材料分析方法 第3版( 周玉) 出版社配套PPT课件 第11章 机械工业出版社
第11章材料分析方法
第五节 衍衬运动学
二、理想晶体的衍射强度
于是,样品下表处A点的衍射波振幅为
Φg
πi
g
e2πiK r
柱体
dz
πi
g
t ei d z
0
(11-5)
即,
Φg
πi
g
sin2 (πst) πs
eπist
(11-6)
衍射强度为振幅的平方,由此得理想晶体衍射强度公式
2
Ig
Φg
Φg
π
g
sin2 (πts) (πs)2
由于电子受原子的强烈散射作用,电子波在样品深度方 向传播时,因透射波和衍射波相互作用,振幅和强度将发生 周期性变化,如图11-5所示
图11-5 偏离参量 s = 0 时,电子波在晶体内深度方向的传播
a) 透射波和衍射波的交互作用 b) 振幅变化 c) 强度变化
9
第四节 消光距离
当偏离参量s = 0时,衍射波强度在样品深度方向变化的
Ig取极大值 当s = 0时, Ig 取最大值
图11-13 衍射强度Ig随偏离参量s 的变化
I g max
πt 2
14
第五节 衍衬运动学
一、基本假设和近似处理方法
(二) 近似处理方法
2) 柱体近似 认为样品下表面某点A的衍射束强度来自于一个 柱体内晶体的贡献,柱体的取法见图11-6
计算A点衍射强度时,以A点为柱体底面中心,截面大小与 单胞尺寸相当,柱体沿入射束方 向贯穿样品
A
计算另一点的衍射强度时,再以
该点为中心取一柱体
g
e2πiK r
柱体
d
z
πi
g
e i
柱体
材料分析方法
现代材料分析方法第一章绪论1、简述材料研究的意义和内容答:意义:材料的性能取决于材料的组成、结构和外部因素(使用条件),材料的结构又取决于材料的制备工艺和材料的使用条件,而材料的性能决定着材料的使用性能。
所以研究材料对于人们生产、使用、和发展材料具有重要的指导意义。
内容:A:材料的组成B:材料的结构C:材料的性能2 材料研究方法是如何分类的?怎样理解现代研究方法的重要性?答:层次:重要性:随着现代科学的不断进步,材料研究方法不断发展,有了先进的现代的材料的分析方法(分析技术和仪器),人们对物质结构及性能的认识从而不断深入,科研工作者对材料的特殊性能成因有了更细微的探究,对材料的物理化学变化和显微结构有了深入地了解,极大的促进了材料科学的发展。
因此可以说,材料科学的发展是离不开现代材料分析方法的。
3、材料结构的层次是如何划分的?答:材料结构从尺度上来讲,可分为微观结构、亚显微结构、显微结构和宏观结构等四个不同的层次。
每个层次上观察所用的结构组成单元均不相同。
按观察用具或设备的分辨率范围来划分:A:宏观与显微结构的划分以人眼的分辨率为界;B:显微结构和亚显微结构的划分以光学显微镜的分辨率为界;C:亚显微结构和微观结构的分界相当于普通扫描电子显微镜的分辨率。
即宏观结构:肉眼的分辨率。
物体尺寸>100μm显微结构:光学显微镜(OM)的分辨率。
物体尺寸0.2μm~100μm亚显微结构:普通电子显微镜的分辨率。
物体尺寸0.01μm~0.2μm微观结构:高分辨电子显微镜的分辨率。
物体尺寸<0.01μm4、材料分析的内容是什么?答:A:表面和内部组织形貌:a材料的外观形貌(如纳米线、断口、裂纹等)b晶粒大小与形态c各种相的尺寸与形态、含量与分布d界面(表面、相界、晶界)e位向关系(新相与母相、孪生相)f晶体缺陷(点缺陷、位错、层错)、夹杂物g内应力B:晶体的相结构:a晶体结构类型b晶体常数c相组成C:化学成分和价键(电子)结构:a宏观和微区化学成分(不同相的成分、基体与析出相的成分)b同种元素的不同价键类型c化学环境D:有机物的分子结构和官能团。
材料分析方法 第3版 教学课件 ppt 作者 周玉 部分课后习题答案 部分课后习题答案
第一章X射线物理学基础2、若X射线管的额定功率为1.5KW,在管电压为35KV时,容许的最大电流是多少?答:1.5KW/35KV=0.043A。
4、为使Cu靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。
答:因X光管是Cu靶,故选择Ni为滤片材料。
查表得:μmα=49.03cm2/g,μmβ=290cm2/g,有公式,,,故:,解得:t=8.35um t6、欲用Mo靶X射线管激发Cu的荧光X射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?答:eVk=hc/λVk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv)λ0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm)其中h为普郎克常数,其值等于6.626×10-34e为电子电荷,等于1.602×10-19c故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。
7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。
⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。
⑶一个具有足够能量的χ射线光子从原子内部打出一个K电子,当外层电子来填充K空位时,将向外辐射K系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。
或二次荧光。
⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K电子从无穷远移至K层时所作的功W,称此时的光子波长λ称为K系的吸收限。
第5章-哈工大-第三版-材料分析测试-周玉.
第一节 定性分析
二、粉末衍射卡片(PDF) 粉末衍射卡片是物相定性分析必不可少的资料,卡片出 版以经历了几个阶段,
1) 1941年起由美国材料试验协会ASTM出版
2) 1969年由起粉末衍射标准联合委员会JCPDF出版 3) 1978年起JCPDF与国际衍射资料中心联合出版,即 JCPDF/ICDD 4) 1992 年后的卡片统一由ICDD出版,至 1997年已有卡片47 组,包括有机、无机物相约67,000个 图5-1为1996年出版的第46组PDF(ICDD)卡片,卡片中各栏 的内容见图5-2的说明
9
第一节 定性分析
四、定性分析过程 (二) 可能遇到的问题 一般情况下,允许d 值偏离卡片数据,误差约0.2%, 不能超过1%,尽管如此,有些物相的鉴定仍会遇到很多 困难和问题 在混合样品中, 含量过少的物相不足以产生自身完整的 衍射图,甚至不出现衍射线 由于晶体的择优取向,其衍射花样可能只出现一两条极 强的衍射线,确定物相也相当困难 多相混合物的衍射线可能相互重叠 点阵相同且点阵参数相近的物相,衍射花样极其相似, 若要区分也有一定困难 10
Ij = Cj fj /l
(5-2)
12
第二节 定量分析
一、单线条法 通过测定样品中j 相某条衍射线强度并与纯 j 相同一衍射 线强度对比,即可定出 j 相在样品中的相对含量。此为单线 条法,也称外标法或直接对比法 若样品中所含n相的线吸收系数及密度均相等,则由式(5-2)可 得 j 相的衍射线强度正比于其质量分数wj,即 Ij = C wj (5-3)
11
第二节 定量分析
物相定量分析的依据是各相衍射线的相对强度 用X射线衍射仪测量时,只需将式(4-6)稍加修改则可用 于多相物质。设样品有n 相组成,其总的线吸收系数为 l, 则 j 相的HKL衍射线强度公式为
材料分析方法第3版(周玉)出版社配套课件第7章机械工业出版社
所在的圆为欲求的轨迹;
图7-4 与极点成等夹角点的轨迹
与P点成90点的轨迹为过赤道线
上F 点的经线大圆NFS,NFS可
视为一平面的投影,其法线的投
影点为P
8
第一节 极射赤面投影法
二、乌氏网
4) 极点的转动 在乌氏网上可将极点绕确定轴转动到新位置
转轴垂直于投影面:如图7-5,将P点绕基圆圆心(轴的投影)转
6
第一节 极射赤面投影法
二、乌氏网
乌氏网是确定晶体方位及测量夹角的工具,应用时注意
1) 晶体投影图基圆的直径与乌氏网相同,使用时将二者中心 重合
2) 测定二极点间夹角时,转动投 影图,使二极点位于同一经线大 圆(包括基圆)或赤道上, 二点间 的纬度差或经度差极为二极点间 夹角,见图7-3。 如A、B极点间 夹角为120, C、D极点间夹角 为20, E、F 极点间夹角为20
X射线衍射是织构测定的主要方法,近年来电子背散射衍 射(EBSD)技术在织构分析方面亦得到广泛应用
3
第一节 极射赤面投影法
一、极射赤面投影法的特点
极射赤面投影法用以表达晶向、晶面的方位,见图7-1
1) 被投影晶体置于参考球球心O,假定晶体的所有晶向、晶 面均通过球心
2) 投射点B为球面上一点的射线,投影 面是与过B点直径垂直的任一平面,平 行于投影面且通过球心的平面与球交成 一大圆, B点向大圆上各点的投影线在 投影面上的交点构成基圆(NESW)
图7-9为立方晶系标准投影图,落在同一大圆弧和直线上的极 点对应的晶面法线在同一平面上, 此平面的法线为这些晶面 的交线。相交于同一直线的晶面属于同一晶带, 其交线称为 晶带轴,用[uvw]表示,晶面指数(hkl)和[uvw]满足晶带定律
《材料分析方法》PPT课件
第十章 成分和价键分析概论
1. 原子中电子的分布和跃迁 2. 各种特征信号的产生机制 3. 各种成分分析手段的比较
1.原子中电子的分布和跃迁
在原子系统中,电子的能量和运动状态可以通过n,l, m,ms四个量子数来表示。
n为主量子数,具有一样n值的处于同一电子壳层,每个 电子的能量主要〔并非完全〕取决于主量子数。
3.1 X光谱
X光谱的X光子可以从很深的样品内部〔500纳米~5微米〕 出射,因此它不仅是外表成分的反映,还包含样品内部的 信息。
XFS适用于原子序数大于等于5 的元素,可以实现定性与定 量的元素分析,但灵敏度不够高,只能分析含量超过万分 之几的成分;而EPMA所用的电子束激发源可以聚焦,因 此具有微区〔1µm〕、灵敏〔10-14g〕、无损、快速、样 品用量小〔10-10g〕等优点。
《材料分析方法》PPT课 件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
第十章 成分和价键分析概论
大局部成分和价键分析手段都是基于同一 个原理,即核外电子的能级分布反响了原 子的特征信息。利用不同的入射波激发核 外电子,使之发生层间跃迁、在此过程中 产生元素的特征信息。
l为轨道角动量量子数,它决定电子云的几何形状,不同 的l值将同一电子壳层内分成几个亚壳层。
m是轨道磁量子数,它决定电子云在空间伸展的方向。 ms是自旋磁量子数,决定了自旋方向。对于特定的原子,
每个能级上的电子能量是固定的。
1.原子中电子的分布和跃迁
原子内的电子分布遵从泡利不相容原理。 当入射的电磁波或粒子所具有的动能足以将原子内
材料分析方法ppt课件
R1 R 1 110
[001]
4
相机常数未知、晶体结构已知的衍射花样标定
测定各个斑点的R值(靠近中心的斑点,但不在一条直线
上),用附录校核各低指数晶面间距值之间的比值。
R12:R22:R32:…=N1:N2:N3:…
立方晶体
立方晶体中同一晶面组中各晶面的面间距相等。
h2 k 2 l 3 N a a d 2 2 2 N h k l 1 2 1 2 d , R 2 , R2 N N d 2 R12 : R2 : R32 : N1 : N 2 : N 3 :
考虑结构消光, 体心立方h+k+l=偶数产生衍射,2,4,6,8…; 面心立方全奇全偶才有衍射,3,4,8,11,12…
四方晶体
d 1
h2 k 2 l 2 2 2 a c 1 h2 k 2 l 2 2 2 2 d a c
根据消光条件,四方晶体L=0的晶面有衍射
2 R12 : R2 : R32 : M1 : M 2 : M 3 :
材料分析方法
4、测定个衍射斑点之间的夹角。
cos h1h2 k1k2 l1l2
2 2 2 (h12 k12 l12 )(h2 k2 l2 )
5、确定离开中心斑点最近衍射斑点 的指数。
h2k2l2 2
R2 000
h3k3l3 3
R4 h1k1l1 R1 1
4 h4k4l4
1. 测定低指数斑点的R值,在几个不同的方位摄取衍射花样, 保证测出前八个R值。 2. 根据R值,计算出各个d值。 3. 查ASTM卡片,与各d值相符的物相即为待测的晶体。
4. 卡片可能有几张,根据其它资料和化学成分排出不可能出
材料分析方法 第3版( 周玉) 出版社配套PPT课件 第3章 机械工业出版社
二、几种点阵结构因数计算
2. 体心点阵(同类原子组成)
单胞中有2个原子,坐标分别为(0,0,0)和(1/2,1/2,1/2), 原
子散射因数均为 f
FHKL2 = [f cos2(0) + f cos2(H+K+L)/2 ]2 + [f sin2(0) + f sin2(H+K+L)/2 ]2
三角形式:Acosx+iAsinx
单胞中所有原子散射波振幅的合成就是单胞的散射波振幅Ab
Ab A1ei1 A2ei2 Anein
fa
Aa Ae
一个原子中所有电子相干散射波的合成振幅 一个电子相干散射波的振幅
n
Ab Ae ( f1ei1 f 2ei2 f nein ) Ae f j ei j j 1 9
由于衍射线的相互干涉,某些方向的强度将会有所加强, 某些方向的强度将会减弱甚至消失,习惯上将这种现象称 为系统消光
7
第二节 单位晶胞对X射线的散射与结构因数
一、结构因数公式的推导
如图3-3,取单胞顶点O为坐标原点,单胞中第 j 个原子 A
的位置矢量为,
rj = xj a + yj b + zj c
数(HKL)N平1 方: N和2 :之N3比: N为4,: N5 2 : 4 : 6 : 8 :10
13
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵结构因数计算
3. 面心点阵(同类原子组成)
单胞中有4个原子,坐标分别为(0,0,0)、 (0,1/2,1/2)、
(1/2, 0,1/2)、 (1/2,1/2, 0),原子散射因数均为 f FHKL2 = f 2
第10章--哈工大-第三版-材料分析测试-周玉
15
第二节 电子衍射原理
四、结构因子—倒易阵点的权重 满足布拉格方程只是产生衍射的必要条件, 但能否产生 衍射还取决于晶面的结构因子Fhkl, Fhkl是单胞中所有原子的 散射波在(hkl)晶面衍射方向上的合成振幅,又称结构振幅
Fhkl f j exp[2πi(hxj ky j lz j )]
V V V
式中,V 是正点阵单胞的体积,有
V a (b c) b (c b) c (a b) (10-2)
倒易点阵基本矢量垂直于正点阵中与 其异名的二基本矢量决定的平面
图10-2 倒、正空间 基本矢量的关系
6
第二节 电子衍射原理
二、倒易点阵与爱瓦尔德图解 (一) 倒易点阵的概念 2.倒易点阵的性质 1) 基本矢量
第二篇 材料电子显微分析
第八章 电子光学基础 第九章 透射电子显微镜 第十章 电子衍射
第十一章 晶体薄膜衍衬成像分析
第十二章 高分辨透射电子显微术
第十三章 扫描电子显微镜
第十四章 电子背散射衍射分析技术 第十五章 电子探针显微分析 第十六章 其他显微结构分析方法
1
第十章 电子衍射
本章主要内容
第一节 概 述
爱瓦尔德球图解是布拉格定律的几何表达 形式,可直观地判断 (hkl) 晶面是否满足布 拉格条件 10
图10-4 爱瓦尔德球图解
第二节 电子衍射原理
二、倒易点阵与爱瓦尔德图解 (二) 爱瓦尔德球图解 由图10-4容易证明,式(10-7)和布拉格定律是完全等价的 说明, 只要(hkl)晶面的倒易阵点G 落在反射球面上,该晶面 必满足布拉格方程,衍射束的方向为k(OG) 爱瓦尔德球内三个矢量k、k 和 ghkl清晰地描述了入射束方向、 衍射束方向和衍射晶面倒易矢量之间的相对几何关系。 倒易 矢量 ghkl代表了正空间中(hkl)晶面的特性, 因此又称 ghkl为衍 射晶面矢量 如果能记录倒易空间中各 ghkl矢量的排列方式,就能推算出正 空间各衍射晶面的相对方位, 这是电子衍射分析要解决的主 11 要问题之一
材料分析方法概述 ppt课件
材料分析测试方法
材料现代分析、测试技术的发展,使得材 料分析不仅包括材料(整体的)成分、结构分 析,也包括材料表面与界面分析、微区分 析、形貌分析等许多内容.
ppt课件 5
材料的元素成份分析 材料的物相结构分析 材料的表观形貌分析 材料的价态分析 材料的表面与界面分析 材料的热分析 材料的力学性能分析
ppt课件 19
高能电子衍射分析: 入射电子能量为10—200 kev.高能电子衍射方 向和晶体样品中产生衍射晶面之晶面间距及电子 入射波长(A)的关系即电子衍射产生的必要条件也 由布拉格方程描述. 由于原子对电子的散射能力远高于其对x射线的散 射能力 ( 约高 10000倍以上 ) ,电子穿透能力差, 因而透射式高能电子衍射只适用于对薄层样品(薄 膜)的分析。 高能电子衍射的专用设备为电子衍 射仪,但随着透射电子显微镜的发展,电子衍射 分析多在透射电子显微镜上进行.与x射线衍射分 析相比,透射电子显微镜亡具有可实现样品选定 区域电子衍射 ( 选区电子衍射 ) 并可实现微区样品 结构(衍射)分析与形貌观察相对应的特点。
ppt课件
1
第一章 必要性:
材料分析测试方法概述
1、加深理解以前所学课程的内容。 2、为以后进一步的研究打下一个好的 基础。 3、目前材料发展日新月异的需要。
pp程中基本概念的来源。 2、了解一些检测分析手段。 3、能对一些检测结果进行一般性分析。
材料分析方法绪论
• 目前,光学显微镜已远远满足不了当前材料研究的需要!
• 2、化学分析
• 分析材料平均化学成分的常规方法:湿化学法和光谱 分析法等。
• 优缺点:
• 采用化学分析方法测定钢的成分只能给出一块试样的平均 成分(所含每种元素的平均含量),并可以达到很高的精度, 但不能给出所含元素分布情况(如偏析,同一元素在不同 相中的含量不同等)。
• 电子显微分析包括:
•
透射电子显微分析
•
扫描电子显微分析
•
电子探针显微分析
• (1) 透射电子显微镜(简称透射电镜) • 透射电镜是采用透过薄膜样品的电子束成像来显
示样品内部组织形貌与结构的。
• 特点: • 可以在观察样品微观组织形态的同时,对所观察
的区域进行晶体结构鉴定(同位分析); • 分辨率可达10-1nm,放大倍数可达106倍。
• 光谱分析给出的结果也是样品的平均成分。
• 材料的整体的成分分析也不能满足材料研究的需要! • 元素在钢中的分布不是绝对均匀的,即在微观上是不均匀
的。 • 由于微区成分的不均匀性造成了微观组织结构的不均匀性,
以致带来微观区域性能的不均匀性,这种不均匀性对材料 的宏观性能有重要的影响作用。
• 例如在淬火钢中,未溶碳化物附近的高碳区形成硬脆的片 状马氏体,而含碳量较低的区域则形成强而韧的板条马氏 体。片状马氏体在承载时往往易形成脆性裂纹源,并逐渐 扩展而造成断裂。
• 常用的两种分析方法:X射线光电子能谱、俄歇 电子能谱。
• (2) 扫描隧道显微镜
• 是一种表面形貌与结构测试仪器。
• 与扫描电镜、透射电镜相比,扫描隧道显微镜具 有结构简单、分辨本领高等特点,可在真空、大 气或液体环境下以及在实空间内进行原位动态观 察样品表面的原子组态,并可直接用于观察样品 表面发生的物理或化学反应的动态过程及反应中 原子的迁移过程等。
材料分析方法PPT课件
f
k Ur (IN)2
电磁透镜放大倍数和焦距均易调节。 电磁透镜要注意有磁转角的问题。
22
可编辑
电磁透镜
短线圈磁场中的电子运动 显示了电磁透镜聚焦成像 的基本原理。实际电磁透 镜中为了增强磁感应强度, 通常将线圈置于一个由软 磁材料(纯铁或低碳钢) 制成的具有内环形间隙的 壳子里(如图)。
23
v可分解成
vr
和前vZ者,使其匀速圆周运
动,后者使其匀速直线运动,电子沿螺旋线运动。
如果磁场为非均匀磁场,可使电子作螺旋圆锥运动, 则可实现使电子波聚焦。
21
可编辑
电磁透镜
电磁透镜:产生旋转对称非均匀磁 场的装置。
电磁透镜仍满足:
1+ 1 =1 L1 L2 f
M L2 L2 1 L1 f
n的介质中,v , c n
0
n
sin
v1
1
n2
sin
v2
2
n1
3
可编辑
光学透镜成像:光的折射是可见 光聚焦成像的基础。
薄透镜的性质: 通过透镜中心C的光线不发生
折射。 一束平行于主光轴的光通过透
镜后会聚于透镜另一侧的主光 轴上的某一点称焦点F。 前焦点处的光散射经透镜后变 成一束平行于主光轴的平行光。
1
可编辑
主要内容
1 光的折射和光学透镜成像 2 光的衍射与光学显微镜分辨本领理论极限 3 电子波长 4 电磁透镜 5 电磁透镜的像差及其对分辨率的影响 6 景深和焦长
2
可编辑
6-1 光的折射和光学透镜成像
光的折射:光在均匀介质 中直线传播,当从一介质 传播到另一介质时,因光 的传播速度随介质而变, 故光的传播方向在两介质 的分界面发生突变。光在 不同介质中其频率是恒定 不变的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d Φg
πi
g
e 2 πiK r d z (11-3)
图11-7 运动学条件下晶柱OA的衍射强度
18
第五节 衍衬运动学
二、理想晶体的衍射强度 在晶体下表面处的衍射振幅g,等于上表面到下表面所有厚 度元衍射波振幅的叠加,即
Φg
πi
g
柱体
e
2 πiK r
dz
πi
g
柱体
第三节 衍射衬度成像原理
只允许透射束通过物镜光阑成像的方法称为明场成像; 若只允许衍射束通过物镜光阑成像,称暗场成像, 暗场成像 时, A、B晶粒成像电子束的强度分别为IA 0、 IB Ihkl,故 B晶粒亮,而A 晶粒亮度近似为零 A、B晶粒形貌的衍衬像如图11-4所示。可见, 暗场像的衬度 明显高于明场像,是暗场成像的特点之一
双光束衍射花样
hkl 000
这就是双光束近似
15
第五节 衍衬运动学
一、基本假设和近似处理方法 (二) 近似处理方法 2) 柱体近似 认为样品下表面某点A的衍射束强度来自于一个 柱体内晶体的贡献,柱体的取法见图11-6 计算A点衍射强度时,以A点为柱体底面中心,截面大小与 单胞尺寸相当,柱体沿入射束方 向贯穿样品
7
第三节 衍射衬度成像原理
若入射电子束的强度为I0,在A晶粒下表面的透射束强度 近似等于入射束强度 I0;而B晶粒的透射束强度为(I0-Ihkl)
透射束和衍射束经物镜聚焦, 分别在背焦面上形成透射斑点 (000)和衍射斑点(hkl)
若用物镜光阑挡掉B晶粒的衍射束,只允许透射束通过光阑成 像,像平面上A、B晶粒成像电子束强度分别为IA、IB,则有
(11-9)
Ig 随样品厚度t 发生周期性变化,见图11-8。变化周期 tg为
(11-10)
当t = n/s 时,Ig = 0; 当t = (2n+1)/2s 时, Ig取最大值 1 I g max (11-12) ( s g )2
图11-8 衍射强度 Ig 随样品厚度 t 的变化
21
第五节 衍衬运动学
第二节 薄膜样品的制备方法 第三节 衍衬成像原理 第四节 消光距离 第五节 衍衬运动学 第六节 衍衬动力学简介 第七节 晶体缺陷分析
2
第一节 概
述
在透射电镜应用于材料科学早期,曾利用复型技术观察 分析材料的微观组织形貌,随着薄膜样品制备技术的成 熟,以及衍衬成像理论的不断完善,复型技术逐渐被取 代 利用薄膜样品的衍衬成像技术,不仅可以观察材料的微 观组织形貌,而且可以观察分析晶体中的位错、层错等 缺陷 利用晶体薄膜的衍射和衍衬综合分析技术,可实现材料 的微观组织和物相结构的同位分析
第五节 衍衬运动学
三、理想晶体衍衬运动学基本方程的应用 (一) 等厚条纹
等厚消光条纹是常见的衍衬现象, 常出现在孔边缘厚度 呈连续变化的楔形区域,或出现在倾斜的晶界处, 其特征为 亮、暗相间的条纹衬度
如图11-12所示, 照片中亮、暗 相间的条纹为出现在铝合金晶界 处的等厚消光条纹
图11-12 倾斜晶界处的等厚条纹
πVc cos g Fg
(11-2)
式中,Vc单胞体积; 为布拉格角;Fg 为结构因子 式(11-2)表明,g 值随电子波长 和布拉格角 而变化
11
第四节 消光距离
几种晶体的消光距离g 值见表11-3和表11-3
表11-3 不同加速电压下下几种晶体的消光距离g值 晶体 Al Fe Zr hkl 111 110 1010 50kV 41 20 45 100kV 56 28 60 200kV 70 41 90 1000kV 95 46 102
二、制备工艺过程 1) 切片 从大块材料上切取厚度约为0.2~0.3mm的薄片 根据材料选用合适的切割方法, 如电 火花线切割(见图11-1)、金刚石圆盘锯 等; 要注意切取的部位和方向,以使 样品的分析结果具有代表性 2) 预减薄 预减薄厚度控制在0.1~0.2mm 主要为去除切片引起的表面损伤层, 方法有机械法和化学法化学减薄液配 方见表11-1;机械法即手工研磨,不 能用力过大并充分冷却,以避免样品 图11-1 线切割示意图 的组织结构发生变化 5
运动学理论的物理模型比较直观,理论公式推导过程简便
与衍衬动力学理论相比,运动学理论是一种近似的理论, 其应用具有一定的局限性,但对于大多数的衍衬现象尚能 做出较完美的定性解释
13
第五节 衍衬运动学
一、基本假设和近似处理方法 (一) 基本假设 1) 不考虑透射束和衍射束之间的交互作用。意味着与透射束 强度相比,衍射束的强度始终是很小的 若要满足这一假设条件,成像时需采用较大的偏离参量 s 2) 不考虑晶体样品对电子波的吸收和多重反射。意味着电子 波在穿过样品的过程中,仅受到不多于一次的散射
2
衍射强度为振幅的平方,由此得理想晶体衍射强度公式
(11-7)
由双光束近似可知透射波强度
π IT 1 g sin 2 ( πts) ( πs) 2
2
(11-8)
20
第五节 衍衬运动学
三、理想晶体衍衬运动学基本方程的应用 (一) 等厚条纹 当偏离参量s为常数时,将式(11-7)改写为 1 2 Ig sin ( πst ) 2 ( s g ) tg=1/s
1) 薄膜样品必须保持和大块样品具有相同的组织结构。即 样品在制备过程中,其组织结构不能发生变化
2) 薄膜样品对电子束而言应是透明的
3) 薄膜样品要有一定的强度和刚度,以免样品在夹持和装 入样品台的过程中变形或损坏 4) 薄膜样品表面不能有腐蚀和较严重的氧化,否则会引起 图像清晰度下降或出现假象
4
第二节 薄膜样品的制备方法
10
第四节 消光距离
当偏离参量s = 0时,衍射波强度在样品深度方向变化的 周期距离,称为消光距离,记作g
πdcos g nFg
(11-1)
式中,d为晶面间距; n为原子面上单位面积内所含单胞数。 1/n即为一个单胞的面积,所以单胞的体积Vc = d (1/n), 代入 式(11-1)得
第二节 薄膜样品的制备方法
二、薄晶体样品的制备工艺过程 3) 最终减薄 最终减薄后获得表面无腐蚀和氧化、且对电子 束透明的样品。方法为双喷电解抛光法和离子减薄法 对于金属材料通常采用高效简便的双喷电解抛光法,其原 理间图11-2,电解抛光液配方见表11-2或查找有关手册 对于不导电材料,可采用离子减薄法,但此方法比较费时
A
计算另一点的衍射强度时,再以 该点为中心取一柱体 且相邻柱体间的衍射波互不干扰 这种处理方法即为柱体近似
16
图11-6 柱体近似
第五节 衍衬运动学
二、理想晶体的衍射强度
图11-7 运动学条件下晶柱OA的衍射强度
17
第五节 衍衬运动学
二、理想晶体的衍射强度 如图11-7 所示,计算厚度为 t 的晶体中柱体OA 产生的衍 射强度,首先要计算在柱体下表面处的衍射波振幅g。在柱 体内深度为 z 处取一厚度元 dz,其所引起的衍射波振幅 变化为dg,见图11-7a
B A
B
A
a)
b)
图11-4 铝合金晶粒形貌衍衬像 a) 明场像 b) 中心暗场像
9
第四节 消光距离
由于电子受原子的强烈散射作用,电子波在样品深度方 向传播时,因透射波和衍射波相互作用,振幅和强度将发生 周期性变化,如图11-5所示
图11-5 偏离参量 s = 0 时,电子波在晶体内深度方向的传播 a) 透射波和衍射波的交互作用 b) 振幅变化 c) 强度变化
若要满足这一假设条件,实验上须使用极薄的样品
14
第五节 衍衬运动学
一、基本假设和近似处理方法
(二) 近似处理方法
1) 双光束近似 尽管用于成像的衍射束强度很小,但与其它 晶面的衍射束强度相比仍然是最高的,可视其它晶面的衍 射强度为零,衍射花样中,只有透射斑和一个衍射斑,如 下图所示 在此情况下,透射束强度 IT 和衍射束 强度 Ig 近似满足 I 0 = IT + Ig = 1 式中I0 = 1 为入射束强度
相邻亮条纹(或暗条纹)的间距与 Ig 的变化周期(1/s)成正比,因 此利用等厚条纹的数目n可估算样品的厚度 t ,即
t = n /s
图11-11 倾斜晶界示意图
图11-11为一倾斜晶界,晶粒Ⅱ的取 向恰好使所有 晶面均远离布拉格取 向,衍射强度近似为零; 而使晶粒 Ⅰ在晶界处的厚度形成连续变化, 因此在倾斜晶界处出现等厚条纹 24
19
第五节 衍衬运动学
二、理想晶体的衍射强度 于是,样品下表处A点的衍射波振幅为
Φg
即,
πi
g
柱体
e
2 πiK r
Байду номын сангаасdz
πi
g
t
0
e i d z
(11-5) (11-6)
πi sin 2 (πst ) πist Φg e g πs
π I g Φg Φg g sin 2 ( πts) ( πs) 2
三、理想晶体衍衬运动学基本方程的应用 (一) 等厚条纹
图11-10 等厚条纹形成原理
22
第五节 衍衬运动学
三、理想晶体衍衬运动学基本方程的应用 (一) 等厚条纹
利用Ig 随t周期性变化的结果, 可定性解释样品楔形边缘 出现的等厚条纹。 如图11-10, 楔形边缘的厚度 t 连续变化, 在样品下表面处Ig 随 t 而周期变化 在孔边缘处 t = 0,Ig=0,暗场像对应 位置为暗条纹,明场像为亮条纹
对应于t = (2n +1)/2s 的样品处衍射强 度Ig为最大值, 暗场像中对应位置为 亮条纹,明场像为暗条纹 如此循环便形成亮暗相间的条纹衬度
图11-10 等厚条纹形成原理