沪版实验中学2013学年第一学期七年级数学检测试卷及答案
2013实验中学七年级上数学期中试卷1
实验中学七年级上数学期中试卷一、选择题(每小题3分,共30分)1.下列四个数中,是负数的是( )A.|-2|B.(-2)2C.-2D. 2)2(-2.下面的计算正确的是( )A. 6a -5a=1B. a+2a 2=3a 3C.-(a -b)=-a+bD.2(a+b)=2a+b 3.下列说法正确的是( ) A.3a 不是整式. B.43a 是整式. C. 2+a 是单项式. D.3不是整式. 4.如图,数轴的单位长度为1.如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A.-4B. -2C.0D. 45.2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A.3 B.7 C.3或7 D.1或7 6.对于实数a 、b ,给出以下三个判断: ①若b a =,则b a =. ②若b a <,则b a <. ③若b a -=,则 22)(b a =-.其中正确的判断的个数是( )A .3B .2C .1D .07.2013年我市初中毕业生人数约为1.07×104人.对于这个近似数,下列说法正确的是( )A 、精确到百分位,有3个有效数字B 、精确到百位,有3个有效数字C 、精确到十位,有4个有效数字D 、精确到个位,有5个有效数字8.若规定“!”是一种数学运算符号,且1!=1,2!=1×2=2,3!=3×2×1=6,4!=4×3×2×1=24,….,则!98!100的值为( ) A.4950B.99!C.9 900D.2! 9.在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10m ,如图,第一棵树左边5m 处有一个路牌,则从此路牌起向右510m~550m 之间树与灯的排列顺序是( )学校 班级 姓名 学号 ……………………………………………………………………………………………………………………………………………………A .B .C .D .10.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如在代数式a +b +c 中,把a 和b 互相替换,得b +a +c ;把a 和c 互相替换,得c +b +a ;把b 和c……;a +b +c 就是完全对称式.下列三个代数式:① (a -b)2;② ab +bc +ca ;③ a 2b +b 2c +c 2a .其中为完全对称式的是( )A .① ②B .② ③C .① ③D .① ② ③二、填空题(每小题3分,共24分)11.在722,π,9,0.1 010 010 001,14,38中,无理数的是 12.下列代数式中,属于单项式的有:______ __912-x , -x 3-5xy-2y 2, ab , -2.5 x , 2π,xx 1+, ,-3813.甲、乙两同学进行数字猜谜游戏.甲说:一个数的相反数就是它本身,乙说:一个数的倒数也等于它本身,则_______.14..在数轴上,到原点距离为5个单位的点表示的数是 15.下列说法错误的是:①每一个数都有两个平方根; ②若一个数的平方与立方结果相等,则这个数是0; ③没有平方根的数也没有立方根; ④有理数中绝对值最小的数是零. ⑤ 0既不是正数也不是负数. ⑥带根号的数是无理数.16. 已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx + 的值为________. 17.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为4的顶点开始,第2013次“移位”后,则他所处顶点的编号为_ .18.如图是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)是为正绝对值相反数否数大于2非正输入 5432132y x +当输入 时,其输出结果是0 。
上海2013学年第一学期静安初一期末数学试卷
(B)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(C)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(D)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.三、简答题(第19~24题每小题4分,共24分)19.计算:2422332)3024(yxyxyx÷÷-.20.计算:232)4()2(-⋅abba(结果不含负整数指数幂).静安区2013学年第一学期期末教学质量调研七年级数学试卷姓名______________班级________学校样本编号(考试时间:90分钟完成,满分:100分)2014.1效21.分解因式:xy y x 44422-+-. 22.分解因式:a ax ax 321424--. .23.已知232=+y y ,求代数式)2)(2()3(2---++y y y 的值. 24.计算:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭.26.甲、乙两辆客车分别从相距120千米的A 、B 两站同时出发,相向而行,相遇时甲车行驶了55千米,如果甲车每小时比乙车少走10千米,求甲、乙两车速度.(列分式方程解应用题)请 在 黑 色 矩 形 边 框 内 答 题,超 出 黑 色 矩 形 边 框 的 答 题 一 律 无 效 请 在 黑 色 矩 形 边 框 内 答 题,超 出 黑 色 矩 形 边 框 的 答 题 一 律 无 效 请勿折叠请 在 黑色 请 在 黑 色 矩 形 边 框 内 答 题,超 出 黑 色 矩 形 边 框 的 答 题 一 律 无 效 请 在 黑 色 矩 形 边 框 内 答 题,超 出 黑 色 矩 形 边 框 的 答 题 一 律 无 效代数式表示FC的长度.请在黑色矩形边框内答题,超出黑色矩形边框的答题一律无效请在黑色矩形边框内答题,超出黑色矩形边框的答题一律无效。
七年级上册上海教科实验中学数学期末试卷同步检测(Word版 含答案)
七年级上册上海教科实验中学数学期末试卷同步检测(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。
(2)根据点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,可表示出CA=|x+3|,CB=|x-9|,再由CA=3CB,建立关于x的方程,求出方程的解,然后求出点C的速度即可。
(3)根据点的运动速度和方向,分别用含t的代数式表示出点D、P、Q、M、N对应的数,再分别求出PQ、OD、MN的长,然后求出的值时常量,即可得出结论。
2.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
沪版2013学年第一学期七年级数学试卷
12013学年第一学期七年级数学试卷(时间90分钟,满分100分)一、填空题(本大题共有15题,每题2分,满分30分) 1.计算:=---)21(2 _____________. 2.如果把向东50米记作+50,那么向西20米可记作____________米. 3.如果一个数的倒数是它本身,那么这个数是____________. 4.地球与月球之间相距380000000米,将这个数用原数科学计数法表示为______________米. 5.方程4x=2的解是______________6.不等式组⎩⎨⎧-〉-〉7.15.2x x 的解集是__________________.7.将方程62=-y x 变形为用含y 的式子表示x ,那么=x ____________。
8.二元一次方程83=+y x 的正整数解是_______________.9已知⎩⎨⎧==75y x 是方程12=-y kx 的一个解那么=k ___________ .10.已知α∠的补角等于︒123,那么α∠等于___________度. 11.已知M是线段AB 上的一点,点C是线段AM的中点,点D 是线段MB的中点,已知AM=8cm ,MD=2cm,则BC=__________cm 12.如图,OD OB OC OA ⊥⊥,,那么与A BCOB ∠互余的角有________个. O D13某校六(4)班女生比男生少10人,女生与男生的人数之比是3:5,全班有学生______人14.在长方体ABCD -A 1B 1C 1D 1中,与平面AA 1D 1D 平行的棱共有学校_______________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………ABC DE FC2___________条.15.如图,它是一个正方体六个面的展开图,那么原正方体中与平面E 互相平行的平面 是____________.(用图中字母表示二、单项选择题(本大题共有5题,每题2分,满分10分)16.如果x <y,那么下列关系中,正确的是………………………( ).(A )11+->+-y x (B )1515->-y x (C ) y x 2121+>+(D )y x 55-<-17.关于x 方程k(x -1)=4x -3k 的根是-4,则k+8k 的值是( ).(A )-48 (B )0 (C )64 (D )72 18.由x>y 可以得到 ax ≤ay ,下列条件正确的是………………( ).(A )a>0 (B )a<0 (C )a ≤0 (D )a ≥0 19.下列哪种方法不能检验直线与平面是否垂直( ).(A )铅垂线; (B)长方形纸片; (C)三角尺;(D)合页型折纸20.下列说法中,正确的是: ( ) A .联结两点的线段叫做两点之间的距离;B .用度量法和叠合法都可以比较两个角的大小;C .六个面、十二条棱和八个顶点组成的图形都是长方体;D .空间两条直线间的位置关系只有相交和平行两种三、计算(21、22每题5分,23—26每题6分,满分34分) 21.计算:[⎥⎦⎤-⨯+⨯-22)21(8241 22.解方程:131221--=--x x x . 解: 解:323.解不等式:243+x ≤147-x 24.解不等式组 ⎩⎪⎨⎪⎧x -12≤1,x-2<4(x +1),解: 把它的解集在数轴上表示出来,并写出这个不等式组的整数解。
(实验中学)2013学年第一学期七年级数学期末检测
2013学年第一学期七年级数学期末检测(试卷)考生须知:1.本卷评价内容范围是《数学》七年级上册1.1~6.9,满分100分。
2.考试时间80分钟,试卷共4页,答卷纸共3页。
答题时不准使用计算器,解答题请在答题卷答题区域作答,不得超出答题区域边框线。
一.选择题(本题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣3的相反数是( ) A.31- B.﹣3 C.3 D.31 2.如图为我市一月份某一天的天气预报,该天最高气温比最低气温高( )A.﹣3℃B.7℃C.3℃D.﹣7℃3.2013年12月14日,嫦娥三号月球探测器在月球着陆,已知月球的表面积为38000000平方公里,这个数字用科学记数法可表示为( )A. 3.8×107B. 38×106C. 3.8×106D.3.8×1084.下列各数中,是无理数的是( ) A.31 B.2π C.4 D.3.14 5.若x=1,则 |x-2| =( )A.﹣1B.3C.﹣3D.16.如图,数轴上点A 表示的数是( ) A.2- B.3- C.2 D.37.如图是一个简单的数值运算程序,当输入的x 的值为﹣1时,则输出的值为( )→ →→ (第7题图)A.-1B.-5C.1D.58.将方程13122=+-x x 去分母:两边同乘以6,得到新的方程是( ) A.3x-4x-2=1 B.3x-4x+2=1 C.3x-4x-2=6 D.3x-4x+2=69.如图,某同学在课桌上随意将一块三角板的直角叠放在直尺上,则∠1+∠2等于( )A.60°B.90°C.110°D.180°10.元旦节期间,为了促销商品,甲、乙两个商店都采取优惠措施,甲店推出七折后再打七折,乙店则一次性五折优惠,若同样价格的商品,下列结论正确的是( )输入x ×(-3) -2 输出A.甲店比乙店优惠B.乙店比甲店优惠C.两店优惠条件相同D.不能进行比较二.填空题:(本题有8小题,每小题3分,共24分)11.比较大小:1__________2(用“>”“=”或“<”表示)。
上海教科实验中学人教版(七年级)初一上册数学期末测试题及答案
上海教科实验中学人教版(七年级)初一上册数学期末测试题及答案一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1 C .2 D .3 3.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1064.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 5.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .126.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+7.在223,2,7-四个数中,属于无理数的是( ) A .0.23B 3C .2-D .2278.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④9.21(2)0x y -+=,则2015()x y +等于( ) A .-1 B .1 C .20143 D .20143- 10.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2) 11.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,212.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯13.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .14.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯15.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题16.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 17.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 18.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.19.已知单项式245225n m xy x y ++与是同类项,则m n =______.20.把53°24′用度表示为_____.21.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 22.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.23.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 24.若a a -=,则a 应满足的条件为______.25.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.26.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号) 27.已知代数式235x -与233x -互为相反数,则x 的值是_______. 28.观察“田”字中各数之间的关系:则c 的值为____________________.29.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.30.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.33.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由. 34.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.35.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?36.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).37.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.38.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动. 设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .2.B解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得:(1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】试题分析:384 000=3.84×105. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.5.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.6.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.7.B解析:B 【解析】 【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可. 【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意, 故选:B.本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.8.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.9.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A10.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 11.D解析:D【解析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.12.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.13.D解析:D 【解析】 【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题. 【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图; B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图. 故答案是D. 【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.14.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.15.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 二、填空题16.684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x +a =3(x +3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.19.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 20.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.21.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;22.-3【解析】【分析】根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 23.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键24.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a 0≥【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.25.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.26.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.27.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.28.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
上海版2013学年度七年级第一学期月考数学试卷
上海版2013学年度七年级第一学期月考数学试卷(时间40分钟,满分100分)一、填空题(每题3分,共39分)1、当x=____________时,分式31x -无意义.2、当x=____________时,分式22x x --的值为零. 3、化简22a b a b-+=_________4、计算:2324ab abcd cd-÷=________ 1x x x ÷÷=_________1=_______11x x x+-- 5、3()24x xy= ()26b ac abc = 21()256x x x x +=+++6、分式122x y +与221x y-的最简公分母是_____________ 7、x=3________(填“是”或“不是”)方程211312x x -=+的根 8、将123()xy x y ---写成只含有正整数指数幂的形式:_______________. 9、将222a ba b +写成不含分母的形式______________ 10、计算:1122()()x y x y ----+÷-=_____________11、计算:222()_______3a b--= 12、用科学记数法表示:0.000000108-=_____________ 13、41.0210-⨯的原数是二、选择题(每题4分,共16分) 14、下列代数式中不是分式的是……………………………………………( )A 、x πB 、12xC 、2a ba+ D 、1m m +15、下列分式是最简分式的是………………………………………………( )A 、22x y xB 、2a xyC 、22x y x y ++D 、222x y xy y++ 学校___________________________ 班级________________________ 姓名__________________________ 学号______________________________ …………………………装………………………………………………………………钉………………………………………………………线……………………………16、下列方程中,不是分式方程的是…………………………………………( )A 、13x x +=B 、251432x x -+= C 、222x x x =-- D 、1112x x += 17、下列式子成立的是………………………………………………………( )A 、22a a b b +=+B 、112112a a b b --=--C 、22a a b b= D 、22a a a b b b +=+三、简答题(18题8分,19、20、21每题9分,22题10分)18、计算:()13113232225--⎛⎫⎛⎫-++--- ⎪ ⎪⎝⎭⎝⎭19、2432224x x x --+--20、解方程:2713113x x x -+=-- 21、求值:211(1)(1)11x x x -+⋅-+-,其中x=322、将一包15克的柠檬茶冲剂,用开水冲泡成浓度为6%的饮料,请问需要用开水多少克?。
上海市七年级第一学期数学期末考试共三套含答案
上海市2012学年七年级第一学期数学期末试卷2013.1.14(测试时间90分钟, 满分100 分)一、填空题(每题1分,共18分) 1、多项式9753+-x x 是次项式2、多项式13691124--+-x x x 的最高次项是,最高次项的系数是,常数项是3、•(24a -)=23441612a a a +- 5.从整式π、2、3+a 、3-a 中,任选两个构造一个..分式 .6.如果多项式62-+mx x 在整数范围内可以因式分解,那么m 可以取的值是.7.若8,14,则=+22n m ; 8.当x 时,分式242--x x 有意义; 9.如果分式522-+x x 的值为1,那么=x ;10.计算:x x x x 444122-⋅+-; 11、若关于x 的方程221=-x 与23-=+a x x 的解相等,则a 的值为12. 如图,将△绕点O 顺时针旋转90°得△,已知3=OA ,1=OC ,那么图中阴影部分的面积为 .13.已知:如图,在正方形中,点E 在边上,将△绕点D 按顺时针方向旋转,与△重合,那么旋转角等于度.14. 在线段、角、正三角形、长方形、正方形、等腰梯形和圆中,共有 个为旋转对称图形.15.如图,一块等腰直角的三角板,在水平桌面上绕点C 按顺时针方向旋转到A ′B ′C ’的位置,使A 、C 、B ′三点共线,那么旋转角的大小是 度.16、正三角形是旋转对称图形,绕旋转中心至少旋转 度,可以和原图形重合。
17.长、宽分别为a 、b 的长方形硬纸片拼成一个“带孔”正方形(如右图所示),试利用面积的不同表示方法,写出一个等式.18.为确保信息安全,信息需要加密传输,发送方由明文→密文ABC D EF (第13题图)ab(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c 对应的密文1-a ,12+b ,23-c .如果对方收到的密文为2,9,13,那么解密后得到的明文为 .二、选择题(本大题共13小题,每小题2分,满分26分) 1.下列运算中,正确的是 …………………………………—………………………( )(A)532)(a a =; (B)532a a a =⋅; (C) 532a a a =+; (D)236a a a =÷.2.()()c b a c b a --+-的计算结果是………………………………………………( )(A)222c b a -+; (B)222c b a +-;(C)2222b c ac a -+-; (D)2222c b ab a -+-.3.如果22423y xy x M --=,2254y xy x N -+=,那么2215138y xy x --等于…( )(A )N M -2 (B )N M -4 (C )N M 32- (D )NM 23-4.如果分式yx x +-22的值为0,那么y的值不能等于……………………………( )(A )2 (B )-2 (C )4 (D )-45.小马虎在下面的计算中只做对了一道题,他做对的题目是 ( )(A ) 222()a b a b +=+ (B ) 432101102-⨯⨯⨯= (C ) 3252a a a += (D ) 326(2)4a a -=6.甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) (A)26066-=x x ; (B) x x 60266=-; (C)26066+=x x ; (D )xx 60266=+ 7.如果将分式yx y x +-22中的x 和y 都扩大到原来的3倍,那么分式的值( )(A )扩大到原来的3倍; (B )扩大到原来的9倍;(C )缩小到原来的31; (D )不变.8、下列各式正确的是………………………………………………………………( ) (A )422x x x =+ (B )9336)2(x x-=-(C )22)21x (41x x +=++ (D ))0(21222≠=-x x x9.在下图右侧的四个三角形中,由ABC △既不能经过旋转也不能经过平移得到的三角形是 ()10.下列图形中,是中心对称图形的是( )11.从甲到乙的图形变换,判断全正确的是ABC(A )(B )(C (D正三角形等腰梯形正五边形正六边形(A )(C )(D )(B )(1) 甲 乙 甲乙乙甲(2)(3)(A )(1)翻折,(2)旋转,(3)平移; (B )(1)翻折,(2)平移,(3)旋转;(C )(1)平移,(2)翻折,(3)旋转; (D )(1)平移,(2)旋转,(3)翻折。
2013学年第一学期七年级数学第一次阶段性检测含答案
2013学年第一学期第一阶段七年级数学试卷2013.10命题学校:横溪镇中学 命题人:王秋红 审核人:杜聪玲一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
1、-21的倒数是( ) A .21- B.2 C.-2 D.212、下列四个数中,在-2到0之间的数是( ) A 、-1 B 、1 C 、-3 D 、33、下列运算中正确的个数有( )(1)(-5)+5=0, (2)-10+(+7)=-3, (3)0+(-4)=-4, (4)(-72)-(+75)=-73, (5)-3-2=-1A 、1个B 、2个C 、3个D 、4个 4、计算(-6)×(12-)的结果是( ) A 、12 B 、-12 C 、-3 D 、35、某种细菌,在培养过程中每过30分钟便由一个分裂为两个.经过3小时,这种细菌由一个可以分裂为( ) (A )8 (B )16个 (C )32个 (D )64个6、在数轴上把-3的对应点移动5个单位后,所得的对应点表示的数是()A 、2B 、-8C 、2或-8D 、不能确定7、据第六次全国人口普查统计,我国人口已达139503万人,精确到千万位用科学记数法可记为:( )A 、1.39×10 9人B 、1.40×10 8人C 、1.40×10 9人D 、14.0×10 8人8、一个商店把货物按标价的九折出售,仍可获利20%,若进价为21元,则标价为( )A 、28元B 、 27.72元C 、30元D 、29.17元9、有理数a 、b 、c 的大小关系如图: ∣ ∣ ∣ ∣ 则下列式子中一定成立的 是:( ) a b 0 cA 、a +b +c >0B 、c a c a +=-C 、c b a <+D 、a c c b ->- 10、巴黎与北京的时差是 -7小时(带正号的数表示同一时刻比北京时间早的时间),班机从巴黎飞到北京需用10小时,若乘坐从巴黎2:00(当地时间)起飞的航班,到达北京机场时,当地时间是( )A 、5:00B 、17:00C 、19:00D 、前一天17:00二、认真填一填(本题有8个小题,每小题3分,共24分) 11. 5的相反数是 ▲ ;-8的绝对值是 ▲ ;35-的倒数是 ▲ 。
七年级上册上海上海市实验学校东校数学期末试卷练习(Word版 含答案)
七年级上册上海上海市实验学校东校数学期末试卷练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.3.如图(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A 点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?【答案】(1)解:∵∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′)∴GE平分∠DED′,FE平分∠CED′,∴∠DED′=2∠DEG,∠CED′=2∠CEF∴∠DED′+∠CED′=180°即2∠CEF+2∠DEG=180°∴∠CEF+∠DEG=90°答:∠CEF与∠DEG的关系是互余.(2)解:如图,由题意得:GM平分∠FGF, GN平分∠AGF设∠FGM=∠F'GM=x,∠FGN=∠AGN=y∴2y-2x=90°,即y-x=45°,∴∠MGN=∠FGN-∠FGM=45°答:两条折痕GM、GN所成角的度数为45°.【解析】【分析】(1)根据折叠的性质,可知GE平分∠DED′,FE平分∠CED′,再利用角平分线的性质,可证得∠DED′=2∠DEG,∠CED′=2∠CEF,然后根据平角的定义,可解答。
上海教科实验中学人教版(七年级)初一上册数学期末测试题及答案
上海教科实验中学人教版(七年级)初一上册数学期末测试题及答案一、选择题1.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-22.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3803.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .34 4.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上5.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 6.在下边图形中,不是如图立体图形的视图是( )A.B.C.D.7.若-4x2y和-23x m y n是同类项,则m,n的值分别是( )A.m=2,n=1 B.m=2,n=0 C.m=4,n=1 D.m=4,n=0 8.下列各数中,有理数是( )A.2B.πC.3.14 D.379.如果方程组223x yx y+=⎧⎨-=⎩的解为5xy=⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A.14,4 B.11,1 C.9,-1 D.6,-410.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥11.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.8 B.12 C.18 D.2012.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN 的长度为()cm.A.2 B.3 C.4 D.6二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.16.把53°24′用度表示为_____.17.单项式22ab -的系数是________. 18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.20.若α与β互为补角,且α=50°,则β的度数是_____.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____.22.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题25.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.26.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.27.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.28.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.29.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.30.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.31.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.32.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.2.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.3.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.4.A解析:A【解析】【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上.【详解】解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.5.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A 、方程x 1x 10.20.5--=化成10x 1010x 25--=1,错误; B 、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C 、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D 、方程23t 32=,系数化为1,得:t=94,错误; 所以答案选C.【点睛】 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C 选项不是如图立体图形的视图,符合题意;D 选项为该立体图形的左视图,不合题意.故选:C .【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.8.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键. 9.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.10.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.11.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.14.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.16.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.17.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.18.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式19.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.21.45°【解析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 22.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键.23.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、压轴题25.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.26.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.27.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.28.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=20,∴点B 表示的数是8﹣20=﹣12,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB , 当点C 停止运动,D 点继续运动时,MN 的值不变, 所以111212AB MN AB AB ==. 【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.30.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=,综合上述,当P出发23秒或43秒时,P和点Q相距1个单位长度;(3)①若点P和点Q在相遇前相距1个单位长度,此时点P表示的数为-3+2×23=-53,Q点表示的数为1-(1+23)=-23,设此时数轴上存在-个点C,点C表示的数为a,由题意得AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 ,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 31.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.。
2023至2024学年第一学期期中学业质量检测七年级数学试题参考答案及评分标准
[]61671761192611=+−=−×−−=−×−−=)(2023至2024学年第一学期期中学业质量检测七年级数学参考答案及评分标准 一、选择题:(本大题共12个小题,每小题4分,共48分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C C D D C A C B CB二、填空题:(本大题共6个小题,每小题4分,共24分.)13.> 14.线动成面 15.9 16.-25 17.4 18. 380三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式 ············································2分 ························································4分20.(本题4分)解:原式 ····················································2分 ····································································4分21.(本题4分)解:原式 ······························1分·······························2分······························3分·······················································4分22.(本题5分)解:如图所示:·····················4分用“>”连接为:312>3>−(−2.5)>0. ·········································5分23.(本题5分) 解:(1)如图所示:························································4分(2)图中共有9个小正方体. ······· ································5分21942343-=−=−×−×)()(6=5-11=5-4=7)()(+++24.(本题6分)解:(1)分数集合:{5.2,227,−234,…};····································2分(2)非负整数集合:{0,−(−3)…};····································4分(3)有理数集合:{5.2,0,227,+(−4),−234,−(−3)…}.···························6分25.(本题6分)解:(1)最重的一箱比最轻的一箱多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20箱石榴中,最重的一箱比最轻的一箱多重5.5千克;···························2分(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20箱石榴总计超过8千克; ·············································4分(3)(25×20+8)×8=508×8=4064(元),答:售出这20箱石榴可赚4064元.·····················································6分26.(本题6分)解:(1)草坪面积为xxxx−2×1=(xxxx−2)平方米;·············································3分(2)(8×5−2)×20=(40−2)×20=38×20=760(元).答:绿化整个庭院的费用为760元。
2013学年浦东新区第一学期初一数学期末卷 (1)12.15
浦东新区2013学年度第一学期期末质量抽测七年级数学试卷1.在()--=-+-b a d c b a )(中的括号内应填的代数式为……………( )(A )d c -; (B )d c +; (C )d c +-; (D )d c --.2.下列等式中,能成立的是……………………………………………………………( )(A )()222b ab a b a ++=+;(B )()22293b a b a -=-;(C )()12122++=+a a a ; (D )()()4442-=-+a a a . 3.计算a a a -++-3336的结果是…………………………………………………………( ) (A )39--a a ; (B )1; (C )-1; (D )2.4.化简x x x ÷÷-1的结果是……………………………………………………………( )(A )3-x ;(B )3x ; (C )1-x ;(D )x .5. 如图1,为保持原图的摸样,应选下图A 、B 、C 、D 的哪一块拼在图案的空白处(). 、6. 下列图形中,是轴对称图形但不是中心对称图形的是………………………………( )图1(D)(C)(B)(A)(A ) (B ) (C ) (D )二、填空题:(本大题共12题,每题3分,满分36分)7.当4,3,2=-==c b a 时,代数式ac b 42-的值是 . 8.计算:=-⋅-2)25()2(ab a _______. 9. 计算:252121⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-= .10.分解因式:=--652x x . 11.分解因式:nx mx mn m -+-2= . 12.计算:()⎪⎭⎫⎝⎛-÷-22515xy xy = . 13.计算:223)3()612(m m m -÷-= . 14.(1)当x 时,分式131--x x 有意义;(2)x 时,分式122--x x的值为零.15.(1)223()55x y xy y=;(2)2()315y x x y =. 16.计算:=-⋅-111a a. 17.如图2,⊿ABC 顺时针旋转能与⊿ADE 重合,且∠BAE =60°,则旋转中心是 ;点B 的对应点是 ;旋转角的大小是 度.18.在方格纸中(图3),选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是 .图2EDCB A图3三、解答题:(19、20题,每小题4分,21、22题,每小题5分,满分36分) 19.(1)计算:()()325)(x x x +--; (2)计算:2332)()(a a -÷-.20.(1)计算:)21()32(257xy z y x -÷-; (2)计算:()()1111----+÷-y x y x .21.(1)计算: ()()()1221-+-x x x ; (2)分解因式:23222462b a b a ab +-.22.(1)如图4,画出四边形ABCD 向右平移5格,向下平移2格后的图形 (2)如图5,画出⊿ABC 关于直线l 成轴对称的图形.四、解答题:(23、24题,每题5分,25题6分,满分16分)23.小红练习打字,小丽比小红每分钟多打25个字,小丽打500个字的时间与小红打400个字的时间相同.小红、小丽每分钟分别可打多少个字?图4图524.已知一个长方体的长为2a ,宽也是2a ,高为h . (1)用a 、h 的代数式表示该长方体的体积与表面积. (2)当a =3,h =21时,求相应长方体的体积与表面积. (3)在(2)的基础上,把长增加x ,宽减少x ,其中0<x <6,问长方体的体积是否发生变化,并说明理由.25.贾宪三角(如图6)最初于11世纪被发现,原图载于我国北宋时期数学家贾宪的著作中.这一成果比国外领先600年!这个三角形的构造法则是:两腰都是1,其余每个数为其上方左右两数之和.它给出(a+b )n (n 为正整数)展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着()2222b ab a b a ++=+的展开式中的系数;第四行的四个数1,3,3,1,恰好对应着()3223333b ab b a a b a +++=+展开式中的系数;等等.(1)请根据贾宪三角直接写出()()54b a b a ++、的展开式:()=+4b a .()=+5b a .(2)请用多项式乘法或所学的乘法公式验证你写出的()4b a +的结果.图6a+b ()4a+b ()3a+b ()2a+b ()1a+b ()∙∙∙∙∙∙464332111111111浦东新区2013学年度第一学期期末质量抽测七年级数学试卷参考答案及评分说明一、选择题:(本大题共4题,每题2分,满分8分) 1.A ; 2.C ; 3.C ; 4.D ; 5.B 6.A 二、填空题:(本大题共16题,每题2分,满分32分)7.23-; 8. 23225b a -;9.81- 10.()()16+-x x ; 11.())(n m x m -+;12.x 125-;13.3234-m ; 14.≠31, =2;15.25)2(;3)1(xy x ;16.a-11;17.A 、D 、30; 18.4.三、简答题:19.解:(1)原式=()3251⨯++-x x …………………………………………………………(2分)=()66x x +-………………………………………………………………(1分) =62x ………………………………………………………………………(1分)(2)原式=2332⨯⨯÷-a a……………………………………………………………………(2分)=66a a ÷-………………………………………………………………………(1分)=-1…………………………………………………………………………………(1分)20.解(1)原式=()z y x 25172132--⎪⎭⎫ ⎝⎛-÷-……………………………………………(2分) =z y x 3664………………………………………………………………(2分)(2) 原式=⎪⎪⎭⎫⎝⎛+÷⎪⎪⎭⎫⎝⎛-y x y x 1111 …………………………………………………………(1分) =xy yx xy x y +÷-…………………………………………………………………(1分) =y x xyxy x y +⨯- ………………………………………………………………(1分) =yx xy +- …………………………………………………………………………(1分)21.解(1)原式=()()12222-+-+x x x x ………………………………………………(1分)=()()1222-++x x x ………………………………………………………(1分)=2422223+---+x x x x x ……………………………………………(2分)=25223+-+x x x ………………………………………………………(1分) (2)原式=()222312a a ab +-………………………………………………………………(2分)=()()a a ab 21122-- ……………………………………………………………(3分)22. 每题5分'A四、解答题23. 解 设小红每分钟打x 个字,则小丽每分钟可打(x +25)个字,依题意有x x 40025500=+,即xx 4255=+…………………………………………………(2分) 两边同乘以x (x +25),得 5x =4(x +25)解之,得x =100. …………………………………………………………………………(1分) 经检验,x =100是原方程的根,并符合题意. …………………………………………(1分) 又x +25=125.答:小红每分钟打字100个,小丽每分钟打字125个. ………………………………(1分)24. 解 (1)长方体体积h a h a a 2422=⋅⋅=…………………………………………(1分) 长方体表面积=.88242222ah a h a a a +=⋅⨯+⋅⨯………………………(1分)(2)当a =3,h =21时,长方体体积1821342=⨯⨯=.………………………………(1分) 当a =3,h =21时,长方体表面积=.842138382=⨯⨯+⨯……………………(1分)(3)当长增加x ,宽减少x 时,长方体体积()()18211821662<-=⨯-+=x x x 故长方体体积减小了. ……………………………………………………………(1分)25.(1)()4322344464b ab b a b a a b a ++++=+;…………………………………(2分)()543223455510105b ab b a b a b a a b a +++++=+………………………(2分)(2)()()()224b a b a b a ++=+()()43223223223422222242222bab b a ab b a b a b a b a a b ab a b ab a ++++++++=++++=432234464b ab b a b a a ++++=……………………………………(2分)。
上海教科实验中学人教版(七年级)初一上册数学期末测试题及答案
上海教科实验中学人教版(七年级)初一上册数学期末测试题及答案一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟2.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π3.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .64.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1125.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1C .9D .77.解方程121123x x +--=时,去分母得( )A .2(x +1)=3(2x ﹣1)=6B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=68.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =139.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×210.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.14.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.15.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.16________17.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.18.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.19.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.20.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 21.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.22.已知a ,b 是正整数,且a b <<,则22a b -的最大值是______. 23.用度、分、秒表示24.29°=_____.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.计算(1(2)26.计算:﹣6÷2+11()34-×12+(﹣3)2.27.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.28.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利多少元?29.如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm ,点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动. (1)若点Q 运动速度为2cm/秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且PA=3PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;30.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?四、压轴题31.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.D解析:D【解析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.3.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.4.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.5.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.7.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.8.D解析:D 【解析】 【分析】方程移项,把x 系数化为1,即可求出解. 【详解】解:方程3x ﹣1=0, 移项得:3x =1,解得:x =13, 故选:D . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.A解析:A 【解析】 【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程. 【详解】解:长方形的一边为10厘米,故设另一边为x 厘米. 根据题意得:2×(10+x )=10×4+6×2. 故选:A . 【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.10.D解析:D 【解析】A. ∵∠AOC =∠BOC , ∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.11.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M 、N 分别是AC 、BC 的中点,∴CM =12AC ,CN =12BC , ∴MN =CM +CN =12AC +12BC =12(AC +BC )=12AB =4. 故选:C .【点睛】本题考查了线段中点的性质,找到MC 与AC ,CN 与CB 关系,是本题的关键二、填空题13.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.14.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5, n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键15.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.17.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 18.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 19.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键.20.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.21.3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.22.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:459<<,23∴<<,a2∴=,b3=,则原式495=-=-,故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″. 故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、解答题25.(1)2;(2)【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】=5-3=2;(2)==【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.26.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:﹣6÷2+11()34-×12+(﹣3)2=﹣3+11121234⨯-⨯+(﹣3)2 =﹣3+4﹣3+9=7.【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27.(1)155°;(2)OD 平分AOC ∠,理由见详解.【解析】【分析】(1)由题意先根据角平分线定义求出∠BOE ,进而求出BOD ∠的度数;(2)由题意判断OD 是否平分AOC ∠即证明AOD DOC ∠=∠,以此进行分析求证即可.【详解】解:(1)∵130BOC ∠=︒,OE 平分BOC ∠,∴∠BOE =65°,∵DO OE ⊥,∴BOD ∠=90°+65°=155°.(2)OD 平分AOC ∠,理由如下:∵由(1)知BOD ∠=155°,∴AOD ∠=180°-155°=25°,∵130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥,∴DOC ∠=90°-65°=25°,∴AOD DOC ∠=∠=25°,即有OD 平分AOC ∠.【点睛】本题考查角的运算,利用角平分线定义以及垂直定义结合题意对角进行运算即可.28.(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60. 答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6400x=160,160﹣30=130(元), 130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T 恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.29.(1)经过30秒时间P 、Q 两点相遇;(2)点Q 是速度为613cm/秒或1013cm/秒. 【解析】【分析】(1)设经过t 秒时间P 、Q 两点相遇,列出方程即可解决问题;(2)分两种情形求解即可.【详解】(1)设经过t 秒时间P 、Q 两点相遇,则t+2t=90,解得t=30,所以经过30秒时间P 、Q 两点相遇.(2)∵AB=60cm ,PA=3PB ,∴PA=45cm ,OP=65cm .∴点P 、Q 的运动时间为65秒,∵AB=60cm,13AB=20cm,∴QB=20cm或40cm,∴点Q是速度为10+2065=613cm/秒或10+4065=1013cm/秒.【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.30.(1)餐厨垃圾有280吨;(2)在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°;(3)2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同【解析】【分析】(1)求出样本容量,进而求出厨余垃圾的吨数;(2)A部分由400吨,总数量为800吨,求出所占的百分比,C部分占整体的40800,因此C部分所在的圆心角的度数为360°的40 800.(3)求出“其它垃圾”的数量是“有害垃圾”的倍数,再通过图形得出结论.【详解】解:(1)80÷10%=800吨,800﹣400﹣40﹣80=280吨,答:厨余垃圾有280吨;(2)400÷800=50%,360°×40800=18°,答:在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°.(3)80÷40=2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同.【点睛】考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.四、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 ,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.33.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
2013年秋七年级上学期数学期末试题(有答案)-数学试题
2013年秋七年级上学期数学期末试题(有答案)-数学试题沈丘县李老庄乡中学2013年秋季七年级期末座号数学试题(华师大版)注意事项:本试卷共6页,三大题,满分120分、考试时间80分钟。
答题前请将密封线内的项目填写清楚。
(命题人:刘占标)题号一二三总分1--8 9--15 16 17 18 19 20 21得分一、选择题(每小题3分,共24分)1、下列等式成立的是【】A、-|-3|=3B、-(-3)3=(-3)3C、-{-[-(-3)]}=|-3|D、-32=(-3)22、若有理数a满足|a|=-a,则a的取值范围是【】A、a=-1B、a<0C、a=0D、a≤03、如图,已知几何体由5个相同的小正方体组成,那么它的左视图是【】.4、如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于【】.A、3 cmB、6 cmC、11 cmD、14 cm5、若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则【】.A、∠A>∠B>∠CB、∠B>∠A>∠CC、∠A>∠C>∠BD、∠C>∠A>∠B如图,已知l1∠l2,且∠1=120°,则∠2=【】.A、40°B、50°C、60°D、70°7、如图,将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于【】A、56°B、68°C、62°D、66°8、如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是【】.A、120°B、130°C、140°D、150°得分评卷人二.填填看(每题3分,共21分)9、比较大小:(1)、-5 -4;(2)、.10、小刚每晚19:00都要看中央电视台的“新闻联播”节目,这时钟面上时针与分针夹角的度数为____________。
2013-2014学年沪科版七年级数学上第1章有理数单元目标检测试卷及答案点拨
数学沪科版七年级上第1章 有理数单元检测(时间:60分钟,满分:100分)一、选择题(每小题3分,共30分)1.在-(-2.5),3,0,-5,-0.25,12-中正整数有( ). A .1个 B .2个C .3个D .4个 2.下列计算正确的是( ).A .2+2×(-1)=0B .(-6)÷(-3)=-2C .1÷72⎛⎫- ⎪⎝⎭=72-D .112⎛⎫- ⎪⎝⎭×(-2)=1 3.计算(2 011+2 012)×0÷2 013的结果是( ).A .1B .-1C .0D .2 0134.在1.17-32-23中把省略的“+”号填上应得到( ).A .1.17+32+23B .-1.17+(-32)+(-23)C .1.17+(-32)+(-23)D .1.17-(+32)-(+23)5.如图,在数轴上的点M 表示的数可能是( ).A .1.5B .-1.5C .-2.4D .2.4 6.下列计算正确的是( ).A .-3+3=0B .-4-4=0C .5÷15=1D .62=12 7.在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .48.规定一种新的运算“∮”,对于任意有理数a ,b ,满足a ∮b =a +b -ab ,如5∮6=5+6-5×6=-19,则3∮2的运算结果是( ).A .6B .-1C .0D .19.近似数23.70所表示的准确数A 的范围是( ).A .23.65≤A <23.75B .23.60≤A <23.70C .23.695≤A <23.705D .23.700≤A <23.70510.如果a 与1互为相反数,则|a +2|等于( ).A .2B .-2C .1D .-1二、填空题(每小题3分,共15分)11.若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______.12.若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.13.质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从A 1点跳动到OA 1的中点A 2处,第三次从A 2点跳动到OA 2的中点A 3处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为__________.14.某企业向银行贷款1 000万元,一年后归还银行1 065.6多万元,则年利率高于______%.15.若a =25,b =-3,试确定a 2 013+b 2 012的末位数字是__________.三、计算题(共55分)16.(24分)计算:(1)15-[3-(-5-4)];(2)2.5-(-2)÷2 3⎛⎫- ⎪⎝⎭-1.5;(3)1-212⎛⎫- ⎪⎝⎭+(-1)3-34⎛⎫- ⎪⎝⎭;(4)(-2)2×3÷2 2 5⎛⎫- ⎪⎝⎭-(-5)2÷5÷15⎛⎫- ⎪⎝⎭;(5)719972×(-36)(用简便方法);(6)11171231132186⎛⎫⎛⎫++÷-⎪ ⎪⎝⎭⎝⎭(用简便方法).17.(6分)计算:111111 34451920 -+-+⋅⋅⋅+-.18.(7分)学校对七年级男生进行立定跳远的测试,以能跳1.7 m及以上为达标,超过1.7 m的数用正数表示,不足1.7 m的数用负数表示.第一组10名男生成绩如下(单位cm):+2 -4 0 +5 +8 -7 0 +2 +10 -3 问:第一组有百分之几的学生达标?19.(8分)某煤炭码头将运进煤炭记为正,运出煤炭记为负.某天的记录如下:(单位:t)+100,-80,+300,+160,-200,-180,+80,-160.(1)当天煤炭库存是增加了还是减少了?增加或减少了多少吨?(2)码头用载重量为20 t的大卡车运送煤炭,每次运费100元,问这一天共需运费多少元?20.(10分)阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节.东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水.学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少元钱来购买纯净水饮用?(2)请计算:在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,东坡中学一年要为全体学生共节约多少元?(用科学记数法表示)参考答案1答案:A2答案:A 点拨:A 选项中要注意运算顺序,在做除法时,选择哪一个除法法则,应从运算是否方便考虑,B 选项可直接相除,C 选项可化除为乘,对于D 选项做乘法时,先要把带分数化为假分数.3答案:C4答案:C 点拨:有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.5答案:C6答案:A 点拨:-4-4=-8,5÷15=5×5=25,62=6×6=36. 7答案:A 点拨:本题考查数轴的有关知识,也是考查绝对值的几何意义,数轴上表示-2的点离开原点的距离等于2,故选A.8答案:B 点拨:根据规定的运算,3∮2=3+2-3×2=5-6=-1.故选B. 9答案:C 点拨:准确数A 的范围应该比其近似数高一个精确度.10答案:C 点拨:因为a 与1互为相反数,所以a =-1,所以|a +2|=|-1+2|=1,故选C.11答案:-4 点拨:因为a +b =0,cd =1,|x |=2,所以原式=4+5×0-8×1=-4. 12答案:19点拨:两个非负数的和为零,那么每个非负数必为零,即3a -1=0,b -2=0,∴a =13,b =2,∴a b =213⎛⎫ ⎪⎝⎭=19. 13答案:12n 点拨:由题意可知OA 1=1122OA =,OA 2=11124OA =,OA 3=212OA =18,按此规律,当第n 次跳动后,则该质点到原点的距离为12n . 14答案:6.56 点拨:因为向银行贷款1 000万元,一年后归还银行1 065.6多万元,则年利率是(1 065.6-1 000)÷1 000×100%=6.56%,则年利率高于6.56%.15答案:6 点拨:25的任何次幂的末位数字都是5,-3的偶次幂都是正数,且当次数为4的倍数时,其末位数字为1.a 2 013=252 013的末位数字一定是5.又∵b 2 012=(-3)2 012=32 012==81503,∴b 2 012的末位数字一定是1,∴a 2 013+b 2 012的末位数字一定是5+1=6.16解:(1)3;(2)-2;(3)12;(4)20; (5)135992-;(6)203-. 17答案:解:原式=11113445-+-+…+111117192032060-=-=. 18解:共有7名同学达标,达标率为710×100%=70%. 19解:(1)(+100)+(-80)+(+300)+(+160)+(-200)+(-180)+(+80)+(-160)=+20,即当天煤炭库存增加了20 t.(2)(|100|+|-80|+|+300|+|+160|+|-200|+|-180|+|+80|+|-160|)÷20×100=1 260÷20×100=6 300(元).这一天共需运费6 300元.20解:(1)∵每个学生春、秋、冬季每天1瓶矿泉水,夏季每天2瓶,∴一个学生在春、秋、冬季共要购买180瓶的矿泉水;夏天要购买120瓶矿泉水.∴一年中一个学生共要购买300瓶矿泉水.即一个学生全年共花费1.5×300=450(元)钱.(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要(4×120)×23=320(桶).夏季每天5桶,共要60×5=300(桶).冬季每天1桶,共60桶.∴全年共要纯净水(320+300+60)=680(桶).故购买矿泉水费用为680×6=4 080(元).使用电费为240×10×5001000×0.5=600(元).故每班学生全年共花费:4 080+600+150=4 830元.(3)∵一个学生节省的钱为450-483050=353.4(元),∴全体学生共节省的钱数为353.4×24×50=424 080(元)=4.240 8×105(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验中学2013学年第一学期七年级数学检测试卷
(比兴校区)
(完卷时间:90分钟 满分:100分)
一、 选择题(本大题共6题,每小题2分,满分12分) 1.下列各组代数式,同类项是( )
A 、2x 与2x 2
B 、-5a 2b 2与-1.5x 2y 2
C 、-a 3与a 3
D 、4b 与3a 2.下列计算正确的是( )
A 、5x 2+7x 2=12x 4
B 、-2ab +3ab =ab
C 、11x 3-6x 3=5
D 、3a 3·5a 3=15a 3 3.某商品降低%x 后是a 元,则原价是 ( )
(A )
100
ax
元
(B )(1)100x
a +
元 (C )
100a
x
元 (D )
1100
a x -元
4.下列去括号、添括号的结果中,正确的是 ( )
(A )22(3)3m n mn m n mn -+-+=-++(B )2244(2)442mn n m mn mn n m mn +--=+-+ (C )()()a b c d a c b d -+-+=--++ (D )533(5)22b b a b b a ⎛⎫⎛⎫
-+-=-+-- ⎪ ⎪⎝⎭⎝⎭
5. 下列多项式中,与x y --相乘的结果是22x y -的多项式是 ( ) (A )y x -
(B )x y -
(C )x y +
(D )x y --
6.下列说法(1)π3ab -是单项式(2)
2
22
xy x -是三次二项式(3)x
x 1
2-不是整式(4)0不是单项式,
正确的有( )个
A. 1个
B.2个
C. 3个
D. 4个 二、填空题;(本题共12题,每题2分,满分24分)
7.如果扇形的半径为r ,圆心角是n ︒,那么它的面积是
8.(-2x 3)2=_________ 9.(-a )3(-a 2)(-a )=_________
10.化简:35
5335⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭
,化简:23
(2)(3)a a -⋅= ,
=-253)5(b a
11.单项式-7
83
4c ab 的系数是 ,次数是
班级 姓名 考试座位号 ――――――――――――――――――――密―――――――――――――――封―――――――――――线―――――――――――――――
12.化简:[](2)2()a b a a b ---+= 计算:2223()a a a ++= . 13.把多项式1224432--++y x y x xy 按字母y 的降幂排列 . 14.若222y xy x A +-=,2223y xy x B -+=,则2A B -= . 15.计算(7.2×103)·(2.5×104)的结果,用科学记数法表示为 . 16.已知2=m
a
,8=n a ,那么2m n a += ,32m n a a -= .
17.多项式的积22(232)(21)x x x x -++-中2
x 项的系数是
18.一个剧场第一排有35个座位,以后每一排比前一排多2个座位,则第n 排有 个座位 .
三、计算题:(本题共5题,每小题5分,满分25分)
19.5
2
a a ⋅+4
2
a a a ⋅⋅ 6
3a a ⋅-. 20.3332332)3()()2(x xy y x y x -+--- 21.
)63()34
1
()5(2122222--+---+ab a b a ab b a b a
22.4
2
(2)(12)(12)(14)a a a a -+-+ 23.(-21x 2-23x y +4
1
y 2)(-2xy 2)2
四、先化简后求值(本大题共2小题,每题5分,共10分)
24.先化简,再求值 3xy 2(-x 2y +2x 3y 2)-4xy (-xy 2)·2x 2y 其中x =-3,y =1
3
25.先化简,再求值:232(1)(2)3(2)(3)x x x x x -+-++--,其中,x=2012
五、解答题(本大题共有4题,第26-8题5分,29题每题4分,满分19分) 26.解方程:)2(216)1(4)1(62
--=---x x x x x
27.解不等式:31)(1)(3)(8)2(3)(4)x x x x x x +---+--+(<6-
28.多项式2
22x x +-与mx n +的乘积中2
x 项的系数为3-,x 项的系数为 6. 求:
3
2(1)
n m -的值
29. 已知3m
x =,9n
y =,用x ,y 表示323
m n
+
―――――――――――――――――密―――――――――――――――封――――――――――――――线――――――――――――――
实验中学2013学年第一学期七年级数学检测试卷
(比兴校区)参考答案
(完卷时间:90分钟 满分:100分)
1、C
2、B
3、D
4、B
5、A
6、C
7、
360
n
πr 2
8、4x 6 9、-a 6
10、
925、56a -、610
25a b 11、8,87
-
12、5a b +,6
27a .
13、4234
221y x y xy x -+++-. 14、257y xy - 15、8
1.810⨯ 16、32;-56 17、6-
18、352(1)n +-. 19、7
a - 20、3
6
36y x - 21、
6344
2322
+--a ab b a 22、4
321a -
23、-2x 4
y 4
-6x 3y 5+x 2y 6
24、3
3
4
4
31417x y x y -+= 25、-x-11=-2023 26、10x = 27、X >
7
51 28、m=-2,n=1 -54 29、3
x y
班级 姓名 考试座位号 ――――――――――――――――――――密―――――――――――――――封―――――――――――线―――――――――――――――。