新人教版八年级下册数学期末试卷一
2024年全新八年级数学下册期末试卷及答案(人教版)
2024年全新八年级数学下册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)²=a²+2ab+b²C. (a+b)²=a²+b²+2abD. (a+b)²=a²+b²2ab3. 已知x²+y²=1,则x²y²的最大值为()A. 1B. 2C. 1D. 04. 若一个等腰三角形的底边长为6,腰长为5,则其周长为()A. 16B. 15C. 14D. 125. 若一个圆柱的底面半径为2,高为3,则其体积为()A. 12πB. 18πC. 24πD. 36π6. 下列各式中,不正确的是()A. (a+b)³=a³+b³B. (a+b)³=a³+3a²b+3ab²+b³C. (a+b)³=a³+b³+3a²b+3ab²D. (a+b)³=a³+b³+3a²b3ab²7. 若一个正方形的边长为a,则其面积为()A. a²B. a³C. a⁴D. a⁵8. 若一个球的半径为r,则其表面积为()A. 4πr²B. 4πr³C. 4πr⁴D. 4πr⁵9. 若一个圆锥的底面半径为r,高为h,则其体积为()A. πr²hB. πr³hC. πr⁴hD. πr⁵h10. 下列各式中,正确的是()A. (a+b)⁴=a⁴+b⁴B. (a+b)⁴=a⁴+4a³b+6a²b²+4ab³+b⁴C. (a+b)⁴=a⁴+b⁴+4a³b+6a²b²+4ab³D. (a+b)⁴=a⁴+b⁴+4a³b6a²b²+4ab³二、填空题11. 若a²+b²=1,则a+b的最大值为_________。
新人教版八年级数学下册期末试卷【含答案】
新人教版八年级数学下册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个等腰三角形的底边长为10cm,腰长为12cm,则该三角形的周长为()A. 20cmB. 32cmC. 34cmD. 44cm2. 下列各数中,无理数是()A. √9B. √16C. √3D. √13. 已知一组数据:2, 3, 5, 7, 11, x,其中x为未知数,若这组数据的平均数为6,则x的值为()A. 4B. 6C. 8D. 104. 下列函数中,哪一个函数是增函数?()A. y = -2x + 3B. y = 3x 2C. y = x^2D. y = -x^25. 若平行四边形的对角线互相垂直,则该平行四边形是()A. 矩形B. 菱形C. 正方形D. 无法确定二、判断题(每题1分,共5分)1. 任何两个等边三角形都是全等的。
()2. 两个负数相乘的结果是正数。
()3. 在直角坐标系中,两点之间的距离公式是d = √((x2 x1)^2 + (y2 y1)^2)。
()4. 任何两个奇数之和都是偶数。
()5. 对角线相等的平行四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 若一个正方形的边长为a,则该正方形的面积为______。
2. 两个互质的正整数的最小公倍数是它们的______。
3. 若一组数据的方差为4,则这组数据的平均数为______。
4. 一次函数y = kx + b的图像是一条______。
5. 若一个三角形的两边长分别为3cm和4cm,且这两边的夹角为90度,则这个三角形的第三边长为______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是函数的单调性?如何判断一个函数的单调性?3. 请解释平行线的性质。
4. 什么是等差数列?等差数列的通项公式是什么?5. 请简述概率的意义。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求该正方形的对角线长。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是 A .12 B .8 C .23D . 2.0 2.以下列各组数为边长,不能构成直角三角形的是A .5,12,13B .1,2,5C .1,3,2D .4,5,6 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 4.如图,两把完全一样的直尺叠放在一起,重合的部分 构成一个四边形,这个四边形一定是A .矩形B .菱形C .正方形D .无法判断5.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是 A .y x =- B .1y x =+ C .21y x =-+ D .1y x =-6.下表是两名运动员10次比赛的成绩,21s ,22s 分别表示甲、乙两名运动员测试成绩的方差,则有8分9分 10分 甲(频数) 4 2 4 乙(频数) 343A .2212s s >B .2212s s =C .2212s s <D .无法确定7.若a ,b ,c 满足0,0,a b c a b c ++=⎧⎨-+=⎩则关于x 的方程20(0)ax bx c a ++=≠的解是A .1,0B .-1,0C .1,-1D .无实数根8.如图,在ABC △中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,第10题图NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM =x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题9.函数1y x =-x 的取值范围是 . 10.如图,在平面直角坐标系xOy 中,点A (0,2),B (4,0), 点N 为线段AB 的中点,则点N 的坐标为 . 11.如图,在数轴上点A 表示的实数是 .12.如图,在平面直角坐标系xOy 中,直线1l ,2l 分别是函数11y k x b =+和22y k x b =+的图象,则可以估计关于x 的不等式1122k x b k x b +>+的解集为 .第11题图 第12题图 第13题图13.如图,点A ,B ,E 在同一条直线上,正方形ABCD ,BEFG 的边长分别为3,4,H 为线段DF 的中点,则BH = .14.命题“全等三角形的对应角相等”的逆命题是 .这个逆命题是 (填“真”或“假”)命题.ED CA15.若函数2 2 (2),2 (2)x x y x x ⎧+≤=⎨>⎩的函数值y =8,则自变量x 的值为 .16.阅读下面材料:小明想探究函数21y x =-的性质,他借助计算器求出了y 与x 的几组对应值,并在平面直角坐标系中画出了函数图象:x … -3 -2 -1 1 2 3 … y…2.831.731.732.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是 . 请写出函数21y x =-的一条性质: .三、解答题17.已知51a =+,求代数式227a a -+的值.18.解一元二次方程:23220x x +-=.19.如图,在□ABCD 中,AC ,BD 相交于点O ,点E 在AB 上,点F 在CD 上,EF 经过点O .求证:四边形BEDF 是平行四边形.20.如图,在平面直角坐标系xOy 中,直线l 的表达式为26y x =-,点A ,B 的坐标分别为(1,0),(0,2),直线AB 与直线l 相交于点P . (1)求直线AB 的表达式; (2)求点P 的坐标;(3)若直线l 上存在一点C ,使得△APC 的面积是△APO 的面积的2倍,直接写出点C 的坐标.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.如图,在□ABCD 中,∠ABC ,∠BCD 的平分线分别交AD 于点E ,F ,BE ,CF 相交于点G . (1)求证:BE ⊥CF ;(2)若AB =a ,CF =b ,写出求BE 的长的思路.23.甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 8789 79 54 88 92 90 87 68 76 94 84 76 69 83 92乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 9273 76 92 84 57 87 89 88 94 83 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由;甲校:.乙校:.(4)综合来看,可以推断出校学生的数学学业水平更好一些,理由为.24.如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.25.在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-2,0),B(0,2),C(-2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k 的取值范围.参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)三、解答题(本题共52分,17-22题每小题5分,23-24题每小题7分,25题8分)17.解:227a a -+2(1)6a =-+. ……………………………………………3分当1a =时,原式11=. ……………………………………………5分18.解:3a =,2b =,2c =-.224243(2)28b ac -=-⨯⨯-=.………………………………………3分∴212233b x a --±-===⨯. ……………………4分∴原方程的解为113x -+=,213x --=. ………5分19.证明:∵在□ABCD 中,AC ,BD 相交于点O , ∴DC ∥AB ,OD =OB .………………………………………2分∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE . ………………………………3分∴OF =OE .………………………………………………4分∴四边形BEDF 是平行四边形. ……………………5分20.解:(1)设直线AB 的表达式为y =kx +b .由点A ,B 的坐标分别为(1,0),(0,2),可知0,2.k b b +=⎧⎨=⎩解得2,2.k b =-⎧⎨=⎩所以直线AB 的表达式为y =-2x +2. …………………2分(2)由题意,得22,2 6.y x y x =-+⎧⎨=-⎩解得2,2.x y =⎧⎨=-⎩所以点P 的坐标为(2,-2). …………………3分(3)(3,0),(1,-4). ……………………………5分21.解:(1)由题意,得22(2)4(1)0m m ∆=--->. 解得12m >. ……………………………3分(2)答案不唯一.如: 取m =1,此时方程为220x x -=.解得 120,2x x ==. ……………………………5分22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .…………………………………1分∴∠ABC +∠BCD =180°.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线, ∴∠EBC =12∠ABC ,∠FCB =12∠BCD . ………………2分∴∠EBC +∠FCB =90°. ∴∠BGC =90°. 即BE ⊥CF .…………………………………3分(2)求解思路如下:a .如图,作EH ∥AB 交BC 于点H ,连接AH 交BE 于点P .b .由BE 平分∠ABC ,可证AB =AE ,进而可证四边形ABHE 是菱形,可知AH ,BE 互相垂直平分;c .由BE ⊥CF ,可证AH ∥CF ,进而可证四边形AHCF 是平行四边形,可求AP =2b; d .在Rt △ABP 中,由勾股定理可求BP ,进而可求BE 的长. …5分23.解:(1)补全条形统计图,如下图.……………2分(2)86;92. ………………4分 (3)答案不唯一,理由需包含数据提供的信息. ……6分 (4)答案不唯一,理由需支撑推断结论……………………7分 24.(1)补全的图形,如图所示.………………………………1分 (2)AG =DH .………………………2分证明:∵四边形ABCD 是菱形,∴AD CD CB ==,AB ∥DC ,ADC ABC ∠=∠.…………………3分 ∵点F 为点B 关于CE 的对称点, ∴CE 垂直平分BF .∴CB CF =,CBF CFB ∠=∠.…………………………………4分 ∴CD CF =. 又∵FH CG =, ∴DG CH =.∵180ABC CBF ∠+∠=︒,180DCF CFB ∠+∠=︒, ∴ADC DCF ∠=∠.∴△ADG ≌△DCH . ………………………5分 ∴AG DH =. (3)不存在.……………6分理由如下:由(2)可知,∠DAG =∠CDH ,∠G =∠GAB , ∴∠DPA =∠PDG +∠G =∠DAG +∠GAB =70°>60°.…………7分∴△ADP 不可能是等边三角形. 25.(1)①A ,B ;……………………………2分②当PM +PN =4时,可知点P 在直线l 1:2y x =+,直线l 2:2y x =-上. 所以直线l 的近距点为在这两条平行线上和在这两条平行线间的所有点. 如图1,EF 在OA 上方,当点E 在直线l 1上时,n 的值最大,为22-+. ……3分如图2,EF 在OA 下方,当点F 在直线l 2上时,n 的值最小,为2-. …4分当0n =时,EF 与AO 重合,矩形不存在.综上所述,n 的取值范围是222n -≤≤-+,且0n ≠.…………6分 (2)1212k --≤≤-.……………8分人教版八年级下学期期末考试数学试卷(二)说明:1.考试用时100分钟,满分为120分;图1图22.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B C .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cm B .220cm C .240cm D .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是. 12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:20---++.(2)(51)3(36)18.已知,如图在ΔABC中,AB=BC=AC=2cm,AD是边BC上的高.求AD的长.19.如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、解答题(二)(本大题3小题,每小题7分,共21分).20.一次函数y=2x-4的图像与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(,),B(,);(2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序; (2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?五、解答题(三)(本大题3小题,每小题9分,共27分).23.观察下列各式:312311=+;413412=+;514513=+;…… 请你猜想: (1=,=; (2)计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来.12kmCAB5km24.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①求证:四边形BFDG是菱形;②若AB=3,AD=4,求FG的长.25.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A 点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.人教版八年级下学期期末考试数学试卷(三)总分:120分考试时间:100分钟一、选择题(每题3分,共10题,30分)1. x的取值范围是A.3x2≥ B.3x2> C.2x3≥ D.2x3>2.下列二次根式中,最简二次根式是3.公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.在本学期数学期中考中,某小组8名同学的成绩如下: 90、103、105、105、105、115、140、140,则这组数据的众数为( ). A .105 B .90 C .140 D .50 5.下列几组数中,不能作为直角三角形三边长度的是A .1.5,2,2.5B . 3,4,5,C .5,12,13D .20,30,406.已知一组数据123n x x x x ,,,…,的方差是7,那么数据12x x -5,-5,3x 5-,…, n x 5-的方差为A.2 B.5 C.7 D.97. 如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<B.x<3C.x>D.x>38.名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:175设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为2S甲,2S乙,则下列关系中完全正确的是A.x x=甲乙,22S S>乙甲B.x x=甲乙,22S S<乙甲C.x x>甲乙,22S S>乙甲D.x x<甲乙,22S S<乙甲9. 如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE 垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是A.2 B.2.2C.2.4 D.2.510、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30 从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示.根据图象得到下列结论,其中错误..的是A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.如图,Rt △ABC 中,∠BAC=90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF=3,则AE= .12.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空)13.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________ 14. 如图,菱形ABCD 周长为16,∠ADC =120°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是15.如图,在矩形ABCD,AB=3,BC=4,E 是BC 边上一点,连接AE ,把∠B 沿AE 折 叠,使B 点落在B ’处,当△CEB ’为直角三角形时,BE 的长为____________。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
人教新版八年级下册数学期末试卷和答案详解(PDF可打印)
2020-2021学年内蒙古乌海市八年级(下)期末数学试卷一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.92.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2 3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20 4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6 6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.38.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.211.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<112.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是.14.(3分)已知y=,则x y的值为.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN 折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间x(min)等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.2020-2021学年内蒙古乌海市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.9【考点】二次根式的性质与化简.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选:A.2.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件即可求出答案.【解答】解:由题意可知:,解得:x≤.故选:B.3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,进行计算即可解答.【解答】解:A、∵(32)2+(42)2=337,(52)2=625,∴(32)2+(42)2≠(52)2,∴以32,42,52不能构成直角三角形,故A不符合题意;B、∵72+242=625,252=625,∴72+242=252,∴以7,24,25能构成直角三角形,故B符合题意;C、∵82+132=233,172=289,∴82+132≠172,∴以8,13,17不能构成直角三角形,故C不符合题意;D、∵102+152=325,202=400,∴102+152≠202,∴以10,15,20不能构成直角三角形,故D不符合题意;故选:B.4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间【考点】勾股定理;坐标与图形性质.【分析】根据点P的坐标为(﹣2,3),勾股定理求出OP的长,得出点A的坐标,再判定出3<<4,即可得出﹣的范围.【解答】解:∵点P的坐标为(﹣2,3),∴OP=,∴A(﹣,0),∵9<13<16,∴3<<4,∴﹣4<,故选:A.5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6【考点】平行四边形的性质;三角形三边关系.【分析】平行四边形的两条对角线相交于平行四边形的两边构成三角形,这个三角形的两条边是3,5,第三条边就是平行四边形的一条边x,即满足,解得即可.【解答】解:∵平行四边形ABCD∴OA=OC=3,OB=OD=5∴在△AOB中,OB﹣OA<x<OB+OA即:2<x<8故选:B.6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件【考点】加权平均数.【分析】直接利用加权平均数求法进而分析得出答案.【解答】解:由题意可得,这一周小张平均每天投递物品的件数为:=(件),故选:C.7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.3【考点】命题与定理.【分析】根据矩形的判定、中位数和众数的判定、算术平方根的性质判断即可.【解答】解:①若=a,则a≥0,原命题是假命题;②的算术平方根是2,是真命题;③对角线相等的平行四边形是矩形,原命题是假命题;④一组数据5,6,7,8,9的中位数是7,但众数不是7,原命题是假命题;故选:B.8.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°【考点】菱形的性质.【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH ⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数【解答】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选:A.9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【考点】菱形的判定.【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.2【考点】一次函数的定义.【分析】直接利用一次函数的定义得出m的值进而得出答案.【解答】解:∵关于x的函数y=(m﹣1)x|m|﹣5是一次函数,∴|m|=1,m﹣1≠0,解得:m=﹣1.故选:B.11.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<1【考点】一次函数图象上点的坐标特征.【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m 的取值范围.【解答】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,∴当﹣1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m﹣1<0,解得m<,故选:A.12.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6【考点】轴对称﹣最短路线问题;正方形的性质.【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【解答】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选:D.二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是 4.4.【考点】方差;算术平均数.【分析】先根据平均数是5,求出a的值,然后利用方差的计算公式求解即可.【解答】解:因为3、4、3、a、8的平均数是5,所以3+4+3+a+8=25,解得a=7,故这组数据为3,4,3,7,8,所以这组数据的方差为×[(3﹣5)2+(4﹣5)2+(3﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.14.(3分)已知y=,则x y的值为.【考点】二次根式有意义的条件.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y 的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是﹣9.【考点】一次函数图象上点的坐标特征.【分析】将点的坐标代入直线中可得出b=a﹣2,整理得到3b﹣a=﹣6,代入代数式求得即可.【解答】解:∵P(a,b)是直线y=x﹣2上的点,∴b=a﹣2,∴3b﹣a=﹣6,∴6b﹣2a+3=2×(﹣6)+3=﹣9.故答案为:﹣9.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=25°.【考点】作图—复杂作图;平行四边形的性质.【分析】利用平行四边形的性质求出∠ABC=50°,再利用角平分线的定义,平行线的性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知BE平分∠ABC,∴∠EBC=∠ABC=25°,∴∠AEB=∠EBC=25°,故答案为:25°.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为 2.5.【考点】三角形中位线定理.【分析】根据直角三角形斜边上的中线的性质求出DF,根据三角形中位线定理求出DE,计算即可.【解答】解:在Rt△AFB中,D为AB的中点,AB=7,∴DF=AB=3.5,∵DE为△ABC的中位线,BC=12,∴DE=BC=6,∴EF=DE﹣DF=2.5,故答案为:2.5.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据折叠的性质可以证明△DEM≌△DCN,得DM=DN,再根据折叠可得∠BNM =∠DNM=∠DNC,可证明△DMN是等边三角形,再根据等边三角形的性质即可求出AD的长.【解答】解:由折叠可知:点B与点D重合,∴∠EDN=90°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠EDM+∠MDN=∠CDN+∠MDN,∴∠EDM=∠CDN,∵∠E=∠C=90°,DE=DC,∴△DEM≌△DCN(ASA),∴DM=DN,由折叠,∠BNM=∠DNM,∠DNC=∠DNM,∴∠BNM=∠DNM=∠DNC=180°=60°,∴△DMN是等边三角形,∴DM=MN=5,点C恰好落在MN上的点F处可知:∠DFN=90°,即DF⊥MN,∴MF=NF=MN=,∴CN=ME=AM=,∴AD=AM+DM=.故答案为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b﹣kx+1>0的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.故答案为:x>﹣1.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是①②③.【考点】平行四边形的性质;全等三角形的判定.【分析】①根据等腰直角三角形的性质即可判断;②通过三角形全等和平行四边形的性质即可判断;③根据平行四边形的性质和线段的等量代换即可判断;④通过角的关系即可求得结果;【解答】解:∵∠DBC=45°,DE⊥BC,∴BD=BE,BE=DE,∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°,∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC(SAS),∴∠BHE=∠C,BH=CD,∵四边形ABCD是平行四边形,∴∠C=∠A,AB=CD,∴∠A=∠BHE,AB=BH,∴正确的有①②③;故答案为:①②③.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)先根据完全平方公式和分母有理数将式子展开,然后再合并同类项和同类二次根式即可;(2)根据二次根式的除法化简即可.【解答】解:(1)(﹣2)2++6=3﹣4+4+2+2=7;(2)(3﹣2+)÷2=﹣+===3﹣+2=4.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3584分析数据:补全下列表格中的统计量:平均数中位数众数808181得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为B;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?【考点】统计量的选择;用样本估计总体;频数(率)分布表.【分析】根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)(3)结果.【解答】解:(1)根据上表统计显示:样本中位数和众数都是81,平均数是80,都是B 等级,故估计该校学生每周的用于课外阅读时间的情况等级为B.(2)∵=160∴该校现有学生400人,估计等级为“B”的学生有160名.(3)以平均数来估计:×52=26∴假设平均阅读一本课外书的时间为160分钟,以样本的平均数来估计该校学生每人一年(按52周计算)平均阅读26本课外书.故答案为:5,4,81,81,B;23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可得DP=20米,然后分别在Rt△BDP和Rt△CDP中,利用锐角三角函数的定义求出BD,CD的长,进行计算即可解答.【解答】解:由题意得:DP=20米,在Rt△BDP中,∠BPD=60°,∴BD=DP•tan60°=20(米),在Rt△CDP中,∠CPD=45°,∴CD=DP•tan45°=20(米),∴BC=BD﹣CD=(20﹣20)米,∴标语牌的宽度BC为(20﹣20)米.24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意即可列出一元一次方程,即可求解.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,根据题意得到a的取值,再列出w关于a的一次函数.②根据一次函数的性质即可求解.【解答】解:(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意得:10a+15(a﹣2)=1570,解得:a=64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,依题意可得:,解得0≤a≤且x为整数,∴w=(83﹣64)(10+a)+(78﹣62)(50﹣a+15),=1230+3a,∴w与a之间的函数关系式为w=3a+1230.②∵3>0,∴w随a的增大而增大,=1230+3×33=1329(元).∴当a=33时,y最大∴购进甲种盲盒33个,购进乙种盲盒17个;才能使售完这二批盲盒获得总利润最大;最大利润是1329元.26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)联立两直线解析式求出A的坐标即可;(2)根据D在直线OA上,设出D坐标,表示出三角形COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;(ii)当四边形OP2CQ2为菱形时;(iii)当四边形OQ3P3C为菱形时;分别求出P坐标即可.【解答】解:(1)解方程组,得,∴A(6,3);(2)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴直线CD解析式为y=﹣x+6;(3)在直线l1:y=﹣x+6中,当x=0时,y=6,∴C(0,6),存在点P,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);(ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线CP1的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3);(iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);综上可知存在满足条件的点的P,其坐标为(6,0)或(3,3)或(3,﹣3+6).。
2022—2023年人教版八年级数学(下册)期末试卷及答案(新版)
2022—2023年人教版八年级数学(下册)期末试卷及答案(新版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)5.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°7.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A.55°B.60°C.65°D.70°8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.尺规作图作AOB∠的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.若23(1)0m n-++=,则m-n的值为________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,在ABC中,点D是BC上的点,40BAD ABC︒∠=∠=,将ABD∆沿着AD翻折得到AED,则CDE∠=______°.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x yx y-=⎧⎨+=⎩(2)410211x yx y-=⎧⎨+=⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图,△ABC 中,AB=AC ,∠BAC=90°,点D ,E 分别在AB ,BC 上,∠EAD=∠EDA ,点F 为DE 的延长线与AC 的延长线的交点.(1)求证:DE=EF ;(2)判断BD 和CF 的数量关系,并说明理由;(3)若AB=3,AE=5,求BD 的长.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、D5、A6、C7、D8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、60 133、44、﹣2<x<25、706、20三、解答题(本大题共6小题,共72分)1、(1)42xy=⎧⎨=⎩;(2)61xy=⎧⎨=-⎩.2、20xy-32,-40.3、(1)12b-≤≤;(2)24、E(4,8) D(0,5)5、(1)略;(2略;(3)BD=1.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。
新人教版八年级数学下册期末考试及答案【1套】
新人教版八年级数学下册期末考试及答案【1套】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.(-9)2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或73.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.107.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.248.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.比较大小:23________13.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、B6、B7、B8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、<3、14、8.5、1 (21,2) n n--6、42.三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、1a b-+,-13、(1)见解析;(2)经过,理由见解析4、略.5、CD的长为3cm.6、(1)2元;(2)至少购进玫瑰200枝.。
新人教版八年级数学(下册)期末试卷及答案(一套)
新人教版八年级数学(下册)期末试卷及答案(一套) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.分解因式:22a4a2-+=__________.3.若m+1m=3,则m2+21m=________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =.3.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、()22a 1-3、74、10.5、36、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3x3、8k ≥-且0k ≠.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、CD 的长为3cm.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
新人教版八年级数学下册期末考试卷(及参考答案)
新人教版八年级数学下册期末考试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图1,在菱形ABCD 中,AC =2,BD =23,AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、C7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、(3,7)或(3,-3)3、如果两个角互为对顶角,那么这两个角相等4、x>3.5、706、20三、解答题(本大题共6小题,共72分)x=1、4x=-时,原式=1.2、x+2;当13、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、(1)2;(2)60︒;(3)见详解6、(1)2元;(2)至少购进玫瑰200枝.。
2022—2023年人教版八年级数学(下册)期末试卷及答案(A4打印版)
2022—2023年人教版八年级数学(下册)期末试卷及答案(A4打印版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( ) A .2-B .2C .12D .12-2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y+-B .22y xC .3223y xD .222()y x y -4.在△ABC 中,AB=10,10,BC 边上的高AD=6,则另一边BC 等于( ) A .10 B .8C .6或10D .8或105a abA(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)-751-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等51的值( ) A .在1.1和1.2之间B .在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间8.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E 是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15°B.22.5°C.30°D.45°9.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.24B.14C.13D.2310.尺规作图作AOB∠的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS 二、填空题(本大题共6小题,每小题3分,共18分)181________.2.分解因式:22a4a2-+=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=________度.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M .如果CDM的周长为8,那么ABCD的周长是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.4.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.6.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、A6、A7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()2 2a1-3、如果两个角互为对顶角,那么这两个角相等4、455、36、16三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、20xy-32,-40.3、-7<x≤1.数轴见解析.4、略.5、(1)略;(2)略.6、(1)每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)至少需要用电行驶60千米.。
新人教版八年级数学(下册)期末试卷及答案(完美版)
新人教版八年级数学(下册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根8.一次函数y=ax+b 与反比例函数a b y x -=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.计算:()()201820195-252的结果是________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再求值:222221412()x x x x x x x x -+-+÷-+,且x 为满足﹣3<x <2的整数.3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、B5、A6、B7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、0324、4256、7三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、-53、(1)a=5,b=2,c=3 ;(2)±4.4、(1)y =x +5;(2)272;(3)x >-3.5、略6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
新人教版八年级数学(下册)期末复习卷及答案
新人教版八年级数学(下册)期末复习卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2-的相反数是( )A .2-B .2C .12D .12- 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.若式子x1x+有意义,则x的取值范围是__________.3.若m+1m=3,则m2+21m=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、D6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、x 1≥-且x 0≠3、74、()()2a b a b ++.5、96、8三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、1a b-+,-1 3、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、24°.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
新人教版八年级数学下册期末测试卷附答案
新人教版八年级数学下册期末测试卷附答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .187.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 328n n 为________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:()()22141a a a +--,其中18a =.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、A6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、-1或5或13-3、74、a+c5、36、40°三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、23、(1)见解析;(2)经过,理由见解析4、(1)y =x +5;(2)272;(3)x >-3.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
新人教版八年级下数学期末试卷及答案1
八年级下期末考试数学试题(考试时间:120分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中。
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、假如分式x-11有意义,则x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =1 2、己知反比例数的图象过点(2,4),则下面也在反比例函数图象上的点是 A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,21) 3、始终角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 及x 的图象大致为A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进展了一次统计分析,确定在这个月的进货中多进某种型号服装,此时小明应重点参考A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好及水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 及AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,则四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为 A 、100 B 、150 C 、200 D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、假如顺次连结一个四边形各边中点得到的是一个正方形,则原四边形肯定是正方形。
新人教版八年级数学下册期末测试卷(完美版)
新人教版八年级数学下册期末测试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.248.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.21273=___________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、D6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、523、32或424、10.5、36、15.三、解答题(本大题共6小题,共72分)1、x=32、x 2-,32-. 3、(1)12,32-;(2)略.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
新人教版八年级数学下册期末考试卷含答案
新人教版八年级数学下册期末考试卷含答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或105.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.下列图形中,是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.若|x|=3,y2=4,且x>y,则x﹣y=__________.3.因式分解:a3﹣2a2b+ab2=________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、B6、A7、D8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、1或5.3、a (a ﹣b )2.4、8.56、6三、解答题(本大题共6小题,共72分)1、4x =2、x 2-,32-. 3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、略.5、(1)略(2)等腰三角形,理由略6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版八年级数学下册期末试卷1
故答案为: .
【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.
16.AEDF
【详解】试题解析:∵D、E、F分别是△ABC三边的中点,
∴DE∥AC,DE=AC,EF∥ AB,EF= AB,
∴四边形AEDF为平行四边形.
又∵AC=AB,
∴菱形的周长为4 .
故选C.
8.D
【分析】此类题目可直接将点的坐标代入解析式,利用方程解决问题.
【详解】 正比例函数y=(n+1)x图象经过点(2,4),
,
.
所以D选项是正确的.
【点睛】本题可直接将点的坐标代入解析式,利用方程解决问题.
9.D
【分析】一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.
5.不等式组 有3个整数解,则 的取值范围是()
A. B. C. D.
6.如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()
A.AB=BCB.∠DAB+∠ABC=180°
C.AB=CD,AD=BCD.∠ABC=∠ADC,∠BAD=∠BCD
19.(1)画图见解析;(2)12
【详解】试题分析:(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;
(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.
试题解析:(1)如图,△A1B1C为所作:
人教版八年级数学下册期末试卷1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册数学期末试卷一
一、选择题(共10小题,每题3分,共30分)
1.二次根式1-x 在实数范围内有意义,则x 的取值范围是( ) A. 0>x B. 1≤x C. 1≥x D. 1>x
2.正比例函数kx y =的图象经过点(1,2),则k 的值为( )
A 、2
B 、1
C 、
2
1
D 、-1 3.某校男子篮球队12名队员的年龄如下:16、17、17、18、15、18、16、19、18、18、19、18,这些
队员年龄的众数和中位数分别是( )
A 、17、17
B 、17、18
C 、16、17
D 、18、18 4.在ABC ∆中,1=AB ,3=AC ,2=BC ,则这个三角形是( )
A 、锐角三角形
B 、直角三角形
C 、顿钝角三角形
D 、等腰三角形
5.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,下列结论中不一定成立的是( ) A 、AB ∥CD B 、AC=BD C 、AC ⊥BD D 、OA=OC
6.下列计算正确的是( )
A 、123=-
B 、2363=⋅
C 、532=+
D 、5)5(2
-=-
7.已知直线
b kx y +=经过一、二、四象限,则直线k bx y -=的图象只能是( )
8.在ABC ∆中,∠C=90°,点D 、E 分别在BC 、AC 上,若DE=5,AB=5,则2
2
BE AD +的值为( ) A 、15 B 、25 C 、30 D 、50
9.某校为了开设武术、舞蹈、剪纸三项活动 课程以提升学生的体艺素养,随机抽取了 部分学生对这三项活动的兴趣情况进行 了调查(每人从中只能选一项),并将调 查结果绘制成下面两个统计图(不完整), 已知该校有1200名学生,则估计全校 学生中喜欢剪纸的人数为( ) A 、240 B 、300 C 、320 D 、360
10.下列运算中,正确的是( ) A 、
b a b a =++11 B 、a b b a =⨯÷1 C 、b a a b -=-11 D 、01
111=-----x x
x x
A
B
C
D
E
G
二、填空题(共6小题,每题3分,共18分)
11.直线42-=x y 与y 轴的交点坐标为________ 12.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小明笔试 成绩为90分,面试成绩为85分,那么小明的总成绩为________ 分. 13.现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为S 甲2
=0.32,
S 乙2
=0.26,则身高较整齐的球队是 队. 14.
20y =,那么x y +=_________ 15.若菱形的两条对角线长分别为10cm ,24cm ,则其周长为_________ cm 。
16.对于一次函数25y x =-,如果12x x <,那么12____y y (填“>”、“=”、“<”)。
17.如图,由4个等腰直角三角形组成,其中第1个直角三角形腰长为1cm , 第4个直角三角形斜边长度为________.
18.如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处, 若∠CFE=60°,且DE=1,则边BC 的长为 三.解答题(共9题,共72分)
19.计算:(1)22
148+- (2)()
26324÷-
20.已知直线b x y +=
21经过点)1,4(-P ,求关于x 的不等式02
1
<+b x 的解集.
21.如图,在□ABCD 中,AE//CF ,求证:AE=CF
22.某养鸡专业户计划用一段长为35m 的竹篱笆围成一个一边靠墙的矩形养鸡场地,如图所示,墙长为20m ,BC 边有一个宽为1m 的木门(木门用其它材料做不占用竹篱笆),设养鸡场AB 边的长为xm ,BC 边的长为ym ,BC 的长度不小于10m 且不超过墙长,求y 关于x 的函数解析式及x 的取值范围。
23.如图,已知⊿ABC 中,AB=AC ,E 、D 、F 分别是AB 、BC 、AC 的中点。
(1).求证:四边形AEDF 是菱形;
(2).若∠B=30°,BC=6,求四边形AEDF 的周长。
24.如图,在平面直角坐标系xoy 中,直线b kx y +=交x 轴于点A ,交y 轴于点B ,线段AB 的中点E
的坐标为)1,2(.
(1).求k 、b 的值;(2).P 为直线AB 上一点,PC ⊥x 轴于点C ,
PD ⊥y 轴于点D ,若四边形PCOD 为正方形,求点P 的坐标.
25.先化简,再求值:11222
3+----x x x
x x x ,其中2=x .
26.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(5)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
(1 (2)该班捐款金额的众数、中位数分别是多少?
27.如图(10)所示,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB=5cm,BC=13cm 。
求CE 的长?
新人教版八年级下册数学期末试卷一参考答案
25. 2x-1 ,3
26.解:(1)被污染处的人数为11人
设被污染处的捐款数为x元,则
11x+1460=50×38
解得x=40
答:(1)被污染处的人数为11人,被污染处的捐款数为40元.
(2)捐款金额的中位数是40元,捐款金额的众数是50元.。