线性规划中的对偶规划模型及对偶理论

合集下载

《运筹学》线性规划的对偶问题

《运筹学》线性规划的对偶问题

3、资源影子价格的性质
z y b1w1 b2w2 bi wi bmwm z z b1w1 b2w2 (bi bi )wi bmwm z bi wi
w
o i
z o bi
最大利润的增量 第i种资源的增量
第i种资源的边际利润
■影子价格越大,说明这种资源越是相对紧缺 ■影子价格越小,说明这种资源相对不紧缺 ■如果最优生产计划下某种资源有剩余,这种资源的影子 价格一定等于0
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c2 x 2 c2 x 2
s.t.
a11x1 a12x 2 a1n x n x n1
a 21x1 a 22x 2 a 2n x n
x n2
b1
b2
a m1x1 a m2 x 2 a mn x n
差额成本=机会成本 ——利润
5、互补松弛关系的经济解释
wix ni
0xwni
0 x ni i 0 wi
0 0
x jwmj
0xwjm j
0 0
w m x
j j
0 0
在利润最大化的生产计划中 (1)边际利润大于0的资源没有剩余 (2)有剩余的资源边际利润等于0 (3)安排生产的产品机会成本等于利润 (4)机会成本大于利润的产品不安排生产
4、产品的机会成本
增加单位资源可以增加的利润
max z c1x1 c2x2 c jx j cn xn
s.t.
a11x1 a12x 2 a1jx j a1nx n b1 w1
a 21x1 a 22x 2 a 2jx j a 2nx n b2 w2
a m1 x1 a m2 x 2 a mj x j a mn x n bm wm

线性规划的对偶理论(第一部分

线性规划的对偶理论(第一部分

对偶问题的约束条件 对应于原问题的目标 函数和约束条件的系 数。
对偶问题的可行解集 是原问题可行解集的 凸包。
原问题与对偶问题关系
弱对偶性
对于任意一对原问题和对偶问题 的可行解,原问题的目标函数值 总是大于或等于对偶问题的目标
函数值。
强对偶性
当原问题和对偶问题都存在可行 解时,它们的最优解对应的目标
强对偶性定理
若原问题和对偶问题都有可行解,则 它们分别存在最优解,且这两个最优 解的目标函数值相等。
在满足某些约束规格(如Slater条件) 的情况下,强对偶性成立。
互补松弛条件
在原问题和对偶问题的最优解中,如果某个约束条件的对偶变量值为正,则该约束 条件必须是紧的(即取等号)。
如果原问题(对偶问题)的某个变量在最优解中取正值,则其对应的对偶问题(原 问题)的约束条件必须是紧的。
标准形式
通常将线性规划问题转化为标准 形式,即求解目标函数的最小值 ,约束条件为一系列线性不等式 。
对偶问题定义与性质
对偶问题定义:对于 给定的线性规划问题, 可以构造一个与之对 应的对偶问题,该问 题的目标函数和约束 条件与原问题密切相 关。
对偶问题性质
对偶问题的目标函数 是原问题约束条件的 线性组合。
解决对偶间隙等关键问题
在实际应用中,由于原问题和对偶问题之间可能存在对偶间隙,导致对偶理论的实用性受到一定的限制。 未来可以研究如何缩小或消除对偶间隙,提高对偶理论的实用性和应用范围。
THANKS
感谢您的观看
简化了复杂问题的求解过程
对偶理论能够将一些复杂的线性规划问题转化为相对简单的对偶问题进行求解,从而降低了问题 的求解难度和计算量。
揭示了原问题和对偶问题之间的内在联系

线性规划对偶问题

线性规划对偶问题

线性规划对偶问题线性规划是一种优化问题的数学建模方法,在实际生产和管理中广泛应用。

线性规划问题通常包括最大化或最小化一个线性目标函数的约束条件下的一组线性不等式或等式。

对于一个线性规划问题,其对偶问题是通过对原问题的目标函数和约束条件进行变换而得到的。

对偶问题有助于理解原问题的特性,并提供关于原问题的附加信息。

具体来说,对于一个原问题:最小化 C^T * X约束条件 A * X >= bX >= 0其中,C是目标函数的系数矩阵,X是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。

对于原问题的对偶问题,其形式为:最大化 b^T * Y约束条件 A^T * Y <= CY >= 0其中,Y是对偶变量向量。

对偶问题的最优解被称为对偶可行解,对偶问题的最优解与原问题的最优解之间存在弱对偶性和强对偶性。

弱对偶性指的是对于原问题的任意可行解X和对偶问题的任意可行解Y,有C^T * X >= b^T * Y。

这意味着对于原问题的任意最优解X*和对偶问题的任意最优解Y*,有C^T * X* >=b^T * Y*。

强对偶性指的是如果原问题和对偶问题的任意一个都有有界解,那么它们必然存在一对最优解,使得C^T * X* = b^T * Y*。

对偶问题的解决可以通过使用单纯形法或内点法等优化算法来进行求解。

对偶问题对线性规划问题的求解具有重要的应用价值和理论意义。

它可以用于确定原问题的可行解的界限,还可以提供原问题的敏感性分析和稳定性分析。

总之,线性规划的对偶问题是通过对原问题的目标函数和约束条件进行变换而得到的,对偶问题为理解原问题的特性和提供附加信息提供了一种有力的工具。

线性规划对偶理论

线性规划对偶理论

线性规划对偶理论前言线性规划(linear programming, LP)是一种求解线性模型的算法,该算法可以在目标函数下寻找最佳的解决方案。

通常情况下,线性规划可以被看作是一种最优化问题,其目的是在满足一组约束条件的前提下,找到可以最大化或最小化目标函数的变量值。

而对偶理论是线性规划问题中的重要概念之一,在很多情况下,使用对偶理论能够有效地求解出更优的解答。

线性规划与对偶理论在介绍线性规划对偶理论之前,我们先来简单了解一下线性规划的概念。

线性规划可以被定义为一组决策变量的线性函数,该函数的取值范围应在满足一组线性方程(或不等式)约束条件的前提下,使得目标函数达到最小(或最大)值。

换句话说,线性规划要求我们在可接受的条件下,寻找到最优的决策变量值。

围绕这种思想,我们可以进一步探讨线性规划的对偶问题。

在实践中,我们常常会面对一些较复杂的线性规划问题,此时我们可以使用对偶理论对其进行简化处理。

形式化地说,对于一个线性规划问题,我们可以构建一个对应的对偶问题,二者之间的关系可以被描述为一种对称的互补关系。

具体而言,在每个线性规划问题中,我们可以根据不同的约束条件求出一个对应的乘法因子,这个乘法因子可以在构建对偶问题时被使用。

通过这种方式,我们总是可以在对偶问题中找到一组最优解,而这组最优解实际上是原始问题的一个下界。

同时,我们可以利用对偶问题的最优解来求解原始问题的最优解,这种方法被称为对偶算法。

相比于原始的线性规划问题,对偶问题有着更为简洁的约束条件和更为易于求解的优化问题,因此其求解效率较高。

对偶问题的分析与求解在实际求解中,我们通常需要对给定的线性规划问题进行对偶化处理,并使用一系列的对偶算法来求解对偶问题。

下面,我们将会举两个例子来说明对偶问题的分析与求解。

例1:最小费用最大流问题最小费用最大流问题是一种最优化问题,其目的是在给定图中求出最大流量下的最小费用。

在具体求解中,我们可以通过建立一个对应的线性规划问题,并将其对偶化得到一个更加简洁的对偶问题。

线性规划的对偶问题

线性规划的对偶问题
第9页
(二)非对称型对偶问题
max z c1x1 c2x2 c3x3 c3x3 s.t. a11x1 a12 x2 a13x3 a13x3 b1
a21x1 a22 x2 a23x3 a23x3 b2 a2a1x21x1 a2a2 x222x2 a2a3x233x3 a2a3x233x3 b2b2 a31x1 a32x2 a33x3 a33x3 b3
min w b1y1 b2 y2 b3 y3 s.t. a11 y1 a21 y2 a31 y3 c1
a12 y1 a22 y2 a32 y3 c2
a13 y1 a23 y2 a33 y3 c3 y1 0,y2无约束,y3 0
第11页
(二)非对称型对偶问题
对偶问题(原问题)
目标函数 min
约束条件右端常数
目标函数的系数
3个
≥0

≤0

无符号限制
23个




条 件
=
第13页
二、原问题与对偶问题的对应关系
原问题(对偶问题)
目标函数 max
目标函数的系数
约束条件右端常数
约 m个
束≤
条 件

=
n个

≥0

≤0
无符号限制
对偶问题(原问题)
目标函数 min
约束条件右端常数
第8页
(二)非对称型对偶问题
max z = c1x1 + c2x2 + c3x3 s.t. a11x1 + a12x2 + a13x3 ≤ b1
a21x1 + a22x2 + a23x3 = b2 a31x1 + a32x2 + a33x3 ≥ b3 x1≥0, x2≤0, x3无约束 分析:化为对称形式。令 x2 x2,x3 x3 x3 (x3 0, x3 0)

运筹学02对偶理论1线性规划的对偶模型,对偶性质

运筹学02对偶理论1线性规划的对偶模型,对偶性质

(x1, x2, x3)T 0
从而对偶问题为
4 min w Yb ( y1, y2 ) 1 4 y1 y2
4 1 -1
YA ( y1, y2 ) 1 -7
5
(4 y1 y2, y1 7 y2, y1 5y2 ) (5, 2, 3)
min Z 4 y1 y2
4 y1 y2 5
min
w
6 y1
8y2
10 y3
约束, 即
5yy1175yy22
y3 3 y3
4
3
yi 0, i 1,2,3
3.1 线性规划的对偶模型 Dual model of LP
线性规划问题的规范形式(Canonical Form 或叫对称形式) : 定义:
目标函数求极大值时,所有约束条件为≤号,变量非负; 目标函数求极小值时,所有约束条件为≥号,变量非负。
【例3.2】写出下列线性规划的对偶问题
max Z (5, 2,3)(x1, x2, x3)T
max Z 5x1 2x2 3x3
4x1x1 7
x2 x2
x3 4 5x3 1
x1, x2, x3 0
【解】设Y=(y1,y2 ), 则有
4
1
1 7
1
5
x1 x2 x3
4 1
y1y1 7
y2 2 5 y2 3
y1 0, y2 0
3.1 线性规划的对偶模型 Dual model of LP
【例3.3】 写出下列线性规划的对偶问题
max Z 4x1 3x2
5x1 x2 6 7x1x1 35x2x2108 x1 0, x2 0
【解】该线性规划的对偶问题是求最 小值,有三个变量 且非负, 有两个“ ≥”

运筹学04-线性规划的对偶问题

运筹学04-线性规划的对偶问题

生产计划问题
总结词
生产计划问题是线性规划对偶问题的另一个重要应用,主要研究如何安排生产 计划,以满足市场需求并实现利润最大化。
详细描述
在生产过程中,企业需要合理安排生产计划,以最小化生产成本并最大化利润。 通过线性规划对偶问题,可以确定最优的生产计划,使得生产过程中的资源得 到充分利用,同时满足市场需求。
对偶理论的发展趋势与未来研究方向
1 2 3
混合整数对偶
随着混合整数规划问题的日益增多,对偶理论在 处理这类问题中的研究将更加深入。
大数据优化
随着大数据技术的不断发展,如何利用对偶理论 进行大规模优化问题的求解将成为一个重要研究 方向。
人工智能与优化
人工智能和机器学习方法为优化问题提供了新的 思路,与对偶理论的结合将有助于开发更高效的 算法。
THANKS
感谢观看
线性规划问题的数学模型
目标函数
通常是一个线性函数,表示要优化的目标。
约束条件
通常是一组线性等式或不等式,表示决策变 量所受到的限制。
可行解集合
满足所有约束条件的解的集合,称为可行解 集合。
02
对偶问题概念
对偶问题的定义
线性规划的对偶问题是通过将原问题 的约束条件和目标函数进行转换,形 成与原问题等价的新问题。
对偶理论与实际问题的结合
01
02
03
供应链管理
在供应链优化问题中,对 偶理论可以用于协调供应 商和零售商之间的利益, 实现整体最优。
金融风险管理
在金融领域,对偶理论可 以用于评估和管理投资组 合的风险,提高投资效益。
交通调度
在交通调度问题中,对偶 理论可以用于优化车辆路 径和调度计划,提高运输 效率。

线性规划的对偶理论2-对偶问题的性质

线性规划的对偶理论2-对偶问题的性质
算例三
含多个决策变量的线性规 划问题及其对偶问题的求 解
含不等式约束的线性规划 问题及其对偶问题的求解
经典案例分析:运输问题、生产计划等
通过对偶理论实现资源的最优分 配
对偶理论在生产计划优化中的应 用
如何通过对偶理论求解最小成本 运输问题
运输问题
资源分配问题 生产计划问题
实际应用案例分享
供应链管理
椭球法
通过构造一个包含原问题可行域的椭球,将原问题转化为 一个椭球约束的优化问题,然后利用椭球算法进行求解。
割平面法
通过在原问题的约束条件中不断添加割平面,将原问题转 化为一个更容易求解的问题,然后利用相关算法进行求解。
Part
04
对偶理论在经济学中应用
影子价格概念及计算
影子价格定义
影子价格反映资源在最优配置下 的边际价值,即资源每增加一单
选择一个满足所有约束条 件的初始内点。
迭代过程
通过不断迭代,沿着目标函数 的负梯度方向进行搜索,直到 达到最优解或满足停止准则。
求解最优解
当迭代过程结束时,从最 终迭代点中读取最优解。
其他方法简介
外点法
通过构造一个包含原问题可行域的外点,将原问题转化为 一个无约束优化问题,然后利用无约束优化方法进行求解。
简化问题求解从而降低了 计算复杂度和难度。
揭示问题内在联系
对偶理论揭示了原问题与其对偶问题之间的内在联系,有助于发现 问题的隐藏性质和潜在优化方向。
未来发展趋势预测及挑战分析
拓展应用领域
随着对偶理论的不断完善和发展, 其应用领域将进一步拓展,包括机 器学习、大数据分析等前沿领域。
强对偶性
强对偶性定义
01
存在一组可行解,使得原问题的目标函数值等于其对偶问题的

第三章线性规划的对偶定理

第三章线性规划的对偶定理

特点:
1. max min 2.限定向量b 价值向量C
其它形式 的对偶
?
(资源向量)
3.一个约束 一个变量。
4. max z的LP约束“ ” min z 的
LP是“ ”的约束。
5.变量都是非负限制。
二、原问题与对偶问题的数学模型
❖ 1.对称形式的对偶
当原问题对偶问题只含有不等式约束
时,称为对称形式的对偶。
根据对称形式的对偶模型,可直接 写出上述问题的对偶问题:
b max w (Y 1,Y 2 ) -b
(Y
1,Y
2
)
A A
C
Y1 0 ,Y2 0
max w (Y 1 Y 2 ) b
(Y
1
Y
2
)
A
C
Y 1 0, Y 2 0
令 Y Y,1 Y得2对偶问题为:
max w Yb
❖ (3)若原问题可行,但其目标函数值无 界,则对偶问题无可行解。
❖ (4)若对偶问题可行,但其目标函数值 无界,则原问题无可行解。
❖ (5)若原问题有可行解而其对偶问题无 可行解,则原问题目标函数值无界。
❖ (6)对偶问题有可行解而其原问题无可 行解,则对偶问题的目标函数值无界。
CX Yb
原问题
设备A 设备B 调试工序
产品Ⅰ 产品Ⅱ
0
5
6
2
1
1
利润(元) 2
1
D
15时 24时 5时
x 设 Ⅰ产量––––– 1
x Ⅱ产量––––– 2
如何安排生产, 使获利最多?
max z 2 x1 x2
s.t.
5x2 15
6 x1 2 x2 24

(完整版)线性规划的对偶原理

(完整版)线性规划的对偶原理

线性规划的对偶原理3。

1 线性规划的对偶问题一、 对偶问题的提出换位思考家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大213050m ax x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,50212034212121x x x x x x某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。

他 需要与家具厂谈判付给该厂每个工时的价格。

如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少.目标:租金最少;1y —付给木工工时的租金;2y -付给油漆工工时的租金2150120m in y y w +=所付租金应不低于家具厂利用这些资源所能得到的利益1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收入 502421≥+y y2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收入 30321≥+y y3)付给每种工时的租金应不小于零 0,021≥≥y y二、 原问题与对偶问题的数学模型1. 对称形式的对偶原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。

原问题:⎪⎩⎪⎨⎧≥≥=0min X b AX CX z对偶问题:⎪⎩⎪⎨⎧≥≤=0max Y C YA Yb w2. 非对称形式的对偶若原问题的约束条件全部是等式约束(即线性规划的标准型),即⎪⎩⎪⎨⎧≥==0min X b AX CX z则其对偶问题的数学模型为⎪⎩⎪⎨⎧≤=是自由变量Y C YA Yb w max可把原问题写成其等价的对称形式:min z =CX AX ≥b AX ≤b X ≥0即 min z =CX⎥⎦⎤⎢⎣⎡-A A X ≥⎥⎦⎤⎢⎣⎡-b bX ≥0设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。

线性规划的对偶与对偶单纯形法

线性规划的对偶与对偶单纯形法

对 称 形 式 的 对 偶 问 题
对偶的定义
原始问题 min f(x)=CTX s.t. AX≥b X ≥0
min m CT A ≥ b
对偶问题 max z(y)=bTy s.t. ATy≤C y ≥0
max bT
n
AT m
≤ C
n
对偶问题的特点

(1)目标函数在一个问题中是求最大值在 另一问题中则为求最小值 (2)一个问题中目标函数的系数是另一个 问题中约束条件的右端项 (3)一个问题中的约束条件个数等于另一 个问题中的变量数 (4)原问题的约束系数矩阵与对偶问题的 约束系数矩阵互为转置矩阵
对偶问题对应表
原问题(对偶问题) 目标函数min 约束条件: m个
第i个约束类型为“≥” 第i个约束类型为“≤” 第i个约束类型为“=”
对偶问题(原问题) 目标函数max 变量数: m个
第i个变量≥0 第i个变量≤0 第i个变量是自由变量
变量数:n个
第j个变量≤ 0 第j个变量≥ 0 第j个变量是自由变量
1
B
1
C
1
拥有量
3
1
2
4
3
7
3
9
假设有客户提出要求,购买工厂所拥有的 工时和材料,为客户加工别的产品,由客 户支付工时费和材料费。那么工厂给工时 和材料制订的最低价格应是多少,才值得 出卖工时和材料 ?
A 工 时 材 料 单件利润
1 1
B
1 4
C
1 7
拥有量 3 9
2
3
3
•出卖资源获利应不少于生产产品的获利; 约束

≥0
一般 线 性规 划 问题 的 对偶 问题
min f c1x1 c2 x2 cn xn

线性规划问题的对偶性

线性规划问题的对偶性

线性规划问题的对偶性线性规划(Linear Programming)是数学规划的一个重要分支,用于解决一类特定的优化问题。

在线性规划问题中,我们需要在一组线性约束条件下,找到使目标函数达到最大或最小值的变量取值。

对于一般的线性规划问题,我们往往可以通过对偶性理论来找到一个等价的对偶问题,从而更好地求解原始问题。

1. 对偶问题的引入在线性规划问题中,我们通常会面临一个最大化或最小化一个线性目标函数的任务,同时需要满足一系列线性约束条件。

假设我们的线性规划问题为:最大化(或最小化):cx约束条件:Ax ≤ b其中,c是一个长度为n的向量,x是变量向量,A是一个m×n的矩阵,b是一个长度为m的向量。

对于这个线性规划问题,我们可以引入一个新的向量y作为拉格朗日乘子,引入一个新的变量w作为对偶变量。

这样,我们可以构建原始问题的拉格朗日函数:L(x, y, w) = cx + yT(Ax - b) - wT(Ax - b)其中,y和w分别是拉格朗日乘子和对偶变量。

2. 对偶问题的建立在引入拉格朗日函数之后,我们可以分别对拉格朗日乘子y和对偶变量w进行极小化和极大化,建立相应的对偶问题。

对于拉格朗日乘子y,我们可以将拉格朗日函数改写为:L(x, y) = (c + ATy)x - yTb注意到,c + ATy为常数向量,可以表示为q。

因此,我们可以得到对偶问题:最小化:qTx约束条件:ATy ≥ 0同样地,对于对偶变量w,我们可以将拉格朗日函数改写为:L(x, w) = (c - ATw)x + wTb同样,我们可以得到对偶问题:最大化:wTb约束条件:ATw ≤ c3. 对偶问题的性质通过对拉格朗日函数的极小化和极大化,我们建立了与原始问题等价的对偶问题。

对偶问题不仅仅是一个等价的数学表达形式,而且具有许多重要的性质。

首先,根据对偶问题的建立,我们可以得知对偶问题的目标函数是原始问题的一个下界。

也就是说,对于任意可行解x和对偶变量w和y,有如下不等式成立:cx ≥ qTx ≥ wTb其次,若原始问题的最优解存在且有限,那么对偶问题的最优解也存在且有限,并且两者的目标函数值相等。

线性规划的对偶理论(第2部分)

线性规划的对偶理论(第2部分)
在某些情况下,求解对偶问题可能比直接求解原问题更简单。通过对偶转化,可以将复杂的问题 转化为相对简单的问题进行求解。
灵敏度分析(Sensitivity Analysis)
对偶问题的解可以用于分析原问题参数变化对最优解的影响。通过对偶问题的灵敏度分析,可以 了解原问题解的稳定性以及参数调整对最优解的影响程度。
Part
05
目标规划与多目标决策
目标规划基本概念
目标函数
在目标规划中,目标函数表示决策者希望优化的目标,可以是最 大化或最小化某个或多个变量的函数。
约束条件
约束条件限制了决策变量的取值范围,确保解在实际可行域内。
优先级与权重
不同目标之间可能存在冲突,通过设定优先级和权重可以权衡各 个目标的重要性。
分支定界法的步骤
分支定界法主要包括分支、定界和剪枝三个步骤。首先,将原问题分解为若干个子问题;其次,对每个子问题分别求 解,并更新上下界;最后,通过剪枝策略删除不可能得到最优解的子问题,以减少计算量。
分支定界法的优缺点
分支定界法具有适用范围广、可求得全局最优解等优点;但同时也存在计算量大、求解效率不高等缺点。 因此,在实际应用中需要根据问题的特点和要求选择合适的算法。
多目标决策方法
线性加权法
将多个目标函数线性加权为一个综合目标函数,通过求解该综合目 标函数的最优解来实现多目标决策。
理想点法
先确定每个目标的理想值,然后构造一个评价函数来衡量实际解与 理想解之间的差距,通过最小化该评价函数来求解多目标决策问题。
分层序列法
将多个目标按照重要程度排序,依次求解各层目标的最优解,最终得 到综合考虑所有目标的满意解。
要点三
混合整数规划的应用 案例
混合整数规划在实际应用中有着广泛 的应用,如生产调度中的任务分配问 题、物流运输中的路径优化问题等。 通过运用混合整数规划方法,可以有 效地解决这些问题,提高生产效率和 运输效率。

第2章线性规划讲义的对偶问题

第2章线性规划讲义的对偶问题

称CBB-1为单纯形乘子
19
二、对偶问题的基本性质
1. 对称性
2. 弱对偶性
推论:
(1)原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之对偶问题任一可行解的目标函数值是其 原问题目标函数值的上界。
(2)如原问题有可行解且目标函数值无界,则其对偶问题无 可行解;反之对偶问题有可行解且目标函数值无界,则 其原问题无可行解。
35
三、分析cj的变化 线性规划目标函数中变量系数cj的变化仅仅影响到检验 数,所以将cj的变化直接反映到最终单纯形表中,只可 能出现表2-9中的第一、二两种情况。
例5:在美佳公司例子中, (1) 若家电Ⅰ的利润降至1.5元/件, 而家电Ⅱ的利润增 至2元/件, 美佳公司最优生产计划有何变化? (2) 若家电Ⅰ的利润不变, 而家电Ⅱ的利润在什么范围 内变化时, 该公司的最优生产计划不发生变化。
28
练习: 用对偶单纯形法求解下述LP问题:
min w x1 4x2 3x4 x1 2x2 x3 x4 3
st. 2x1 x2 4x3 x4 2 xi 0(i 1,2,3,4)
29
min z cx
注: 若LP问题的标准形式为:
Ax b
st
.
x
0
其对偶单纯形法的求解步骤确定换入基变量的原则如下:
目标函数求极小值时,约束方程均为≥
2
二、对称形式下对偶问题的一般形式
对称形式的LP问题(LP1):
M Z c 1 x a 1 c 2 x x 2 c n x n
a 1 x 1 1 a 1 x 2 2 a 1 n x n b 1 a 2 x 1 1 a 2 x 2 2 a 2 n x n b 2

第四章线性规划对偶

第四章线性规划对偶

n
m
CXYb,即cjxj yibi
j1
i1
__ __
推论__ ⑴.若 X 和Y 分别是问题(P)和(D)的可__ 行解,
则C X 是(D)的目标函数最小值的一个下界; Y b 是
(P)的目标函数最大值的一个上界。
第四章线性规划对偶
11
推论⑵.在一对对偶问题(P)和(D)中,若其中 一个问题可行但目标函数无界,则另一个问题不可 行;反之不成立。这也是对偶问题的无界性。
矩 阵 形 式 :P max Z CX
AX b
(2)
X
0
D minW Yb YA C Y 无符号限制(无约束)
第四章线性规划对偶
10
(二)、对偶问题的性质
1、对称性定理:对偶问题的对偶是原问题。
__ __
2、弱对偶原理(弱对偶性):设 X和Y 分别是问题
(P)和(D)的可行解,则必有
__ __
相当于:在换基迭代过程中逐渐使得对应的对 偶消问 失题 ,( 直D到)中yT,CyBTTB1CBT是B对1 偶的问不题可的行可性行逐解渐 时,就是原问题的最优解。
第四章线性规划对偶
17
回顾(单纯形法):
m ax zcx (1)
(LP)
Ax b
(2)
s.t.
x
0
(3)
(b0)
r(Amn)m,A P 1 P m P m 1 P n B N
对偶问题(D Dual Problem)
m in 100y1 150y2
2 y1 y2 4
s .t .
1.5 y1 3 y1
2
2 y2 y2
7
5
y 1 , y 2 0

线性规划的对偶模型

线性规划的对偶模型

对偶在物流优化中的应用
1 2 3
运输优化
对偶模型可以用于优化运输方案,通过合理安排 运输路线和车辆调度,降低运输成本和提高运输 效率。
仓储优化
在仓储优化方面,对偶模型可以帮助企业合理规 划仓库布局和库存管理,提高仓储效率和降低库 存成本。
配送优化
对偶模型可以用于优化配送方案,通过合理安排 配送路线和车辆调度,提高配送效率和降低配送 成本。
05
案例分析
案例一:生产计划优化问题
01
背景描述
某制造企业需要制定生产计划,以满足市场需求并最大化利润。生产计
划需要考虑原材料供应、生产能力、市场需求等多个因素。
02 03
对偶模型建立
通过对原问题建立线性规划模型,并引入对偶变量,可以构建一个与原 问题等价的对偶问题。对偶问题可以更好地描述企业决策者的目标,例 如最小化生产成本或最大化市场份额。
02
对偶问题是凸优化问题,其解是唯一的。
03 对偶问题具有封闭解,即存在一个封闭形式的解。
对偶问题的求解方法
直接法
通过求解对偶问题的约束条件和 目标函数,得到对偶问题的最优
解。
迭代法
通过迭代求解对偶问题,逐步逼近 最优解。
拉格朗日乘数法
利用拉格朗日乘数法求解对偶问题, 得到最优解。
03
对偶模型的应用
对偶解法
通过求解对偶问题,可以得到最优配送路径。对偶解法在处理大规模、多目标优化问题时具有较高的计 算效率,并且能够提供更好的优化效果。
感谢您的观看
THANKS
对偶在金融优化中的应用
投资组合优化
对偶模型可以用于优化投资组合, 帮助投资者确定最佳的投资组合 方案,以实现风险和收益的平衡。

第三章 对偶理论 第一讲 线性规划的对偶模型,对偶性质

第三章 对偶理论 第一讲 线性规划的对偶模型,对偶性质

由这个性质可得到下面几个结论:
1) (DP) 的任一可行解的目标值是 (LP)的最优值下界; (LP)的任一可行解的 目标是 (DP)的最优值的上界;
2)在互为对偶的两个问题中,若一个问题可行且具有无界解,则另一个问 题无可行解;
3) 若原问题可行且另一个问题不可行,则原问题具 有无界解。
注意: 上述结论(2)及(3)的条件不能少。一个问题无可行解时,另一个问题可能有可 行解(此时具有无界解)也可能无可行解。
目标函数求极大值时,所有约束条件为≤号,变量非负; 目标函数求极小值时,所有约束条件为≥号,变量非负。
max Z CX
AX b
(2.1)

X

0
min Z CX
AX b
(2.2)

X
0
注: (1)线性规划规范形式与标准型是两种不同形式,但可以 相互转换。
(2)规范形式的线性规划问题的对偶仍然是规范形式.
3.1 对偶线性规划问题
对偶问题的提出
原问题
min CX
AX b

X

0
对偶问题
max ub uA C u 0
原问题
min CX
AX b

X

0
对偶问题
max ub uA C u 0
原问题与对偶问题关系
(1)原问题的约束个数(不含非负约束)等于对 偶变量的个数
对偶问题
【例】写出下列线性规划的对偶问题
min CX
max ub
max Z 5x1 2x2 3x3
AX b

X

0
uA C u 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MaxZ 2x1 x2
s.t.53xx11
4x 2x
2 2
15 10
x1, x2 0
MinW 15y1 10y2
3y1 5y2 2 s.t.4y1 2y2 1
y1, y2 0
2、非对称形式的对偶关系:
(1) 原问题
n
MaxZ c j x j j 1 n
s.t. j1 aij x j bi i 1,2, , m x j 0 j 1,2, , n
(特点:等式约束)
对偶问题
m
MinW bixi i 1
m
s.t. i1 aij yi 来自cjj 1,2, ,n
yi符号不限, i 1,2, ,m
(特点:对偶变量符号 不限,系数阵转置)
(2)怎样写出非对称形式的对偶问题? 把一个等式约束写成两个不等式约束, 再根据对称形式的对偶关系定义写出;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
课堂练习:写出下面线性规划的对偶规划:
MinZ 4x1 2x2 3x3
4x1 5x2 6x3 7
s.t.182x1x191x32 x2
10x3 14
11
x1 0, x2符号不限, x3 0
下面的答案哪一个是正确的?为什麽?
MaxW 7 y1 11y2 14y3 MaxW 7 y1 11y2 14y3
x2
a2n xn
b2
am1 x1 am2 x2 amn xn bm
x1 , x2 , , xn 0
则定义其对偶问题为
MinW b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1
s.t.a12
y1
a22
y2
am2 yn
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22

×
(原问题是极小化问题,因此应从原始对偶 表的右边往左边查!)
三、对偶定理
对偶定理是揭示 原始问题的解与对偶问题的解之间重 要关系的
一系列性质。
对称性—— 对偶问题的对偶是原问题。
性质1 弱对偶性——如果 X~j ( j 1, ,n) 是原问题
的可行解,
Y~i (in 1,
c
其,n) 对偶问题的可行解,则恒有:
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
j ~x j m bi ~yi
j 1
i 1
MaxZ CX
MinW bY
(L)
s.t.
AX b X 0

均有可行解,分别为
(D)
X~ 和 Y~
YA C
s.t.
,则C
Y
X~≤
0
Y~b。
证 明
由(L)AX~ b
左乘 Y~,得 Y~AX~ Y~b
思 路
由(D)Y~A C 右乘 X~,得
y1, y2, , ym 0
(2)对称形式的对偶关系的矩阵描述
MaxZ CX
MinW bY
(L)s.t.
AX b X 0
(D)
YA
s.t.
Y
C 0
(3)怎样从原始问题写出其对偶问题?
按照定义; 记忆法则:
“上、下”交换,“左、右”换位,
不等式变号,“极大”变“极小”
例 写出下面线性规划的对偶问题:
Y~AX~ CX~

n c j ~x j m bi ~yi
CX~ Y~b
j 1
i 1
• 关于“界”的结果;
•极小化问题有下界——
推论1 极大化问题的任意一个可行解所对应的 目标函数值是其对偶问题最优目标函数值的一 个下界。
按照原始-对偶表直接写出 ; (3)原始-对偶表
原问题(或对偶问题) 对偶问题(或原问题)
目标函数 MaxZ
变量数:n个 变量 ≥0 变量 ≤0 变量 无约束
约束条件:m个 约束条件 ≤ 约束条件 ≥ 约束条件 =
目标函数 MinW
约束条件数:n个 约束条件 ≥ 约束条件 ≤ 约束条件 =
变量数:m个 变量 ≥0 变量 ≤0 无约束
c2
a1n y1 a2n y2 amn yn cn
y1, y2 , , ym 0
这两个式子之间的变换关系称为 “对称形式的对偶关系”。
原问题与对偶问题的对比:
若原问题
对偶问题
MaxZ c1x1 c2 x2 cn xn
a11x1 a12x2 a1n xn b1
s.t.a21
4 y1 8y2 12y3 4
4 y1 8y2 12y3 4
s.t.
5y1 9 y2 13y3 2 6 y1 10y2 3
s.t.
5y1 9 y2 13y3 2 6 y1 10y2 3
y1符号不限, y2 0, y3 0 y1符号不限, y2 0, y3 0
x1
a22
x2
a2nxn
b2
am1x1 am2 x2 amn xn bm
x1, x2 , , xn 0
MinW b1y1 b2 y2 bm ym
a11y1 a21y2 am1ym c1
s.t.a12
y1
a22
y2
am2 yn
c2
a1n y1 a2n y2 amn yn cn
第二章 线性规划的对偶模型
一、对偶问题的提出
1、 对偶思想举例:某工厂拥有一定生产原材料 时,该工厂考虑是自己进行产品生产所赚的利 润大还是将其原材料直接出售给其它工厂时所 以赚取的利润大的问题。
2、 换个角度审视生产计划问题
例:(第一章例2)要求制定一个生产计划
方案,在劳动力和原材料可能供应的范围
相关文档
最新文档