人教b版数学必修1同步练习-2.1.2 函数的表示方法 含答案
高中数学 第二章 函数 2.1.2 函数的表示方法课件 b必修1b高一必修1数学课件
答案:1 2
12/13/2021
第四十页,共四十四页。
4.已知 f(x+1)=x2-2x,则 f( 2)=________. 解析:设 x+1=t,则 x=t-1. 则 f(t)=(t-1)2-2(t-1) =t2-4t+3. 所以 f(x)=x2-4x+3, 所以 f( 2)=( 2)2-4 2+3=5-4 2. 答案:5-4 2
12/13/2021
第十八页,共四十四页。
法二:设 x+4=t≥4,则 x=t-4,x=(t-4)2, 所以 f(t)=(t-4)2+8(t-4)=t2-16. 所以 f(x)=x2-16(x≥4). 所以 f(x2)=x4-16(x≤-2 或 x≥2). (3)由 2f(x)+f1x=2x,① 将 x 换成1x,则1x换成 x,得 2f1x+f(x)=2x,② ①×2-②,得 3f(x)=4x-2x,即 f(x)=43x-32x.
第二章 函 数
2.1.2 函数的表示(biǎoshì)方法
12/13/2021
第一页,共四十四页。
第二章 函 数
1.掌握函数的三种表示方法:解析法、图象法、 列表法. 2.了解简单的分段函数. 3.掌握函数解析式 的求法.
12/13/2021
第二页,共四十四页。
1.函数的表示方法
12/13/2021
第十三页,共四十四页。
(4)该函数中 y=1(x≥1)表示平行于 x 轴的一条射线.
12/13/2021
第十四页,共四十四页。
作函数图象时应注意的事项 (1)画函数图象时首先关注函数的定义域,即在定义域内作图; (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托 整个图象; (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的 交点等.要分清这些关键点是实心点还是空心点.
第二章 2.1.2 一元二次方程的解集及其根与系数的关系2019(秋)数学 必修 第一册 人教B版(新教材)
2.1.2 一元二次方程的解集及其根与系数的关系
@《创新设计》
课标要求
素养要求
1.理解判别式的作用,掌握一元二次方
程的解法:因式分解法(包括“十字相乘 通过求一元二次方程的解集及根与系数
法”),配方法和求根公式法(重点).
关系的应用,提升逻辑推理和数学运算
2.掌握一元二次方程根与系数的关系(韦 素养.
19
课前预习
课堂互动
核心素养
@《创新设计》
一、素养落地 1.通过学习求一元二次方程的解集提升运算素养;通过学习根与系数的关系提升逻
辑推理和数学运算素养. 2.求一元二次方程解集时,先用判别式判定解的情况再求解集. 3.运用根与系数关系时,注意恒等变形和整体代入.
20
课前预习
课堂互动
核心素养
二、素养训练 1.用配方法解下列方程时,配方有错误的是( )
(1)x4-3x2+2=0;(2)x+2 x-1=0;(3)(x2-x)2-(x2-x)-2=0. 解 (1)令y=x2≥0,得y2-3y+2=0,∴y=1或y=2,即x2=1或x2=2,
∴x=±1 或 x=± 2. ∴原方程的解集为{- 2,-1,1, 2}.
(2)令 y= x≥0,得 y2+2y-1=0, ∴y=-1+ 2或 y=-1- 2(舍). 从而 x=-1+ 2,即 x=3-2 2, ∴原方程的解集为{3-2 2}. (3)令x2-x=t,得t2-t-2=0,∴t1=-1或t2=2, 即x2-x+1=0 ①或x2-x-2=0 ② 对①,Δ=-3<0,无实数解;对②,易得x=-1或x=2,故原方程的解集为{-1,
解 (1)由 Δ=[-2(k-1)]2-4k2=4(1-2k)≥0,得 k≤12,即 k 的取值范围是
人教B版高中数学必修第1册 同步练习-第1章 1
1.2.3 充分条件、必要条件第1课时 充分条件、必要条件(教师独具内容)课程标准:通过对典型数学命题的梳理,理解充分条件、必要条件的意义,理解判定定理与充分条件的关系,性质定理与必要条件的关系.教学重点:掌握充分条件与必要条件的意义,会判断条件与结论之间的充分性或必要性.教学难点:判断条件与结论之间的充分性或必要性.【情境导学】(教师独具内容)已知命题p:小华是北京人,命题q:小华是中国人,这两个命题之间有什么关系呢?q 是p 的什么条件呢?这节课我们就来学习这些问题.【知识导学】知识点一 命题的结构 在“如果p,那么q”形式的命题中,p 称为命题的条件,q 称为命题的结论.若“如果p,那么q”是一个真命题,则称由□01p 可以推出□02q,记作p ⇒q,读作“p 推出q”;否则,称由p 不可以推出q,记作p ⇒/ q,读作“p 推不出q”.知识点二 充分条件、必要条件(1)当p ⇒q 时,我们称p 是q 的□01充分条件,q 是p 的□02必要条件;当p ⇒/ q 时,我们称p 不是q 的充分条件,q 不是p 的必要条件.(2)充分条件与必要条件也可用集合的知识来理解.一般地,如果A ={x|p(x)},B ={x|q(x)},且A ⊆B(如图所示),那么□03p(x)⇒q(x),因此也就有□04p(x)是□05q(x)的充分条件,□06q(x)是□07p(x)的必要条件. (3)充分条件、必要条件还与数学中的□08判定定理、□09性质定理有关. 【新知拓展】1.p ⇒q 含义(1)“若p,则q”形式的命题为真命题;(2)由条件p 可以得到结论q ;(3)只要有条件p,就一定有结论q;(4)q是p的必要条件或p的必要条件是q;(5)为得到结论q,具备条件p就可以推出;(6)一旦q不成立,p一定也不成立;(7)q对于p的成立是必要的.2.对“p ⇒/q”的理解“若p,则q”为假命题时,p推不出q,q不是p的必要条件,p也不是q的充分条件.3.对充分条件、必要条件的理解(1)所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.(2)充分条件不是唯一的,如x>2,x>3等都是x>0的充分条件.(3)所谓必要,就是条件是必须有的,必不可少的,缺其不可.“有之未必成立,无之必不成立”.(4)必要条件不是唯一的,如x>0,x>5等都是x>9的必要条件.1.判一判(正确的打“√”,错误的打“×”)(1)“x=3”是“x2=9”的充分条件.( )(2)“x>2且y>3”是“x+y>5”的充分条件.( )(3)若p⇒q,则q是p的必要条件.( )(4)“△ABC∽△A′B′C′”是“△ABC≌△A′B′C′”的必要条件.( )(5)“x=1”是“x2=x”的必要条件.( )答案(1)√(2)√(3)√(4)√(5)×2.做一做(请把正确的答案写在横线上)(1)将命题“平行四边形的对角线互相平分”改写成“若p,则q”的形式为________________________.(2)a,b都是偶数________a+b是偶数.(3)“ab>0”是“a>0,b>0”的________条件.答案(1)若一个四边形为平行四边形,则这个四边形的对角线互相平分(2)⇒(3)必要题型一命题的结构形式例1 把下列命题改写成“若p,则q”的形式,并判断由p是否可以推出q.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac>bc时,a>b;(4)角的平分线上的点到角的两边的距离相等.[解](1)若一个数是实数,则它的平方是非负数,是真命题.故由该命题的条件可以推出该命题的结论.(2)若两个三角形等底等高,则这两个三角形是全等三角形,是假命题.故由该命题的条件不能推出该命题的结论.(3)若ac>bc,则a>b,是假命题.故由该命题的条件不能推出该命题的结论.(4)若一个点在角的平分线上,则该点到这个角的两边的距离相等,是真命题.故由该命题的条件可以推出该命题的结论.[条件探究] 如果把本例(3)中的“ac>bc”改为“ac>bc,且c>0”,怎样解答呢?解若ac>bc,且c>0,则a>b,是真命题.故由该命题的条件可以推出该命题的结论.金版点睛1.命题改写的相关策略(1)对命题改写时,一定要找准命题的条件和结论,有些命题的形式比较简洁,条件和结论不明显,写命题的条件和结论时需要适当加以补充,例如命题“对顶角相等”的条件应写成“若两个角是对顶角”,结论为“这两个角相等”.(2)在对命题改写时,要注意所叙述的条件和结论的完整性,有些命题中,还要注意大前提的写法.例如“在同一平面内,若两条直线都垂直于同一条直线,则这两条直线平行”中,大前提“在同一平面内”是必不可少的.2.判断命题真假的方法(1)反例法:通过构造反例否定一个命题,是判定一个命题为假命题的常用方法.(2)直推法:由条件出发,运用相关的定义、性质、定理等,通过逻辑推理来推断命题的真假性,是判定一个命题为真命题的常规方法.[跟踪训练1]把下列命题写成“若p,则q”的形式,并判断由p是否可以推出q.(1)能被6整除的数既能被3整除也能被2整除;(2)弦的垂直平分线经过圆心,且平分弦所对的弧.解(1)原命题可以写成:若一个数能被6整除,则它既能被3整除也能被2整除,这个命题是真命题.故由该命题的条件可以推出该命题的结论.(2)原命题可以写成:若一条直线是弦的垂直平分线,则这条直线经过圆心,且平分弦所对的弧,这个命题是真命题.故由该命题的条件可以推出该命题的结论.题型二充分条件、必要条件的判断例2 判断下列说法中,p 是q 的充分条件的是________.①p:“x=1”,q:“x 2-2x +1=0”;②设a,b 是实数,p:“a+b>0”,q:“ab>0”;③已知a,b 为正实数,p:a>b>1,q:a 2>b 2>0.[解析] ①当x =1时,x 2-2x +1=0,故p ⇒q,所以p 是q 的充分条件.②由a +b>0不能推出ab>0,故p 不是q 的充分条件.③因为a>b>1⇒a 2>b 2>0,所以p 是q 的充分条件.[答案] ①③金版点睛充分条件的两种判定方法(1)定义法:①确定谁是条件,谁是结论;②尝试从条件推结论,若由条件能推出结论,则条件是结论的充分条件,否则就不是充分条件.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p 是q 的充分条件,同时q 是p 的必要条件;②如果命题:“若p,则q”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件.[跟踪训练2] 设A,B 是两个集合,判断“A∩B=A”是“A ⊆B”的什么条件.解 由题意,得A∩B=A ⇒A ⊆B,反之,A ⊆B ⇒A∩B=A,故“A∩B=A”是“A ⊆B”的充分条件,也是必要条件.例3 在下列各题中,q 是p 的必要条件吗?为什么?(1)p:x -2=0;q:(x -2)(x -3)=0;(2)p:两个三角形相似;q:两个三角形全等;(3)p:m<-2;q:方程x 2-x -m =0无实根.[解] (1)∵x -2=0⇒(x -2)(x -3)=0,∴q 是p 的必要条件.(2)∵两个三角形相似推不出两个三角形全等,∴q 不是p 的必要条件.(3)∵方程x 2-x -m =0无实根,∴Δ=b 2-4ac =1-4×1×(-m)=1+4m<0,解得m<-14. ∵m<-2⇒m<-14, ∴q 是p 的必要条件.金版点睛必要条件判定方法(1)定义法:首先分清条件和结论,然后判断p ⇒q 和q ⇒p 是否成立,最后得出结论.(2)集合法:对于涉及取值范围的判断题,可从集合的角度研究,若两个集合具有包含关系,则小范围⇒大范围,大范围推不出小范围.(3)传递法:由推式的传递性:p 1⇒p 2⇒p 3⇒…⇒p n ,则p n 是p 1的必要条件.[跟踪训练3] 在下列各题中,q 是p 的必要条件吗?p 是 q 的必要条件吗?为什么?(1)p:a 2+b 2=0,q:a +b =0;(2)p:a<b,q:a b<1. 解 (1)∵a 2+b 2=0⇒a =b =0⇒a +b =0,∴q 是p 的必要条件.∵a +b =0推不出a 2+b 2=0,∴p 不是q 的必要条件.(2)由于a<b,当b<0时,a b >1;当b>0时,a b <1,故a<b 推不出a b<1. ∴q 不是p 的必要条件.当a>0,b>0,a b<1时,可以推出a<b ; 当a<0,b<0,a b<1时,可以推出a>b. ∴p 不是q 的必要条件.题型三 利用充分条件与必要条件求参数的取值范围例4 已知集合A ={y|y =x 2-3x +1,x ∈R},B ={x|x +2m≥0};命题p:x ∈A,命题q:x ∈B.(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若p 是q 的必要条件,求实数m 的取值范围.[解] 由已知可得A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛ x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y≥-54, B ={x|x≥-2m}.(1)若p 是q 的充分条件,则p ⇒q,所以A ⊆B,所以-2m≤-54,所以m≥58,即m 的取值范围是⎣⎢⎡⎭⎪⎫58,+∞. (2)若p 是q 的必要条件,则q ⇒p,所以B ⊆A,所以-2m≥-54,解得m≤58. 即m 的取值范围是⎝⎛⎦⎥⎤-∞,58. 金版点睛利用充分条件、必要条件求参数取值范围的思路根据充分条件、必要条件求参数的取值范围时,先将p,q 等价转化,再根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.[跟踪训练4] 已知p:3-m 2<x<3+m 2,q:0<x<3. (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若p 是q 的必要条件,求实数m 的取值范围.解 记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 3-m 2<x<3+m 2, B ={x|0<x<3}.(1)若p 是q 的充分条件,则A ⊆B.注意到B ={x|0<x<3}≠∅,分两种情况讨论:①若A =∅,即3-m 2≥3+m 2,解得m≤0,此时A ⊆B,符合题意. ②若A≠∅,即3-m 2<3+m 2,解得m>0, 要使A ⊆B,应有⎩⎪⎨⎪⎧ 3-m 2≥0,3+m 2≤3,解得0<m≤3.m>0,综上可得,实数m 的取值范围是(-∞,3].(2)若p 是q 的必要条件,则B ⊆A.分两种情况讨论:①若3-m 2≥3+m 2,即m≤0时,A =∅,此时B⃘A,不符合题意. ②若A≠∅,即3-m 2<3+m 2,解得m>0. 要使B ⊆A,应有⎩⎪⎨⎪⎧ 3-m 2≤0,3+m 2≥3,m>0,解得m≥3.综上可得,实数m 的取值范围是[3,+∞).1.若a ∈R,则“a=2”是“(a-1)(a -2)=0”的( )A .充分条件B .必要条件C .既不是充分条件,也不是必要条件D .无法判断答案 A解析 因为a =2⇒(a -1)(a -2)=0,而(a -1)(a -2)=0不能推出a =2,故“a=2”是“(a-1)(a -2)=0”的充分条件,故选A.2.下列命题中,是真命题的是( )A .“x 2>0”是“x>0”的充分条件B .“xy=0”是“x=0”的必要条件C .“|a|=|b|”是“a=b”的充分条件D .“|x|>1”是“x 2不小于1”的必要条件答案 B解析 A 中,x 2>0⇒x>0或x<0,不能推出x>0,而x>0⇒x 2>0,故“x 2>0”是“x>0”的必要条件.B 中,xy =0⇒x =0或y =0,不能推出x =0,而x =0⇒xy =0,故“xy=0”是“x=0”的必要条件.C 中,|a|=|b|⇒a =b 或a =-b,不能推出a =b,而a =b ⇒|a|=|b|,故“|a|=|b|”是“a=b”的必要条件.D 中,|x|>1⇒x 2不小于1,而x 2不小于1不能推出|x|>1,故“|x|>1”是“x 2不小于1”的充分条件,故选B.3.已知p:5x -1>a,q:x>1,若q 是p 的必要条件,则实数 a 的取值范围是________.答案 a≥4解析 由5x -1>a,得x>a +15,要使q 是p 的必要条件,需有a +15≥1,解得a≥4.故当a≥4时,q 是p 的必要条件.4.“ac<0”是“ax 2+bx +c =0(a≠0)有实根”的________条件.答案充分解析由ac<0⇒b2-4ac>0⇒ax2+bx+c=0(a≠0)有实根,而ax2+bx+c=0(a≠0)有实根不能推出ac<0.故“ac<0”是“ax2+bx+c=0(a≠0)有实根”的充分条件.5.若“x<m”是“x>2或x<1”的充分条件,求m的取值范围.解记A={x|x>2或x<1},B={x|x<m}.由题意可得B⊆A,即{x|x<m}⊆{x|x>2或x<1}.所以m≤1.故m的取值范围为m≤1.。
高一数学人教B版必修1:2.1.2 函数的表示方法(二) 学案
2.1.2 函数的表示方法(二)自主学习学习目标了解分段函数的概念,会画分段函数的图象,并能解决相关问题.自学导引 分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的______________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的________;各段函数的定义域的交集是空集.(3)作分段函数图象时,应________________________.对点讲练知识点一 分段函数的求值问题例1 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2(-1<x <2),2x (x ≥2).(1)求f [f (3)]的值;(2)若f (a )=3,求a 的值.规律方法 对于f (a ),究竟用分段函数中的哪一个对应关系,与a 所在范围有关,因此要对a 进行讨论.由此我们可以看到:(1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x(x <0),若f (a )>a ,则实数a 的取值范围是________.知识点二 分段函数的图象及应用例2 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象;(3)写出该函数的值域.规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移2 已知函数f (x )=⎩⎨⎧-2(x -12)2+1,x ∈[0,12)-2x +2,x ∈[12,1],在平面直角坐标系中作出y =f (x )的图象,并写出值域.知识点三 分段函数的简单应用例3 某市的空调公共汽车的票价制定的规则是: (1)乘坐5 km 以内,票价2元;(2)5 km 以上(含5 km),每增加5 km ,票价增加1元(不足5 km 的按5 km 计算).已知两个相邻的公共汽车站之间相距约 1 km ,如果在某条路线上沿途(包括起点站和终点站)设21个汽车站,请根据题意写出这条路线的票价与里程之间的函数解析式,并作出函数的图象.规律方法 该类问题属于函数建模问题,解答此类问题的关键在于先将实际问题数学模型化,然后结合题设选择合适的函数类型去拟合,解答过程中要密切关注实际问题中的隐含条件,对于自变量x 的不同取值区间,有着不同的对应法则,画图象时,注意每段定义域端点的虚实.变式迁移3 电讯资费调整后,市话费标准为:通话时间不超过3分钟收费0.2元.超过3分钟,以后每增加1分钟收费0.2元,不足1分钟以1分钟计费,求通话收费x 元与通话时间t (分钟)的函数解析式,并画出t ∈(0,7]的图象.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.含有绝对值的函数解析式要化为分段函数处理.3.画分段函数的图象要逐段画出,求分段函数的值要按各段的区间范围代入自变量求值.课时作业一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1,x 2+x -2, x >1,则f [1f (2)]的值为( )A.1516 B .-2716 C.89D .18 2.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .53.已知f (x )=⎩⎪⎨⎪⎧ x 2(x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]为( ) A .-x B .-x 2 C .x D .x 24.函数f (x )=⎩⎪⎨⎪⎧2x 2(0≤x ≤1)2 (1<x <2)x +1 (x ≥2)的值域是( )A .RB .(0,+∞)C .(0,2)∪(2,+∞)D .[0,2]∪[3,+∞)二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,x <0,则不等式xf (x )+x ≤2的解集是__________.三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x ≤3)的图象.8. 已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.2.1.2 函数的表示方法(二) 答案自学导引(1)对应法则 (2)并集 (3)分别作出每一段的图象 对点讲练例1 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a ≤-1时,f (a )=a +2,又f (a )=3, ∴a =1(舍去);当-1<a <2时,f (a )=a 2,又f (a )=3, ∴a =±3,其中负值舍去,∴a =3; 当a ≥2时,f (a )=2a ,又f (a )=3,∴a =32(舍去).综上所述,a = 3.变式迁移1 a <-1解析 当a ≥0时,f (a )=12a -1,解12a -1>a ,得a <-2与a ≥0矛盾,当a <0时,f (a )=1a ,解1a>a ,得a <-1.∴a <-1. 例2 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎪⎨⎪⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3). 变式迁移2 解 如图所示,函数y =f (x )的图象是由f 1(x )=-2(x -12)2+1,x ∈[0,12)的图象(抛物线的一段)及f 2(x )=-2x +2,x ∈[12,1]的图象(一条线段)组成的,其值域为[0,1].例3 解 设票价为y 元,里程为x km , 由题意可知0<x ≤20.所以y 关于x 的函数为 y =⎩⎪⎨⎪⎧2 (0<x <5)3 (5≤x <10)4 (10≤x <15)5 (15≤x ≤20)其图象如图所示.变式迁移3 解 由题意可知,变量t ∈(0,+∞),故x 与t 的函数关系的表达式为 x =⎩⎪⎨⎪⎧0.2 t ∈(0,3]0.2(n -1) t ∈(n ,n +1](n ∈N ,n ≥3), 其图象如图所示.课时作业1.A [f (2)=22+2-2=4,1f (2)=14, f (14)=1-(14)2=1516.故选A.] 2.A [由题意知f (3)=f (3+2) =f (5)=f (5+2)=f (7)=7-5=2.]3.B [当x <0时,g (x )=-x 2<0,∴f [g (x )]=-x 2.] 4.D [画图象可得.] 5.π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1. 6.{x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2,解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2,解得x ≤2,∴x <0.综上可知x ≤1.7.解 作出y =[x ]的图象如下图所示.8.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1). ∵点(1,1)、(0,2)在射线上, ∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2. ∴左侧射线对应的函数解析式为 y =-x +2 (x <1).同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a (x -2)2+2 (1≤x ≤3,a <0),∵点(1,1)在抛物线上,∴a +2=1,a =-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).9.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1 当x ∉[0,1]时,f [f (x )]=f (x -3)若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1 若x -3∉[0,1],f (x -3)=(x -3)-3 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。
2017_2018年高中数学第二章函数2.1函数2.1.2函数的表示方法(1)课时作业新人教B版必修1
2.1.2 函数的表示方法(1)A 级 基础巩固一、选择题1.下列表格中的x 与y 能构成函数的是导学号 65164280( B )[解析] 选项A 、C 中,x =0时,y 都有2个数值与之对应,D 中任一个自然数都有3个数值与之对应,故选B .2.汽车经过启动、加速行驶、匀速行驶、减速行驶、最后停车,若把这一过程中汽车行驶路程s 看做时间t 的函数,其图象可能是导学号 65164281( A )[解析] 汽车加速行驶时,速度变化越来越快;汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图象上是一条直线;汽车减速行驶时,速度变化越来越慢,但路程仍是增加的.故选A .3.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于 导学号 65164282( B ) A .-74B .74C .43D .-43[解析] 令12x -1=t ,则x =2(t +1),∴f (t )=4t -1,∴f (x )=4x -1. ∴f (a )=4a -1=6,∴a =74.另解:2x -5=6得x =112,∴a =12×112-1=74.4.已知f (x )=([x ]+1)2+2,其中[x ]表示不超过x 的最大整数,则f (-2.5)=导学号 65164283( D )A .2B .3C .294D .6[解析] 由题意得[-2.5]=-3,∴f (-2.5)=([-2.5]+1)2+2=(-3+1)2+2=6. 二、填空题5.(2016·浙江文)函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =__-2__,b =__1__.导学号 65164284[解析] f (x )-f (a )=x 3+3x 2+1-a 3-3a 2-1=x 3+3x 2-a 3-3a 2, (x -b )(x -a )2=(x -b )(x 2-2ax +a 2) =x 3-(2a +b )x 2+(a 2+2ab )x -a 2b ,∴x 3+3x 2-a 3-3a 2=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b , ∴⎩⎪⎨⎪⎧- 2a +b =3a 2+2ab =0-a 3-3a 2=-a 2b,解得⎩⎪⎨⎪⎧a =-2b =1.6.已知函数y =f (n ),满足f (1)=1,且f (n )=nf (n +1),n ∈N +,则f (5)= 124.导学号 65164285 [解析] ∵f (n )=nf (n +1),n ∈N +, ∴f (n +1)=f nn. 又f (1)=1,∴f (2)=f 11=1,f (3)=f 2 2=12, f (4)=f 3 3=16,f (5)=f 4 4=124.三、解答题7.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y ),且f (0)≠0,若f (π2)=0,求f (π)及f (2π)的值.导学号 65164286[解析] 令x =y =0,则f (0+0)+f (0-0)=2f (0)·f (0), 即2f (0)[1-f (0)]=0. ∵f (0)≠0,∴f (0)=1.令x =y =π2,则有f (π)+f (0)=2f ⎝ ⎛⎭⎪⎫π2·f ⎝ ⎛⎭⎪⎫π2, ∵f ⎝ ⎛⎭⎪⎫π2=0,∴f (π)+f (0)=0, ∴f (π)=-f (0)=-1.令x =y =π,则有f (2π)+f (0)=2f (π)·f (π), ∴f (2π)=2×(-1)×(-1)-1=2-1=1. 8.作出下列函数的图象:导学号 65164287 (1)y =1-x (x ∈Z );(2)y =1x(x >1).[解析] (1)这个函数的图象由一些点组成,这些点都在直线y =1-x 上(∵x ∈Z ,∴y ∈Z ),这些点都为整数点,如图所示为函数图象的一部分.(2)当x =1时,y =1,所画函数图象如图.B 级 素养提升一、选择题1.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:① 0点到3点只进水不出水;② 3点到4点不进水只出水;③ 4点到6点不进水不出水.则正确论断的个数是导学号 65164288( B )A .0B .1C .2D .3[解析] 设进水量为y 1,出水量为y 2,时间为t ,由图象知y 1=t ,y 2=2t .由图丙知,从0~3时蓄水量由0变为6,说明0~3时两个进水口均打开进水但不出水,故①正确;3~4时蓄水量随时间增加而减少且每小时减少一个单位,若3~4时不进水只出水,应每小时减少两个单位,故②不正确;4~6时为水平线说明水量不发生变化,应该是所有水口都打开,进出均衡,故③也不正确.所以正确序号只有①.2.已知f (x -1)=x 2+4x -5,则f (x +1)=导学号 65164289( B ) A .x 2+6x B .x 2+8x +7 C .x 2+2x -3D .x 2+6x -10[解析] 令x -1=t ,∴x =t +1, ∴f (t )=(t +1)2+4(t +1)-5=t 2+6t , ∴f (x )=x 2+6x .∴f (x +1)=(x +1)2+6(x +1)=x 2+8x +7. 二、填空题3.若f (2x +1)=4x 2+4x ,则f (x )的解析式为__f (x )=x 2-1__.导学号 65164290 [解析] 令2x +1=t ,则x =t -12.∴f (t )=4×⎝⎛⎭⎪⎫t -122+4×t -12=t 2-1,∴f (x )=x 2-1.4.下面给出了四个图象和三个事件:导学号 65164291①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;②我骑着车一路以匀速行驶离开家,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我从家里出发后,心情轻松,缓缓行进,后来为了赶时间开始加速. 图象与这三个事件发生的顺序相吻合的分别为__d ,a ,b__.[解析] 离家不久发现自己作业本忘在家里,回到家里,这时离家的距离为0,故①与图象d 相吻合;回校途中有一段时间交通堵塞,则这段时间与家的距离必为一定值,故②与图象a 相吻合;最后加速向学校,图象上升就得越来越快,故③与图象b 相吻合.三、解答题5.某种杯子每只0.5元,买x 只,所需钱数为y 元,分别用列表法、解析法、图象法将y 表示成x (x ∈{1,2,3,4})的函数.导学号 65164292[解析] (1)列表法:(2)解析法:y =0.5x (3)图象法:C 级 能力拔高1.已知函数φ(x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且φ⎝ ⎛⎭⎪⎫13=16,φ(1)=8,求φ(x )的解析式,并指出定义域.导学号 65164293[解析] 由题意设f (x )=ax ,g (x )=b x,a 、b 为比例常数,则φ(x )=ax +b x .由φ⎝ ⎛⎭⎪⎫13=16, 得φ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫13+g ⎝ ⎛⎭⎪⎫13=13a +3b =16.①由φ(1)=8,得φ(1)=f (1)+g (1)=a +b =8.② 由①②联立的方程组,得⎩⎪⎨⎪⎧a =3b =5.所以φ(x )=3x +5x,其定义域为(-∞,0)∪(0,+∞).2.有一种螃蟹,从海上捕获不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活蟹1 000 kg放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元.但是,放养一天需各种费用支出400元,且平均每天还有10 kg蟹死去.假定死蟹均于当天全部售出,售价都是每千克20元.导学号 65164294(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1 000 kg蟹的销售总额为Q元,写出Q 关于x的函数关系式.[解析](1)由题意,知P=30+x.(2)由题意知,活蟹的销售额为(1 000-10x)(30+x)元.死蟹的销售额为200x元.∴Q=(1 000-10x)(30+x)+200x=-10x2+900x+30 000.。
人教B版高中数学必修第1册 同步练习-第2章 2
2.2.3 一元二次不等式的解法(教师独具内容)课程标准:1.理解一元二次不等式和一元二次不等式的解集的概念.2.理解一元二次方程、一元二次不等式与一元二次函数的关系.3.熟练掌握一元二次不等式的两种解法.教学重点:1.一元二次方程、一元二次不等式与一元二次函数之间的关系.2.一元二次不等式的解法.教学难点:一元二次方程、一元二次不等式与一元二次函数之间的关系.【情境导学】(教师独具内容)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步?”若将上述问题改为“阔(宽)不及长一十二步(宽比长少12步),直田积(矩形面积)不小于八百六十四(平方步)”,你能求出阔和长的取值范围吗?【知识导学】知识点一元二次不等式的概念01一元二次不等式,其中a,b,c是常数,而且□02a≠0.一元二次一般地,形如ax2+bx+c>0的不等式称为□03“<”“≥”“≤”等.不等式中的不等号也可以是□【新知拓展】1.代数法将所给不等式化为一般式后借助分解因式或配方法求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m<x<n.有口诀如下:大于取两边,小于取中间.2.含有参数的一元二次型的不等式在解含有参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:①关于不等式类型的讨论:二次项系数a>0,a<0,a=0.②关于不等式对应的方程根的讨论:两个不同的实根(Δ>0),两个相同的实根(Δ=0),无实根(Δ<0).③关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.1.判一判(正确的打“√”,错误的打“×”)(1)x(x-2)>0的解集为(0,2).( )(2)(x+a)(x+a+1)<0(a是常数)是一元二次不等式.( )(3)不论实数a 取什么值,不等式ax 2+bx +c≥0的解集一定与相应方程ax 2+bx +c =0的解有关.( )(4)设二次方程ax 2+bx +c =0的两解为x 1,x 2(x 1<x 2),则一元二次不等式ax 2+bx +c>0的解集不可能为{x|x 1<x<x 2}.( )答案 (1)× (2)√ (3)√ (4)× 2.做一做(请把正确的答案写在横线上) (1)不等式x 2-2x +3>0的解集为________. (2)不等式-x 2-3x +4>0的解集为________.(3)已知不等式ax 2-bx +2<0的解集为{x|1<x<2},则a +b =________. 答案 (1)R (2){x|-4<x<1} (3)4题型一 不含参数的一元二次不等式的解法 例1 求下列不等式的解集:(1)2x 2+7x +3>0;(2)x 2-4x -5≤0; (3)-4x 2+18x -814≥0;(4)-12x 2+3x -5>0;(5)-2x 2+3x -2<0.[解] (1)方程可变为(2x +1)(x +3)>0,从而转化为两个不等式组⎩⎪⎨⎪⎧2x +1>0,x +3>0或⎩⎪⎨⎪⎧2x +1<0,x +3<0.因此原不等式的解集为(-∞,-3)∪⎝ ⎛⎭⎪⎫-12,+∞.(2)原不等式可化为(x -5)(x +1)≤0, 因此原不等式的解集为[-1,5].(3)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94. (4)原不等式可化为x 2-6x +10<0,即(x -3)2+1<0,因此原不等式的解集为∅.(5)原不等式可化为2x 2-3x +2>0,即2⎝ ⎛⎭⎪⎫x -342+78>0,因此原不等式的解集为R.金版点睛解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则用配方法求解.[跟踪训练1] 求下列不等式的解集: (1)3x 2+5x -2>0;(2)-9x 2+6x -1<0; (3)x 2-4x +5>0;(4)2x 2+x +1<0.解 (1)原不等式可化为(3x -1)(x +2)>0,所以原不等式的解集为(-∞,-2)∪⎝ ⎛⎭⎪⎫13,+∞. (2)原不等式可化为(3x -1)2>0,所以原不等式的解集为⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫13,+∞.(3)原不等式可化为(x -2)2+1>0,所以原不等式的解集为R.(4)原不等式可化为2⎝ ⎛⎭⎪⎫x +142+78<0,所以原不等式的解集为∅.题型二 含参数的一元二次不等式的解法例2 求不等式ax 2-(a +1)x +1<0(a ∈R)的解集. [解] 若a =0,原不等式为-x +1<0,解集为(1,+∞);若a<0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解集为⎝⎛⎭⎪⎫-∞,1a ∪(1,+∞); 若a>0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)<0,(*)其解的情况应由1a 与1的大小关系决定,故①当a =1时,由(*)式可得解集为∅;②当a>1时,由(*)式可得解集为⎝ ⎛⎭⎪⎫1a ,1; ③当0<a<1时,由(*)式可得解集为⎝ ⎛⎭⎪⎫1,1a . 综上所述,当a<0时,解集为⎝⎛⎭⎪⎫-∞,1a ∪(1,+∞);当a =0时,解集为(1,+∞);当0<a<1时,解集为⎝ ⎛⎭⎪⎫1,1a ;当a =1时,解集为∅;当a>1时,解集为⎝ ⎛⎭⎪⎫1a ,1.金版点睛解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)若二次项系数为定值,则按不含参数的步骤解,再根据参数的取值确定解集范围.[跟踪训练2]解关于x的不等式x2-(a+a2)x+a3>0.解原不等式可化为(x-a)(x-a2)>0.方程x2-(a+a2)x+a3=0的两根为x1=a,x2=a2.由a2-a=a(a-1)可知:①当a<0或a>1时,a2>a.解原不等式得x>a2或x<a,不等式的解集为(-∞,a)∪(a2,+∞).②当0<a<1时,a2<a,解原不等式得x>a或x<a2,不等式的解集为(-∞,a2)∪(a,+∞).③当a=0时,原不等式为x2>0,∴x≠0,不等式的解集为(-∞,0)∪(0,+∞).(4)当a=1时,原不等式为(x-1)2>0,∴x≠1,不等式的解集为(-∞,1)∪(1,+∞).综上可知,当a<0或a>1时,原不等式的解集为(-∞,a)∪(a2,+∞);当0<a<1时,原不等式的解集为(-∞,a2)∪(a,+∞);当a=0时,原不等式的解集为(-∞,0)∪(0,+∞);当a=1时,原不等式的解集为(-∞,1)∪(1,+∞).1.在下列不等式中,解集是∅的是( )A.x2-3x+5>0 B.x2+4x+4>0C.x2+4x-4<0 D.-2+3x-2x2>0答案 D解析A的解集为R;B的解集是(-∞,-2)∪(-2,+∞);方程x2+4x-4=0的Δ=42+4×4>0,故C的解集不为空集,用排除法应选D.2.在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为( )A.(0,2) B.(-2,1)C.(-∞,-2)∪(1,+∞) D.(-1,2)答案 B解析∵x⊙(x-2)=x(x-2)+2x+x-2<0,∴x2+x-2<0即(x-1)(x+2)<0,解集为(-2,1).∴选B.3.不等式-0.1x2-5x+3000>0的解集为( )A.(-∞,-200) B.(150,+∞)C.(150,200) D.(-200,150)答案 D解析原不等式可化为x2+50x-30000<0,(x-150)·(x+200)<0,所以不等式的解集为(-200,150).4.若t>2,则关于x 的不等式(x -t)⎝ ⎛⎭⎪⎫x -1t <0的解集为( ) A.⎝ ⎛⎭⎪⎫1t ,t B .(-∞,t)∪⎝ ⎛⎭⎪⎫1t ,+∞C.⎝ ⎛⎭⎪⎫-∞,1t ∪(t,+∞)D.⎝ ⎛⎭⎪⎫t ,1t答案 A解析 ∵t>2,∴t>1t ,∴(x -t)⎝ ⎛⎭⎪⎫x -1t <0的解集为⎝ ⎛⎭⎪⎫1t ,t .5.解不等式1<x 2-3x +1<9-x. 解 由x 2-3x +1>1得x 2-3x>0,x(x -3)>0,不等式的解集为(-∞,0)∪(3,+∞). 由x 2-3x +1<9-x,得x 2-2x -8<0, (x +2)(x -4)<0,不等式的解集为(-2,4).(-∞,0)∪(3,+∞)与(-2,4)的交集为(-2,0)∪(3,4),所以,原不等式的解集为(-2,0)∪(3,4).。
高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案
描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。
高中数学第二章函数2.1.1函数2.1.2函数的表示方法学习导航学案新人教B版必修1
函数-2.1.2 函数表示方法自主整理设集合A是一个非空数集,对A内任意数x,按照确定法那么f,都有唯一确定数值y与它对应,那么这种对应关系叫做集合A上一个函数,记作y=f(x),x∈A.其中,x叫做自变量,自变量取值范围A叫做函数定义域;如果自变量取值a,那么由法那么f确定值y称作函数在a处函数值,记作y=f(a)或y|x=a.所有函数值构成集合{y|y=f(x),x∈A}叫做函数值域.函数定义含有三个要素,即定义域A、值域C与对应法那么f.当且仅当两个函数定义域与对应法那么都分别一样时,这两个函数才是同一个函数.(1)在数轴上,区间可以用一条以a,b为端点线段来表示(如下表).用实心点表示端点包括在区间内,用空心点表示端点不包括在区间内.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)无穷区间概念:关于-∞,+∞作为区间一端或两端区间称为无穷区间,它定义与符号如下表:{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤a}(-∞,a]{x|x<a}(-∞,a)R(-∞,+∞)取遍数轴上所有值设A、B是两个非空集合,如果按某种对应法那么f,对A内任意一个元素x,在B中有一个且仅有一个元素y与x对应,那么称f是集合A 到集合B映射.这时,称y是x在映射f作用下象,记作f(x).于是y=f(x),x称作y原象,映射f也可记为f:A→B,x→f(x).其中A叫做映射f定义域(函数定义域推广),由所有象f(x)构成集合叫做映射f值域,通常记作f(A).(1)列表法:通过列出自变量与对应函数值表来表达函数关系方法;(2)图象法:就是用函数图象来表达函数关系;(3)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达,那么这种表达函数方法叫做解析法(也称公式法).在函数定义域内,对于自变量x不同取值区间,有着不同对应法那么,这样函数通常叫做分段函数.高手笔记1.(1)“y=f(x)〞中“f〞是函数符号,可以用任意字母表示,如“y=g(x)〞;(2)函数符号“y=f(x)〞中f(x)表示与x对应函数值,是一个数,而不是f 乘x.2.对应法那么可以有多种形式给出,可以是解析法,可以是列表法与图象法,不管是哪种形式,都必须是确定,且使集合A中每一个元素在B 中都有唯一元素与之对应.3.函数是建立在两个非空数集间一种对应,假设将其中条件“非空数集〞弱化为“任意两个非空集合〞,按照某种法那么可以建立起更为普通元素之间对应关系,这种对应就叫映射.A到B映射与B到A映射是截然不同.4.区间与数轴是严密联系在一起,在识别与使用区间符号时都不能脱离开数轴.区间端点值取舍是很容易出错地方,一定要准确判断是该用小括号还是中括号,正确书写.在用数轴表示时也要注意实心点与空心点区别.对于某些不能用区间表示集合就仍用集合符号表示.5.对于分段函数问题,一般要分别转化成在定义域内每一个区间上来解决.要明确分段函数是一个函数,不是多个函数,只是这个函数较为特殊,不像一般函数可以用一个解析式表示,而只能分段表示.分段函数画法要领是根据各段上函数解析式,分段画出各段图象.6.假设y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它取值范围是g(x)值域与(m,n)交集.名师解惑1.如何理解构成函数三要素:定义域、对应关系与值域求值域有几种常用方法剖析:(1)解决一切函数问题必须认真确定该函数定义域,函数定义域包含三种形式:①自然型:指函数解析式有意义自变量x取值范围(如:分式函数分母不为零,偶次根式函数被开方数为非负数,等等);②限制型:指命题条件或人为对自变量x限制,这是函数学习重点,往往也是难点,因为有时这种限制比拟隐蔽,不容易注意,或者即使注意到,在解题时却忘记用到;③实际型:解决函数综合问题与应用问题时,应认真考察自变量x实际意义.(2)求函数值域是比拟困难数学问题,中学数学要求能用初等方法求一些简单函数值域问题.求法主要有以下几种:①配方法(转化为二次函数);②判别式法(转化为二次方程);③不等式法(运用不等式各种性质);④函数法(运用根本函数性质或抓住函数单调性、函数图象等).2.函数有哪几种表示法?各有什么优点与缺乏?剖析:(1)表示函数有三种方法:解析法,列表法,图象法.现实生活中如:商场各种商品与其价格之间函数关系就是用列表法表示;房地产公司出售商品房,总价格与面积之间函数关系就是用解析式来表示;工厂每月产量与月份之间函数关系是用图表来表示.(2)表示函数三种方法优点与缺乏,分别说明如下.①用解析式表示函数优点是简明扼要、标准准确.可以利用函数解析式求自变量x=a时对应函数值,还可利用函数解析式列表、描点、画函数图象,进而研究函数性质,又可利用函数解析式构造特点,分析与发现自变量与函数间依存关系,猜测或推导函数性质(如对称性、增减性等),探求函数应用等.缺乏之处是有些变量与函数关系很难或不能用解析式表示,求x与y对应值需要逐个计算、有时比拟繁杂.②列表法优点是能鲜明地显现出自变量与函数值之间数量关系,于是一些数学用表应运而生.如用立方表、平方根表分别表示函数.商店职员也制作售价与数量关系计价表,方便收款.列表法缺点是只能列出局部自变量与函数对应值,难以反映函数变化全貌.③用图象表示函数优点是形象直观,清晰呈现函数增减变化、点对称、最大(或小)值等性质.图象法缺乏之处是所画出图象是近似、局部,观察或由图象确定函数值往往不够准确.由于以上表示函数三种方法具有互补性,因此在实际研究函数时,通常是三种方法交替使用.3.如何理解映射?为什么说映射是一种特殊对应剖析:(1)理解映射概念,必须注意以下几点:①方向性,“集合A到集合B映射〞与“集合B到集合A映射〞往往不是同一个映射;②非空性,集合A、B必须是非空集合;③唯一性,对于集合A中任何一个元素,集合B中都是唯一确定元素与之对应,这是映射唯一性,也可以说“在集合B中〞,A中任一元素象必在集合B中,也叫映射封闭性.④存在性,就是说对集合A中任何一个元素,集合B中都有元素与它对应,这是映射存在性.(2)映射也是两个集合A与B元素之间存在某种对应关系.说其是一种特殊映射,就是因为它只允许存在“一对一〞与“多对一〞这两种对应,而不允许存在“一对多〞对应.映射中对应法那么f是有方向,一般来说从集合A到集合B映射与从集合B到集合A映射是不同.讲练互动【例题1】以下各组中两个函数表示同一个函数是…( )A.f(x)=x,g(x)=n n x22B.f(n)=2n+1(n∈Z),g(n)=2n-1(n∈Z)C.f(x)=x-2,g(t)=t-2D.f(x)=,g(x)=1+x解析:两个函数一样必须有一样定义域、值域与对应法那么.A中两函数值域不同;B中虽然定义域与值域都一样,但对应法那么不同;C 中尽管表示自变量两个字母不同,但两个函数三个要素是一致,因此它们是同一函数;D中两函数定义域不同.答案:C绿色通道给定两个函数,要判断它们是否是同一函数,主要看两个方面:一看定义域是否一样;二看对应法那么是否一致.只有当两函数定义域一样且对应法那么完全一致时,两函数才可称为同一函数.只要三者中有一者不同即可判断不是同一个函数,比方上面对A判断即属此.变式训练1.判断以下各组中两个函数是否为同一函数,并说明理由.(1)y=x-1,x∈R 与y=x-1,x∈N ; (2)y=42-x 与y=22+•-x x ; (3)y=1+x 1与u=1+v1;(4)y=x 2与y=x 2x ;(5)y=2|x|与y=分析:判断两个函数是否为同一函数,应着眼于两个函数定义域与对应法那么比拟,而求定义域时应让原始解析式有意义,而不能进展任何非等价变换,对应法那么判断需判断它本质是否一样而不是从外表形式上下结论.解:(1)不同,因为它们定义域不同.(2)不同,前者定义域是x≥2或x≤-2,后者定义域是x≥2.(3)一样,定义域均为非零实数,对应法那么都是自变量取倒数后加1.(4)不同,定义域是一样,但对应法那么不同.(5)一样,将y=2|x|利用绝对值定义去掉绝对值结果就是y=【例题2】设f,g 都是由A 到A 映射,其对应法那么(从上到下)如下表:表1 映射f 对应法那么原象1 2 3 象 2 3 1 表2 映射g 对应法那么原象123象213试求f[g(1)],g[f(2)],f{g[f(3)]}.分析:此题是将映射概念与复合函数求值相结合一道典型例题,解答此题首先要弄清f[g(x)]含义与映射中原象与象关系,然后再按照有关定义解题.解:∵g(1)=2,f(2)=3,∴f[g(1)]=f(2)=3.又∵g(3)=3,∴g[f(2)]=g(3)=3.∵f(3)=1,g(1)=2,∴f{g[f(3)]}=f[g(1)]=f(2)=3.绿色通道读懂对应法那么f与g含义是解题关键,要弄清在法那么f与g作用下,集合A中元素在集合A中象是什么,要掌握象与原象定义.变式训练2.以下各图中表示对应,其中能构成映射个数是…( )图2-1-1A.4B.3C.2解析:所谓映射,是指多对一或一对一对应且A中每一个元素都必须参与对应.只有图(3)所表示对应符合映射定义,即A中每一个元素在对应法那么下,B中都有唯一元素与之对应.图(1)不是映射,因A中元素c没有参与对应,即违背A中任一元素都必须参与对应原那么.图(2)、图(4)不是映射,这两个图中集合A中元素在B中有多个元素与之对应,不满足A中任一元素在B中有且仅有唯一元素与之对应原那么.综上,可知能构成映射个数为1.答案:D3.(2007山东济宁二模,理10)A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,那么这样函数f(x)有( )解析:对f(a),f(b),f(c)值分类讨论.当f(a)=-1时,f(b)=0,f(c)=1或f(b)=1,f(c)=0,即此时满足条件函数有2个;当f(a)=0时,f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,即此时满足条件函数有3个;当f(a)=1时,f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,即此时满足条件函数有2个.综上所得,满足条件函数共有2+3+2=7(个).应选C.答案:C【例题3】求以下函数值域:(1)y=x2-2x-1,x∈[0,3];(2)y=3x;-2+(3)y=;(4)y=|x-1|+|x-2|.分析:求二次函数值域一般要数形结合,先配方找出对称轴,再考察给定区间与对称轴关系,利用二次函数在对称轴两侧单调性,求出给定区间上最大值与最小值,即可得到函数值域.除数形结合之外,求函数值域方法还有逐步求解法、判别式法、别离常数法与利用有界性等.绝对值函数通常先化为分段函数.解:(1)将原式变形,得y=(x-1)2-2,此函数对称轴为x=1,由于x∈[0,3],∴当x=1时,y 有最小值-2.根据函数对称性知,x=3比x=0时值要大,∴当x=3时,y 有最大值2.∴这个函数值域为[-2,2].(2)易知x≥2,∴2-x ≥0. ∴y=2-x +3≥3.∴这个函数值域为[3,+∞).(逐步求解法)(3)先别离常数,y=1311311222222+-=+-+=+-x x x x x .① 解法一(逐步求解法):∵x 2+1≥1,∴0<≤1.∴1>1≥-2.∴y∈[-2,1).解法二(判别式法):两边同乘x 2+1并移项,得(y-1)x 2+y+2=0. 又由①可知y<1,∴Δ=-4(y-1)(y+2)≥0.∴y∈[-2,1).解法三(利用有界性):∵y≠1,易得x 2=.又∵x 2≥0,∴≥0.∴y∈[-2,1).(4)原函数可化为y=由图2-1-2可知y∈[1,+∞).图2-1-2绿色通道求值域一定要注意定义域限制,一定要在定义域范围内求函数值域.当然,求值域一定要根据函数对应关系来确定.如果我们抓住了这些解决问题关键,求这类问题就能得心应手.变式训练4.函数y=-x2+4x+5(1≤x≤4)值域是…( )A.[5,8]B.[1,8]C.[5,9]D.[8,9]解析:y=-x2+4x+5=-(x-2)2+9(x∈[1,4]).∴当x=2时,y最大=9;当x=4时,y最小=5.∴函数值域为{y|5≤x≤9}.答案:C【例题4】图2-1-3是一个电子元件在处理数据时流程图:图2-1-3(1)试确定y与x函数关系式;(2)求f(-3)、f(1)值;(3)假设f(x)=16,求x值.分析:此题是一个分段函数问题,当输入值x≥1时,先将输入值x加2再平方得输出值y;当输入值x<1时,那么先将输入值x平方再加2得输出值y.解:(1)y=(2)f(-3)=(-3)2+2=11;f(1)=(1+2)2=9.(3)假设x≥1,那么(x+2)2=16,解得x=2或x=-6(舍去).假设x<1,那么x2+2=16,解得x=14(舍去)或x=14-.综上,可得x=2或x=14-.绿色通道通过实例,了解简单分段函数并能简单应用是新课程标准根本要求.对于分段函数来说,给定自变量求函数值时,应根据自变量所在范围利用相应解析式直接求值;假设给定函数值求自变量,应根据函数每一段解析式分别求解,但应注意要检验该值是否在相应自变量取值范围内.变式训练5.(2007山东蓬莱一模,理13)设函数f(n)=k(k∈N*),k是π小数点后第n位数字,π=3.141 592 653 5…,那么等于____________.解析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,那么有=1.答案:1【例题5】函数f(x+1)=x2-1,x∈[-1,3],求f(x)表达式.分析:函数是一类特殊对应,函数f(x+1)=x2-1,即知道了x+1象是x2-1,求出x象,即是f(x)表达式.求解f(x)表达式此题可用“配凑法〞或“换元法〞.解法一(配凑法):∵f(x+1)=x2-1=(x+1)2-2(x+1),∴f(x)=x2-2x.又x∈[-1,3]时,(x+1)∈[0,4],∴f(x)=x2-2x,x∈[0,4].解法二(换元法):令x+1=t,那么x=t-1,且由x∈[-1,3]知t∈[0,4],∴由f(x+1)=x2-1,得f(t)=(t-1)2-1=t2-2t,t∈[0,4].∴f(x)=(x-1)2-1=x2-2x,x∈[0,4].绿色通道函数f[g(x)]表达式,求f(x)表达式,解决此类问题一般有两种思想方法,一种是用配凑方法,一种是用换元方法.所谓“配凑法〞即把f[g(x)]配凑成关于g(x)表达式,而后将g(x)全用x取代,化简得要求f(x)表达式;所谓“换元法〞即令f[g(x)]中g(x)=t,由此解出x,即用t表达式表示出x,后代入f[g(x)],化简成最简式.需要注意是,无论是用“配凑法〞还是用“换元法〞,在求出f(x)表达式后,都需要指出其定义域,而f(x)定义域即x取值范围应与条件f [g(x)]中g(x)范围一致,所以说求f(x)定义域就是求函数g(x)值域.变式训练6.函数f(x)对于任意实数x满足条件f(x+2)=,假设f(5)=-5,那么f [f(1)]=___________.解析:∵f(x+2)=,∴f(x)=.∴f(1)===f(5)=-5.∴f(1)=-5.∴f[f(1)]=f(-5).又f(-5)=)23(11)3(1)25(1+---=--=+--f f f =f(-1)=51)1(1)21(1--=-=+--f f =51, ∴f[f(1)]=51. 答案:51 7.f(x)=x +11(x∈R 且x≠-1),g(x)=x 2+2(x∈R ), (1)求f(2)、g(2)值.(2)求f [g(2)]值.(3)求f [g(x)]解析式.分析:在解此题时,要理解对应法那么“f〞与“g〞含义,在求f [g(x)]时,一般遵循先里后外原那么.解:(1)f(2)=,g(2)=22+2=6.(2)f [g(2)]=f(6)=.(3)f [g(x)]=f(x 2+2)=.教材链接[思考与讨论]如何检验一个图形是否是一个函数图象写出你检验法那么,图2-1-4所示各图形都是函数图象吗哪些是,哪些不是,为什么图2-1-42-1-4所示各图形中因为(1)、(3)、(4)符合“一对一〞或“多对一〞原那么,所以(1)、(3)、(4)是函数图象,而(2)中有一个x 值对应两个y 值,不满足函数“多对一〞或“一对一〞条件,所以(2)不是函数图象.。
高中数学:第2章 第2章 2.1.2 函数的表示方法
2.1.2 函数的表示方法1.会用列表法、图象法、解析法来表示一个函数.2.会求一些简单函数的解析式.(重点)3.理解分段函数的含义,能分析其性质.(重点)4.会作一些简单函数的图象.(难点)基础·初探]教材整理1函数的表示方法阅读教材P38~P39“例1”以上部分,完成下列问题.1.列表法通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法.2.图象法用“图形”表示函数的方法叫做图象法.3.解析法(公式法)如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析法(也称为公式法).1.判断(正确的打“√”,错误的打“×”)(1)任何一个函数都可以用列表法表示.()(2)任何一个函数都可以用解析法表示.()(3)函数的图象一定是定义区间上一条连续不断的曲线.()【答案】(1)×(2)×(3)×2.下列图形可表示函数y =f (x )图象的只可能是()A B C D【解析】 借助函数的定义可知,函数的图象应保证对定义域内的任意一个x 有唯一的y 与之对应,故选D.【答案】 D教材整理2 分段函数阅读教材P 42“分段函数”~P 43“例5”以上的内容,完成下列问题.在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.函数f (x )=⎩⎪⎨⎪⎧x -1,x >0,0,x =0,x +1,x <0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12的值是( )A.12 B .-12 C.32D .-32【解析】 ∵f ⎝ ⎛⎭⎪⎫12=-12,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12=-12+1=12.【答案】 A小组合作型]函数的表示法(1)函数f (x )=x +|x |x 的图象是( )(2)某商场新进了10台彩电,每台售价3 000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.【精彩点拨】 (1)对x 进行讨论将函数f (x )=x +|x |x 转化为所熟知的基本初等函数即可作图.(2)函数的定义域是{1,2,3,…,10},值域是{3 000,6 000,9 000,…,30 000},可直接列表、画图表示,分析题意得到表示y 与x 关系的解析式,注意定义域.【自主解答】 (1)当x >0时,f (x )=x +1,故图象为直线f (x )=x +1(x >0的部分);当x <0时,f (x )=x -1,故图象为直线f (x )=x -1(x <0的部分); 当x =0时,f (x )无意义即无图象.综上,f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0的图象为直线y =x +1(x >0的部分)和y=x -1(x <0的部分),即两条射线,故选C.【答案】 C (2)①列表法如下:x (台) 1 2 345y (元) 3 000 6 000 9 000 12 000 15 000 x (台) 678910y (元)18 000 21 000 24 000 27 000 30 000③解析法:y=3 000x,x∈{1,2,3,…,10}.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.再练一题]1.购买某种饮料x听,所需钱数y元.若每听2元,试分别用列表法、解析法、图象法将y表示成x(x∈{1,2,3,4})的函数,并指出函数的值域.【导学号:60210035】【解】解析法:y=2x,x∈{1,2,3,4},则y∈{2,4,6,8}.列表法:x/听123 4y/元2468图象法:求函数的解析式(1)已知f (x +1)=x -2x ,则f (x )=________;(2)已知函数y =f (x )是一次函数,且f (x )]2-3f (x )=4x 2-10x +4,则f (x )=________;(3)已知函数f (x )对于任意的x 都有f (x )-2f (-x )=1+2x ,则f (x )=________.【精彩点拨】 (1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.【自主解答】 (1)法一 换元法:令t =x +1,则t ≥1,x =(t -1)2,代入原式有f (t )=(t -1)2-2(t -1)=t 2-4t +3,f (x )=x 2-4x +3(x ≥1).法二 配凑法:f (x +1)=x +2x +1-4x -4+3=(x +1)2-4(x +1)+3,因为x +1≥1,所以f (x )=x 2-4x +3(x ≥1). (2)设f (x )=kx +b (k ≠0),则f (x )]2-3f (x )=(kx +b )2-3(kx +b )=k 2x 2+(2kb -3k )x +b 2-3b =4x 2-10x +4,所以⎩⎪⎨⎪⎧k 2=4,2kb -3k =-10,b 2-3b =4,解得k =-2,b =4,或k =2,b =-1, 故f (x )=-2x +4,或f (x )=2x -1.(3)由题意,在f (x )-2f (-x )=1+2x 中,以-x 代x 可得f (-x )-2f (x )=1-2x ,联立可得⎩⎪⎨⎪⎧f (x )-2f (-x )=1+2x ,f (-x )-2f (x )=1-2x ,消去f (-x )可得f (x )=23x -1.【答案】 (1)x 2-4x +3(x ≥1) (2)-2x +4或2x -1 (3)23x -1求函数解析式的四种常用方法1.待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.2.换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可. 3.配凑法:对f (g (x ))的解析式进行配凑变形,使它能用g (x )表示出来,再用x 代替两边所有的“g (x )”即可.4.方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.再练一题]2.已知函数f (x )的定义域为(0,+∞),且f (x )=2·f ⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.【解析】 在f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1中,用1x 代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,得f (x )=23x +13. 【答案】 23x +13分段函数已知f (x )=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.若f (x )>2,求x 的取值范围.【精彩点拨】 分段求解,再求并集.【解】 当x ≥-2时,f (x )=x +2,由f (x )>2,得x +2>2,解得x >0,故x >0;当x <-2时,f (x )=-x -2,由f (x )>2,得-x -2>2,解得x <-4,故x <-4.∴x 的取值范围是{x |x >0或x <-4}.求解分段函数问题的注意点(1)求f f (a )]的值时,应从内到外依次取值,直到求出值为止. (2)已知函数值,求自变量的值时,切记要进行检验.解题时一定要注意自变量的范围,只有在自变量确定的范围内才可以进行运算.(3)已知f (x ),解关于f (x )的不等式时,要先在每一段内求交集,最后求并集.再练一题]3.本题中解析式不变求f (-3),f (f (-3)),f (f (f (-3)))的值. 【解】 f (-3)=-(-3)-2=1, f (f (-3))=f (1)=1+2=3, f (f (f (-3)))=f (3)=3+2=5.探究共研型]作函数的图象探究1 【提示】 列表,描点,连线.探究2 作一次函数与二次函数的图象时,要注意哪些事项?【提示】作一次函数与二次函数的图象时,应标出某些关键点.如图象的顶点、端点、与坐标轴的交点等,要分清这些关键点是实心点还是空心点.作出下列函数的图象:(1)y=x+1(x∈Z);(2)y=x2-2x(x∈0,3)).【精彩点拨】解答本题可根据函数的定义域及图象中的关键点,通过描点、连线画出图象.【自主解答】(1)这个函数的图象由一些点组成,这些点都在直线y=x+1上,如图(1)所示.(2)因为0≤x<3,所以这个函数的图象是抛物线y=x2-2x介于0≤x<3之间的一部分,如图(2)所示.1.画函数图象时首先要考虑函数的定义域.2.要标出关键点,如图象的顶点、端点、与坐标轴的交点等,要分清这些关键点是实心点还是空心点.3.要掌握常见函数的特征.4.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等.再练一题]4.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).【解】(1)y=x+1(x≤0)表示一条射线,图象如图(1).(2)y=x2-2x=(x-1)2-1(x>1,或x<-1)是抛物线y=x2-2x去掉-1≤x≤1之间的部分后剩余曲线.如图(2).1.下列表示函数y=f(x),则f(11)=()x 0<x<55≤x<1010≤x<1515≤x≤20y 234 5A.C.4 D.5【解析】由表可知f(11)=4.【答案】 C2.已知f(x-1)=x2+4x-5,则f(x)的表达式是()A.f(x)=x2+6xB.f(x)=x2+8x+7C.f(x)=x2+2x-3D.f(x)=x2+6x-10【解析】法一设t=x-1,则x=t+1,∵f(x-1)=x2+4x-5,∴f(t)=(t+1)2+4(t+1)-5=t2+6t,即f(x)的表达式是f(x)=x2+6x.法二∵f(x-1)=x2+4x-5=(x-1)2+6(x-1),∴f(x)=x2+6x.∴f(x)的表达式是f(x)=x2+6x,故选A.【答案】 A3.f (x )=|x -1|的图象是( )【导学号:60210036】【解析】 ∵f (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,当x =1时,f (1)=0,可排除A 、C.又x =-1时,f (-1)=2,排除D.【答案】 B4.如图2-1-4,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (f (2)))=________.图2-1-4 【解析】 由题意f (2)=0,f (0)=4,f (4)=2, 所以f (f (f (2)))=f (f (0))=f (4)=2. 【答案】 25.已知函数f (x )=x 2-2x (-1≤x ≤2). (1)画出f (x )图象的简图; (2)根据图象写出f (x )的值域. 【解】 (1)f (x )图象的简图如图所示.(2)观察f(x)的图象可知,f(x)图象上所有点的纵坐标的取值范围是-1,3],即f(x)的值域是-1,3].。
人教B版数学必修1
人教B版数学必修1第二章函数2.1.2 函数的表示方法(第1课时)教案及说课稿新宾县朝鲜族中学李锦玉2018年10月11日2.1.2 函数的表示方法(第1课时)教案教学目标:知识与技能掌握函数的三种表示方法:列表法、图象法、解析法,体会表示方法的特点。
过程与方法能根据实际情景选择恰当的方法表示一个函数以获取有用的信息,培养学生灵活运用知识的能力;初步体会用函数知识解决实际问题的方法。
情感态度与价值观体会数形结合思想在理解函数概念中的重要作用,在图形的变化中感受数学的直观性。
重点函数的三种表示方法的简单运用。
难点根据不同的需要选择恰当的表示方法表示一个函数。
教学准备2.1.2 函数的表示方法(第1课时)说课稿根据本节教材的特点和教学内容的结构特征,依据学生的认知规律,结合学生的实际水平,制定本节课的教学设计说明如下:一、说教材《函数的表示方法》是高中新教材人教B版必修1第二章第一节第二部分的内容。
学生在初中已经接触过较简单函数的一些不同表示方法,在高中阶段继函数的概念、定义域、值域之后学习函数的表示方法,这部分属于函数三要素之一,即对应关系的表达方式。
学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的,同时,基于高中阶段所接触的许多函数均可用几种不同的方法表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。
二、说学情本人所教的高一学生(16人)课堂纪律较好,但数学基础不够扎实,思维不够活跃,逻辑推理和分析概括的能力较弱。
因此在教学中会放慢进程,更加注重启发学生,让学生自主回答。
函数这一模块内容最多,比较抽象,学生学习确有许多困难。
基于高中阶段所接触的许多函数都可用不同的方法表示,因此教师通过设置问题去帮助学生积极主动地感受、分析、归纳三种方法的各自优点及不足,逐步过渡到能合理选用和灵活转换函数的各种表示形式,这也是向学生渗透数形结合思想方法的重要过程,同时也为后述内容-----函数的性质(单调性、奇偶性、周期性)的学习打下良好的基础。
新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析
3.1.1函数及其表示方法第三章函数3.1 函数的概念与性质3.1.1函数及其表示方法课时1 函数的概念考点1函数的概念1.下列说法正确的是()。
A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应法则也就确定了答案:C解析:由函数的定义可知,函数的定义域和值域为非空的数集。
2.下列四个图形中,不是以x为自变量的函数的图像是()。
图3-1-1-1-1答案:C解析:根据函数定义,知对自变量x的任意一个值,都有唯一确定的实数(函数值)与之对应。
显然选项A,B,D 满足函数的定义,而选项C不满足。
故选C。
3.(2018·河北衡水中学高一月考)下列四组函数中,表示同一函数的是()。
3 B.y=1与y=x0A.y=√x2与y=√x3C.y=2x+1与y=2t+1D.y=x与y=(√x)2答案:C3=x,它们的对应关系不同,不是同一函数;对于B,y=1(x∈R),y=x0=1(x≠0),它们的解析:对于A,y=√x2=|x|,y=√x3定义域不同,不是同一函数;对于C,y=2x+1与y=2t+1,它们的定义域相同,对应关系也相同,是同一函数;对于D,y=x(x∈R),y=(√x)2=x(x≥0),它们的定义域不同,不是同一函数。
【易错点拨】考查同一函数的问题,注意把握同一函数的定义,必须保证是三要素完全相同,才是同一函数。
4.(2019·西安高一检测)下列式子中不能表示函数y=f(x)的是()。
A.x=y2B.y=x+1C.x+y=0D.y=x2答案:A5.给出下列两个集合间的对应关系:①A={-1,0,1},B={-1,0,1},f:A中的数的平方;②A={0,1},B={-1,0,1},f:A中的数的开方;③A=Z,B=Q,f:A中的数的倒数;④A=R,B={正实数},f:A中的数取绝对值;⑤A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍。
人教B版高中数学必修1同步章节训练题及答案全册汇编
人B版高中数学必修1同步习题目录1.1 集合与集合的表示方法1.2-集合与集合的运算第1章《集合》测试2.1.1《函数》测试题(1)(新人教B必修1)2.1.2《函数表示法》测试题(2)(新人教B必修1)2.1.3《函数的单调性》测试题(新人教B必修1)2.1.4《函数的奇偶性》测试题(新人教B必修1)2.2.1《一次函数的性质与图象》测试题2.2.2《二次函数综合题》测试2.2.3《待定系数法》同步测试2.3《函数的应用(Ⅰ)》同步测试2.4.1《函数的零点》同步测试2.4.2《求函数零点近似解的一种计算方法?二分法》同步测试第2章《函数》测试3.1.1《实数指数幂及其运算》同步测试3.1.2《指数函数》同步测试3.2.1《对数及其运算》同步测试3.2.2《对数函数》同步测试3.3《幂函数》同步测试3.4《函数的应用》测试第3章《基本初等函数1》测试1.1 集合与集合的表示方法1.下面四个命题正确的是 ( )A.10以内的质数集合是0,3,5,7B.“个子较高的人”不能构成集合C.方程的解集是1,1D.1是集合N中最小的数2.下面的结论正确的是 ( )A.若,则B.若,则自然数C.的解集是-1,1D.所有的正偶数组成的集合是有限集3.已知集合S中的三个元素可构成ABC的三条边长,那么ABC一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下面四个关系式中,正确的是A.∈0B.aaC.a∈a,bD.a∈a,b5.下列语句:(1)0与0表示同一个集合;(2)由1,2,3组成的集合可表示为1,2,3或3,2,1;(3)方程(x-1)2x-220的所有解的集合可表示为1,1,2;(4)不等式的解集是有限集,正确的是 ()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上语句都不对6.下列六个关系式①0 ②0 ③④ 0 ⑤0 ⑥其中正确的个数( )A.3B.4C.5D.67.若方程的解集中有且只有一个元素,则的取值集合是( )A.{1}B.{-1}C.{0,1}D.{-1,0,1}8.A面积为1的矩形,B{面积为1的正三角形},则( )A. A,B都是有限集B. A,B都是无限集C. A是有限集,B是无限集D. A是无限集,B是有限集9.若,则实数的值为( )A.-1B.0C.-1或0D.-1或0或-210.若方程和的解为元素的集合是M,则M中元素的个数( )A.1B.2C.3D.411.如果方程的解集是M, 方程的解集是N, 3∈M且3∈N,那么等于14B. 2 C. 11D. 712.方程组解集为 ( )A.0B.1C.1,0 D.(0,1)13.用数对的集合表示方程的一切正整数解为 .14.实数集中的元素应该满足的条件是 .15.已知数集 Aa+2,a+12,a2+3a+3, 且 1∈A, 求实数 a 的值1.1 集合与集合的表示方法1.1.1 集合的概念题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C D D C B D D C C A D13. ;1415.解: 若a+daq 解之得q1 a+2daq2当q1时,有aaqaq2与元素的互异性矛盾。
高中数学 第二章 函数 2.1.2 函数的表示方法课堂探究 新人教B版必修1-新人教B版高一必修1数
函数的表示方法课堂探究探究一画函数图象图象的画法常见的有两种:描点法、变换作图法.1.描点法的一般步骤是:列表、描点、连线;列表——先找出一些(有代表性的)自变量x,并计算出与这些自变量相对应的函数值f(x),用表格的形式表示出来;描点——从表中得到一系列的点(x,f(x)),在坐标平面上描出这些点;连线——用光滑曲线把这些点按自变量由小到大的顺序连接起来.2.变换作图法常用的有水平平移变换、竖直平移变换、翻折变换等.3.作函数图象时应特别注意:顶点、端点、图象与x轴的交点等这些特殊点.4.作图时应首先看清函数的定义域.【典型例题1】作出下列函数的图象:(1)y=-x+1,x∈Z;(2)y=2x2-4x-3(0≤x<3);(3)y=|1-x|;(4)y=201110. x xx x⎧≤≤⎨≤<⎩,,+,-思路分析:作函数图象,首先明确函数的定义域,其次明确函数图象的形状,体会定义域对图象的控制作用,处理好端点.如,第(4)小题x=0时的情况.作图时,如第(2)小题,先不受定义域限制作出完整的抛物线,然后再根据定义域截取.函数图象的形状可以是一条或几条无限长的平滑曲线,也可以是一些点、一些线段、一段曲线等.解:(1)定义域为Z,所以图象为离散的点.图象如图(1)所示.(2)y=2x2-4x-3=2(x-1)2-5(0≤x<3),定义域不是R,因此图象不是完整的抛物线,而是抛物线的一部分.图象如图(2)所示.(3)先根据绝对值的定义去掉绝对值号,再写成分断函数y=1111.x xx x>⎧⎨≤⎩-,,-,图象如图(3)所示.(4)这个函数的图象由两部分组成.当0≤x≤1时,为抛物线y=x2的一段;当-1≤x <0时,为直线y=x+1的一段.图象如图(4)所示.探究二求函数解析式1.若已知函数类型求解析式,则可用待定系数法求解.若f (x )是一次函数,可设f (x )=kx +b (k ≠0),若f (x )是二次函数,可设f (x )=ax 2+bx +c (a ≠0),然后利用题目中的已知条件,列出关于待定系数的方程组,进而求出待定的系数.2.若不清楚函数类型,可采用配凑法或换元法.【典型例题2】 (1)已知f 1x ⎛⎫ ⎪⎝⎭=21x x-,求f (x ); (2)已知f (x )为一次函数,且f (f (x ))=9x +4,求f (x ).思路分析:(1)利用“换元法”或“配凑法”;(2)利用待定系数法.解:(1)方法一:令1x =t ,则x =1t,且t ≠0, ∴f (t )=2111t t -=2211t t t -=21t t -,∴f (x )=21x x - (x ≠0). 方法二:f 1x ⎛⎫ ⎪⎝⎭=21x x -=2111x x ⎛⎫- ⎪⎝⎭, ∴f (x )=21x x - (x ≠0).(2)设f (x )=ax +b (a ≠0).f (f (x ))=af (x )+b =a (ax +b )+b =a 2x +ab +b .由题设知294a ab b ⎧⎨⎩=,+=,解得31a b ⎧⎨⎩=,=或32.a b ⎧⎨⎩=-,=- ∴f (x )=3x +1或f (x )=-3x -2.探究三分段函数及其应用求解分段函数问题三注意1.求f (f (a ))的值时,应从内到外....依次取值,直到求出值为止. 2.已知函数值,求自变量的值时,切记要进行检验....解题时一定要注意自变量的X 围,只有在自变量确定的X 围内才可以进行运算.3.已知f (x ),解关于f (x )的不等式时,要先在每一段内求交集..,最后求并集....【典型例题3】 已知f (x )=222 2.x x x x ≥⎧⎨<⎩+,-,--,-若f (x )>2,求x 的取值X 围. 思路分析:在x ≥-2时,由x +2>2,解得x >0后,需与x ≥-2求交集,得x >0;当x <-2时,由-x -2>2,得x <-4,与x <-2求交集,得x <-4.然后求x >0与x <-4的并集得最后结果.解:当x ≥-2时,f (x )=x +2,由f (x )>2,得x +2>2,解得x >0,故x >0; 当x <-2时,f (x )=-x -2,由f (x )>2,得-x -2>2,解得x <-4,故x <-4. 综上可得,x >0或x <-4.【典型例题4】 已知函数f (x )=2[10)[01)[12].x x x x x x ∈⎧⎪∈⎨⎪∈⎩-,-,,,,,,,(1)求f (-8),f 23⎛⎫- ⎪⎝⎭,f 12⎛⎫ ⎪⎝⎭,f 32⎛⎫ ⎪⎝⎭的值; (2)作出函数的简图;(3)求函数的值域.思路分析:给出的函数是分段函数,应注意在不同的自变量取值X 围内有不同的解析式.(1)根据自变量的值,选用相应关系式求函数值.(2)在不同的区间,依次画出函数图象.解:函数的定义域为[-1,0)∪[0,1)∪[1,2]=[-1,2].(1)因为-8∉[-1,2],所以f (-8)无意义.当x ∈[-1,0)时,f (x )=-x ,所以f 23⎛⎫- ⎪⎝⎭=-23⎛⎫- ⎪⎝⎭=23. 当x ∈[0,1)时,f (x )=x 2,所以f 12⎛⎫ ⎪⎝⎭=12⎛⎫ ⎪⎝⎭2=14. 当x ∈[1,2]时,f (x )=x ,所以f 32⎛⎫ ⎪⎝⎭=32. (2)根据题中函数的表达式,在平面直角坐标系中作出的函数图象如图所示.(3)由(2)中画出的图象可知,函数的值域为[0,2].探究四易错辨析易错点 缺乏检验意识而致误【典型例题5】 已知f (x )=212,1,1,1,1x x x x⎧--≤⎪⎨>⎪+⎩若f (a )=15,求a 的值. 错解:∵f (a )=212,1,1,1,1a a a a⎧--≤⎪⎨>⎪+⎩ ∴令|a -1|-2=15,得a =165或a =-65. 再令211a +=15,得a =±2. 综上可知满足f (a )=15的a 的值为-65,165,±2. 错因分析:没有对求得的a 的值进行验证.正解:∵f (a )=212,1,1,1,1a a a a⎧--≤⎪⎨>⎪+⎩∴当|a |≤1时,令|a -1|-2=15, 解得a =165或a =-65. 又∵|a |≤1,∴a =165和a =-65均不符合题意,舍去; 当|a |>1时,令211a=15, 解得a =±2,均符合|a |>1.综上,符合题意的a 的值为±2.点评对于分段函数,无论是求函数值,还是求自变量,都要看清楚每一段解析式所对应的自变量的取值X 围,不能X 冠李戴,也不能忘记检验.。
人教B版高中数学必修第一册精品课件 复习课 第3课时 函数
(11)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函
数.( √ )
(12)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( √ )
(13)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.( √ )
(14)只要函数有零点,我们就可以用二分法求出零点的近似值.( × )
(3)分段函数是由两个或几个函数组成.( × )
(4)已知函数f(x)的图象如图所示,则函数f(x)的单调递增区间是
(-∞,0]∪(0,+∞).( × )
(5)已知定义在R上的函数f(x),f(-1)<f(3),则函数f(x)在R上为增函数.( × )
(6)若函数y=f(x)在区间[1,+∞)内是增函数,则函数f(x)的单调递增区间是
集时可借助数轴,要特别注意端点值的取舍.
(2)求抽象函数的定义域:①若已知函数f(x)的定义域为[a,b],则复合函数
f(g(x))的定义域由a≤g(x)≤b求出;②若已知函数f(g(x))的定义域为[a,b],则f(x)
的定义域为g(x)在区间[a,b]上的值域.
2.求二次函数解析式的方法
【变式训练1】 已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个
3.函数有哪些表示方法?
提示:解析法、图象法、列表法.
4.什么是分段函数?
提示:如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的
对应方式,则称其为分段函数.
5.什么是增函数?什么是减函数?什么是函数的单调性与单调区间?请完成
下表:
人教高中数学必修一B版《函数及其表示方法》函数的概念与性质说课复习(分段函数)
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
栏目 导引
第三章 函 数
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(变问法)本例条件不变,若 f(a)=3,求实数 a 的值.
解:①当 a≤-2 时,f(a)=a+1, 所以 a+1=3, 所以 a=2>-2 不合题意,舍去. ②当-2<a<2 时,a2+2a=3, 即 a2+2a-3=0,
课件 课件 课件 课件 课件
课件 课件 课件 课件 课件 课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
取按月用电量分段收费办法,若某户居民每月应交电费 y(元)
关于用电量 x(度)的函数图像是一条折线(如图所示),根据图像
解下列问题:
栏目 导引
第三章 函 数
(1)求 y 关于 x 的函数关系式;
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
问题导学 预习教材 P90-P92 的内容,思考以下问题: 1.什么是分段函数? 2.分段函数是一个函数还是多个函数?
栏目 导引
第三章 函 数
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列表格中的x与y能构成函数的是( ).A.
B.
C.
D.
2.函数
2
2,01
()2,12
3,2
x x
f x x
x
⎧≤≤
⎪
=<<
⎨
⎪≥
⎩
的值域是( ).
A .R
B .[0,+∞)
C .[0,3]
D .{x|0≤y ≤2或y =3} 3.函数y =f(x)与函数y =f(x +1)所表示的是( ). A .同一个函数
B .定义域相同的两个函数
C .值域相同的两个函数
D .图象相同的两个函数
4.一个高为H ,水量为V 的鱼缸的轴截面如下图所示,其底部有一个洞,满缸水从洞中流出,如果水深为h 时水的体积为v ,则函数v =f(h)的大致图象是( ).
5.如果函数f(x)满足方程1
()()af x f ax x
+=,x ∈R ,且x ≠0,a 为常数,
且a ≠±1,则f(x)=________.
6.已知(1)232
x
f x -=+,且f(m)=6,则m 等于________.
7.作出下列函数图象:
(1)()()()
2
1,02,0x x y x x ⎧-≥⎪=⎨<⎪⎩ (2)2211x x y x -=-.
8.某市规定出租车收费标准:起步价(不超过2 km)为5元.超过2 km 时,前2 km 依然按5元收费,超过2 km 部分,每千米收1.5元.你能写出打车费用关于路程的函数解析式吗?又规定:若遇堵车,每等待5分钟(不足5分钟按5分钟计时)乘客需交费1元.某乘客打车共跑了20 km ,中途遇到了两次堵车,第一次等待7分钟,第二次等待13分钟,该乘客到达目的地时,该付多少车钱?
9.国家规定个人稿费的纳税办法为:不超过800元的不纳税;超过800元不
超过4 000元的按超过800元的部分的14%纳税;超过4 000元的按全部稿费的11%纳税.
(1)试根据上述规定建立某人所得稿费x元与纳税额y元的函数关系式;
(2)某人出了一本书,共纳税420元,则这个人的稿费是多少元?。