卷积和 ( Convolution Sum) 一、卷积和
任意离散信号可分解为单位函数:
f(k)=······+f(-1)δ(k+1)+ f(0)δ(k)+ f(1)δ(k-1)+ ······+ f(i)δ(k-i)+······
i =0
y zs (− 1) = y zs (− 2 ) = ⋅ ⋅ ⋅ = y (− n ) = 0
y zs ( k ) = ∑ C zsj λkj + y p (k )
y C zsj为待定常数, p (k ) 为方程特解。
j =1
n
五、全响应
y (k ) = y zi (k ) + y zs (k )
f (k) = δ (k − 2) +δ (k − 3) +δ (k − 4) +δ (k − 5)
k
长春理工大学
−1 0 12 3 4 5 6
§3.2 单位序列和单位序列响应 定义
ε (k) =
0
1
ε (k)
k <0
k ≥0
1
L
−1 0 12 3 4 5 6
k
延迟的阶跃序列
ε (k − 3) =
∇ f (k ) =∇ ∇ [
n n− 1
n f (k )] = ∑(−1) f (k − j ) j j =0
nБайду номын сангаасj
n n! = , ,, n , j (n − j ) j! j = 0 1 2 ⋅ ⋅ ⋅, ! 长春理工大学
§3.1. LTI离散系统的响应 LTI离散系统的响应 累加: 序列 f (k ) 累加:
i=−∞
yzs (k) = ∑ f (i)h(k −i) = f (k) ∗h(k)
i=−∞
∞
系统的零状态响应:
yzs (k) =L+ f (−1 h(k +1 + f (0)h(k) + f (1 h(k −1 + ) ) ) ) L+ f (i)h(k −i) +L = ∑ f (i)h(k −i) = f (k) ∗h(k)
长春理工大学
LTI离散系统的响应 §3.1. LTI离散系统的响应 二、差分方程的经典解
常系数线性差分方程
∑an− j y(k − j) = ∑bm−i f (k − i) j =0 i=0
式中: 式中:an =1 差分方程的全解为: 差分方程的全解为:
n
m
y(k) = yh (k) + yp (k)
长春理工大学
LTI离散系统的响应 §3.1. LTI离散系统的响应
齐次解 输入输出方程可用后向差分方程表示为 :
y(k) + an−1 y(k −1) +La1 y(k − n +1) + a0 y(k − n) = bm f (k) + bm−1 f (k −1) +L+b1f (k − m +1) + b0 f (k − m)
∇f (k) = ∆f (k −1)
二阶后向(右移)差分: 二阶后向(右移)差分: n阶后向差分: 阶后向差分:
def 2
def
∇f (k) = f (k) − f (k −1)
∆f (k) = f (k +1) − f (k)
def
def
∇ f (k) =∇[∇f (k)] = f (k) − 2 f (k −1) + f (k − 2)
y2 (k) = (0.5)k ε (k) ∗ε (k − 5) = y1(k − 5) = [2 − (0.5)k−5 ]ε (k − 5)
∴ y(k) = y1(k) − y2 (k) = [2 − (0.5)k ]ε (k) −[2 − (0.5)k−5 ]ε (k − 5)
长春理工大学
§3.3 卷积和
m=−∞
∞
∞
f (k ) → f (k ) ∗ h(k )
于是,得到系统在一般信号f(k)激励下的零状态响应为
yzs (k) = ∑ f (i)h(k − i) = f (k) ∗ h(k)
i=−∞
∞
长春理工大学
§3.3 卷积和 ( Convolution Sum)
例 3.3-1如
f 1 ( k ) = (0 . 5 ) ε (k ) f 2 (k ) = 1, f 3 (k ) = ε (k ) , ,
k
0, k < 0 ε (k) = ∑δ (k − j) = 1 j =0 , k ≥0
∞
长春理工大学
§3.2 单位序列和单位序列响应 二、单位序列响应和阶跃响应 单位脉冲序列 δ (k ) 作用于离散时间LTI系统所产生的 零状态响应称为单位脉冲响应, 用符号 h(k ) 表示 单位脉冲序列 ε (k ) 作用于离散时间LTI系统所产生的 零状态响应称为单位脉冲响应, 用符号 g (k ) 表示
= ( 1 )k ε (−k) ∗δ (k) + ( 1 )k ε (−k) ∗3δ (k −1) 2 2 = ( 1 )k ε (−k) + 3( 1 )k−1ε (−k +1) 2 2 = ( 1 )k ε (−k) + 3( 1 )k−1[ε (−k) +δ (k −1)] 2 2