2020-2021学年安徽省滁州市全椒县九年级(上)期中数学试卷 (解析版)
安徽省滁州市2021年九年级上学期数学期中考试试卷(II)卷
安徽省滁州市2021年九年级上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)抛物线y=(x+1)2+2的对称轴为()A . 直线x=1B . 直线x=-1C . 直线x=2D . 直线x=-22. (2分) (2015八下·泰兴期中) 下列事件(1)打开电视机,正在播放新闻;(2)父亲的年龄比他儿子年龄大;(3)下个星期天会下雨;(4)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(5)一个实数的平方是正数(6)若a、b异号,则a+b<0.属于确定事件的有()个.A . 1B . 2C . 3D . 43. (2分) (2015九上·山西期末) 如图,⊙O的弦,于,且,则⊙O的半径等于()A . 8B . 4C . 10D . 54. (2分)将抛物线y=2x2的图象先向右平移4个单位,再向下平移3个单位所得的解析式为()A . y=2(x-3)2+4B . y=2(x+4)2-3C . y=2(x-4)2+3D . y=2(x-4)2-35. (2分) (2018九上·青海期中) 如图,,,是上的三点,且,则的度数是()A .B .C .D . 或6. (2分)(2019·武汉模拟) 如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A . 0.33B . 0.34C . 0.20D . 0.357. (2分) (2019九上·惠州期末) 四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A . 1:3:2:4B . 7:5:10:8C . 13:1:5:17D . 1:2:3:48. (2分)(2017·芜湖模拟) 如图,将⊙O沿弦AB折叠,圆弧AB恰好经过圆心O,P是上一点,则∠APB的度数为()A . 30°B . 45°C . 60°D . 75°9. (2分)在同一坐标系中,一次函数与二次函数+3的大致图像可能是()A .B .C .D .10. (2分)如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,∠F=50°,则∠α的度数是()A . 40°B . 50°C . 60°D . 70°11. (2分) (2017九上·西湖期中) 下列正确的是().A . 三个点确定一个圆B . 同弧或等弧所对的圆周角相等C . 平分弦的直径垂直于弦,并且平分弦所对的弧D . 圆内接平行四边形一定是正方形12. (2分)二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A . a<0B . c>0C . b2-4ac>0D . a+b+c>0二、填空题 (共6题;共7分)13. (1分) (2019九上·慈溪期中) 已知⊙O的面积为36π,若PO=7,则点P在⊙O________.14. (1分)(2018·天津) 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.15. (1分) (2016九上·大悟期中) 抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则抛物线的对称轴是________.16. (1分) (2016九下·邵阳开学考) 一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为________.17. (1分) (2019九上·道里期末) 若抛物线与x轴有两个公共点,则m的取值范围是________.18. (2分)(2014·常州) 已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于________度,扇形的面积是________.(结果保留π)三、解答题 (共8题;共71分)19. (5分)已知:如图,在平面直角坐标系xOy中,直线y=mx-4m与x轴、y轴分别交于点A、B,点C在线段AB上,且S AOB=2S AOC .(1)求点C的坐标(用含有m的代数式表示);(2)将△AOC沿x轴翻折,当点C的对应点C′恰好落在抛物线y=x2+mx+m上时,求该抛物线的表达式;(3)设点M为(2)中所求抛物线上一点,当以A、O、C、M为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M的坐标.20. (10分)(2018·广东模拟) 如图,一条公路的转弯处是一段圆弧(1)用直尺和圆规作出所在圆的圆心O;要求保留作图痕迹,不写作法(2)若的中点C到弦AB的距离为,求所在圆的半径.21. (6分)(2018·镇平模拟) 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.从中任意摸出1个球,取出白球的概率为.(1)布袋里红球有________个;(2)先从布袋中摸出1个球后不再放回,再摸出1个球,求两次摸到的球都是白球的概率.22. (5分)如图,AB、CD是⊙O的直径,弦CE∥AB,弧CE的度数为40°,求∠AOC的度数.23. (10分) (2016九上·柳江期中) 已知二次函数y=x2+bx+c经过(1,3),(4,0).(1)求该抛物线的解析式;(2)求该抛物线与x轴的交点坐标.24. (10分)(2017·诸城模拟) 如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2 ,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)25. (10分) (2015九上·应城期末) 某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店,该店购进一种新上市的饰品进行了30天的试销售,购进价格为40元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=﹣2x+120(1≤x≤30,且x为整数);销售价格Q(元/件)与销售时间x (天)之间有如下关系:Q= x+50(1≤x≤30,且x为整数).(1)试求出该商店日销售利润w(元)与销售时间x(天)之间的函数关系式;(2)在这30天的试销售中,哪一天的日销售利润最大,哪一天的日销售利润最小?并分别求出这个最大利润和最小利润.26. (15分)(2017·东营) 如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共71分)19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
2020-2021学年安徽省滁州市全椒县九年级(上)暑假质检数学试卷 解析版
2020-2021学年安徽省滁州市全椒县九年级(上)暑假质检数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)在二次根式中,a能取到的最小值为()A.0B.1C.2D.2.52.(4分)如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定3.(4分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.94.(4分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC 为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:65.(4分)某超市2020年3月份的猪肉价格为60元/千克,经过两个月连续两次降价后,5月份的猪肉价格为40元/千克,设平均每次降价的百分率为x,则根据题意可列方程为()A.60(1﹣2x)=40B.60(1﹣x)2=40C.40(1+2x)=60D.40(1+x)2=606.(4分)如图,在▱ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()A.3B.6C.12D.247.(4分)如图是小明和小华射击成绩的统计图,两人都射击了10次,下列说法错误的是()A.小明成绩的方差比小华成绩的方差小B.小明和小华成绩的众数都是8环C.小明和小华成绩的中位数都是8环D.小明和小华的平均成绩相同8.(4分)下列关于x的方程ax2﹣bx=0(a,b是不为0的常数)的根的情况判断正确的是()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.有且只有一个实数根9.(4分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°10.(4分)如图,矩形ABCD中,AB=4,BC=6.若P是矩形ABCD边上一动点,且使得∠APB=60°,则这样的点P有()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.若最简二次根式\sqrt{a-1}与\sqrt{5}可以合并,则a=11.(5分)若最简二次根式与可以合并,则a=.12.(5分)若一元二次方程x2﹣c=0的一个根为x=1,则另一个根为.13.(5分)如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接(写出一个答案即可)14.(5分)如图,正方形ABCD中,点E、F分别在边BC和DC上,连接AE、BF,AE⊥BF,点M、N分别在边AB、DC上,连接MN,若MN∥BC,FN=1,BE=2,则BM=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:+3﹣×.16.(8分)解方程:(x+7)(x+1)=﹣5.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在▱ABCD中,在CD,AB上分别取点E,F,若DE=BF,求证:AE∥CF.18.(8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段AB,点A、B均在格点上.(1)在图1中画一个以AB为斜边的等腰直角三角形ABC,使点C在AB右侧的格点上;(2)在图2中画一个以AB为对角线且面积为40的菱形ADBE,使点D、E均在格点,并直接写出菱形ADBE的边长.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,求折叠△AED的面积.20.(10分)为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100个.若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?六、(本题满分12分)21.(12分)某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:A.40≤x<45,45≤x<50,C.50≤x<55,D.55≤x<60,E.60≤x<65,F.65≤x≤70.并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题,(1)补全频数分布直方图,并求出m的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?七、(本题满分12分)22.(12分)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB 为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.八、(本题满分14分)23.(14分)如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=2,DG=x,△FCG的面积为y,求y与x之间的函数解析式,并直接写出x的取值范围;(4)求y的最小值.2020-2021学年安徽省滁州市全椒县九年级(上)暑假质检数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)在二次根式中,a能取到的最小值为()A.0B.1C.2D.2.5【分析】根据二次根式的定义求出a的范围,再得出答案即可.【解答】解:要使有意义,必须a﹣2≥0,即a≥2,所以a能取到的最小值是2,故选:C.2.(4分)如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【解答】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC===4(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.3.(4分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.9【分析】任意多边形的外角和为360°,用360°除以45°即为多边形的边数.【解答】解:360°÷45°=8.故选:C.4.(4分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC 为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.5.(4分)某超市2020年3月份的猪肉价格为60元/千克,经过两个月连续两次降价后,5月份的猪肉价格为40元/千克,设平均每次降价的百分率为x,则根据题意可列方程为()A.60(1﹣2x)=40B.60(1﹣x)2=40C.40(1+2x)=60D.40(1+x)2=60【分析】根据关系式:3月份猪肉价格×(1﹣月平均下降率)2=5月份猪肉价格,把相关数值代入即可求解.【解答】解:设平均每次降价的百分率为x,根据题意可列方程:60(1﹣x)2=40.故选:B.6.(4分)如图,在▱ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()A.3B.6C.12D.24【分析】根据平行四边形的性质可得出阴影部分的面积为平行四边形面积的,再由平行四边形的面积得出答案即可.【解答】解:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∴=,故选:B.7.(4分)如图是小明和小华射击成绩的统计图,两人都射击了10次,下列说法错误的是()A.小明成绩的方差比小华成绩的方差小B.小明和小华成绩的众数都是8环C.小明和小华成绩的中位数都是8环D.小明和小华的平均成绩相同【分析】根据方差,众数,中位数,平均数的定义一一判断即可.【解答】解:A、根据折线统计图可知,小明成绩的波动较小,小华成绩的波动较大,故小明成绩的方差较小.本选项正确,不符合题意.B、小明和小华的成绩中,8环出现的次数均最多,故众数都是8环.本选项正确,不符合题意.C、将小明和小华的成绩分别按大小顺序排列,每组数据的中间两个数都是8,故中位数都是8环.本选项正确,不符合题意.D、小明的平均成绩为7.6环,小华的平均成绩为7.1环.本选项错误,符合题意.故选:D.8.(4分)下列关于x的方程ax2﹣bx=0(a,b是不为0的常数)的根的情况判断正确的是()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.有且只有一个实数根【分析】先计算判别式的值得到△=b2,再利用b≠0可得到△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣b)2﹣4a×0=b2,而a,b是不为0的常数,∴△>0,∴方程有两个不相等的实数根.故选:B.9.(4分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°【分析】连接DE,根据直角三角形的性质得到DE=AC=AE,根据三角形的外角性质求出∠DEC、∠BEC,根据等腰三角形的性质计算即可.【解答】解:连接DE,∵∠ADC=90°,E是AC的中点,∴DE=AC=AE,∴∠EDA=∠DAC=45°,∴∠DEC=∠EDA+∠DAC=90°,同理,∠BEC=60°,∴∠DEB=90°+60°=150°,∵DE=AC,BE=AC,∴DE=BE,∴∠DBE=×(180°﹣150°)=15°,故选:C.10.(4分)如图,矩形ABCD中,AB=4,BC=6.若P是矩形ABCD边上一动点,且使得∠APB=60°,则这样的点P有()A.1个B.2个C.3个D.4个【分析】取CD中点P,连接AP,BP,由勾股定理可求AP=BP=4,即可证△APB 是等边三角形,可得∠APB=60°,过点A,点P,点B作圆与AD,BC各有一个交点,即这样的P点一共3个.【解答】解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形∴AB=CD=4,AD=BC=6,∠D=∠C=90°∵点P是CD中点∴CP=DP=2∴AP==4,BP==4∴AP=PB=AB∴△APB是等边三角形∴∠APB=60°,过点A,点P,点B作圆与AD,BC的相交,∴这样的P点一共有3个故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.若最简二次根式\sqrt{a-1}与\sqrt{5}可以合并,则a=11.(5分)若最简二次根式与可以合并,则a=6.【分析】根据题意可知二次根式与是同类二次根式,可得到a﹣1=5,从而可求得a的值.【解答】解:∵最简二次根式与可以合并,∴a﹣1=5,解得:a=6,故答案为:6.12.(5分)若一元二次方程x2﹣c=0的一个根为x=1,则另一个根为x=﹣1.【分析】把x=1代入方程求出c的值,进而求出另一根.【解答】解:把x=1代入方程得:c=1,方程为x2﹣1=0,即x2=1,开方得:x=1或x=﹣1,则另一根为x=﹣1.故答案为:x=﹣1.13.(5分)如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接AD(写出一个答案即可)【分析】根据勾股定理求出AD,根据算术平方根的大小比较方法解答.【解答】解:由勾股定理得,AD==,3<<4,故答案为:AD.14.(5分)如图,正方形ABCD中,点E、F分别在边BC和DC上,连接AE、BF,AE⊥BF,点M、N分别在边AB、DC上,连接MN,若MN∥BC,FN=1,BE=2,则BM=1或3.【分析】根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AOB的度数,根据同角的余角相等可得∠BAO=∠CBF,根据ASA,可得△ABE≌△BCF,得BE=CF=2,分情况讨论,证明四边形MBCN是平行四边形,则BM =CN,根据两图形可得BM的长.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC.∵AE⊥BF,∴∠AOB=∠BAO+∠ABO=90°,∵∠ABO+∠CBF=90°,∴∠BAO=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF=2,∵MN∥BC,AB∥CD,∴四边形MBCN是平行四边形,∴BM=CN,①当N在F的上方时,如图1,∴BM=CN=CF+FN=2+1=3,②当N在F的下方时,如图2,∴BM=CN=CF﹣FN=2﹣1=1,∴BM的长为1或3,故答案为:1或3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:+3﹣×.【分析】先对原式化简,然后合并同类项即可解答本题.【解答】解:+3﹣×=4+﹣=4.16.(8分)解方程:(x+7)(x+1)=﹣5.【分析】整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:整理得:x2+8x+12=0,(x+2)(x+6)=0,x+2=0,x+6=0,x1=﹣2,x2=﹣6.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在▱ABCD中,在CD,AB上分别取点E,F,若DE=BF,求证:AE∥CF.【分析】根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再求出CE=AF,然后利用一组对边平行且相等的四边形是平行四边形求出四边形AFCE是平行四边形,根据平行四边形对边相等即可得证.【解答】证明:在▱ABCD中,AB∥CD,AB=CD,∵DE=BF,∴CD﹣DE=AB﹣BF,即CE=AF,∴四边形AFCE是平行四边形,∴AE∥CF.18.(8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段AB,点A、B均在格点上.(1)在图1中画一个以AB为斜边的等腰直角三角形ABC,使点C在AB右侧的格点上;(2)在图2中画一个以AB为对角线且面积为40的菱形ADBE,使点D、E均在格点,并直接写出菱形ADBE的边长.【分析】(1)根据AB为斜边的等腰直角三角形ABC可知直角顶点C在AB的中垂线上,且在直线AB右侧格点上,找到一点即可;(2)根据菱形性质可知对角线互相垂直且平分,可知点D、E在AB的中垂线上,根据AB=8、菱形面积为80可得DE=10,确定即可,根据勾股定理求得边长.【解答】解:(1)如图1,(2)如图2,菱形边长为=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,求折叠△AED的面积.【分析】根据三角形的面积求得BF的长,再根据勾股定理求得AF的长,即为AD的长;设DE=x,则EC=5﹣x,EF=x.根据勾股定理列方程求得x的值,进而求得△AED的面积.【解答】解:由折叠的对称性,得AD=AF,DE=EF.由S△ABF=BF•AB=30,AB=5,得BF=12.在Rt△ABF中,由勾股定理,得.所以AD=13.设DE=x,则EC=5﹣x,EF=x,FC=1,在Rt△ECF中,EC2+FC2=EF2,即(5﹣x)2+12=x2.解得.故.20.(10分)为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100个.若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)[500﹣100×(x﹣4)]=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.六、(本题满分12分)21.(12分)某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:A.40≤x<45,45≤x<50,C.50≤x<55,D.55≤x<60,E.60≤x<65,F.65≤x≤70.并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题,(1)补全频数分布直方图,并求出m的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?【分析】(1)根据B组的频数和所对的圆心角的度数,可以计算出本次调查的人数,再根据频数分布直方图中的数据,可以得到E组的频数,从而可以将频数分布直方图补充完整,根据直方图中的数据,可以计算出m的值;(2)根据直方图中的数据,可以计算出本次测试的优秀率是多少;(3)根据(2)中的结果,可以计算出成绩优秀的学生约有多少人.【解答】解:(1)本次抽查的学生有:6÷=50(人),E组学生有:50﹣2﹣6﹣8﹣16﹣4=14(人),补全的频数分布直方图如右图所示,m=360×=115.2,即m的值是115.2;(2)×100%=36%,即本次测试的优秀率是36%;(3)1800×36%=648(人),答:成绩优秀的学生约有648人.七、(本题满分12分)22.(12分)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB 为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.【分析】(1)根据勾股定理逆定理即可判断.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,分两种情形①当MN为最大线段时,依题意MN2=AM2+NB2;②当BN为最大线段时,依题意BN2=AM2+MN2;分别列出方程即可解决问题.【解答】解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故答案为是.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.八、(本题满分14分)23.(14分)如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=2,DG=x,△FCG的面积为y,求y与x之间的函数解析式,并直接写出x的取值范围;(4)求y的最小值.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明;(3)作FM⊥DC,证明Rt△AHE≌Rt△GFM,得到MF=AH=2,根据三角形的面积公式得到解析式;(4)根据一次函数的性质:当k<0时,y随x的增大而减小解答即可.【解答】(1)证明:如图1,连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)证明:∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,,∴Rt△HAE≌Rt△GDH,∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:作FM⊥DC,交DC的延长线于M,在Rt△AHE和Rt△GFM中,,∴Rt△AHE≌Rt△GFM,∴MF=AH=2,∵DG=x,∴CG=6﹣x,∴y=×CG×FM=×2×(6﹣x)=6﹣x(0≤x≤2);(4)∵k=﹣1<0,∴y随x的增大而减小,∴x=2时,y的最小值是6﹣2.。
2020-2021学年九年级第一学期期中考试数学试卷(含答案)
2020-2021学年九年级第一学期期中考试数学试卷(含答案)一、选择题(每小题4分,共10小题,满分40分)1、抛物线y = 2(x+1)2-3的顶点坐标是( )A. (-1,-1)B. (1,3)C. (-1,3)D. (1,-3)2、在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3(x-5),则这个变化可以是( )A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移2个单位3、已知点A(1,-3)关于y 轴的对称点A ′在反比例函数y=k x 的图象上,则实数k 的值为( ) A. 3 B. 31 C. -3 D. - 314、已知学校航母组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数关系式h=-t 2+24t+1,则下列说法中正确的是( )A. 点火后9s 点火后13s 的升空高度相同B. 点火后24s 火箭落于地面C. 点火后10S 的升空高度为139mD. 火箭升空的最大高度为145m5、已知y=x 2+(t-2)x-2,当x>1时y 随x 的增大而增大,则t 的取值范围是( )A. t > 0B. t = 0C. t < 0D. t ≥ 06、如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=3CE ,AB=8,则AD 的长为( )A. 3B. 4C. 5D. 6第6题 第7题 第8题 第9题7、如图,一张矩形纸片ABCD 的长AB=a ,宽BC=b ,将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b=( )A. 2:1B. 2:1C. 3:3D. 3:28、如图,二次函数y=ax 2+bx+c(a ≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0, ③ 4a+b 2< 4ac ,④ 3a+c< 0.正确的个数是( )A. 1B. 2C. 3D. 49、孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则这个小孔的水面宽度为( )A. 52米B. 43米C. 7米D. 213米10、若一次函数y=ax+b 与反比例函数y=c x的图象在第二象限内有两个交点,且其中一个交点的横坐标为-1,则二次函数y=ax 2+bx+c 的图像可能是( )A B C D二、填空题(每小题5分,满分20分)11、若35a b b -=,则a b = . 12、已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的方程y=ax 2+bx+c 的两个根的和为 .第12题 第13题13、如图,点C 在反比例函数y=k x(x>0)的图像上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB=BC , 已知△AOB 的面积为1,则k 的值为 .14、已知抛物线y=ax 2+bx-1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛线上. (1)此抛物线的对称轴是直线 ;(2)已知点P (12,-1a),Q (2,2),若抛物线与线段PQ 恰有一个公共点,则a 的取值范围是 . 三、(每小题8分,满分16分)15、已知二次函数y=x 2+bx+c 的图象经过点(4,3),(2,-1),求此二次函数的表达式,并求出当0≤x ≤3时, y 的最值.16、已知234a b c ==,且a+3b-2c=15,求4a-3b+c 的值 四、(每小题8分,满分16分)17、如图,二次函数y=(x+2)2+m 的图像与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上点A(-1,0)及点B.(1)求二次函数的解析式;(2)根据图像,写出满足kx+b ≥(x+2)2+m 的x 的取值范围.18、如图是反比例函数y=k x的图象,当-4≤x ≤-1时,-4≤y ≤-1. (1)求该反比例函数的解析式;(2)若M 、N 分别在反比例函数图象的两个分支上,请直接写出线段MN 长度的最小值五、(每小题10分,满分20分)19、如图,点R 是正方形ABCD 的边AB 边上的黄金分割点,且AR> RB ,S 1表示AR 为边长的正方形面积,S 2表示以BC 为长,BR 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,求S 3:S 2的值20、如图,在△ABC 中,AB=12cm ,AE=6cm ,EC=4cm ,且EC AE BD AD =.(1)求AD 的长; (2)求证:ACEC AD BD =.六、本题12分21、如图,函数y 1=k 1x+b 的图象与函数22k y x=的图象交于点A(2,1)、B ,与y 轴交于点C (0,3). (1)求函数y 1的表达式和点B 的坐标; (2)观察图像,比较当x>0时y 1与y 2的大小.七、本题12分22、如图,开口向下的抛物线与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C(0,4),点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP 的面积为S 求S 的最大值.八、本题14分x(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x≤40 41≤x≤80售价(元/件)x+40 90每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元。
2020-2021学年安徽省滁州市全椒县九年级上学期暑假质检数学试卷 (解析版)
2020-2021学年安徽省滁州市全椒县九年级(上)暑假质检数学试卷一、选择题1.(4分)在二次根式中,a能取到的最小值为()A.0B.1C.2D.2.52.(4分)如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定3.(4分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.94.(4分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:65.(4分)某超市2020年3月份的猪肉价格为60元/千克,经过两个月连续两次降价后,5月份的猪肉价格为40元/千克,设平均每次降价的百分率为x,则根据题意可列方程为()A.60(1﹣2x)=40B.60(1﹣x)2=40C.40(1+2x)=60D.40(1+x)2=606.(4分)如图,在▱ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()A.3B.6C.12D.247.(4分)如图是小明和小华射击成绩的统计图,两人都射击了10次,下列说法错误的是()A.小明成绩的方差比小华成绩的方差小B.小明和小华成绩的众数都是8环C.小明和小华成绩的中位数都是8环D.小明和小华的平均成绩相同8.(4分)下列关于x的方程ax2﹣bx=0(a,b是不为0的常数)的根的情况判断正确的是()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.有且只有一个实数根9.(4分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°10.(4分)如图,矩形ABCD中,AB=4,BC=6.若P是矩形ABCD边上一动点,且使得∠APB=60°,则这样的点P有()A.1个B.2个C.3个D.4个二、填空题(共4小题).11.(5分)若最简二次根式与可以合并,则a=.12.(5分)若一元二次方程x2﹣c=0的一个根为x=1,则另一个根为.13.(5分)如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接(写出一个答案即可)14.(5分)如图,正方形ABCD中,点E、F分别在边BC和DC上,连接AE、BF,AE ⊥BF,点M、N分别在边AB、DC上,连接MN,若MN∥BC,FN=1,BE=2,则BM=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:+3﹣×.16.(8分)解方程:(x+7)(x+1)=﹣5.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在▱ABCD中,在CD,AB上分别取点E,F,若DE=BF,求证:AE ∥CF.18.(8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段AB,点A、B 均在格点上.(1)在图1中画一个以AB为斜边的等腰直角三角形ABC,使点C在AB右侧的格点上;(2)在图2中画一个以AB为对角线且面积为40的菱形ADBE,使点D、E均在格点,并直接写出菱形ADBE的边长.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,求折叠△AED的面积.20.(10分)为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100个.若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?六、(本题满分12分)21.(12分)某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:A.40≤x<45,45≤x<50,C.50≤x<55,D.55≤x<60,E.60≤x<65,F.65≤x≤70.并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题,(1)补全频数分布直方图,并求出m的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?七、(本题满分12分)22.(12分)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.八、(本题满分14分)23.(14分)如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=2,DG=x,△FCG的面积为y,求y与x之间的函数解析式,并直接写出x的取值范围;(4)求y的最小值.参考答案一、选择题(共10小题).1.(4分)在二次根式中,a能取到的最小值为()A.0B.1C.2D.2.5解:要使有意义,必须a﹣2≥0,即a≥2,所以a能取到的最小值是2,故选:C.2.(4分)如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC===4(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.3.(4分)一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.9解:360°÷45°=8.故选:C.4.(4分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.5.(4分)某超市2020年3月份的猪肉价格为60元/千克,经过两个月连续两次降价后,5月份的猪肉价格为40元/千克,设平均每次降价的百分率为x,则根据题意可列方程为()A.60(1﹣2x)=40B.60(1﹣x)2=40C.40(1+2x)=60D.40(1+x)2=60解:设平均每次降价的百分率为x,根据题意可列方程:60(1﹣x)2=40.故选:B.6.(4分)如图,在▱ABCD中,AC、BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()A.3B.6C.12D.24解:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∴=,故选:B.7.(4分)如图是小明和小华射击成绩的统计图,两人都射击了10次,下列说法错误的是()A.小明成绩的方差比小华成绩的方差小B.小明和小华成绩的众数都是8环C.小明和小华成绩的中位数都是8环D.小明和小华的平均成绩相同解:A、根据折线统计图可知,小明成绩的波动较小,小华成绩的波动较大,故小明成绩的方差较小.本选项正确,不符合题意.B、小明和小华的成绩中,8环出现的次数均最多,故众数都是8环.本选项正确,不符合题意.C、将小明和小华的成绩分别按大小顺序排列,每组数据的中间两个数都是8,故中位数都是8环.本选项正确,不符合题意.D、小明的平均成绩为7.6环,小华的平均成绩为7.1环.本选项错误,符合题意.故选:D.8.(4分)下列关于x的方程ax2﹣bx=0(a,b是不为0的常数)的根的情况判断正确的是()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.有且只有一个实数根解:∵△=(﹣b)2﹣4a×0=b2,而a,b是不为0的常数,∴△>0,∴方程有两个不相等的实数根.故选:B.9.(4分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°解:连接DE,∵∠ADC=90°,E是AC的中点,∴DE=AC=AE,∴∠EDA=∠DAC=45°,∴∠DEC=∠EDA+∠DAC=90°,同理,∠BEC=60°,∴∠DEB=90°+60°=150°,∵DE=AC,BE=AC,∴DE=BE,∴∠DBE=×(180°﹣150°)=15°,故选:C.10.(4分)如图,矩形ABCD中,AB=4,BC=6.若P是矩形ABCD边上一动点,且使得∠APB=60°,则这样的点P有()A.1个B.2个C.3个D.4个解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形∴AB=CD=4,AD=BC=6,∠D=∠C=90°∵点P是CD中点∴CP=DP=2∴AP==4,BP==4∴AP=PB=AB∴△APB是等边三角形∴∠APB=60°,过点A,点P,点B作圆与AD,BC的相交,∴这样的P点一共有3个故选:C.二、填空题(共4小题,每小题5分,满分20分)11.(5分)若最简二次根式与可以合并,则a=6.解:∵最简二次根式与可以合并,∴a﹣1=5,解得:a=6,故答案为:6.12.(5分)若一元二次方程x2﹣c=0的一个根为x=1,则另一个根为x=﹣1.解:把x=1代入方程得:c=1,方程为x2﹣1=0,即x2=1,开方得:x=1或x=﹣1,则另一根为x=﹣1.故答案为:x=﹣1.13.(5分)如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接AD(写出一个答案即可)解:由勾股定理得,AD==,3<<4,故答案为:AD.14.(5分)如图,正方形ABCD中,点E、F分别在边BC和DC上,连接AE、BF,AE ⊥BF,点M、N分别在边AB、DC上,连接MN,若MN∥BC,FN=1,BE=2,则BM=1或3.解:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC.∵AE⊥BF,∴∠AOB=∠BAO+∠ABO=90°,∵∠ABO+∠CBF=90°,∴∠BAO=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF=2,∵MN∥BC,AB∥CD,∴四边形MBCN是平行四边形,∴BM=CN,①当N在F的上方时,如图1,∴BM=CN=CF+FN=2+1=3,②当N在F的下方时,如图2,∴BM=CN=CF﹣FN=2﹣1=1,∴BM的长为1或3,故答案为:1或3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:+3﹣×.解:+3﹣×=4+﹣=4.16.(8分)解方程:(x+7)(x+1)=﹣5.解:整理得:x2+8x+12=0,(x+2)(x+6)=0,x+2=0,x+6=0,x1=﹣2,x2=﹣6.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在▱ABCD中,在CD,AB上分别取点E,F,若DE=BF,求证:AE ∥CF.【解答】证明:在▱ABCD中,AB∥CD,AB=CD,∵DE=BF,∴CD﹣DE=AB﹣BF,即CE=AF,∴四边形AFCE是平行四边形,∴AE∥CF.18.(8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段AB,点A、B 均在格点上.(1)在图1中画一个以AB为斜边的等腰直角三角形ABC,使点C在AB右侧的格点上;(2)在图2中画一个以AB为对角线且面积为40的菱形ADBE,使点D、E均在格点,并直接写出菱形ADBE的边长.解:(1)如图1,(2)如图2,菱形边长为=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,求折叠△AED的面积.解:由折叠的对称性,得AD=AF,DE=EF.由S△ABF=BF•AB=30,AB=5,得BF=12.在Rt△ABF中,由勾股定理,得.所以AD=13.设DE=x,则EC=5﹣x,EF=x,FC=1,在Rt△ECF中,EC2+FC2=EF2,即(5﹣x)2+12=x2.解得.故.20.(10分)为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100个.若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)[500﹣100×(x﹣4)]=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.六、(本题满分12分)21.(12分)某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:A.40≤x<45,45≤x<50,C.50≤x<55,D.55≤x<60,E.60≤x<65,F.65≤x≤70.并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题,(1)补全频数分布直方图,并求出m的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?解:(1)本次抽查的学生有:6÷=50(人),E组学生有:50﹣2﹣6﹣8﹣16﹣4=14(人),补全的频数分布直方图如右图所示,m=360×=115.2,即m的值是115.2;(2)×100%=36%,即本次测试的优秀率是36%;(3)1800×36%=648(人),答:成绩优秀的学生约有648人.七、(本题满分12分)22.(12分)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故答案为是.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.八、(本题满分14分)23.(14分)如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=2,DG=x,△FCG的面积为y,求y与x之间的函数解析式,并直接写出x的取值范围;(4)求y的最小值.【解答】(1)证明:如图1,连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)证明:∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,,∴Rt△HAE≌Rt△GDH,∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:作FM⊥DC,交DC的延长线于M,在Rt△AHE和Rt△GFM中,,∴Rt△AHE≌Rt△GFM,∴MF=AH=2,∵DG=x,∴CG=6﹣x,∴y=×CG×FM=×2×(6﹣x)=6﹣x(0≤x≤2);(4)∵k=﹣1<0,∴y随x的增大而减小,∴x=2时,y的最小值是6﹣2.。
滁州市九年级上学期数学期中考试试卷
滁州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共42分) (共16题;共41分)1. (2分)(2017·文昌模拟) 分式方程的解是()A . ﹣B . ﹣2C . ﹣D .2. (3分) (2019九上·滦南期中) 若a:b=3:2,且b是a、c的比例中项,则b:c等于()A . 4:3B . 3:4C . 3:2D . 2:33. (3分) (2019九上·滦南期中) 下面结论中正确的是()A .B .C .D .4. (3分) (2019九上·滦南期中) 某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是()A . 5,5B . 5,6C . 6,6D . 6,55. (3分) (2019九上·滦南期中) 反比例函数y= 图象经过A(1,2),B(n,-2)两点,则n=()A . 1B . 3C . -1D . -36. (3分) (2019九上·滦南期中) 若x=-1是关于x的一元二次方程ax2-bx-2018=0的一个解,则1+a+b的值是()A . 2016B . 2017C . 2018D . 20197. (3分) (2019九上·滦南期中) 如图,在Rt△ABC中,CD⊥AB于点D,表示sinB错误的是()A .B .C .D .8. (3分) (2019九上·滦南期中) 关于x的一元二次方程kx2-4x+1=0有实数根,则k的取值范围是()A .B . 且C .D . 且9. (3分) (2019九上·滦南期中) 已知点A(x1 , y1),(x2 , y2)是反比例函数y= 图象上的点,若x1>0>x2 ,则一定成立的是()A .B .C .D .10. (3分) (2019九上·滦南期中) 如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .C .D .11. (2分) (2019九上·滦南期中) 如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则为()A .B .C .D .12. (2分) (2019九上·滦南期中) 若一元二次方程x2+bx+5=0配方后为(x-2)2+k=0,则b、k的值分别是()A . 0、5B . 0、1C . 、1D . 、513. (2分) (2019九上·滦南期中) 若线段AB= cm,C是线段AB的一个黄金分割点,则线段AC的长()A .B .C . 或D . 或14. (2分) (2019九上·滦南期中) 下列与反比例函数图象有关图形中,阴影部分面积最小的是()A .B .C .D .15. (2分) (2019九上·滦南期中) 某公司一月份获利400万元,计划第一季度的利润达到1324万元.若该公司每月的增长率相同,则该增长率是()A .B .C .D .16. (2分) (2019九上·滦南期中) 将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是()A . 5B .C . 或4D . 5或二、填空题(共12分) (共4题;共12分)17. (3分)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有________ (填序号).18. (3分) (2019九上·南关期末) 如图,在△ABC中,点D在BC边上,△ABC∽△DBA .若BD=4,DC=5,则AB的长为________.19. (3分)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是________ .20. (3分) (2020七下·成都期中) 如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF 的度数是________.三、计算题(共10分) (共1题;共10分)21. (10分)(2012·贵港) 某公司决定利用仅有的349个甲种部件和295个乙种部件组装A、B两种型号的简易板房共50套捐赠给灾区.已知组装一套A型号简易板房需要甲种部件8个和乙种部件4个,组装一套B型号简易板房需要甲种部件5个和乙种部件9个.(1)该公司组装A、B两种型号的简易板房时,共有多少种组装方案?(2)若组装A、B两种型号的简易板房所需费用分别为每套200元和180元,问最少总组装费用是多少元?并写出总组装费用最少时的组装方案.四、解答题(共56分) (共5题;共56分)22. (12分) (2019七上·北海期末) 在某市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________ ;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.23. (10分)(2016·遵义) 如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是________.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是________.24. (10分)(2019·毕节) 某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2 , 22 ,﹣22}=________;②min{sin30°,cos60°,tan45°}=________;(2)若M{﹣2x,x2 , 3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.25. (12分) (2019九上·滦南期中) 如图,某渔船向正东方向以12海里时的速度航行,在A处测得岛C在北偏东的60°方向,1小时后渔船航行到B处,测得岛C在北偏东的30°方向,已知该岛周围10海里内有暗礁.(1) B处离岛C有多远?(2)如果渔船继续向东航行,需要多长时间到达距离岛C最近的位置?(3)如果渔船继续向东航行,有无触礁危险?26. (12分) (2019九上·滦南期中) 预防“流感”,某学校对教室采用药熏法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克/立方米)与药物点燃后的时间x(分钟)成正比例,药物燃尽后,y与x成反比例(如图所示).已知药物点燃后4分钟燃尽,此时室内每立方米空气中含药量为8毫克.(1)求药物燃烧时,y与x之间函数的表达式;(2)求药物燃尽后,y与x之间函数的表达式(3)研究表明,当空气中每立方米的含药量不低于2毫克,且持续12分钟以上才能有效杀灭空气中的病菌,请计算说明此次消毒能否有效杀灭空气中的病菌?参考答案一、选择题(共42分) (共16题;共41分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题(共12分) (共4题;共12分)17-1、18-1、19-1、20-1、三、计算题(共10分) (共1题;共10分)21-1、21-2、四、解答题(共56分) (共5题;共56分)22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
2020年滁州市九年级数学上期中模拟试卷含答案
2020年滁州市九年级数学上期中模拟试卷含答案一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( ) A .M >N B .M =N C .M <N D .不能确定 3.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1)4.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0 5.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .26.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( ) A .12019B .2020C .2019D .20187.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( ) A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=218.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤9.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)10.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④11.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.15.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.16.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.17.抛物线y=ax 2+bx+c 的顶点为D(﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a+b+c <0;③c ﹣a=2;④方程ax 2+bx+c ﹣2=0有两个相等的实数根.其中正确结论是________.18.如图,矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,四边形OCED 为菱形,若将菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M,则线段ME的长度可取的整数值为___________________.19.如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为_____.20.关于x的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x1,x2,且x1-x1x2+x2=1-a,则a=三、解答题21.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.22.“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?24.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.C解析:C【解析】【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=-c,作差法比较可得.【详解】∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=-c,则M-N=(ax1+1)2-(2-ac)=a2x12+2ax1+1-2+ac=a(ax12+2x1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N<0,∴M<N.故选C.【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.3.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.4.B解析:B【解析】【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2ba>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.5.D解析:D 【解析】 【分析】 【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°, ∴∠DAB=∠D=45°, ∵AB=2, ∴BD=2, ∴22222222AB BD +=+=∴⊙O 的半径AO=22AD=. 故选D . 【点睛】本题考查圆周角定理;勾股定理.6.B解析:B【分析】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.【详解】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=2020,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.8.B解析:B【解析】试题解析:∵抛物线开口向上,∴a>0.∵抛物线对称轴是x=1,∴b<0且b=-2a.∵抛物线与y轴交于正半轴,∴①abc>0错误;∵b=-2a,∴3a+b=3a-2a=a>0,∴②3a+b>0正确;∵b=-2a,∴4a+2b+c=4a-4a+c=c>0,∴④4a+2b+c<0错误;∵直线y=kx+c经过一、二、四象限,∴k<0.∵OA=OD,∴点A的坐标为(c,0).直线y=kx+c当x=c时,y>0,∴kc+c>0可得k>-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.9.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD 、BE ,作线段AD 、BE 的垂直平分线, 两线的交点即为旋转中心O ′.其坐标是(0,1). 故选B..10.D解析:D 【解析】 【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 故选:D. 【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C 【解析】 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.14.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 15.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG∴∠BCF=∠DCG=30解析:3.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC中,HD=DC·tan∠3∵正方形ABCD的边长为3∴HD=DC·tan∠DCH=3×tan30°=3×33 3试题点评:构建新的三角形,利用已有的条件进行组合.16.(40382)【解析】【分析】先求出开始时点C的横坐标为OC=1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C的位置然后求出翻转B前进的距离连接CE过点D作解析:(4038,3【解析】【分析】先求出开始时点C的横坐标为12OC=1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C的位置,然后求出翻转B前进的距离,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,求出CE=2CH=2×CDsin60°=3C的坐标.【详解】∵六边形ABCDEF为正六边形,∴∠AOC=120°,∴∠DOC=120°﹣90°=30°,∴开始时点C的横坐标为:12OC=12×2=1,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4,∴为第336循环组的第4次翻转,点C在开始时点E的位置,如图所示:∵A(﹣2,0),∴AB=2,∴翻转B前进的距离=2×2020=4040,∴翻转后点C的横坐标为:4040﹣2=4038,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,∴CE=2CH=2×CDsin60°=2×2×32=3,∴点C的坐标为(4038,3),故答案为:(4038,3【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C所在的位置是解题的关键.17.②③④【解析】【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1则根据抛物线的对称性得抛物线与x轴的另一个交点在点(00)和(10)之间所以当x=解析:②③④【解析】【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-2ba=-1得b=2a ,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,所以说方程ax 2+bx+c-2=0有两个相等的实数根. 【详解】∵抛物线与x 轴有两个交点, ∴b 2﹣4ac>0,所以①错误; ∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间, ∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间, ∴当x=1时,y<0, ∴a+b+c<0,所以②正确 ∵抛物线的顶点为D(−1,2), ∴a−b+c=2,∵抛物线的对称轴为直线x=−2ba=−1, ∴b=2a ,∴a−2a+c=2,即c−a=2,所以③正确; ∵当x=−1时,二次函数有最大值为2, 即只有x=−1时, ax 2+bx+c=2,∴方程ax 2+bx+c−2=0有两个相等的实数根,所以④正确 【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次函数与x 轴交点的意义.18.345【解析】【分析】连接OE 交CD 与点M 根据矩形与菱形的性质由勾股定理求出OE 的长在旋转过程中求出OM 的取值范围进而得出ME 的取值范围进而求解【详解】如图连接OE 交CD 与点M ∵矩形ABCD 对角线A解析:3,4,5 【解析】 【分析】连接OE 交CD 与点M ,根据矩形与菱形的性质,由勾股定理求出OE 的长,在旋转过程中,求出OM 的取值范围,进而得出ME 的取值范围,进而求解. 【详解】如图,连接OE 交CD 与点M ,∵矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8, ∴90BAD ︒∠=,OA OB OC OD ===, ∴由勾股定理知,10BD =, ∴5OA OB OC OD ====, ∵四边形OCED 为菱形,∴OE CD ⊥,132DM CD ==, ∴由勾股定理知,4OM =,即8OE =,∵菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M , ∴当OE AD ⊥或OE BC ⊥时,OM 取得最小值3, 当OE 与OA 或OB 或OC 或OD 重合时,OM 取得最大值5, ∴35OM ≤≤, ∵8OE =, ∴35ME ≤≤,∴线段ME 的长度可取的整数值为3,4,5, 故答案为:3,4,5.【点睛】本题考查矩形与菱形的性质,勾股定理,旋转的性质,将求ME 的取值范围转化为求OM 的取值范围是解题的关键.19.【解析】【分析】设BD =x 则EC =3xAE =6﹣3x 根据S△DEB=·BD·AE 得到关于S 与x 的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD =x 则EC =3xAE =6﹣3x∵∠A=90° 解析:32【解析】 【分析】设BD =x ,则EC =3x ,AE =6﹣3x ,根据S △DEB =12·BD ·AE 得到关于S 与x 的二次函数解析式,利用配方法变形为顶点式即可. 【详解】解:设BD =x ,则EC =3x ,AE =6﹣3x , ∵∠A =90°, ∴EA ⊥BD , ∴S △DEB =12•x (6﹣3x )=﹣32x 2+3x=﹣32(x ﹣1)2+32, ∴当x =1时,S 最大值=32. 故答案为:32. 【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.20.-1【解析】试题分析:根据根与系数的关系得出x1+x2=-bax1x2=ca整理原式即可得出关于a的方程求出即可试题解析:∵关于x的方程ax2 -(3a+1)x+2(a+1)=0有两个不相等的实根x1解析:-1【解析】试题分析:根据根与系数的关系得出x1+x2=-,x1x2=,整理原式即可得出关于a的方程求出即可.试题解析:∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,∴x1+x2=,x1x2=,依题意△>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴-=1-a,解得:a=±1,又a≠1,∴a=-1.考点:1.根与系数的关系;2.根的判别式.三、解答题21.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.22.(1)﹣2,1;(2)1;(3)x2﹣1>2x﹣3【解析】【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x、y的值,再求x+y的值;(3)将两式相减,再配方即可作出判断.【详解】解:(1)x2﹣4x+5=(x﹣2)2+1;(2)x2﹣4x+y2+2y+5=0,(x﹣2)2+(y+1)2=0,则x﹣2=0,y+1=0,解得x=2,y=﹣1,则x+y=2﹣1=1;(3)x2﹣1﹣(2x﹣3)=x2﹣2x+2=(x﹣1)2+1,∵(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.23.(1)0.6;(2)0.6;(3)见解析.【解析】【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)首先确定40个球的颜色,然后使得黑球和白球的数量相等即可确定答案.【详解】()1∵摸到白球的频率为()0.650.620.5930.6040.6010.5990.60170.6++++++÷≈,∴当实验次数为10000次时,摸到白球的频率将会接近0.6.()2∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)0.6=.()3先得到盒子内白球数24,黑球数16;增加8个黑球(或减少8个白球等).【点睛】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.24.(1)12;(2)13【解析】【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:21 42 =;故答案为:1 2 .(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41 123=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.25.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。
2020-2021学年人教版第一学期九年级期中考试数学试卷(含答案)
九年级期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若x=1是方程x2+ax-2=0的一个根,则a的值为()A. 0B. 1C. 2D. 33.将二次函数y=2(x-1)2+2的图象向左平移2个单位长度得到的新图象的表达式为()A. B. C. D.4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是()A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)5.同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C. D.6.一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1+x2的值是( )A. 6B. -6C. 5D. -57.如图,已知在△ABC中,∠ABC=90°,AB=8,BC=6,将线段AC绕点A顺时针旋转得到AD,且∠DAC=∠BAC,连接CD,且△ACD的面积为()A. 24B. 30C. 36D. 408.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染的人数是()A. 5人B. 6人C. 7人D. 8人9.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c >b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A. ②④⑤⑥⑦B. ①②③⑥⑦C. ①③④⑤⑦D. ①③④⑥⑦二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12.某乡村种的水稻2018年平均每公顷产3200kg ,2020年平均每公顷产5000kg ,则水稻每公顷产量的年平均增长率为________.13.一抛物线的形状,开口方向与y=3x2−3x+1相同,顶点在(-2,3),则此抛物线的解析式为2________.14.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0),则方程ax2+bx+c=0(a≠0)的两根是________15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=________.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B 点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.17.如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.18.如图,抛物线y=−14x2+12x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于X轴,与拋物线相交于P、Q两点,则线段PQ的长为________.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.已知关于x的一元二次方程x2+(k−1)x+k−2=0.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.21.已知二次函数y=x2-4x+3,设其图象与x轴的交点分别是A、B(点A在点B的左边),与y轴的交点是C,求:(1)A、B、C三点的坐标;(2)△ABC的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.24.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.如图,已知抛物线y=1x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上2O、A之间的一个动点,过点B分别作x轴和y轴的平行线与直线OA交于点C、E,(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC、BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m、n之间的关系式.26.在一-次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F 重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。
安徽省滁州市2021版九年级上学期期中数学试卷(I)卷
安徽省滁州市2021版九年级上学期期中数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) a、b、c是△ABC的三边长,且关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,这个三角形是()A . 等边三角形B . 钝角三角形C . 直角三角形D . 等腰直角三角形2. (2分) (2017七下·罗平期末) 在△ABC中,三边长为9、10、x,则x的取值范围是()A . 1≤x<19B . 1<x≤19C . 1<x<19D . 1≤x≤193. (2分)(2017·安次模拟) 下列几何图形中,对称性与其它图形不同的是()A .B .C .D .4. (2分)用配方法将化成的形式为()A .B .C .D .5. (2分) (2020七下·云南月考) 如图,点的坐标分别为、,将沿轴向右平移,得到三角形,已知,则点的坐标为()A .B .C .D .6. (2分) (2018九上·杭州期中) 下列说法正确的是()A . 任意三点可以确定一个圆B . 平分弦的直径垂直于弦,并且平分该弦所对的弧C . 相等圆周角所对的弧也相等D . 等弧所对的圆周角相等7. (2分)(2017·樊城模拟) 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,6),⊙C的半径长为5,则C点坐标为()A . (3,4)B . (4,3)C . (﹣4,3)D . (﹣3,4)8. (2分)对于二次函数y=2(x+1)(x-3),下列说法正确的是()A . 图象的开口向下B . 当x>1时,y随x的增大而减小C . 当x<1时,y随x的增大而减小D . 图象的对称轴是直线x=-1二、填空题 (共7题;共7分)9. (1分)已知二次函数y=x2-mx-1,当x<4时,函数值y随x的增大而减小,则m的取值范围是________.10. (1分)(2017·眉山) 已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1 , x2 ,则(x1﹣1)(x2﹣1)的值是________.11. (1分) (2019九上·兴化月考) 如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=8,OM:CM=3:8,则⊙O的周长为________.12. (1分)(2018·安顺) 如图,C为半圆内一点,O为圆心,直径AB长为2cm,,,将绕圆心O逆时针旋转至,点在OA上,则边BC扫过区域(图中阴影部分)的面积为________ .(结果保留)13. (1分)如图,在圆的内接五边形ABCDE中,∠B+∠E=220°,则∠CAD=________14. (1分)(2017·埇桥模拟) 把抛物线y=﹣2x2+4x﹣5向左平移3个单位后,它与y轴的交点是________.15. (1分) (2017九上·桂林期中) 点(﹣2,1)关于原点对称的点的坐标为________.三、解答题 (共8题;共81分)16. (10分)(2019·孝感) 已知关于的一元二次方程有两个不相等的实数根, .(1)若为正数,求的值;(2)若,满足,求的值.17. (10分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1 ,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2 .18. (10分)(2017·磴口模拟) 如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.19. (10分) (2016九上·岑溪期中) 已知关于x的一元二次方程x2+2x+2k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,求该方程的根.20. (10分)(2016·余姚模拟) 如图1,正方形ABCD的边长为8,⊙O经过点C和点D,且与AB相切于点E.(1)求⊙O的半径;(2)如图2,平移⊙O,使点O落在BD上,⊙O经过点D,BC与⊙O交于M,N,求MN2的值.21. (6分) (2017九上·相城期末) 某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为 .(1)则今年南瓜的种植面积为________亩;(用含的代数式表示)(2)如果今年南瓜亩产量的增长率是种植面积的增长率的 ,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.22. (10分)图①、图②是两张形状,大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点。
2020-2021学年安徽省芜湖市联考九年级上期中数学试卷及答案解析
第 1 页 共 18 页2020-2021学年安徽省芜湖市联考九年级上期中数学试卷一、选择题:每小题给出的四个选项中,其中只有一个是正确的。
请把正确选项的代号写在下面的答题表内(本大题共10小题,每题4分,共40分)1.(4分)方程x 2=4的解为( )A .x =2B .x =﹣2C .x =2或x =﹣2D .x =42.(4分)抛物线y =(x ﹣1)2+2的顶点坐标是( )A .(1,2)B .(1,﹣2)C .(﹣1,2)D .(﹣1,﹣2)3.(4分)用配方法解方程x 2+1=4x ,下列变形正确的是( )A .(x +2)2=3B .(x ﹣2)2=3C .(x +2)2=5D .(x ﹣2)2=54.(4分)正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )A .30°B .60°C .120°D .180°5.(4分)若菱形ABCD 的一条对角线长为8,边CD 的长是方程x 2﹣10x +24=0的一个根,则该菱形ABCD 的周长为( )A .16B .24C .16或24D .486.(4分)“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x +1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 7.(4分)在平面直角坐标系中,抛物线y =(x +5)(x ﹣3)经变换后得到抛物线y =(x +3)(x ﹣5),则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位 8.(4分)如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )。
人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含2套题)
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC=3:5,则AB 的长为( )A . cmB .8cmC .6cmD .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c ,则下列说法中错误的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 的值全变 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16,则四边形ABCD 的面积最大值是( )A .64B .16C .24D .32封线内不得10.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b2﹣4ac<0;②ab+ac<0;③方程ax2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是_________.12.已知x=(b2﹣4c>0),则x2+bx+c的值为_________.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离_________.14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为_________.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是_________.16.如图,△ABC是边长为a的等边三角形,将三角板的角的顶点与A重合,三角板30°角的两边与BC交于D、E点,则DE长度的取值范围是_________.三、解答题(共8小题,共72分)17.解方程:x2+x﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(﹣4),求这个二次函数的解析式.19.已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2015的值.密学校 班级 姓名 学号密 封 线 内 不 得 答 题20.如图所示,△ABC 与点O 在10×10的网格中的位置如图所示(1)画出△ABC 绕点O 逆时针旋转90°后的图形; (2)画出△ABC 绕点O 逆时针旋转180°后的图形;(2)若⊙M 能盖住△ABC ,则⊙M 的半径最小值为_________.21.如图,在⊙O 中,半径OA 垂直于弦BC ,垂足为E ,点D 在CA 的延长线上,若∠DAB+ ∠AOB=60°(1)求∠AOB 的度数; (2)若AE=1,求BC 的长.22.飞机着陆后滑行的距离S (单位:m )关于滑行时间t (单位:s )的函数解析式是:S=60t ﹣1.5t 2(1)直接指出飞机着陆时的速度; (2)直接指出t 的取值范围;(3)画出函数S 的图象并指出飞机着陆后滑行多远才能停来?23.如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B →A 方向在线段BA 上以a cm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b cm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒)(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时:密封 线 内 不 得①求∠AFC 的度数; ②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .8.D . 9. D .密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题10.C .二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x 2﹣x ﹣1的对称轴是 直线x=﹣ . 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为 0 .13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离 7cn 或17cm .14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为 ﹣2 .15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是 x >3或x <﹣1 .16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 (2﹣3)a ≤DE ≤a . .三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0,题解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°, ∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA ,密 封 内∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y , ∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形, ∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴M 点运动的路径为过点C 垂直于BC 的一条线段.当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3.24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2, 由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2),设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密 封 线 得 人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共15题,每题3分共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( )A .11B .13C .11或13D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A .﹣4B .﹣1C .1D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( )A .12B .6C .9D .166.关于x 的一元二次方程9x 2﹣6x+k=0则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于(A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( )A .y=2(x+1)2+3B .y=2(x ﹣1)2﹣3C .y=2(x+1)2﹣3D .y=2(x ﹣1)2+3 10.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题12.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:x ﹣1 0 1 2 3y51﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x= 13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.解方程:x 2﹣4x+2=0.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD . (1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时, y= ;(2)若该店日净收入为1560元,那么每份售价是多少元?20.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.21.已知关于x的一元二次方程.(1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.某房地产开放商欲开发某一楼盘,于2010年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2012年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2014年初完工并还清银行贷款),同时开始房屋出售,总面积为5万平方米,费用的5%开发商聘请调查公司进行了市场调研,发现在该片区,定位每平方米3000100元,则会少卖1000平方米,且卖房时间会延长2.5房地产开发商预计售房净利润为8660万.(1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2发商不再出售,准备作为商业用房对外出租)每平方米多少元?23.正方形ABCD中,将一个直角三角板的直角顶点与点A 合,一条直角边与边BC交于点E(点E不与点B和点C另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD交于G,且点G是斜边MN的中点,连接EGEG=BE+DG;(3)在(2)的条件下,如果=,那么点G是否一定是边CD的中点?请说明你的理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案一、选择题(共15题,每题3分共45分)1.B .2. C .3. B .4. C .5.B .6.A .7.A .8.D .9.A . 10.B .11.B .12.D .13.A .14.D .15.C .二、解答题(本大题共9小题,共75分) 16.解:x 2﹣4x=﹣2 x 2﹣4x+4=2 (x ﹣2)2=2或 ∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4, ∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形.答 题∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元;20.解:(1)作图如右:△A 1B 1C 1即为所求;(2)作图如右:△A 2B 2C 2即为所求;(3)x 的值为6或7.21.解:(1)密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3即,等腰三角形的三边为3,3,2. 则周长为8,面积为若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万. 答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有 (5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD . ∵∠EAF=90°,∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°, ∴∠N=∠M=45°, ∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.密 封 题∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF , ∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x , ∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k ,∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0.∴抛物线开口向下; (3)连接GA 、FA .密学校 班级 姓名 学号密 封 线 内 不 得 答 题∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2,又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0① 由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。
安徽省滁州市全椒县2019-2020学九年级上学期期中数学试题
【解析】
把点P1(x1,y1),P2(x2,y2)代入 得 , ,则 .
∵x1>x2>0,
∴ , , ,
即0<y1<y2.故选A.
4.D
【分析】
根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.
【详解】
解:A、∵∠ABD=∠ACB,∠A=∠A,
A. B. C. D.
3.若 , 是函数 图象上的两点,当 时,下列结论正确的是
A. B. C. D.
4.如图,下列条件不能判定△ADB∽△ABC的是()
A.∠ABD=∠ACBB.∠ADB=∠ABC
C.AB2=AD•ACD.
5.如图,是三个正方形拼成的一个长方形,则∠1+∠2+∠3=( )
A.60°B.75°C.90°D.105°
(1)用含x的代数式表示:①降价后每售一件盈利_________元;②降价后平均每天售出_________件;
(2)若商城在促销活动中,计划每天盈利750元,并且使消费者得到更多实惠,每件商品应降价多少元?(列方程解答)
(3)在此次促销活动中,商城若要获得最大盈利,每件商品应降价多少元?获得最大盈利多少元?
三、解答题
15.如果 ,且x+y+z=18,求x,y,z的值.
16.已知二次函数的图象以 为顶点,且过点
(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
17.已知:如图,在△ABC中,D是AC上一点, ,△BCD的周长是24cm.
(1)求△ABC的周长;
(2)求△BCD与△ABD的面积比.
10.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=4,BC= ,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )
2020-2021学年安徽省九年级(上)期中数学试卷(附答案详解)
2020-2021学年安徽省九年级(上)期中数学试卷1.若yx =34,则x+yx的值是()A. 73B. 74C. −74D. 72.下列函数中,反比例函数是()A. x(y+1)=1B. y=1x+1C. y=1x2D. y=13x3.若函数y=4x2+1的函数值为5,则自变量x的值应为()A. 1B. −1C. ±1D. 3√224.在同一坐标系中,抛物线y=4x2,y=14x2,y=−14x2的共同特点是()A. 关于y轴对称,开口向上B. 关于y轴对称,y随x的增大而增大C. 关于y轴对称,y随x的增大而减小D. 关于y轴对称,顶点是原点5.已知二次函数y=a(x−ℎ)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6B. 5C. 4D. 36.下列各问题中,两个变量之间的关系不是反比例函数的是()A. 小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系B. 菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系C. 一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的密度ρ之间的关系D. 压力为600N时,压强p与受力面积S之间的关系7.如图,AD与BC相交于点O,AB//CD.若AO=2,DO=3,BC=6,则CO的长为()A. 2.4B. 3C. 3.6D. 48.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=12x2+bx+c的顶点,则方程12x2+bx+c=1的解的个数是()A. 0或2B. 0或1C. 1或2D. 0,1或29.如图,已知点C是线段AB的黄金分割点(其中AC>BC),则下列结论正确的是()A. BCAC =√5−12B. ACBC=√5−12C. AB2=AC2+BC2D. BC2=AC⋅BA10.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数y=4x的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A. 2B. 4C. 2√2D. 4√211.在比例尺为1:5000的地图上,量得甲,乙两地的距离为25cm,则甲、乙两地的实际距离是______米(用科学记数法表示)12.如图,⊙O的半径为2.C1是函数y=x2的图象,C2是函数y=−x2的图象,则阴影部分的面积是______ .13.已知实数x,y,z满足x+y+z=0,3x−y−2z=0,则x:y:z=______.14.如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF相交于点H.给出下列结论:①AF=DE;②∠ADP=15°;③PFPC =13;④PD2=PH⋅PB,其中正确的是______.(填写正确结论的序号)15.已知a,b,c为△ABC的三边长,且a+b+c=36,a3=b4=c5,求△ABC的三边长.16.已知二次函数的顶点坐标为(1,4),且其图象经过点(−2,−5),求此二次函数的解析式.17.新冠疫情暴发后,口罩的需求量增大.某口罩加工厂承揽生产1600万个口罩的任务,计划用t天完成.(1)写出每天生产口罩w(万个)与生产时间t(天)(t>4)之间的函数表达式;(2)由于国外的疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做多少万个口罩才能完成任务?(用含t的代数式表示)18.如图,D、E分别是△ABC的边AB、BC上的点,DE//AC,若S△BDE:S△CDE=1:3,求S△DOE:S△AOC的值.19.抛物线y=mx2−4m(m>0)与x轴交于A,B两点(A点在B点左边),与y轴交于C点,已知OC=2OA.求:(1)A,B两点的坐标;(2)抛物线的解析式.20.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE⋅PF.21.如图,在平面直角坐标系中有抛物线c:y=x2+m和直线l:y=−2x−2,直线l与x轴的交点为B,与y轴的交点为A.(1)求m取何值时,抛物线c与直线l没有公共点;(2)向下平移抛物线c,当抛物线c的顶点与点A重合时,试判断点B是否在平移后的抛物线上.(k≠0,x>0)的图象与直线y=3x相22.反比例函数y=kx交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)在y轴上确定一点M,使点M到A,B两点距离之和d=MA+MB最小,求点M的坐标.23.在△ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将△ABC沿MN折叠,顶点C恰好落在斜边的P点上.(1)如图1,若点N为BC中点时,求证:MN//AB;(2)如图2,当MN与AB不平行时,求证:PAPB =CMCN;(3)如图3,当AC≠BC且MN与AB不平行时,(2)中的等式还成立吗?请直接写出结论.答案和解析1.【答案】B【解析】解:yx =34,则x+yx =3+44=74,故选:B.根据合比性质计算即可.本题考查的是比例的性质,掌握比例的合比性质是解题的关键.2.【答案】D【解析】解:A、不是反比例函数,故A选项不合题意;B、不是反比例函数,故B选项不合题意;C、不是反比例函数,故C选项不合题意;D、是反比例函数,故D选项符合题意.故选:D.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=kx(k为常数,k≠0)或y=kx−1(k为常数,k≠0).本题考查了反比例函数的定义,反比例函数解析式的一般形式y=kx(k≠0),也可转化为y=kx−1(k≠0)的形式,特别注意不要忽略k≠0这个条件.3.【答案】C【解析】解:根据题意,得4x2+1=5,x2=1,解得x=−1或1.故选:C.根据题意,把函数的值代入函数表达式,然后解方程即可.本题考查给出二次函数的值去求函数自变量的值.代入转化为求一元二次方程的解.4.【答案】D【解析】解:因为抛物线y=4x2,y=14x2,y=−14x2都符合抛物线的最简形式y=ax2,其对称轴是y轴,顶点是原点.故选:D.形如y=ax2的抛物线共同特点就是:关于y轴对称,顶点是原点,a正负性决定开口方向.a的绝对值大小决定开口的大小.要求掌握形如y=ax2的抛物线性质.5.【答案】D【解析】【分析】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−b2a ,4ac−b24a),对称轴直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a 时,y随x的增大而增大;x=−b2a时,y取得最小值4ac−b24a,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小;x=−b2a时,y取得最大值4ac−b24a,即顶点是抛物线的最高点.根据抛物线的顶点式得到抛物线的对称轴为直线x=ℎ,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到ℎ<4.【解答】解:∵抛物线的对称轴为直线x=ℎ,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=ℎ<4.故选D.6.【答案】C【解析】A.根据速度和时间的关系式得:v=100t,是反比例函数;B.因为菱形的对角线互相垂直平分,所以12xy=48,即y=96x,是反比例函数;C.根据体积,质量m与所盛液体的密度ρ之间的关系得:m=30p,不是反比例函数;D.根据压力,压强p与受力面积S之间的关系得:p=600S,是反比例函数;故选:C.先对各选项根据题意列出函数关系式,再根据反比例函数的定义进行判断即可结论.本题主要考查了反比例函数的应用,反比例函数的定义,正确表示出各量之间的函数关系是解决本题的关键.7.【答案】C【解析】解:∵AB//CD,∴△OAB∽△ODC,∴OAOD =OBOC,∵AO=2,DO=3,BC=6,∴23=6−OCOC,解得OC=3.6.故选:C.根据AB//CD可证明△OAB∽△ODC,由相似三角形的性质得出OAOD =OBOC,则可求出答案.本题考查了相似三角形的判定与性质,利用相似三角形的性质求出CO的长是解题关键.8.【答案】A【解析】解:分三种情况:点M的纵坐标小于1,方程12x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程12x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程12x2+bx+c=1的解的个数是0.故方程12x2+bx+c=1的解的个数是0或2.故选:A.分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程12x2+bx+c=1的解的个数.考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.【答案】A【解析】解:∵点C是线段AB的黄金分割点,且AC>BC,∴BCAC =ACAB=√5−12,∴选项A符合题意,AC2=BC⋅AB,∴选项D不符合题意;∵ACBC =2√5−1=√5+12,∴选项B不符合题意;∵AB2≠AC2+BC2,∴选项C不符合题意;故选:A.根据黄金分割的定义得出BCAC =ACAB=√5−12,从而判断各选项.本题主要考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.10.【答案】C【解析】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC=√OD2+CD2=2√2,由菱形的性质,可知OA=OC,∵OC//AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=12×OA×CD=12×2√2×2=2√2.故选:C.连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.11.【答案】1.25×103【解析】解:设甲、乙两地间的实际距离为xcm,则15000=25x,解得:x=125000cm=1250m=1.25×103m.故答案为:1.25×103米.根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.本题考查的是比例线段,掌握比例尺的概念和性质是解题的关键.12.【答案】2π【解析】解:∵C1是函数y=x2的图象,C2是函数y=−x2的图象,∴两函数图象关于x轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故答案为:2π.根据C1是函数y=x2的图象,C2是函数y=−x2的图象,得出阴影部分面积即是半圆面积求出即可.此题主要考查了二次函数的对称性,根据已知得出阴影部分面积即是半圆面积是解题关键.13.【答案】1:(−5):4【解析】解:x+y+z=0①,3x−y−2z=0②,①+②得4x−z=0,则z=4x,把z =4x 代入①得x +y +4x =0,则y =−5x ,所以x :y :z =x :(−5x):4x =1:(−5):4.故答案为1:(−5):4.通过解方程组,用x 分别表示出y 与z ,然后求x :y :z 的值.本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)是解决此类问题的关键.14.【答案】①②④【解析】解:∵△BPC 是等边三角形,∴BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,在正方形ABCD 中,∵AB =BC =CD ,∠A =∠ADC =∠BCD =90°,∴∠ABE =∠DCF =30°,∴△ABE≌△DCF(ASA),∴AE =DF ,∴AE −EF =DF −EF ,∴AF =DE ;故①正确;∵PC =CD ,∠PCD =30°,∴∠PDC =75°,∴∠ADP =∠ADC −∠PDC =90°−75°=15°.故②正确;∵∠FPE =∠PFE =60°,∴△FEP 是等边三角形,∴△FPE∽△CPB ,∴PF PC =EF BC ,设PF =x ,PC =y ,则DC =y ,∵∠FCD =30°,∴y =√32(x +y),整理得:(1−√32)y =√32x ,解得:xy =2√3−33,则PFPC =2√3−33,故③错误;∵PC=CD,∠DCF=30°,∴∠PDC=75°,∵∠BDC=45°,∴∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CPD,∴PDCP =PHPD,∴PD2=PH⋅CP,∵PB=PC,∴PD2=PH⋅PB;故④正确.故答案为:①②④.先判断出BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,再判断出AB=BC=CD,∠A=∠ADC=∠BCD=90°,进而得出∠ABE=∠DCF=30°,即可判断出△ABE≌△DCF(ASA),即可得出结论;由等腰三角形的性质得出∠PDC=75°,则可得出答案;证明△FPE∽△CPB,得出PFPC =EFBC,设PF=x,PC=y,则DC=y,得出y=√32(x+y),则可求出答案;先判断出∠DPH=∠DPC,进而判断出△DPH∽△CPD,即可得出结论.本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.15.【答案】解:a3=b4=c5,得a=35c,b=45c,把a=35c,b=45c代入且a+b+c=36,得3 5c+45c+c=36,解得c=15,a=35c=9,b=45c=12,△ABC三边的长:a=9,b=12,c=15.【解析】根据比例的性质,可得a、b、c的关系,根据a、b、c的关系,可得一元一次方程,根据解方程,可得答案.本题考查了比例的性质,利用了比例的性质.16.【答案】解:设抛物线解析式为y=a(x−1)2+4,把(−2,−5)代入得a(−2−1)2+4=−5,解得a=−1,所以抛物线解析式为y=−(x−1)2+4.【解析】设顶点式y=a(x−1)2+4,然后把(−2,−5)代入求出a的值即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.17.【答案】解:(1)写出每天生产口罩w(万个)与生产时间t(天)(t>4)之间的函数表达式为:w=1600t(t>4);(2)由题意得:w=1600t−4−1600t=1600t−1600(t−4)t(t−4)=6400t2−4t(万个),答:每天要多做6400t2−4t(t>4)万个口罩才能完成任务.【解析】(1)根据每天生产口罩w(万个)、生产时间t(天)(t>4)、生产总量之间的关系可直接列出函数表达式;(2)根据题意得到w=6400t2−4t(万个),于是得到结论.本题主要考查了反比例函数的应用,了解每天生产口罩w(万个)、生产时间t(天)(t>4)、生产总量之间的关系是解决问题的关键.18.【答案】解:∵S △BDE :S △CDE =1:3,∴BE :EC =1:3;∴BE :BC =1:4;∵DE//AC ,∴△DOE∽△AOC ,∴DE AC =BE BC =14,∴S △DOE :S △AOC =(14)2=116.【解析】由已知得出BE :BC =1:4;证明△DOE∽△AOC ,得到DE AC =14,由相似三角形的性质即可解决问题.本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE :BC =1:4是解决问题的关键解题的关键.19.【答案】解:(1)当y =0时,mx 2−4m =0,即x 2−4=0,解得x 1=2,x 2=−2, ∴A(−2,0),B(2,0);(2)当x =0时,y =mx 2−4m =−4m ,∴C(0,−4m),∵OA =2,∴OC =2OA =4,∴|−4m|=4,解得m =1或m =−1,∵m >0,∴m =1,∴抛物线解析式为y =x 2−4.【解析】(1)通过解方程mx 2−4m =0可得A 、B 点的坐标;(2)先利用OA =2得到OC =4,所以|−4m|=4,然后求出满足条件的m 的值,从而得到抛物线解析式.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.【答案】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,{AD=AB∠BAP=∠DAP AP=AP,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD//BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴BPPF =PEPB,∴PB2=PE⋅PF,∴PD2=PE⋅PF.【解析】(1)由菱形的性质可得AB=AD,∠BAC=∠DAC,由“SAS”可证△ABP≌△ADP;(2)由全等三角形的性质可得PB=PD,∠ADP=∠ABP,通过证明△EPB∽△BPF,可得BPPF =PEPB,可得结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,灵活运用这些性质进行推理是本题的关键.21.【答案】解:(1)根据题意得x2+m=−2x−2,整理得x2+2x+m+2=0,∵抛物线c与直线l没有公共点,∴△=22−4(m+2)<0,解得m>−1,∴m>−1时,抛物线c与直线l没有公共点;(2)当x=0时,y=−2x−2=−2,∴A(0,−2),当y =0时,−2x −2=0,解得x =−1,∴B(−1,0),∵抛物线c 的顶点与点A 重合,∴平移后的抛物线解析式为y =x 2−2,当x =−1时,y =x 2−2=−1,∴点B 不在平移后的抛物线上.【解析】(1)令x 2+m =−2x −2,整理得x 2+2x +m +2=0,根据判别式的意义得到△=22−4(m +2)<0,则抛物线c 与直线l 没有公共点;(2)先利用一次函数解析式确定A(0,−2),∴B(−1,0),再写顶点在A 点的抛物线解析式为y =x 2−2,然后根据二次函数图象上点的坐标特征进行判断.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,把抛物线与一次函数的交点问题转化为一元二次方程根的问题.也考查了二次函数的几何变换.22.【答案】解:(1)∵A(1,3),AB ⊥x 轴,∴AB =3,OB =1,∵AB =3BD ,∴BD =1,∴D(1,1),将D 坐标代入反比例解析式得:k =1;(2)作点B(1,0)关于y 轴的对称点E(−1,0),连接AE 交y 轴于点M ,则点M 为所求点,理由:d =MA +MB =MA +ME =AE 为最小,设直线AE 的表达式为y =mx +b ,则{3=m +b 0=−m +b ,解得{m =32b =32, 故AE 的表达式为y =32x +32,当x=0时,y=3,2).故点M的坐标为(0,32【解析】(1)A(1,3),则AB=3,OB=1,而AB=3BD,故BD=1,则D(1,1),将D 坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(−1,0),连接AE交y轴于点M,则点M为所求点,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.23.【答案】(1)证明:∵∠C=90°,AC=BC,∴∠B=∠A=45°,∵点N为BC中点,∴CN=BN,由折叠的性质可知,∠CNM=∠PNM,CN=PN,∴PN=BN,∴∠NPB=∠B=45°,∴∠BNP=90°,∴∠CNM=45°,∴∠CNM=∠B,∴MN//AB;(2)证明:如图2,过点M作ME⊥AB于E,过点N作NF⊥AB于F,由折叠的性质可知,MP=MC,NP=NC,∠MPN=∠C=90°,∴∠MPE+∠NPF=90°,∵∠PNF+∠NPF=90°,∴∠MPE=∠PNF,∵∠MEP=∠PFN=90°,∠MPE=∠PNF,∴△MEP∽△PFN,∴MPPN =MEPF=EPFN,∵ME⊥AB,NF⊥AB,∠B=∠A=45°,∴ME=AE,PN=BF,∴MPPN =MEPF=EPFN=ME+PEPF+FN=AE+PEPF+FB=APBP,∴MPPN =APBP;(3)解:不成立,理由如下:过点M作MG⊥AB于G,过点N作NH⊥AB于H,∵∠C=90°,AC≠BC,不妨设AC<BC,则∠A<45°,∠B>45°,∴MG<AG,NH>BH,由(2)的证明方法可知:MPPN ≠APBP.【解析】(1)根据折叠的性质得到∠CNM=∠PNM,CN=PN,得到PN=BN,根据等腰直角三角形的性质、平行线的判定定理证明结论;(2)过点M作ME⊥AB于E,过点N作NF⊥AB于F,证明△MEP∽△PFN,根据相似三角形的性质得到MPPN =MEPF=EPFN,根据等腰直角三角形的性质得到ME=AE,PN=BF,根据比例的性质计算,证明结论;(3)仿照(2)的证明方法可以判断(2)中的等式不成立.本题考查的是相似三角形的判定和性质、翻转变换的性质、比例的性质,掌握相似三角形的判定定理和性质定理是解题的关键.。
2022-2023学年安徽省滁州市全椒县九年级上学期期中考试数学试题
2022-2023学年安徽省滁州市全椒县九年级上学期期中考试数学试题1.若,则下列等式成立的是()A.B.C.D.2.已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(-2,3)C.(3,0)D.(-3,0)3.已知,,若,则()A.4 B.6 C.8 D.164.已知AB=2,点P是线段AB上的黄金分割点,且AP>BP,则AP的长为()A.B.C.D.5.如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE;B.△BDC;C.△BDA;D.△AFD.6.如图,在由小正方形组成的网格中,以点O为位似中心,把放大到原来的2倍,则点A的对应点为()A.点D B.点E C.点F D.点G7.如图,在中,AD是BC边上的高,在的内部,作一个正方形PQRS,若,,则正方形PQRS的边长为()A.B.C.1 D.8.已知二次函数,其中、,则该函数的图象可能为()A.B.C.D.9.已知是抛物线上的两点下列命题正确的是()A.若.则B.若,则C.若,则D.若,则10.菱形中,,E,F分别是,上的动点,且,连接,交于G,则下列结论:①;②为等边三角形;③的最小值为.其中正确的结论是()A.①②B.①②③C.①③D.②③11.如图,△ABC∽△CBD,AB=9,BD=25,则BC=______.12.若抛物线的图像与轴有交点,那么的取值范围是________.13.如图,平行四边形中,点为边上的一点,和相交于点,已知的面积等于12,的面积等于8,则四边形的面积是________.14.如图,在平面直角坐标系中,正方形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,抛物线经过点B、C.(1)点B的坐标为______.(2)若抛物线的顶点在正方形OABC的内部,则a的取值范围是______.15.已知线段a=4cm,线段b=7cm,线段c是线段a,b的比例中项,求线段c的长.16.如图,等边的边长为6,点P,D分别是BC、AC边上的点,且,,求CD的长.17.在平面直角坐标系中,三个顶点坐标分别是.(1)作出关于y轴对称的;(2)作出以点O为位似中心位似比为1:2的18.如图,在△ABC中,D、E、F分别是AB、BC上的点,且DE//AC、AE//DF,BD:AD=3:2,BF=6,求EF和FC的长.19.如图,在平面直角坐标系中,一次函数的图象与y轴相交于点A,与反比例函数(k≠0)在第一象限内的图象相交于点B(m,4),过点B作轴于点C.(1)求k的值.(2)求△ABC的面积.20.如图,在中,,,是边上的中线,点为线段上一点(不与点、重合),连接,作与的延长线交于点,与交于点,连接.(1)求证:;(2)求的度数.21.某超市需购进某种商品,每件的进价为元.该商品的销售单价不低于进价,且不高于元,在销售过程中发现,该商品的日销售量件与销售单价元之间存在一次函数关系,,之间的部分数值对应关系如下表:(1)求与之间的函数关系式;(2)设该商品的日销售利润为元,求与之间的函数关系式.当该商品的销售单价为多少元时,销售这种商品的日销售利润最大?最大利润是多少?22.如图,在中,BC的垂直平分线分别交BC,AC于点D、E,BE交AD于点F,.求证:(1);(2).23.如图,抛物线与x轴交于A、B两点,与y轴交点为,顶点为C.(1)求a的值;(2)求顶点C的坐标;(3)抛物线的对称轴与x轴交于点P,连结BC,BC的垂直平分线MN交直线PC于点M,交BC于点N,求线段PM的长.。
2020-2021学年安徽省滁州市全椒县九年级(上)期中数学试卷(附答案详解)
2020-2021学年安徽省滁州市全椒县九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.抛物线y=2(x−3)2+4的顶点坐标是()A. (−3,−4)B. (−3,4)C. (3,−4)D. (3,4 )2.点(−1,4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是()A. (4,−1)B. (−14,1) C. (−4,−1) D. (14,2)3.如图,在△ABC中,DE//BC,ADAB =23,则S△ADES四边形DBCE的值是()A. 45B. 1C. 23D. 494.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A. ∠DAC=∠ABCB. AC是∠BCD的平分线C. AC2=BC⋅CDD. ADAB =DCAC5.若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=−10x图象上,则y1,y2,y3的大小关系是()A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y26.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEG的值为()A. 12B. 13C. 23D. 347.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac−b2<0;④当x>−1时,y随x的增大而减小.其中正确的有()A. 4个B. 3个C. 2个D. 1个8.如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为()A. (40√5−40)cmB. (80√5−40)cmC. (120−40√5)cmD. (80√5−160)cm9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A. 15B. 20C. 25D. 3010.如图,Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,点P从点A出发,以1cm/s的速度沿A→C向点C运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C向点C运动,直到它们都到达点C为止.若△APQ的面积为S(cm2),点P的运动时间为t(s),则S与t的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.若x+yx =32,则yx=______.12.将抛物线y=ax2+bx−1向上平移3个单位长度后,经过点(−2,5),则8a−4b−11的值是______.13.如图,点A在反比例函数y1=18x(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=6x(x>0)的图象于点C,P为y轴上一点,连接PA,PC,则△APC的面积为______.14.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=______,BE=______.三、解答题(本大题共9小题,共90.0分)15.已知a、b、c是△ABC的三边,且满足a+43=b+32=c+84,且a+b+c=12,请你探索△ABC的形状.16.已知抛物线y=2x2−4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2−4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.17.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,−2),B(2,−1),C(4,−3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.18.“至诚宾馆”客房都有80个房间供游客居住,旅游旺季,当每个房间的定价增加时,就会有一些房间空闲,具体数据如下表:每个房间的定价x(元)150200250300每天入住的房间数y(间)80604840(1)请你认真分析表中数据,写出能表示其变化规律的函数表达式;(2)对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用,同时为促进当地旅游业的蓬勃发展,市旅游局将对每个实际入住的房间予以每间每天奖励50元,求每天入住的房间数为50时宾馆每天的纯利润.19.有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可米.以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为94(1)求该抛物线的解析式;(2)若借助横梁DE(DE//OA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米?20.如图,△ABC是边长为3cm的等边三角形,分别延长BC,CB至点E,点D,使CE=2cm,∠EAC=∠D.(1)求证:△ADB∽△EAC;(2)求BD的长.21.已知A(a,−2a)、B(−2,a)两点是反比例函数y=m与x一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;>0的解(3)观察图象,直接写出不等式kx+b−mx集.22.李师傅承包了一片池塘养鱼,他用总长为120m的围网围成如图所示的6个矩形区域,其中除矩形AEFJ外,其它5个矩形的面积都相等.若AE=xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)当x为何值时,y取得最大值,最大值是多少?23.如图1,在四边形ABCD中,AD//BC,对角线BD平分∠ABC,∠BAC=∠ADC.(1)求证:△ABC∽△DCA;(2)求证:CA2=BC⋅AB;(3)如图2,在(2)的条件下,当∠ADC=90°时,求BD的值.AC答案和解析1.【答案】D【解析】解:y=2(x−3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选:D.已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x−ℎ)2+k,顶点坐标是(ℎ,k),对称轴是x=ℎ.2.【答案】A,【解析】解:将点(−1,4)代入y=kx∴k=−4,∴y=−4,x∴点(4,−1)在函数图象上,故选:A.,求出函数解析式即可解题;将点(−1,4)代入y=kx本题考查反比例函数的图象及性质;熟练掌握待定系数法求函数解析式的方法是解题的关键.3.【答案】A【解析】【分析】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.由DE//BC得到△ADE∽△ABC,利用相似三角形的性质:相似三角形的面积比等于相似比的平方即可解决问题.【解答】解:∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =(ADAB)2=49,∴S△ADES四边形DBCE =45,故选A.4.【答案】C【解析】【分析】此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:A.∵∠DAC=∠ABC,又∵∠ADC=∠BAC,∴△ADC∽△BAC,故A选项不符合题意;B.∵AC是∠BCD的平分线,∴∠ACD=∠ACB,又∵∠ADC=∠BAC,∴△ADC∽△BAC,故B选项不符合题意;C.∵AC2=BC⋅CD,∴ACBC =CDAC,但∠ACD与∠ACB不确定是否相等,不能证明相似,故C选项符合题意;D.∵ADAB =DCAC且∠ADC=∠BAC,∴△ADC∽△BAC,故D选项不符合题意;故选C.5.【答案】B【解析】解:∵反比例函数y=−10x中,k=−10<0,∴此函数图象在二、四象限,∵−1<0,∴点A(−1,y1)在第二象限,∴y1>0,∵3>2>0,∴B(2,y2),C(3,y3)两点在第四象限,∴y2<0,y3<0,∵函数图象在第四象限内为增函数,3>2,∴y2<y3<0.∴y1,y2,y3的大小关系为y1>y3>y2.故选:B.先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.6.【答案】C【解析】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB//DG,∴△ABE∽△CGE,∴BEEG =ABCG=2k3k=23,故选:C.由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG= k,再利用相似三角形的判定和性质即可解决问题.本题考查平行四边形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.7.【答案】B【解析】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴−b=1,2a∴b=−2a,∵抛物线经过点(−1,0),∴a−b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2−4ac>0,即4ac−b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.8.【答案】D【解析】解:∵点C是靠近点B的黄金分割点,点D是靠近点A的黄金分割点,∴AC=BD=80×√5−1=40√5−40,2∴CD=BD−(AB−BD)=2BD−AB=80√5−160,故选:D.根据黄金分割的概念和黄金比值求出AC=BD=40√5−40,进而得出答案.此题考查了黄金分割点的概念:把一条线段分成两部分,使其中较长的线段为全线段与叫做黄金比.较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值√5−129.【答案】B【解析】【分析】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF//BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解答】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF//BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴ANAD =EFBC,∵BC=120,AD=60,∴AN=60−x,∴60−x60=x120,解得:x=40,∴AN=60−x=60−40=20.故选:B.10.【答案】D【解析】解:①当0≤t≤52时,点Q在AB上,∴AQ=2t,AP=t,过Q作QD⊥AC交AC于点D,∵Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,∴BC=3cm,∴QDBC =AQBC,∴QD=65t,S△APQ=12×AP×QD=12×t×65t=35t2,②当52<t≤4时,点Q在BC上,S△APQ=S△ABC−S△CPQ −S△ABQ=12×3×4−12×(4−t)×(8−2t)−12×4×(2t−5)=−t2+4t=−(t−2)2,综上所述,正确的图象是D.故选:D.分两种情况讨论:当0≤t≤52时,过Q作QD⊥AC交AC于点D,S△APQ=12×AP×QD;当52<t≤4时,S△APQ=S△ABC−S△CPQ −S△ABQ;本题考查动点运动,三角形面积.B点是Q点运动的分界点,将运动过程分两种情况进行讨论是解题的关键.11.【答案】12【解析】解:∵x+yx =32,∴2x+2y=3x,故2y=x,则yx =12.故答案为:12.直接利用已知将原式变形进而得出x,y之间的关系进而得出答案.此题主要考查了比例的性质,正确将原式变形是解题关键.12.【答案】−5【解析】解:将抛物线y=ax2+bx−1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(−2,5),代入得:4a−2b=3,则8a−4b−11=2(4a−2b)−11=2×3−11=−5,故答案为:−5.根据二次函数的平移得出平移后的表达式,再将点(−2,5)代入,得到4a−2b=3,最后将8a−4b−11变形求值即可.本题考查了二次函数的平移,二次函数图象上点的坐标特征,解题的关键是得出平移后的表达式.13.【答案】6【解析】解:连接OA和OC,∵点P在y轴上,AB//y轴,则△AOC和△APC面积相等,∵点A在反比例函数y1=18x (x>0)的图象上,点C在反比例函数y2=6x(x>0)的图象上,AB⊥x轴,∴S△AOC=S△OAB−S△OBC=6,∴△APC的面积为6,故答案为6.连接OA和OC,利用三角形面积可得△APC的面积等于△AOC的面积,再结合反比例函数中系数k的几何意义,利用S△AOC=S△OAB−S△OBC,可得结果.本题考查了反比例函数的性质,熟练掌握反比例函数的系数k的几何意义是解题的关键.14.【答案】2;√5−1【解析】【分析】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.根据矩形的性质得到AD=BC,∠ADC=∠B=∠DAE=90°,根据折叠的性质得到CF= BC,∠CFE=∠B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AEEF =DEAE,∴2EF =2+EF2,∴EF=√5−1(负值舍去),∴BE=EF=√5−1,故答案为2;√5−1.15.【答案】解:令a+43=b+32=c+84=k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k−4,b=2k−3,c=4k−8.又∵a+b+c=12,∴(3k−4)+(2k−3)+(4k−8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.【解析】令a+43=b+32=c+84=k.根据a+b+c=12,得到关于k的方程,求得k值,再进一步求得a,b,c的值,从而判定三角形的形状.此题能够利用方程求得k的值,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.16.【答案】解:(1)∵抛物线y=2x2−4x+c与x轴有两个不同的交点,∴△=b2−4ac=16−8c>0,∴c<2;(2)抛物线y=2x2−4x+c的对称轴为直线x=1,∴A(2,m)和点B(3,n)都在对称轴的右侧,当x≥1时,y随x的增大而增大,∴m<n.【解析】(1)由二次函数与x轴交点情况,可知△>0;(2)求出抛物线对称轴为直线x=1,由于A(2,m)和点B(3,n)都在对称轴的右侧,即可求解;本题考查二次函数图象及性质;熟练掌握二次函数对称轴,函数图象的增减性是解题的关键.17.【答案】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【解析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案.此题主要考查了位似变换以及轴对称变换,正确得出对应点位置是解题关键.18.【答案】解:(1)由题意得:y=12000;x=240,(2)y=50时,x=1200050(240−20+50)×50=13500.答:每天入住的房间数为50时宾馆每天的纯利润.【解析】(1)根据题意可得每天入住的房间数=12000÷每个房间的定价;(2)首先求出每天入住的房间数为50时每个房间的定价,再根据题意宾馆需对每个房间每天支出20元的各种费用,及市旅游局将对每个实际入住的房间予以每间每天奖励50元,即可求出每天入住的房间数为50时宾馆每天的纯利润.本题主要考查了反比例函数的应用.解题的关键是根据题意列出函数解析式,进而解决问题.19.【答案】解:(1)由题意可得,抛物线经过(2,94),(8,0),故{64a +8b =04a +2b =94,解得:{a =−316b =32, 故抛物线解析式为:y =−316x 2+32x.(2)由题意可得:当y =1.5时,1.5=−316x 2+32x , 解得:x 1=4+2√2,x 2=4−2√2,故DE =x 1−x 2=4+2√2−(4−2√2)=4√2(米).【解析】(1)直接利用待定系数法求出二次函数解析式进而得出答案;(2)利用y =1.5代入解方程即可求出答案.此题主要考查了二次函数的应用,正确得出函数解析式是解题关键.20.【答案】解:(1)∵△ABC 是等边三角形,且边长为3cm ,∴∠ABC =∠ACB =60°,AB =AC =3cm ,∵∠ABC =∠D +∠BAD ,∠ACB =∠E +∠EAC ,又∵∠EAC =∠D ,∴∠E =∠BAD ,∴△EAC∽△ADB ,即:△ADB∽△EAC ;(2)由(1)知,△ADB∽△EAC ,∴EC AB=AC DB , ∴23=3DB ,∴DB =92cm , 则BD 的长为92cm .【解析】本题考查了相似三角形的性质和判定及等边三角形的性质,明确等边三角形的边长相等,且每一个角都是60°,同时利用外角定理得出角相等,这在几何证明中经常运用,要熟练掌握;本题的关键是利用两角相等证明三角形相似.(1)首先根据等边三角形和已知的∠EAC =∠D ,得∠E =∠BAD ,证明:△ADB∽△EAC ; (2)利用(1)中相似三角形的对应边成比例来求BD 的长度.21.【答案】解:(1)∵A(a,−2a)、B(−2,a)两点在反比例函数y =m x 的图象上, ∴m =−2a ⋅a =−2a ,解得a =1,m =−2,∴A(1,−2),B(−2,1),反比例函数的解析式为y =−2x .将点A(1,−2)、点B(−2,1)代入到y =kx +b 中,得:{k +b =−2−2k +b =1,解得:{k =−1b =−1, ∴一次函数的解析式为y =−x −1.(2)在直线y =−x −1中,令y =0,则−x −1=0,解得x =−1,∴C(−1,0),∴S △AOB =S △AOC +S △BOC =12×1×2+12×1×1=32;(3)观察函数图象,发现:当x <−2或0<x <1时,反比例函数图象在一次函数图象的上方,∴不等式kx +b −m x >0的解集为x <−1或0<x <2.【解析】(1)由点A 的坐标利用反比例函数图象上点的坐标特征即可求出m 的值;由点B 的坐标结合反比例函数图象上点的坐标特征即可得出关于n 的一元一次方程,解方程即可求出点B 的坐标,再由点A 、B 的坐标利用待定系数法即可求出一次函数解析;(2)求得C 的坐标,然后根据三角形面积公式求得即可;(3)结合函数图象的上下位置关系结合交点的坐标,即可得出不等式的解集;本题考查了用待定系数法确定反比例函数的解析式;要能够熟练借助直线和x 轴的交点运用分割法求得不规则图形的面积.22.【答案】解:(1)∵除矩形AEFJ 外,其它5个矩形的面积都相等,且AE =x m , ∴IC =3ID =3x m ,3AE +3AD +5IC =120,∴3x +3AD +5×3=120,∴AD =(40−6x)m ,∴y =4x(40−6x)=−24x 2+160x ,∵AD >0,40−6x >0,∴0<x <203,∴y =−24x 2+160x(0<x <203);(2)y =−24x 2+160x=−24(x −103)2+8003,∵−24<0,∴x =103时,y 取得最大值,最大值是8003.【解析】(1)根据除矩形AEFJ 外,其它5个矩形的面积都相等,以及AE =x m ,可得IC 、3ID 的值及关于AD 的等式,从而用含x 的式子表示出AD ,然后根据矩形的面积公式表示出函数关系式并化简,由AD >0及x >0可得自变量x 的取值范围;(2)将(1)中所得的函数关系式写成顶点式,然后根据二次函数的性质可得答案. 本题考查了二次函数的应用,数形结合并熟练掌握二次函数的性质解题的关键.23.【答案】解:(1)∵AD//BC ,∴∠ACB =∠CAD ,又∵∠BAC =∠ADC ,∴△ABC∽△DCA ;(2)由(1)知△ABC∽△DCA,∴BCAC =ACDA,即CA2=BC⋅AD,∵AD//BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC⋅AB;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=12BD,∵AD//BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴ABBD =BHBC,即AB⋅BC=BH⋅DB,∴AB⋅BC=12BD2,又∵AB⋅BC=AC2,∴12BD2=AC2,∴BDAC=√2.【解析】(1)先判断出∠ACB=∠CAD,得出△ABC∽△DCA;(2)由△ABC∽△DCA得出CA2=BC⋅AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知,BH=12BD,再证△ABH∽△DBC得AB⋅BC=BH⋅DB,即AB⋅BC=12BD2,结合AB⋅BC=AC2推出12BD2=AC2,据此可得答案.本题属于相似三角形的综合问题,考查了相似三角形的判定和性质,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题。
安徽省滁州市2021版九年级上学期期中数学试卷(II)卷
安徽省滁州市2021版九年级上学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·青秀模拟) 在下列二次函数中,其图象对称轴为x=2的是()A . y=2x2﹣4B . y=2(x-2)2C . y=2x2+2D . y=2(x+2)22. (2分) (2016九上·呼和浩特期中) 已知二次函数y=x2﹣4x+5的顶点坐标为()A . (﹣2,﹣1)B . (2,1)C . (2,﹣1)D . (﹣2,1)3. (2分) (2019九上·思明期中) 下列图形中,属于中心对称图形的是()A . 等边三角形B . 直角三角形C . 菱形D . 对角互补的四边形4. (2分)函数y=2x(x-3)中,二次项系数是()A . 2B . 2x2C . -6D . -6x5. (2分) (2019九上·柯桥月考) 若二次函数的图象的对称轴在y轴的右侧,则实数m 的取值范围是A .B .C .D .6. (2分) (2018八上·东台期中) 如图,△ABC中,AB=AC,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合.若∠OEC=136°,则∠BAC的大小为().A . 44°B . 58°C . 64°D . 68°7. (2分) (2020八下·高新期中) 如图,正方形ABCD的三边中点E、F、G,连接ED交AF于点M,交CG于点N,下列结论:①AF⊥DE;②AF∥CG;③CD=CM;④∠CMD=∠AGM。
其中正确的有()A . ①②③B . ①②④C . ①③④D . ①②③④8. (2分)(2020·绍兴模拟) 如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=EF,若AD= ,则弧CF的长为()A .B .C .9. (2分)(2020·无锡模拟) 如图,在半径为4的⊙O中,弦AB=6,点C是优弧上一点(不与A,B 重合),则cosC的值为()A .B .C .D .10. (2分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A . 3个B . 2个C . 1个D . 0个11. (2分) (2019九上·台州期末) 如图,将直角三角板60°角的顶点放在圆心 O 上,斜边和一直角边分别与⊙O 相交于A,B 两点,P 是优弧 AB 上任意一点(与 A,B 不重合),则∠APB=()A . 15°B . 30°C . 45°12. (2分) (2016九上·端州期末) 二次函数y=ax2+bx+c的图像如图所示,则①abc;②b2-4ac;③2a+b;④a+b+c这四个式子中,值为负数的有个()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分) (2019七下·延庆期末) 小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年安徽省滁州市全椒县九年级第一学期期中数学试卷一、选择题(共10小题).1.(4分)抛物线y=2(x﹣3)2+4的顶点坐标是()A.(﹣3,﹣4)B.(﹣3,4)C.(3,﹣4)D.(3,4 )2.(4分)点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)3.(4分)如图,在△ABC中,DE∥BC,=,则的值是()A.B.1C.D.4.(4分)如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=5.(4分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 6.(4分)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.7.(4分)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个B.3个C.2个D.1个8.(4分)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为()A.(40﹣40)cm B.(80﹣40)cmC.(120﹣40)cm D.(80﹣160)cm9.(4分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.3010.(4分)如图,Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,点P从点A出发,以1cm/s的速度沿A→C向点C运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C 向点C运动,直到它们都到达点C为止.若△APQ的面积为S(cm2),点P的运动时间为t(s),则S与t的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)若=,则=.12.(5分)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a ﹣4b﹣11的值是.13.(5分)如图,点A在反比例函数y1=(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=(x>0)的图象于点C,P为y轴上一点,连接PA,PC,则△APC的面积为.14.(5分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三.(本大题共2小题,每小题8分,满分16分)15.(8分)已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.16.(8分)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.四、(本大题共2小题,每小题8分,满分16分)17.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.18.(8分)“至诚宾馆”客房都有80个房间供游客居住,旅游旺季,当每个房间的定价增加时,就会有一些房间空闲,具体数据如下表:每个房间的定价x(元)150200250300每天入住的房间数y(间)80604840(1)请你认真分析表中数据,写出能表示其变化规律的函数表达式;(2)对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用,同时为促进当地旅游业的蓬勃发展,市旅游局将对每个实际入住的房间予以每间每天奖励50元,求每天入住的房间数为50时宾馆每天的纯利润.五.(本大题共2小题,每小题10分,满分20分)19.(10分)有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为米.(1)求该抛物线的解析式;(2)若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米?20.(10分)如图,△ABC是边长为3cm的等边三角形,分别延长BC,CB至点E,点D,使CE=2cm,∠EAC=∠D.(1)求证:△ADB∽△EAC;(2)求BD的长.六.(本题满分12分)21.(12分)已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b 图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.七.(本题满分12分)22.(12分)李师傅承包了一片池塘养鱼,他用总长为120m的围网围成如图所示的6个矩形区域,其中除矩形AEFJ外,其它5个矩形的面积都相等.若AE=xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)当x为何值时,y取得最大值,最大值是多少?八.(本题满分14分)23.(14分)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.(1)求证:△ABC∽△DCA;(2)求证:CA2=BC•AB;(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)抛物线y=2(x﹣3)2+4的顶点坐标是()A.(﹣3,﹣4)B.(﹣3,4)C.(3,﹣4)D.(3,4 )解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选:D.2.(4分)点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)解:将点(﹣1,4)代入y=,∴k=﹣4,∴y=,∴点(4,﹣1)在函数图象上,故选:A.3.(4分)如图,在△ABC中,DE∥BC,=,则的值是()A.B.1C.D.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,故选:A.4.(4分)如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.5.(4分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2解:∵反比例函数y=﹣中,k=﹣10<0,∴此函数图象在二、四象限,∵﹣1<0,∴点A(﹣1,y1)在第二象限,∴y1>0,∵3>2>0,∴B(2,y2),C(3,y3)两点在第四象限,∴y2<0,y3<0,∵函数图象在第四象限内为增函数,3>2,∴y2<y3<0.∴y1,y2,y3的大小关系为y1>y3>y2.故选:B.6.(4分)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE∽△CGE,∴===,故选:C.7.(4分)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个B.3个C.2个D.1个解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.8.(4分)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为()A.(40﹣40)cm B.(80﹣40)cmC.(120﹣40)cm D.(80﹣160)cm解:∵点C是靠近点B的黄金分割点,点D是靠近点A的黄金分割点,∴AC=BD=80×=40﹣40,∴CD=BD﹣(AB﹣BD)=2BD﹣AB=80﹣160,故选:D.9.(4分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.30解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.10.(4分)如图,Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,点P从点A出发,以1cm/s的速度沿A→C向点C运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C 向点C运动,直到它们都到达点C为止.若△APQ的面积为S(cm2),点P的运动时间为t(s),则S与t的函数图象是()A.B.C.D.解:①当0≤t≤时,点Q在AB上,∴AQ=2t,AP=t,过Q作QD⊥AC交AC于点D,∵Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,∴BC=3cm,∴=,∴QD=t,S△APQ=×AP×QD=×t×t=t2,②当<t≤4时,点Q在BC上,S△APQ=S△ABC﹣S△CPQ﹣S△ABQ=×3×4﹣×(4﹣t)×(8﹣2t)﹣×4×(2t﹣5)=﹣t2+4t=﹣(t﹣2)2+4,综上所述,正确的图象是D.故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)若=,则=.解:∵=,∴2x+2y=3x,故2y=x,则=.故答案为:.12.(5分)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a ﹣4b﹣11的值是﹣5.解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则8a﹣4b﹣11=2(4a﹣2b)﹣11=2×3﹣11=﹣5,故答案为:﹣5.13.(5分)如图,点A在反比例函数y1=(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=(x>0)的图象于点C,P为y轴上一点,连接PA,PC,则△APC的面积为6.解:连接OA和OC,∵点P在y轴上,AB∥y轴,则△AOC和△APC面积相等,∵点A在反比例函数y1=(x>0)的图象上,点C在反比例函数y2=(x>0)的图象上,AB⊥x轴,∴S△AOC=S△OAB﹣S△OBC=6,∴△APC的面积为6,故答案为6.14.(5分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=2,BE=﹣1.解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,故答案为:2,﹣1.三.(本大题共2小题,每小题8分,满分16分)15.(8分)已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.解:令=k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.16.(8分)已知抛物线y=2x2﹣4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2﹣4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.解:(1)∵抛物线y=2x2﹣4x+c与x轴有两个不同的交点,∴△=b2﹣4ac=16﹣8c>0,∴c<2;(2)抛物线y=2x2﹣4x+c的对称轴为直线x=1,∴A(2,m)和点B(3,n)都在对称轴的右侧,当x≥1时,y随x的增大而增大,∴m<n;四、(本大题共2小题,每小题8分,满分16分)17.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.18.(8分)“至诚宾馆”客房都有80个房间供游客居住,旅游旺季,当每个房间的定价增加时,就会有一些房间空闲,具体数据如下表:每个房间的定价x(元)150200250300每天入住的房间数y(间)80604840(1)请你认真分析表中数据,写出能表示其变化规律的函数表达式;(2)对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用,同时为促进当地旅游业的蓬勃发展,市旅游局将对每个实际入住的房间予以每间每天奖励50元,求每天入住的房间数为50时宾馆每天的纯利润.解:(1)由题意得:y=;(2)y=50时,x==240,(240﹣20+50)×50=13500.答:每天入住的房间数为50时宾馆每天的纯利润.五.(本大题共2小题,每小题10分,满分20分)19.(10分)有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为米.(1)求该抛物线的解析式;(2)若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米?解:(1)由题意可得,抛物线经过(2,),(8,0),故,解得:,故抛物线解析式为:y=﹣x2+x;(2)由题意可得:当y=1.5时,1.5=﹣x2+x,解得:x1=4+2,x2=4﹣2,故DE=x1﹣x2=4+2﹣(4﹣2)=4.20.(10分)如图,△ABC是边长为3cm的等边三角形,分别延长BC,CB至点E,点D,使CE=2cm,∠EAC=∠D.(1)求证:△ADB∽△EAC;(2)求BD的长.解:(1)∵△ABC是等边三角形,且边长为3cm,∴∠ABC=∠ACB=60°,AB=AC=3cm,∵∠ABC=∠D+∠BAD,∠ACB=∠E+∠EAC,又∵∠EAC=∠D,∴∠E=∠BAD,∴△EAC∽△ADB,即:△ADB∽△EAC;(2)由(1)知,△ADB∽△EAC,∴=,∴=,∴DB=cm,则BD的长为cm.六.(本题满分12分)21.(12分)已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b 图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.解:(1)∵A(a,﹣2a)、B(﹣2,a)两点在反比例函数y=的图象上,∴m=﹣2a•a=﹣2a,解得a=1,m=﹣2,∴A(1,﹣2),B(﹣2,1),反比例函数的解析式为y=﹣.将点A(1,﹣2)、点B(﹣2,1)代入到y=kx+b中,得:,解得:,∴一次函数的解析式为y=﹣x﹣1.(2)在直线y=﹣x﹣1中,令y=0,则﹣x﹣1=0,解得x=﹣1,∴C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×2+×1=;(3)观察函数图象,发现:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象的上方,∴不等式kx+b﹣>0的解集为x<﹣2或0<x<1.七.(本题满分12分)22.(12分)李师傅承包了一片池塘养鱼,他用总长为120m的围网围成如图所示的6个矩形区域,其中除矩形AEFJ外,其它5个矩形的面积都相等.若AE=xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)当x为何值时,y取得最大值,最大值是多少?解:(1)∵除矩形AEFJ外,其它5个矩形的面积都相等,且AE=xm,∴IC=3ID=3xm,3AE+3AD+5IC=120,∴3x+3AD+5×3=120,∴AD=(40﹣6x)m,∴y=4x(40﹣6x)=﹣24x2+160x,∵AD>0,40﹣6x>0,∴0<x<,∴y=﹣24x2+160x(0<x<);(2)y=﹣24x2+160x=﹣24+,∵﹣24<0,∴x=时,y取得最大值,最大值是.八.(本题满分14分)23.(14分)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.(1)求证:△ABC∽△DCA;(2)求证:CA2=BC•AB;(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.解:(1)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA;(2)由(1)知△ABC∽△DCA,∴,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.。