人教版初一数学上册整式的加减-合并同类项

合集下载

人教版初一数学上册整式的加减(一)——合并同类项(基础)知识讲解

人教版初一数学上册整式的加减(一)——合并同类项(基础)知识讲解

整式的加减(一)——合并同类项(基础)【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并; 2. 掌握同类项的有关应用;3. 体会整体思想即换元的思想的应用. 【要点梳理】【高清课堂:整式加减(一)合并同类项 同类项】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项. 要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意: (1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有. (2) 合并同类项,只把系数相加减,字母、指数不作运算. 【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8 【答案与解析】本题应用同类项的概念与识别进行判断:解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关. 举一反三:【变式】下列每组数中,是同类项的是( ) . ①2x 2y 3与x 3y 2②-x 2yz 与-x 2y ③10mn 与23mn ④(-a)5与(-3)5⑤-3x 2y 与0.5yx 2⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥ 【答案】C2.(2016•乐亭县二模)若﹣2a m b 4与3a 2b n+2是同类项,则m+n= . 【思路点拨】直接利用同类项的概念得出n ,m 的值,即可求出答案. 【答案】4. 【解析】解:∵﹣2a m b 4与3a 2b n+2是同类项, ∴, 解得:则m+n=4. 故答案为:4.【总结升华】考查了同类项定义.同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同.举一反三:【高清课堂:整式加减(一)合并同类项 例1】【变式】已知 和 是同类项,试求 的值.【答案】()()21,23 223m n m n -=+=∴-+=解:由题意知,且类型二、合并同类项3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x-6xy(2)3x 2y-4xy 2-3+5x 2y+2xy 2+5 【答案与解析】解: (1)-2x 2-8y 2+4y 2-5x 2-5x+5x-6xy=(-2-5)x 2+(-8+4)y 2+(-5+5)x-6xy =-7x 2-4y 2-6xy(2)3x 2y-4xy 2-3+5x 2y+2xy 2+5=(3+5)x 2y+(-4+2)xy 2+(-3+5)=8x 2y-2xy 2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果. 举一反三:233m x y --22n xy +()()22m n -+【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0 D. 5a 2﹣4a 2=1 【答案】C解:3a 和2b 不是同类项,不能合并,A 错误; 2a 3+和3a 2不是同类项,不能合并,B 错误; 3a 2b ﹣3ba 2=0,C 正确; 5a 2﹣4a 2=a 2,D 错误, 故选:C .4.已知35414527m n ab pa b a b ++-=-,求m+n-p 的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着352m ab +与41n pa b +是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7 解这三个方程得:m =1,n =4,p =9, ∴ m+n-p =1+4-9=-4.【总结升华】要善于利用题目中的隐含条件. 举一反三: 【变式】若223ma b 与40.5n a b -的和是单项式,则m = ,n = . 【答案】4,2 .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值. (1)221()2()()3()3p q p q q p p q -+-----; (2)2283569p q q p -+--【答案与解析】(1)把()p q -当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=----又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值. 解:2283569p q q p -+--2(86)(35)9p q =-+-+- 2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值. 举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =. 【答案】解: (1)原式322981x x x =---+,当2x =时,原式=32229282167-⨯-⨯-⨯+=-. (2)原式22210x xy y =-+,当2x =,1y =时,原式=22222110116⨯-⨯+⨯=.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y-4x 3+2x 3y-2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么? 【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理. 【答案与解析】解:333336242215x x y x x y x --+-+=(6-4-2)x 3+(-2+2)x 3y+15 =15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理. 【总结升华】本题在化简时主要用的是合并同类项的方法,在合并同类项时,要明白:同类项的概念是所含字母相同,相同字母的指数也相同的项不是同类项的一定不能合并.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x 2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B . 【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b. 【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题? 【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。

人教版七年级数学上册教学课件-2.2整式的加减 第1课时 - 合并同类项 品质课件PPT

人教版七年级数学上册教学课件-2.2整式的加减 第1课时 - 合并同类项 品质课件PPT
人教版七(上)
整 式的 加减ຫໍສະໝຸດ 人教版七(上)单 整式 项 式
多 项 式
整式的加减
第1课时 : 合并同类项
1、填空
①3kg
+2kg
= 5kg
;
②3m ③3kg
+2m +2m
= 5m
;
= 不能计算 .
为什么③不能运算? 因为它们不是同一类事物,不能进行加减 那么怎样的式子是同一类呢?
一、学习目标
1、判断同类项 2、合并同类项
①3kg +2kg = 5kg ; ②3m +2m = 5m ; ③3kg +2m =
填一填:
因为同类项 可以合并
(1). 100t-252t=( 100-252 )t =( -152 )t (2). 3 x2 + 2x2 =( 3 + 2 ) x2 =( 5 ) x2
(3). 3ab2 - 4 ab2 =( 3 - 4 ) ab2 =(-1) ab2
一找
二移
三合并
方法与技巧
1找
x3 x2 y xy2 3x2 y 4xy2 3y2
2 移( x2 y 3x2 y) +(xy2 4xy2 ) + x3 + 3y2
3 合并 -4x2 y 5xy2 x3 3y2
x3 x2 y xy2 3x2 y 4xy2 3y2
1
解:原式=(-x2 y 3x2 y) (xy2 4xy2 ) x3 3y2
8x 2 y和-x 2 y
mn2和7mn2和0.4mn2
5a和9a
3 和0和- 5
8
9
xy2 和2 y2 x 3
概念学习:

人教版七年级数学上册整式的加减——合并同类项课件

人教版七年级数学上册整式的加减——合并同类项课件
2.若5xy2+axy2=-2xy2,则a=-7___;
3.在6xy-3x2-4x2y-5yx2+x2中没有同类项 的项是_6_x_y___;
知 识 延 伸:
4.已知:_2 x3my3 3
求 m、n的值 .

-
1_ 4
x6yn+1
是同类项,
解:∵
_2 x3my3 与 3
-
1_ 4
x6yn+1
是同类项
二、展示目标和任务
学习目标: 1、掌握同类项的概念,能辨认同类项,学会合并同 类项并知道合并同类项所根据的运算律。 2、通过视察、思考、分析、归纳、小组合作,学会 了解数学的分类思想。 学习重难点: 1.同类项概念,以及合并同类项法则和基本步骤。 2.正确的判断同类项以及准确合并同类项。
三、自主合作与交流
(5) 2.1与 3 4
(4)2a与2ab
(6)53与b3
4a + 2a =66 a 4xy ――xy== 3xy
探究A:
(1)运用运算律计算:
100 2 252 2 __1_0_0___2_5_2___2__; 1002 2522 _1_0_0___2_5_2_____2__
(2)根据(1)中的方法完成下面的运算,并说说
3x2=-2(2+1-3)x2+(-5+4)x-2
(3
3)a
3
abc
(
1
3
1)c2
=-x-2
33
当x 1 时,原式 1 2 5
2
2
2
abc
当a 1,b 2,c 3时, 6
原式=(- 1) 2 (3) 1 6
随堂练习:

人教版七年级数学上册《整式的加减同类项及其合并》课件(共27张PPT)

人教版七年级数学上册《整式的加减同类项及其合并》课件(共27张PPT)
整式的加减——同类项及其合并
学习目标一: (1)理解并掌握同类项的定义。 (2)能正确进行简单的整式加减。
学习目标二: 体验参与课堂学习的快乐!
答对有奖哦
1、下列各组是同类项的是( ) A 2x3与3x2 B 12ax与8bx C x4与a4 D π与-3
2、5x2y 和42ymxn是同类项,则 m=______, n=________
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
(交流·展示)
·已知-2ambc2与4a3bnc2是 同类项,求多项式 3m2n-2mn2-m2n+mn2的值。
我能用时少,而且做的好!
快乐之旅
6个金蛋你可以任选一个,如果答对其中 的问题,你将获得奖品,当然你可以自己作 答,也可以求助你周围的老师或同学.
3
5
1
2
4
6
下列各式的计算正确吗?为什么?
你开心我快乐
若2x2ym与-3xny3的和是一个单项式, 则m+n=( )
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.

人教版七年级数学上册第二章2.2.1合并同类项

人教版七年级数学上册第二章2.2.1合并同类项

§2.2 整式的加减(1)
号 A 11号
-x -x
22
B 2号
π
C 3号
abc2
C 4号
103c2ba
B 8号
B 5号
D 6号
E 7号
2%
E 9号
5ab
10号 A10号 2 2 x2 3 D 14号
-2yx2 xy 5 abc
-1
12号 5y2x B 16号
1 3
-4x2y
1 16
E 11号 2 2 15号
=3 3x2 = =5 = 5x
5x2y =
§2.2 整式的加减(1)
相加 3 x2y
2 x2y = 5 +
不变 2y x
多项式中的同类项可以合并成一项, 这样的 过程叫做合并同类项(combining like terms).
法则: 合并同类项后,所得项的系数是合
并前各同类项的系数的和,且字母部分不变.
值得注意的是:
① 同类项与系数(即字母前面的具体
的数)无关;
② 同类项与字母的排列顺序也无关; ③ 特别的,几个常数项也是同类项; ④ 相同字母是多项式或整体时,底相同 或互为相反数的项也是同类项.
§2.2 整式的加减(1)
同类项定义: 多项式中,所含字母相同,并且
相同字母的指数也相同的项叫做同类项。
(3x y 5x y ) (4 xy 2 xy ) (3 5)
2 2 2 2
2 2
3x y 5 x y 4 xy 2 xy 3 5
2 2 2 2
加法的 形式
(3 5) x y ( 4 2) xy ( 3 5) 2 2 8 x y 2 xy 2. 合并 乘法分配律

7年级数学上册(人教版)课件第21课时 整式的加减——合并同类项

7年级数学上册(人教版)课件第21课时 整式的加减——合并同类项

9.若 a=-2 018,b=2 1018,则多项式 3a2+2ab
-a2-3ab-2a2 的值为.2 018
D.-2
1 018
解析:3a2+2ab-a2-3ab-2a2=(3-1-2)a2+(2- 3)ab=-ab.当 a=-2 018,b=2 0118时,原式=-ab=- (-2 018)×2 0118=1.
10.把 x-y 看成一个整体,合并同类项:5(x-y)+ 4(x-y)-8(x-y)=__x_-__y___.
11.若单项式-2xm+1y2 与-13x5-ny2m 是同类项,则(- m)n=___-__1___.
12.若关于 a 的式子 2a+ab-5,无论 a 为何值,该 式的值恒不变,则 b 的值为__-__2____.
B.12x 与-3x
C.-13a2b 与15ab2
D.14xy 与-yx
变式 1 下列各组中的两式是同类项的是( D )
A.(-2)3 与(-n)3
B.-45a2b 与-45a2c
C.x-2 与-2
D.0.1m3n 与-12nm3
知识点二 合并同类项 ☞ 例 2 (教材 P65 练习第 1 题改编)计算: (1)12x-20x=__-__8_x___; (2)x+7x-5x=___3_x____; (3)-5a+0.3a-2.7a=_-__7_._4_a__;
第21课时 整式的加减(1)——合并同类项
核心提要 典例精练 变式训练 基础巩固 能力拔高 拓展培优
1.同类项:所含字母__相__同____,并且相同字母的指 数也__相__同____的项叫做_同__类__项___.
2.合并同类项的概念:把多项式中的同类项合并成 一项,叫做__合__并__同__类__项______.

人教版七年级数学上册4.2第1课时合并同类项课件

人教版七年级数学上册4.2第1课时合并同类项课件
第四章 整式的加减
4.2 整式的加法与减法
第1课时 合并同类项
基础过关全练
知识点1 同类项
1.(2022湖南湘潭中考)下列整式与ab2为同类项的是 ( B )
A.a2b
B.-2ab2
C.ab
D.ab2c
解析 根据同类项的概念判断.D与ab2所含字母不同,A、C 与ab2相同字母的指数不完全相同,B与ab2是同类项.
3
解析 因为单项式2xmy3与单项式- 1 x2yn的和仍是单项式,所以
3
2xmy3与-1 x2yn是同类项,所以m=2,n=3.
3
规律总结 若几个单项式的和或差也是单项式,则这几个单 项式是同类项.
11.(2024重庆垫江实验中学发展共同体定时训练,17,★★☆)
若关于x,y的多项式-5x2y-2nxy+5my2-3xy+4x-7不含二次项,则
m+n= -1.5
.
解析 因为-5x2y-2nxy+5my2-3xy+4x-7=-5x2y+(-2n-3)xy+5my2+ 4x-7,且多项式不含二次项, 所以-2n-3=0,5m=0,解得m=0,n=-1.5. 所以m+n=-1.5.
12.(2024陕西渭南临渭期末,11,★★☆)若代数式mx2+5y2-7x2+
母相同,相同字母的指数也相同,是同类项;D. 1 a2b与1 b2a,所
4
4
含字母相同,但相同字母的指数不相同,不是同类项.故选D.
3.(2024北京石景山期末)若-10x7y与5xm-1y2n是同类项,则m=
8 ,n=
.
解析 因为-10x7y与5xm-1y2n是同类项, 所以m-1=7,2n=1,解得m=8,n解析 A.3a-a=2a;B.4a2与-2a不是同类项,所以不能合并;C.2a 与b不是同类项,所以不能合并;D.3ab-ba=2ab.故选D.

人教版七年级数学上册整式的加减---合并同类项课件

人教版七年级数学上册整式的加减---合并同类项课件
探究一:什么是同类项都有什么相同点
相同字母的指数相同 指数都是2 指数都是1
(3)3x2 y 和 5 x2y
(1)2x 和 -3 x; (2)5st 和 7ts; (3)3x2y 和 5x2y;
(4)2 ab2c 和 -ab2c.
所含字母相同
同类项的定义: 多项式中,所含字母相同,并
且相同字母的指数也相同的项叫做同类项。
先化简,再求值.
解法2 : 3x2 4x 3 2x2 5x 4x2 2 (3 2 4)x2 (4 5)x (3 2) 3x2 9x 1.
当x 2时, 原式 = 3 2 2 9 2 1 5.
比较解法1与解法2,哪种方法更简单?
降幂排列:
按照某字母的指数从大到小的顺序排列.
把多项式中的同类项合并成一项,叫做合并同类项
合并同类项
式的运算
38.5 a + 34.2a + 27.3a = (38.5+34.2+27.3) a =100a
想一想
上面的等式变形是逆用了哪个 运算定律?
数的运算
合作学习: 1、合并同类项
(1) 7x + 3x = 10x (2) 4 x2 - 2 x2 = 2x2
探索新知
2.合并多项式4x2-8x+5-3x2+6x-4中的同类项.
解:—4x2 - 8x +~~5~-—3x—2 + 6x -~~4~
一找
=(4x2-3x2)+(-8x+6x) + (5-4) 二移
= x2-2x +1
三并
合并同类项的步骤:
1、找出同类项
用不同的线标记出各组同类项,注意每一项的符号。
2、把同类项移在一起
用括号将同类项结合,括号间用加号连接。

人教版数学七年级上册整式的加减—合并同类项课件

人教版数学七年级上册整式的加减—合并同类项课件
3x2 y 5x2 y (4xy2 ) 2xy2 (3) 5
3 5x2 y (4) 2xy2 2
8x2 y 2xy2 2
例2:求多项式 2x2 5x x2 4x 3x2 2 的值,
其中 x 1
2
.
解:原式 2x2 (5x) x2 4x (3x2 ) (2)
根据以上两个例子,你能发现合并同类项的法则吗?
合并同类项法则: 把同类项的系数相加,所得的结果作为系数,
字母和字母的指数保持不变.
下列计算对不对?若不对,请改正。
(1)、7x 2 3x 2 4 =5x2
(2)、2x 2 3x 2 5x 4 =4x2
(3)、3x 2 y 5xy
3x与2y不是同类 项,不能合并。
(4)、3mn – mn = 3mn
4a2 3b 2 4a2 5b 7
解:4a2 3b 2 4a2 5b 7
4a2 3b (2) (4a2 ) (5b) (7 找)
4a2 (4a2 ) 3b (5b) (2 7() 移)
所含字母相同并且相同字母的指数也相同, 这样的项叫做同类项。
注意: 1、所有常数都是同类项. 如:2和-3. 2、同类项与系数无关,与字母的顺序无关. 如:4m2n和nm2
1、下列各组单项式是不是同类项?
为什么?
(1)2a
与 2ab
(2)-2.1 与 π
(3)3x2y 与 -xy2
(4)-2m2n 与 nm2
2.2整式的加减(1) —合并同类项
生活中我们经常见到这些水果,那你会将下 列水果进行分类吗?
如果将这些水果换成下面的单项式,你还 会分类吗?
0.5xy2 ,2ab,3x3,4x 7x3,3x,xy2 7 ab

人教版七年级数学上册:2.2整式的加减-合并同类项(教案)

人教版七年级数学上册:2.2整式的加减-合并同类项(教案)
3.重点难点解析:在讲授过程中,我会特别强调同类项的辨识和合并法则这两个重点。对于难点部分,比如容易混淆的项,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的合并同类项的练习。这个操作将演示如何识别和合并同类项。
-难点二:在合并同类项时,学生可能会忘记只对系数进行运算,而错误地改变字母的指数或字母本身。
-难点三:将合并同类项的法则应用到复杂的整式中,特别是当整式中含有多个字母和多项式时,学生可能会感到困惑。
举例解释:
对于难点一,教师可以通过对比练习,强调同类项的辨识关键点,如提供3x^2和3x^3这样容易混淆的例子,让学生通过对比加深理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母且相同字母指数的项进行相加或相减。它在数学运算中非常重要,可以帮助我们简化整式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将3x^2 + 5x^2这样的同类项合并为8x^2,以及它在实际中的应用。
五、教学反思
今天我们在课堂上学习了整式的加减-合并同类项,回顾整个教学过程,我觉得有几个方面值得反思。首先,我注意到在导入新课环节,通过提问方式引导学生思考日常生活中的合并同类项现象,大部分学生能够积极参与,但仍有部分学生显得不够活跃。这可能是因为他们对这个概念还不够熟悉,或者是对数学与生活联系的认识不够深入。在今后的教学中,我需要更多地设计贴近生活的例子,帮助学生建立起数学与实际的联系。
4.培养学生的合作交流能力,通过小组讨论和互动,让学生在交流中深化理解,共同提高。

人教版七年级上册数学-第2章 整式的加减 第1课时 合并同类项

人教版七年级上册数学-第2章 整式的加减 第1课时 合并同类项
解:3x2y与-yx2 ,xy2与-2xy2
知识点2 合并同类项
6.把-5ab+4ab 合并同类项后的结果是
( D)
A.-1
B.a
7.下列计算正确的是
C.b
D.-ab
(C )
A.8x+4=12x
B.4y-4=y
C.4y-3y=y
D.3x-x=3
8.下列计算正确的是
( C)
A.3a2+a2=3a4
B.3a+b=3ab
书共x 页,则小明还有
页没看.
14.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a亩,水 稻种植面积是小麦种植面积的4倍 ,玉米种植面积比小麦种植面积的2 倍少3亩. (1)求水稻种植面积;(用含a 的式子表示) (2)水稻种植面积和玉米种植面积哪一个大? 为什么? 解:(1)由题意得,水稻种植面积是4a; (2)由题意 得,玉米种植面积是2a-3,∵2a-3-4a=-3 -2a,又∵a>0,∴3-2a<0,即2a-3<4a, ∴水稻种植面积大
A.3a
B.2ab
C.-3a2
4.下列各式中,是5x2y的同类项的是
A.x2y
B.-3x2yz
C.3a2b
( C) D.4x
(C ) D.x3和43
(A ) D.a2b
(A ) D.5x2
5.找出下列各式中的同类项. (1)3x-2y+1+5y-2x-3; 解: 3x与-2x, -2y与5y, 1与-3; (2)3x2y-2xy2+xy2-yx2
能力提升
15.下列算式:பைடு நூலகம்
①3a+2b=5ab;②5y2-2y2=3;③7a+a=7a2;④4x2y-2xy2=2xy.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档