忆阻感知器在逻辑分类中的应用

合集下载

金属阳离子型忆阻器

金属阳离子型忆阻器

金属阳离子型忆阻器
1. 工作原理
金属阳离子型忆阻器的基本结构由一个电解质层夹在阳极和阴极之间组成。

当施加正电压时,阳极中的金属阳离子会被氧化并注入电解质层中,形成导电通路,器件处于低阻态。

反之,当施加反向电压时,金属阳离子会从电解质层中被还原并迁移回阳极,导电通路断开,器件恢复为高阻态。

这种可逆的阻态切换即为忆阻现象。

2. 材料选择
忆阻器的性能很大程度上取决于材料的选择。

阳极通常选用银、铜等易氧化的金属;阴极一般选用惰性金属如铂;电解质层可采用固体电解质或离子导体材料。

3. 应用前景
金属阳离子型忆阻器可应用于非易失性存储器、神经形态计算、人工智能硬件等领域。

相比现有技术,它具有更高的集成度、更快的读写速度和更长的使用寿命。

未来,金属阳离子型忆阻器有望成为新一代存储和计算硬件的核心器件。

4. 挑战与展望
尽管金属阳离子型忆阻器前景广阔,但在实现商业化应用的道路上仍面临一些挑战,如器件可靠性、制造工艺复杂度等。

研究人员正在努力攻克这些难题,以期在不久的将来实现忆阻器的大规模商业化应用。

忆阻器的应用

忆阻器的应用

忆阻器的应用电子学最薪电路元件的前景评析现在市面上仍然不能买到忆阻器。

但是,考虑到忆阻器历经多年,直至今年才被认可——以前理论中的第四种基本电路,被HP实验室研究员最终证明了其在现实中存在之后,此技术可谓是一夜成名。

图1为一个由17个忆阻器列成一排而组成的简单电路,其中每个忆阻器有一个底部导图I一个由17个忆阻器列成一排而组成的简单电路线,其与器件的一端相连,还有一个顶部导线,其与器件的另一端相连。

早在37年前,LeonChua——一名伯克利加利福尼亚大学电子工程和计算机科学学院的教员,最先对该元件建立理论并命名。

他认为忆阻器——就像电阻、电容、电感——具有其他三种元件的任意组合都不能复制的特性。

但是,借助于纳米技术中现代的突破性成果,研究团队——DmitriB.Strukov,GregoryS.Snider和DuncanR.Stewart博士——在惠普公司的高级院士R.StanleyWilliams带领下,确实证明了它的存在。

“弱忆阻存在于大规模系统中”,Stewart说,。

然而,一般来说,它仅仅在一个纳米级系_……咖钏月统中才变得重要,并因此而有用。

”这有两方面的原因。

随着器件的减小,电场的驱动力变得越来越大,而需要用于产生电阻变化的原子运动变得更小:两种趋势相互加强直到它们最终支配纳米行为。

在2008年7月,研究者实际制备了50nm×50nm忆阻器开关,它由在两纳米线之间的一层二氧化钛组成。

通过精巧地操纵该层中氧原子的分布,科学家J.JoshuaYang博士可以控制该器件的运行。

这样的发展被看作是将忆阻器技术大众化的重要一步。

但是,仍然有问题存在:将如何应用它呢?。

忆阻器具有巨大的潜力,能够使一些关键的电子技术在将来成为可能”Yang说,“它是一个新的电路元件,并且已展示出了许多令人期待的,新颖的特性,这些特性是之前设计工程师们都未曾见过的。

”忆阻器部件研究人员称,将来有一天忆阻器部件将会作为一种无源器件出现在货架上。

忆阻逻辑电路及漏电流问题的研究

忆阻逻辑电路及漏电流问题的研究

摘要随着时代的发展,集成电路在体积和性能方面已经达到了技术极限,其发展遇到了瓶颈,因此急需寻找一种新型元器件取代晶体管,以延续摩尔定律。

忆阻器,作为继电阻、电感、电容后的第四种基本元器件,其纳米级、非易失、低功耗等特性,使其有望成为极具潜力的下一代电子元件。

同时,忆阻能与晶体管技术相兼容,很容易实现各种逻辑电路,在交叉阵列中可以堆叠排列,形成三维结构,可以极大的减小存储器的体积。

基于忆阻的逻辑电路及交叉阵列数据存储为今后新型存储器的发展提供了理论意义和实践价值。

本文首先对惠普忆阻的机制进行了分析,阐述了忆阻的工作机理,分析了忆阻的线性漂移模型和阈值模型以及Vteam模型;并根据上述特性设计了基于忆阻的逻辑门电路以及全加器;分析了单个忆阻作为存储单元交叉阵列的漏电流问题,并介绍了反向串联忆阻作为存储单元的交叉阵列结构,分析了在不同写操作过程中半选通单元阻值及其逻辑状态的变化,并设计了新型写方式,减小了半选通单元阻值的变化,提高了写操作的稳定性。

本文最后设计了基于忆阻的加法运算存储设计,将加法器的运算数据存储到交叉阵列中,并介绍了将忆阻构成的其他运算模块的运算结果存储到交叉阵列的实现过程。

通过仿真验证了上述设计的正确性。

本文通过理论分析和仿真以及定量对比说明了电路设计的可行性和写方式的稳定性。

关键词:忆阻逻辑门全加器交叉阵列漏电流ABSTRACTAs the time goes by,the integrated circuits have reached technical limit in terms of volume and performance,whose development has encountered a bottleneck,and it is difficult to have a breakthrough.Therefore,it is urgent to replace the transistors with another component to continue Moore's law.Memristor,is the fourth element after resistor, inductance and capacitance.As a new element,memristor possesses the properties of nanoscale,nonvolatility,low power,which can act as a candidate of the next generation electronic component.Meanwhile,memristor is compatible with the transistor technology, which is easy to realize various logic circuits.In crossbar array,it can be stacked which can form three-dimensional structure.In this way storage can greatly reduce the volume.It is of theoretical and practical value to realize the logic circuits and cross array data storage based on memristor.In this thesis,the mechanism of HP memristor is analyzed,and the working mechanism of memristor is described.Meanwhile,the threshold model and Vteam model of memristor are analyzed.Then designing various of logic gates and a full adder based on the characteristics of memristor.In order to improve the storage capacity,this thesis discusses the crossbar array structure of single memristor storage unit,analyzing the leakage current problem of crossbar array,and introduces the structure of antiseries memristor as a cross array storage unit.This thesis analyzes the change of unit resistance and semi logic state in different writing operation process,and design a new write mode, which reduces the changes of half-selected unit resistance and improves the stability of writing operations.Finally,designing the storage of addition operation based on memristor,which storage the results of full adder to cross array,and introduces the other operation module whose results storage to cross array storage.The correctness of the design is verified by simulation.In this thesis,the feasibility of the logic circuit and the stability of the writing mode are explained by theoretical analysis,simulation and quantitative comparison. Keywords:Memristor Logic gate Full adder Crossbar array Leakage current目录摘要 (I)ABSTRACT (II)目录 (III)1绪论 (1)1.1课题研究的背景和意义 (1)1.2忆阻器的国内外研究现状 (3)1.3本文的研究内容 (6)1.4论文结构 (7)2忆阻器模型 (10)2.1惠普忆阻模型 (10)2.2忆阻阈值模型 (11)2.3VTeam模型 (12)2.4本章小结 (14)3基于忆阻逻辑电路及全加器的设计 (15)3.1忆阻“与、或”逻辑门 (15)3.2忆阻“异或、同或”逻辑门 (20)3.3电压调整电路 (23)3.4忆阻全加器 (25)3.5本章小结 (32)4忆阻交叉阵列漏电流问题分析及新型写方式设计 (33)4.1单忆阻作为存储单元的交叉阵列 (33)4.2反串联忆阻交叉阵列 (36)4.3反串联忆阻交叉阵列写操作设计 (39)4.4基于忆阻器的数据运算及存储设计 (46)4.5本章小结 (53)5总结与展望 (54)5.1总结 (54)5.2展望 (55)参考文献 (56)致谢 (62)附录I攻读硕士学位期间发表的论文 (63)附录II攻读硕士学位期间参与的项目 (64)1绪论1.1课题研究的背景和意义1.1.1晶体管集成电路技术的瓶颈随着社会科学技术的发展,各类数码产品更新换代的速度是惊人的,在日常生活中人们对电子产品的使用性能也有更高的要求,除了功能和成本之外,更注重这类产品的体积,以及续航能力。

忆阻器的意义

忆阻器的意义

忆阻器的意义一、生物感知系统人类可以通过视觉、触觉、听觉、嗅觉和味觉等不同感官,高效、灵活地感知外部的物理世界。

我们脑中的神经网络会汇集并处理这些感官收集的信息,使我们能够探索,认知和学习。

具体来说,人类多感知神经网络中的感觉神经元(如味觉感觉神经元)会在接收到外界的物理刺激后,将物理信息转化为脉冲信号,并在随后被传输到大脑皮层进行进一步处理。

在生物感知系统中,一些特定类型的感受器(光感受器、热感受器、机械感受器等)和神经元会将外部的环境刺激转化为脉冲信号。

随后,大脑皮层会接收这些脉冲信号,并对外界刺激做出反应。

近年来,随着可穿戴设备和物联网的发展,传感器结点的类型和数量急剧增加,进而产生了大量需要高效、实时处理的传感数据。

然而,与人类高效的感知系统有所不同的是,传统传感系统在采集和处理数据的过程中存在高能耗和低效率的问题。

因此,越来越多的研究在尝试通过效仿人类感知世界的方法,在硬件中创建出能高效处理各种物理信号的系统。

在生物学的启发下,科学家们发展出了有望有效处理来自物理世界的多感官信号的神经形态感知系统。

这种系统的实现,需要将传感器与人工突触和神经元结合。

但到目前为止,我们仍然缺乏一种能够高效对多种物理信号进行传感和脉冲编码的硬件。

二、忆阻器的意义在新兴的器件中,忆阻器凭借其丰富的离子动力学,而被用于模拟突触和神经元的功能。

通过将忆阻器和传感器结合,研究人员已经证明了这样的神经形态感知系统能够处理感觉信息,如触觉、视觉、伤害性信息等。

然而,这些人工神经元目前只能处理单一的物理信号,而且其中大多数存在显著的周期间(C2C)和神经元间(D2D)的差异,这对应用构成了极大的挑战。

因此,我们迫切需要一种具有良好一致性的神经形态感知系统。

忆阻器是一种具有固有内存的器件,它的理论概念在50多年前就已经提出,但直到2008年才真正实现。

自那之后,这类器件便取得了快速的发展。

三、忆阻器的特性忆阻器有着非常简单的三层结构——顶电极、底电极,以及一个位于二者之间的阻变层。

忆阻数字逻辑电路设计

忆阻数字逻辑电路设计

忆阻数字逻辑电路设计王晓媛* 金晨曦 周鹏飞(杭州电子科技大学电子信息学院 杭州 310018)摘 要:该文简要概述了忆阻器理论的提出、应用现状及其在电子技术领域发展的现状,介绍了忆阻器在数字逻辑电路设计中的重要意义,并结合惠普(HP)忆阻器的二值特性及其电路特性,对忆阻器在数字逻辑电路设计中的发展、趋势及可应用前景进行了综述,可为忆阻器在数字逻辑电路中的后续研究及相关应用提供一定的参考。

关键词:忆阻器;数字逻辑电路;二值特性中图分类号:TN601; TN791文献标识码:A文章编号:1009-5896(2020)04-0851-11DOI : 10.11999/JEIT190864Memristive Digital Logic Circuit DesignWANG Xiaoyuan JIN Chenxi ZHOU Pengfei(School of Electronics and Information , Hangzhou Dianzi University , Hangzhou 310018, China )Abstract : A brief overview of the theory of memristor, the state of applied research and its current status in the field of electronic technology are proposed. The importance of memristor in the design of digital logic circuits is also introduced. Combined with the binary characteristics and circuit characteristics of Hewlett Packard(HP)memristor, the development status, trend and applicable prospects of memristor in digital logic circuit design are reviewed ,which provide certain reference for further research based on memristor in digital logic circuit design and other related applications.Key words : Memristor; Digital logic circuit; Binary characteristic1 引言忆阻器是一种具有记忆特性和非线性特性的新型电路元件,是与传统电路元件中的电阻、电容和电感相并列第4类基本电路元件。

基于二值忆阻器的忆阻三值数字逻辑电路研究

基于二值忆阻器的忆阻三值数字逻辑电路研究

基于二值忆阻器的忆阻三值数字逻辑电路研究基于二值忆阻器的忆阻三值数字逻辑电路研究摘要:本文针对传统二值数字逻辑电路存在的功耗大、占用面积大等问题,提出一种基于二值忆阻器的忆阻三值数字逻辑电路。

在该电路中,引入了忆阻器,将常规二值数字逻辑门替换成具有三种电阻状态的忆阻器,实现了三值数字逻辑的运算。

在理论分析和实验验证中,该电路相比传统二值数字逻辑电路具有更小的功耗和面积,同时能够快速实现高阻态的控制,具有广泛的应用前景。

关键词:二值数字逻辑电路,忆阻器,三值数字逻辑,功耗,面积。

1. 引言随着智能化、大数据时代的到来,工业、通信、汽车、医疗等领域对数字逻辑电路的需求呈现多样化和个性化发展趋势。

然而,传统的二值数字逻辑电路由于功耗大、占用面积大等问题,难以满足日益增长的应用需求。

因此,研究新型的数字逻辑电路已成为数字电路领域的研究热点之一。

忆阻器作为一种新型的电阻器元件,具有自加工、无功耗、体积小等优点,近年来引起了广泛的研究兴趣。

因此,结合忆阻器研究新型数字逻辑电路,成为解决传统数字逻辑电路问题的关键之一。

2. 忆阻三值数字逻辑电路的构成忆阻三值数字逻辑电路的基本构成如图1所示。

其中,输入端A和B分别代表三值逻辑电路的输入管脚。

在逻辑电路中,每个子电路均由包括忆阻器和MOS管两部分构成。

通过忆阻器和MOS管的组合,分别形成了忆阻三值反转器、忆阻三值与非门、忆阻三值或门等模块。

3个模块的输入均为绝缘栅场效应管(IGFET)管的输入端、BI。

输出AOUT和BOUT即为三值逻辑电路的输出结果。

<img src="#" />图1 忆阻三值数字逻辑电路构成图其中,忆阻三值反转器的基本构成如图2所示。

由忆阻器器件及控制电阻器构成,当忆阻器的中间引脚对应的电阻状态为中值状态时,则保持输入信号不变,当中间引脚对应的电阻状态为最小电阻或最大电阻时,则输出端AOUT的电平状态反转。

<img src="#" />图2 忆阻三值反转器结构图类似地,忆阻三值与非门和忆阻三值或门的结构图如图3和图4所示。

忆阻器的发展与应用

忆阻器的发展与应用

未来研究方向和前景展望
新型材料与技术
探索新型材料和技术,提高忆 阻器的性能、稳定性和可靠性
,降低成本。
神经形态计算
利用忆阻器模拟神经元和突触的 功能,构建神经形态计算系统, 实现更高效、智能的计算。
物联网与边缘计算
将忆阻器应用于物联网和边缘计 算领域,实现数据的就近存储和 处理,提高响应速度和能效比。
化学气相沉积
通过化学反应在基底上生 成忆阻材料薄膜。
微纳加工技术
光刻技术
利用光刻胶和光刻机对忆 阻材料进行微细加工。
刻蚀技术
采用干法刻蚀或湿法刻蚀 技术,对忆阻材料进行高 精度刻蚀。
纳米压印技术
利用纳米压印模板在忆阻 材料上压印出纳米级图案。
性能测试与表征方法
电学性能测试
测试忆阻器的电阻、电容、电感等电 学性能。
应用
MRAM具有非易失性、高速、低功耗等优点, 被广泛应用于嵌入式系统、移动设备、航空航 天等领域。同时,MRAM还有望成为未来神经 形态计算和量子计算的重要硬件基础。
各类存储器性能比较
01
02
03
04
速度
RRAM和PCRAM的读写速度 较快,而MRAM的读写速度
相对较慢。
功耗
RRAM和PCRAM的功耗较低 ,而MRAM的功耗相对较高
神经形态计算挑战
神经形态计算在硬件实现、算法设计 、系统集成等方面面临诸多挑战,如 神经元和突触的复杂动态特性、硬件 资源的有限性等。
基于忆阻器的突触仿生器件
忆阻器作为突触仿生器件
忆阻器具有非易失性、连续可调电阻等特性,可模拟生物突触的权重调节和信息传递功 能。
突触仿生器件应用
基于忆阻器的突触仿生器件在图像识别、语音识别、自然语言处理等任务中展现出良好 性能。

忆阻器应用

忆阻器应用

Received February3,2013,accepted April14,2013,published May10,2013.Digital Object Identifier10.1109/ACCESS.2013.2259891Memristor-Based Nonvolatile Random Access Memory:Hybrid Architecture for Low Power Compact Memory DesignSYED SHAKIB SARWAR,SYED AN NAZMUS SAQUEB,FARHAN QUAIYUM(Student Member,IEEE),ANDA.B.M.HARUN-UR RASHID(Senior Member,IEEE)Department of Electrical and Electronic Engineering,Bangladesh University of Engineering and Technology,Dhaka1000,Bangladesh.Corresponding author:S.S.Sarwar(syed.shakib@)This work was supported by the Ministry of Science and Technology,Government of Bangladesh,under the Science and Technology Special Research Grant for2012–2013.ABSTRACT In this paper,a new approach toward the design of a memristor based nonvolatile static random-access memory(SRAM)cell using a combination of memristor and metal-oxide semiconductor devices is proposed.Memristor and MOSFETs of the Taiwan Semiconductor Manufacturing Company’s180-nm technology are used to form a single cell.The predicted area of this cell is significantly less and the average read–write power is∼25times less than a conventional6-T SRAM cell of the same complementary metal-oxide semiconductor technology.Read time is much less than the6-T SRAM cell.However,write time is a bit higher,and can be improved by increasing the mobility of the memristor.The nonvolatile characteristic of the cell makes it attractive for nonvolatile random access memory design.INDEX TERMS CMOS,memory element,memristor(M),NVRAM,SPICE model.I.INTRODUCTIONChua[1]hypothesized the existence of a fourth passive two-terminal circuit element called the memristor in1971 (the other three elements being the resistor,capacitor and inductor).In2008,researchers at Hewlett Packard(HP)Labs reported that the memristor was realized physically using two-terminal titanium-di-oxide(TiO2)nanoscale device[2]. HP Labs described thefirst experimental demonstration of a physical memristor,finally confirming Chua’s the-ory and sparking much excitement in the electronics and business circles[3].Basically the memristor is a resis-tance with memory;when a voltage is applied to this ele-ment,its resistance changes and remains on that particu-lar value when the source is removed.The main differ-ence between the memristor(M)and the three traditional circuit elements(R,L,C)is its nonlinear input-output characteristics.The HP memristor exploits certain nanoscale properties of a titanium-di-oxide TiO2thinfilm.Other physical embodi-ments of memristors may also be possible and it has been recently proposed that coupling of currentflow and spin transport at nanoscale dimensions can be used to realize memristance[4],[5].Analog circuit applications incorpo-rating the memristor are rapidly emerging in the literature. Witrisal considered Memristors in an ultra-wideband receiver to reduce signal processing power[6].Memristors are also used as programmable resistive loads in a differential ampli-fier[7].Varghese and Gandi used memristor as a source degeneration element in a complementary metal-oxide semi-conductor(CMOS)differential pair[8].Reference[9]shows a variety of programmable analog functional blocks based on analog memristor memory including an Op-Amp based variable gain amplifier(VGA).Pulse-programming methods for memristive analog memory in a differential pair amplifier are considered in[10].Memristors have been studied intensively among many researchers because of their possibilities,especially as a strong candidate for future memories[11].Non-volatile prop-erty and high packing density in a crossbar array particularly excites the researchers.The main feature of our proposed circuit is its non-volatility.The data is stored in the memory even when the power is turned off for an indefinite time. Another feature is its reduced size compared to the conven-tional6T-SRAM.As only three transistors are used in eachS.S.Sarwar et al.:Memristor-Based Nonvolatile Random Access Memorycell of the proposed circuit,its area can be much less than the conventional SRAM cells.The power consumed by the proposed structure is significantly less than the conventional SRAM structure.All these features are discussed further later on in this paper.The paper starts off with the introduction of memristors and its characteristics.After that some related works were discussed.Then it goes straight into the structure of our proposed circuit,its working principle and its functionality, then it discusses the perspectives,draws some comparisons, andfinally it concludes with the possible future prospects of the circuit.II.MEMRISTOR AS A MEMORY ELEMENTStrukov et al.[2]presented a physical model of the memristor. They have shown that the memristor can be characterized by an equivalent time-dependent resistor whose value at a time t is linearly proportional to the quantity of charge q that has passed through it.They realized a proof-of-concept memris-tor,which consists of a thin nanolayer(2nm)of TiO2and a second oxygen deficient nanolayer of TiO2−x(8nm)sand-wiched between two Pt nanowires.Oxygen(O2−)vacancies are+2mobile carriers and are positively charged.A change in distribution of O2−within the TiO2nanolayer changes the resistance.By applying a positive voltage,to the top platinum nanowire,oxygen vacancies drift from the TiO2−x layer to the TiO2undoped layer,thus changing the boundary between the TiO2−x and TiO2layers.As a consequence,the overall resistance of the layer is reduced corresponding to an‘‘ON’’state.When enough charge passes through the memristor that ions can no longer move,the device enters a hysteresis region and keeps q at an upper bound withfixed memristance, M(memristor resistance).By reversing the process,the(a)(b)FIGURE1.(a)Characterizing the memristor and(b)change of resistance when a3.6V p–p square wave is applied.oxygen defects diffuse back into the TiO2−x nanolayer. The resistance returns to its original state,which corre-sponds to an‘‘OFF’’state.The significant aspect to be noted here is that only ionic charges,namely oxygen vacan-cies(O2−)through the cell,change memristance.The resistance change is non-volatile hence the cell acts as a memory element.Fig.1(a)shows the doped and undoped region of a memristor.If a voltage is applied across the memristorv(t)=M(t)i(t)[2](1)M(t)=R ONw(t)D+R OFF1−w(t)D(2) where R ON is the resistance of completely doped memristor and R OFF is the resistance of completely undoped memristor, w(t)is given bydw(t)dt=µvR ONDi(t)(3)µv is the average dopant mobility and D is the length of the memrsitor.To consider the nonlinearity produced from the edge of the thinfilm,a window function[2],[12],[13] should be multiplied to the right side of(3).fw(t)D=1−2w(t)D−12p.(4)The spice model[13]which makes use of non-linear dopant drift in modelling is used for simulation.Change of resistance of a memristor applying3.6V p–p square wave across it is shown in Fig.1(b).Following parameters were used for simulation:R ON=100 ,R OFF=20k ,p=10, D=3nm andµv=350×10−9m2/s/V.Resistance of the memristor changes from20k to100 in positive cycle.This change occurs in reverse direction when the square pulse reverses its direction.III.RELATED WORKSSRAM is a form of semiconductor memory widely used in electronics,microprocessor and general computing applica-tions.This form of semiconductor memory gains its name from the fact that data is held in there in a static fashion, and does not need to be dynamically updated as in the case of DRAM memory.While the data in the SRAM memory does not need to be refreshed dynamically,it is still volatile, meaning that when the power is removed from the memory device,the data is not held,and will disappear.The opera-tion of the SRAM memory cell is relatively straightforward. When the cell is selected,the value to be written is stored in the cross-coupledflip-flops.The cells are arranged in a matrix,with each cell individually addressable.Most SRAM memories select an entire row of cells at a time,and read out the contents of all the cells in the row along the column lines.Access to the SRAM memory cell is enabled by the Word Line.This controls the two access control transistors which control whether the cell should be connected to the bit lines.These two lines are used to transfer data for both readS.S.Sarwar et al.:Memristor-Based Nonvolatile Random AccessMemoryand write operations.The most commonly used SRAM type is the6T SRAM which offers better electrical performances from all aspects(speed,noise immunity,standby current).The smallest6T-SRAM cell that has been fabricated till today has an area of0.08µm2and it was fabricated in the22nm pro-cess using immersion and EUV lithography[15].The main disadvantages of the6T SRAM structure are its large size and high power consumption.To overcome these limitations, memristive-RAMs are being developed recently.According to HP,resistive random access memory(ReRAMs),which are memristor-based versions of both DRAM and SRAM,ought to speed up computers immensely.Along with HP,Samsung and many other companies are working on memristor tech-nology.There are several researches on memristor based memories. In[16],a complementary resistive switch was introduced.It consists of two anti-serial memristive elements which vali-dates the construction of large passive crossbar arrays witha drastic reduction in power consumption.Junsangsri et al.[17]presented a novel memory cell consisting of a mem-ristor and ambipolar transistors.Macroscopic models were utilized to characterize the operations of that memory cell. In[18],Kamran Eshraghian et al.provided a new approach towards the design and modeling of memristor based con-tent addressable memory(MCAM)using a combination of memristor and MOS devices to form the core of a mem-ory/compare logic cell.This cell forms the building block of the CAM architecture.The non-volatile characteristic and the minuteness together with compatibility of the memristor with CMOS processing technology increases the packing density, provides new approach towards power management through disabling CAM blocks without loss of stored data,which reduces power dissipation.This inspired us to design a SRAM cell using Memristor-MOS hybrid architecture exploiting the non-volatile characteristic and the nanoscale geometry of a memristor.IV.PROPOSED SRAM CELLElectrical scheme of the proposed SRAM cell is shown in Fig.2(a).Two memristors are used as memory element.The arrangement is in such a way that during write cycle,they are connected in parallel but in opposite polarity[Fig.2(b)] and during read cycle,they are connected in series[Fig.2(c)]. These connections are established by two NMOS pass tran-sistors T1and T2.A third transistor T3is used to isolate a cell from other cells of the memory array during read and write operations.The gate input of T3is the Comb signal which is the OR of RD and WR signals.If a bit is to be written,RD is taken to the LOW state and WR and Comb are taken to the HIGH state.As a result,circuit of Fig.2(b)is formed.The voltage across the memristors is(V D−VDD/4). Depending on the data,it can be positive(if D=1i.e. V D=VDD)or negative(if D=0i.e.V D=0V).As polarities of the memristors are opposite,change of mem-ristances(or resistances)will also take place in the opposite direction.Now if the data is to be read,RD and Combare(a)(b)(c)FIGURE2.(a)Three transistor–two memristor SRAM cell(b)circuit when RD=0,WR=1,and Comb=1.(c)Circuit when RD=1,WR=0,and Comb=1.taken to the HIGH state and this forms the circuit shown in Fig.2(c).V oltage at D is now:V D=VDD2−V DD4×R2(R1+R2)+V DD4(5) where,R1and R2are the resistances of M1and M2respec-tively.If‘‘1’’was written during write cycle,R2becomes sig-nificantly greater than R1and then V D is greater than VDD/4. If‘‘0’’was written,R1becomes significantly greater than R2 which makes V D to be as close as VDD/4.A comparator can be used as a sense amplifier to interpret these voltages as HIGH or LOW correctly.V.SIMULATIONS AND ANALYSISIn Fig.3,a16×16array is formed for the verification of array structure of our proposed NVRAM cell.Data is fed through wordlines/bitlines.Switching between i/p and o/p is done with the help of CMOS transmission gate controlled by Vdt and Vdtb signals which are complement of each other. In practical circuits,this purpose is served through encoders. Several simulations were done to test the validity of our proposed SRAM structure and compare it with the traditional SRAM structures.In the simulations data was written and read to calculate several important parameters such as write time,read time,power consumption etc.A comparator can be used as a sense amplifier to interpret these voltages as HIGH or LOW correctly.The reference of the comparator should be tied to0.26V.Simulations of the circuits are based on the following parameters:R ON=100 ,R OFF=20k ,p= 10,D=3nm andµv=350×10−9m2/s/V.The NVRAM cell has been implemented using TSMC180nm technology.S.S.Sarwar et al.:Memristor-Based Nonvolatile Random AccessMemory FIGURE3.16×16array structure.(a)(b)FIGURE4.(a)Timing diagram of input pulses during write operation. (b)Change of resistance of the two memristors of cell20during write operation.A.WRITE OPERATIONIn thefirst write cycle,‘‘1’’was written to cell2.Vwr2, Vrow0and Vdt0were set to HIGH state to select this cell. Timing diagram in Fig.4(a)shows Vwr2,Vdt0pulses and also shows the data in d0which is Vwd0.This write cycle starts from40ns and during this cycle,Vwr2=1,Vdt0=1FIGURE5.Timing diagram of read operation.and Vwd0=1.In the next cycle,a‘‘0’’was written to cell18 (from50ns)and to do this,Vwr2,Vrow1,Vdt1were set to HIGH state and Vwd1was set to LOW state.Finally a‘‘1’’was written to cell20(from60ns).For this,Vwr4,Vrow1, Vdt1and Vwd1,all were set to HIGH state.In Fig.4(b), plot of the resistance of two memristors in cell20shows the alteration of resistance while writing‘‘1’’into it.B.READ OPERATIONAfter writing‘‘1’’in cell2,the stored data was read(from 48ns).For this,Vrd2was set to HIGH state and data at dn0 is checked.In Fig.5,timing diagram of read cycles is shown.S.S.Sarwar et al.:Memristor-Based Nonvolatile Random AccessMemory FIGURE6.Evidence of non-volatility of the memristor SRAM cell.Afterwriting‘‘1’’in cell18,all the power sources are turned off during the time interval50–69ns.A read operation is done after turning on the powersources and found‘‘1’’in cell18.During read operation at cell2,dn0was found HIGH.Then after two write cycles,cell20was read(from68ns)and found HIGH at dn1.Finally,cell18was read(from69ns)and found LOW at dn1.So after reading a cell,data was found to be exactly the same as it was written previously in that cell.Thus, the array structure shows proper functionality both in read and write operations.VI.PERSPECTIVESOur proposed memristor based memory cell is non-volatile in nature.After writing‘‘1’’in cell18,all the power sources were turned off during the time interval50–69ns(Fig.6).A read operation is done after turning on the power sources and found‘‘1’’in cell18.This proves the non-volatile nature of the cell.The write and read times were measured and compared in Table1:TABLE1.Write/read time comparison.Operation Proposed SRAM Cell(ns)6-T Cell[19](ns)Write 5.90.85Read0.2 1.23The proposed NVRAM cell requires a bit more time for the write cycle than the conventional SRAM cells.By further increasing the mobility of the memristors,the write cycle time can be considerably reduced.Fig.7shows the inverse relation between mobility of the memristor and the write cycle time.The read cycle time depends on the sensitivity and responsiveness of the sense amplifier.From simulation the power dissipation curve was found and integration was done to get the energy dissipated for sep-arate operations(writing and reading‘‘1’’&‘‘0’’).And then the energy values were divided by respective operation cycle times to get the corresponding power dissipations(Table2). The obtained values were then averaged to get the total power dissipation.This was compared with the value of the conventional SRAM cell in Table3.FIGURE7.Inverse relation between mobility of the memristor and the write cycle time.TABLE2.Power dissipation during different operations.Operation Wr0Wr1Rd0Rd1Energy(fJ/cycle)191.01803.4961.3668 Power(µW)32.37136.18306.85340Peak power(mW)0.935 2.5 5.8 5.9 TABLE3.Power comparison.OperationProposed SRAM Cell(mW)6-T Cell[19](mW)Power0.40710.373Power consumption is much less than6-T cell which can be reduced more by designing a faster comparator which would reduce the read time.The area of the proposed memory cell can be predicted to be much less than the area of conventional6-T SRAM cell, as only three transistors are used along with two memristors. As memristors can be as small as3nm,the area can be further reduced if we can switch to more recent fabrication technologies such as22nm technology.VII.CONCLUSIONIn this paper,we proposed a new idea of NVRAM cell using memristor.The read time is much faster compared to a conventional SRAM and the power consumption is also much smaller.However the writing speed is not satisfactory compared to existing SRAM cells due to the low mobility of the memristor in the SPICE model we used.Recent researches suggest that the write time can be significantly reduced[14], [20]using state-of-the-art fabrication techniques.The com-parator used to read the data can be replaced by a more com-pact and efficient sense amplifier which in turn would further decrease the read time.There are further scopes to work onS.S.Sarwar et al.:Memristor-Based Nonvolatile Random Access Memorypower consumption as well.Overall,it can be said that our proposed NVRAM is a combination of new technology and innovative design which can open a new door in thefield of memory design.REFERENCES[1]L.Chua,‘‘Memristor-the missing circuit element,’’IEEE Trans.CircuitTheory,vol.18,no.5,pp.507–519,Sep.1971.[2] D.Struckov,G.Snider,D.Stewart,and R.Williams,‘‘The missing mem-ristor found,’’Nature,vol.453,no.7191,pp.80–83,2008.[3]G.Chen,‘‘Leon Chua’s memristor,’’IEEE Circuits Syst.Mag.,vol.8,no.2,pp.55–56,Apr.2008.[4]Y.V.Pershin and M.DiVentra,‘‘Spin memristive systems:Spin mem-ory effects in semiconductor spintronics,’’Phys.Rev.B,vol.78,no.11, pp.113309-1–113309-4,2008.[5]X.Wang,Y.Chen,H.Xi,H.Li,and D.Dimitrov,‘‘Spintronic memris-tor through spin-torque-induced magnetization motion,’’IEEE Electron Device Lett.,vol.30,no.3,pp.294–297,Mar.2009.[6]K.Witrisal,‘‘Memristor based stored reference receiver-the UWB solu-tion,’’Electron.Lett.,vol.45,no.14,pp.713–714,2009.[7]S.Shin,K.Kim,and S.M.Kang,‘‘Memristor basedfine resolutionprogrammable resistance and its applications,’’in Proc.IEEE Int.Conf.Commun.,Circuits,Syst.,Jul.2009,pp.948–951.[8] D.Varghese and G.Gandi,‘‘Memristor based highline arrange differentialpair,’’in Proc.IEEE mun.,Circuits Syst.,Jul.2009,pp.935–938.[9]Y.V.Pershin and M.DiVentra,‘‘Practical approach to programmableanalog circuits with memristors,’’IEEE Trans.Circuits Syst.I,Reg.Paper, vol.57,no.8,pp.1857–1864,Jan.2010.[10]S.Shin,K.Kim,and S.M.Kang,‘‘Memristor applications for pro-grammable analog ICs,’’IEEE Trans.Nanotechnol.,vol.10,no.2, pp.266–274,Mar.2011.[11] D.Batas and H.Fiedler,‘‘A memristor SPICE implementation and a newapproach for magneticflux controlled memristor modeling,’’IEEE Trans.Nanotechnol.,vol.10,no.2,pp.250–255,Mar.2011.[12] D.B.Strukov and S.Williams,‘‘Exponential ionic drift:Fast switching andlow volatility of thin-film memristors,’’Appl.Phys.A,Mater.Sci.Process., vol.94,no.3,pp.515–519,2009.[13]Z.Biolek,D.Biolek,and V.Biolkov,‘‘A SPICE model of memristor withnonlinear dopant drift,’’Radio Eng.J.,vol.18,no.2,p.211,2009. [14]N.Y.Joglekar and S.J.Wolf,‘‘The elusive memristor:Properties of basicelectrical circuits,’’Eur.J.Phys.,vol.30,no.4,p.661,2009.[15]O.Wood,C.Koay,K.Petrillo,H.Mizuno,S.Raghunathan,J.Arnold,D.Horak,M.Burkhardt,G.McIntyre,Y.Deng, Fontaine,U.Oko-roanyanwu,A.Tchikoulaeva,T.Wallow,H.-C.James,M.Colburn,S.S.C.Fan,Bala S.Haran,and Y.Yin,‘‘Integration of EUV lithography in the fabrication of22-nm node devices,’’Proc.SPIE vol.7271,pp.727104-1–727104-2,2009.[16] E.Linn,R.Rosezin,C.Kügeler,and R.Waser,‘‘Complementary resis-tive switches for passive nanocrossbar memories,’’Nature Mater.,vol.9, pp.403–406,Apr.2010.[17]P.Junsangsri and F.Lombardi,‘‘A memristor-based memory cell usingambipolar operation,’’in Proc.IEEE29th put.Design,Oct.2011,pp.148–153.[18]K.Eshraghian,K.-R.Cho,O.Kavehei,S.KuKang,D.Abbott,andS.M.Steve Kang,‘‘Memristor MOS content addressable memory (MCAM):Hybrid architecture for future high performance search engines,’’IEEE Trans.Very Large scale Integr.(VLSI)Syst.,vol.19,no.8, pp.1407–1417,Aug.2011.[19]G.M.Sreerama Reddy and P.C.Reddy,‘‘Design and implementation of8K-bits low power SRAM in180nm technology,’’in Proc.Int.Multi Conf.put.Sci.,vol.2.Mar.2009,pp.1–8.[20]J.Borghetti,G.S.Snider,P.J.Kuekes,J.J.Yang, D.R.Stewart,R.S.Williams,‘‘‘Memristive’switches enable’stateful’logic operations via material implication,’’Nature,vol.464,pp.873–876,Apr.2010.SYED SHAKIB SARWAR(S’11)was born inDhaka,Bangladesh,in1989.He received the B.Sc.degree in electrical and electronic engineeringfrom the Bangladesh University of Engineeringand Technology(BUET),Dhaka,Bangladesh,in2012.He is currently pursuing the M.Sc.degreein electrical and communication Engineering fromthe Department of Electrical and Electronic Engi-neering,BUET.Since2012,he has been a Faculty Member of Electrical and Electronic Engineering Department,BRAC University,Dhaka. His current research interests include high frequency,low power analog and mixed-signal integrated circuits,FPGA based digital circuit prototyping, artificial neural systems,and image processing.Mr.Sarwar has been with the IEEE Solid State Circuits Society since2012. He represented the BUET team in the IFEC-2011Workshop during the IEEE Applied Power Electronics Conference in Dallas,TX,USA.SYED AN NAZMUS SAQUEB(S’11)was bornin Natore,Bangladesh,in1988.He received theB.Sc.degree in electrical and electronic engineer-ing from the Bangladesh University of Engineeringand Technology(BUET),Dhaka,Bangladesh,in2012.Since2012,he has been a Faculty Member of theElectrical and Electronic Engineering Department,University of Asia Pacific,Dhaka.He is pursuingthe M.Sc.degree in electrical and communication engineering from the Department of EEE,BUET.His current research inter-ests include analog and mixed-signal circuit design,neuromorphic circuits, biomedical VLSI systems,and circuit design with novel devices.Mr.Saqueb has been with the IEEE Solid State Circuits Society since2012.FARHAN QUAIYUM(S’11)was born in Dhaka,Bangladesh,in1989.He received the B.Sc.degreein electrical and electronic engineering from theBangladesh University of Engineering and Tech-nology,Dhaka,Bangladesh,in2012.He has been an ASIC Design Engineer withFastrack Anontex Ltd.,since June2012.He ispursuing the M.Sc.degree in electrical and com-munication engineering from the Department ofEEE,BUET.His current research interests include high speed digital circuit design,ultra-low-power/low voltage circuits,and embeddedsystems.A.B.M.HARUN-UR RASHID(M’89–SM’02)received the B.Sc.degree in electrical and elec-tronic engineering from the Bangladesh Universityof Engineering and Technology(BUET)Dhaka,Bangladesh,in1984,the M.Sc.degree in elec-tronic engineering from Oita University,Japan,in1988,and the Ph.D.degree in electronic engineer-ing from the University of Tokyo,Tokyo,Japan,in1996.He has been as a Faculty Member with the Department of Electrical and Electronic Engineering,BUET,where he is a Professor since2006.He served as a Design Engineer with Texas Instruments Japan Ltd.,from1988to1993,where he worked on the research and devel-opment of1.2µm Bi-CMOS process for mixed signal VLSI circuits.He was a Research Fellow with the Research Center for Nanodevices and Systems, Hiroshima University,Tokyo,Japan,from2001to2003,where he worked in the design and demonstration of on-chip wireless interconnect.His current research interests include high speed and low power circuit design using novel nanodevices,very high frequency analog integrated circuit design,and on-chip wireless interconnect design.。

忆阻感知器在逻辑分类中的应用

忆阻感知器在逻辑分类中的应用

忆阻感知器在逻辑分类中的应用
段美涛;王丽丹;段书凯
【期刊名称】《重庆理工大学学报(自然科学版)》
【年(卷),期】2013(027)001
【摘要】基于传统感知器在分类中的优势,结合新型的电路元件——忆阻器作突触,提出新型的忆阻感知器.推导了忆导变化与权值更新的关系,构建了单层忆阻感知器和多层忆阻感知器模型,提出了忆阻突触的权值更新规则.通过Matlab仿真,用单层忆阻感知器实现了线性可分逻辑“与”和逻辑“或”分类问题,用多层忆阻感知器实现了线性不可分的逻辑“异或”和“同或”分类问题,从而证实了该方案的有效性.
【总页数】6页(P71-75,94)
【作者】段美涛;王丽丹;段书凯
【作者单位】西南大学电子信息工程学院,重庆400715;西南大学电子信息工程学院,重庆400715;西南大学电子信息工程学院,重庆400715
【正文语种】中文
【中图分类】TM5
【相关文献】
1.感知器求解逻辑分类问题方法研究 [J], 刘兴华;胡泽;孟江
2.忆阻感知器在逻辑分类中的应用 [J], 段美涛;王丽丹;段书凯;
3.主成分分析结合感知器在医学光谱分类中的应用 [J], 余发军;赵元黎;刘伟;吕晶
4.基于现场可编程逻辑门阵列的磁控忆阻\r电路对称动力学行为分析[J], Lü Yan-Min;Min Fu-Hong
5.忆阻数字逻辑电路设计 [J], 王晓媛; 金晨曦; 周鹏飞
因版权原因,仅展示原文概要,查看原文内容请购买。

忆阻器件设计及其在存算一体处理中的应用研究

忆阻器件设计及其在存算一体处理中的应用研究

一、概述近年来,随着大数据和人工智能的快速发展,存算一体处理技术备受关注。

在存算一体处理中,忆阻器件作为一种关键的非易失性存储器件,在其设计和应用研究方面具有重要意义。

本文将探讨忆阻器件的设计原理和在存算一体处理中的应用研究,旨在为相关领域的研究者提供参考和借鉴。

二、忆阻器件的设计原理1. 忆阻器件的定义和特点忆阻器件,又称压阻器件或可变电阻器件,是一种能够在外加电压下改变其电阻值的器件。

其特点是具有非易失性、低功耗、高稳定性和快速响应等优点,适合在存算一体处理中发挥重要作用。

2. 忆阻器件的结构与工作原理忆阻器件通常由压阻薄膜和两个电极组成,利用外加电压改变压阻薄膜的阻值。

其工作原理是通过控制薄膜中的导电通道的开闭来调节电阻值,实现数据存储和处理功能。

三、忆阻器件在存算一体处理中的应用研究1. 忆阻器件在存储系统中的应用忆阻器件作为一种非易失性存储器件,可以用于存储系统中实现数据的持久存储和快速读写。

其低功耗、高稳定性和快速响应等特点使其在存储系统中具有广阔的应用前景。

2. 忆阻器件在计算系统中的应用忆阻器件不仅可以作为存储器件使用,还可以应用于计算系统中,实现数据的计算和处理。

与传统的计算器件相比,忆阻器件具有更低的功耗和更高的密度,适合在存算一体处理中发挥重要作用。

3. 忆阻器件在存算一体处理中的集成设计为了更好地发挥忆阻器件在存算一体处理中的作用,研究者们正在进行忆阻器件的集成设计研究。

通过将忆阻器件与传统的处理器和存储器件进行集成,可以实现更高效的数据处理和存储,为存算一体处理技术的发展提供重要支撑。

四、结论忆阻器件作为一种新型的非易失性存储器件,在存算一体处理中具有重要的应用前景。

通过对忆阻器件的设计原理和在存算一体处理中的应用研究,可以推动存算一体处理技术的进一步发展。

希望本文的探讨能够为相关领域的研究者提供一定的参考和启发,推动该领域的研究和应用取得更多的突破和进展。

五、忆阻器件设计与优化忆阻器件的设计和优化对于其在存算一体处理中的应用至关重要。

三值忆阻器模型建立及其在数字逻辑电路中的应用研究

三值忆阻器模型建立及其在数字逻辑电路中的应用研究

三值忆阻器模型建立及其在数字逻辑电路中的应用研究摘要:本文提出了一种基于三值忆阻器的模型,在数字逻辑电路中应用的研究。

介绍了该模型的构建、特性和应用。

通过实验验证,该模型能够在实现高性能数字逻辑电路的同时,具有较低的功耗和面积开销。

文章探讨了该模型在数字信号处理、时钟管理等方面的应用,并提出了未来研究的方向。

关键词:三值忆阻器,数字逻辑电路,功耗优化,面积优化,数字信号处理,时钟管理一、引言随着现代数字电路的高速发展,功耗越来越成为了一种重要的考虑因素。

在数字电路的设计中,优化功耗是一项重要且具有挑战性的工作。

为了减少功耗,设计者不断探索新的技术和方法。

其中,三值忆阻器成为了一种备受关注的技术。

二、三值忆阻器模型的构建该模型主要由三部分组成:忆阻器、开关以及逻辑电路。

其中忆阻器由一组电容和电阻构成,能够存储三种不同的电位值。

开关可以根据逻辑控制信号选择不同的电容和电阻组合,实现电位值的切换。

逻辑电路则利用三值忆阻器实现数字逻辑操作。

三、三值忆阻器模型的特性该模型具有三种不同的电位值,可以用于实现三值逻辑电路中的“真”、“假”和“未定义”等概念。

此外,该模型在实现数字逻辑操作时,具有较低的功耗和面积开销,能够满足功耗和面积的要求。

四、三值忆阻器模型在数字逻辑电路中的应用研究本文通过实验证明,利用三值忆阻器模型可以实现高性能数字逻辑电路。

在功耗和面积方面,该模型具有显著的优势。

此外,由于该模型具有较高的灵活性和可扩展性,可以在数字信号处理、时钟管理等方面得到广泛的应用。

五、结论及展望本文提出了一种基于三值忆阻器的模型,在数字逻辑电路中应用的研究。

该模型在功耗和面积开销方面具有较大的优势,可以实现高性能数字逻辑电路。

未来的研究方向包括进一步优化该模型的设计以及探索其在其他领域的应用六、研究方法本文采用了实验和模拟两种方法,对三值忆阻器模型在数字逻辑电路中的应用进行了研究。

首先,我们在电路实验平台上搭建了三值忆阻器模型,利用数字信号发生器和示波器进行信号的输入和输出,以此验证该模型的逻辑功能和性能指标。

基于光电忆阻器的逻辑门设计与分析

基于光电忆阻器的逻辑门设计与分析

信息系统工程 │ 2019.10.2034SYS PRACTICE 系统实践摘要:逻辑门电路是数字电路中的基本逻辑元件,可以实现数字信号逻辑运算和操作。

忆阻器是除电阻、电容、电感之外的第四种电路元件,将忆阻器运用到数字电路中,使其能够代替某些基础元件实现数字电路逻辑。

论文基于课题组提出的雪崩光电二极管光电忆阻器模型设计了一种逻辑门,并用Multisim进行了仿真实验。

通过模型的输出波形验证了其能够实现与、或、非门电路。

基于光电忆阻器的逻辑门可实现运算电路和记忆电路共存,提高信息处理的速度和效率,在逻辑运算、类脑的神经网络等方面具有较大应用前景。

关键词:雪崩光电二级管;忆阻器;逻辑门电路;Multisim一、前言忆阻器兼具逻辑和运算的功能,且在开关速度、集成面积上有许多优点,因此,利用基于忆阻器的逻辑门在模拟大脑、计算机等方面有较大的研究前景。

忆阻器的非线性特性,类似于CMOS 器件工作在非饱和区。

2012年,Kvatinsky 等利用非线性特性,提出一种忆阻器的分压逻辑[1]。

为发挥忆阻器的电阻状态非易失性,华中科技大学沈轶团队在MRL 逻辑门的输出端加了一个忆阻器来存储计算结果,也可以将结果及时输出[2]。

此外,还有很多具有逻辑功能的忆阻器电路,但需要添加晶体管或者电阻才能实现。

目前忆阻器的大规模集成是必须克服的瓶颈,包括:集成中的器件良率、忆阻器与CMOS 读写控制电路的兼容工艺等。

同时,能够有效发挥基于忆阻器状态逻辑的计算与存储融合功能优势的新型计算架构也是必不可少的[3]。

本文所设计逻辑门电路为上述问题提供了一种解决思路。

二、基于光电忆阻器的忆阻特性分析雪崩光电二极管工作在反偏状态且具有内部增益。

当内建电场与外加电场方向相同,光脉冲对其几乎没有影响,内部的暗电流只是少子的漂移起作用。

当内建电场与外加电场方向相反,不给光脉冲时未发生雪崩,二级管截止;给光脉冲后二极管发生雪崩倍增效应[4],光生载流子在强电场的作用下高速运动与晶格原子发生碰撞,使晶格原子电离产生二次电子—空穴对,二次电子—空穴对在电场的作用下又使晶格原子电离产生新的电子—空穴对进而产生雪崩效应,导致雪崩光电二极管的电流迅速增大。

忆阻器脑类计算

忆阻器脑类计算

忆阻器脑类计算
忆阻器是一种神经元模型,它类似于人脑中的突触连接。

在脑类计算中,忆阻器被用来存储和处理信息。

忆阻器的基本原理是通过调节突触连接的强度来存储和更新信息。

当神经元之间的连接经常性地被激活时,突触的强度会增加,形成一个存储的记忆。

这种记忆与人脑中的长时记忆机制类似。

在脑类计算中,忆阻器的存储和处理能力被用来进行模式识别和学习。

通过对输入模式的连续触发,忆阻器可以自适应地更新自身的连接强度,并且可以根据之前存储的记忆进行模式匹配和分类。

这使得忆阻器成为一种非常强大的信息处理工具。

忆阻器的脑类计算模型可以应用于人工智能领域的模式识别、图像处理和自主学习等任务。

它可以模拟人脑中的信息处理机制,并且具有较好的适应性和鲁棒性。

忆阻器脑类计算提供了一种新的思路和方法,可以为人工智能技术的发展带来更多的可能性。

基于实质蕴涵逻辑的忆阻运算阵列设计及功能实现研究

基于实质蕴涵逻辑的忆阻运算阵列设计及功能实现研究

摘要忆阻器作为一种新型的非易失性信息器件,被认为是第四种基本电路元件。

因其非易失性的电阻转变特性,且具有高速、低功耗、擦写次数高、易集成、与CMOS 工艺兼容等优点,忆阻器已成为下一代存储器的潜力候选。

近几年,研究人员又提出了基于忆阻器的非易失逻辑运算方案,全新的状态逻辑颠覆了传统CMOS电路电平逻辑的思路,实现了存储与计算融合,突破了传统冯·诺依曼瓶颈问题,使得忆阻器有望成为未来信息处理架构的核心基础器件。

本文在基于忆阻器的逻辑电路研究背景下,以最早惠普公司实现的忆阻实质蕴涵(IMP)逻辑作为基本逻辑算法,在忆阻阵列中研究传统的字线IMP电路结构及实现方式的同时,探索并提出了阵列中另一种IMP——位线IMP电路结构及其实现方式,设计出能够融合两种IMP逻辑操作的新型忆阻运算阵列,并提出阵列中的“直线型”逻辑运算模式和“折线型”逻辑运算模式。

在这个忆阻运算阵列中,可实现数据的写入、读取、计算与存储一体化功能。

随后,采用2×2 Ti/HfO2/W忆阻阵列及HSPICE 忆阻仿真模型,在阵列中设计并实现了由字线IMP和位线IMP逻辑配合完成的“与非”逻辑、数据传输、“同或”逻辑和一位全加器功能,从实验和仿真两个方面验证了基于IMP逻辑的忆阻运算阵列实现所有逻辑功能的可行性。

逻辑操作过程中,“直线型”逻辑运算模式和“折线型”逻辑运算模式的高效配合,使得复杂逻辑的实现方法更为灵活;且阵列中任意可用的忆阻器都可参与计算并且存储数据,解决了资源分配问题,阵列的利用率得以提高。

最后本文还讨论了忆阻阵列中的漏电流问题,提出忆阻单元可用1D1R结构以避免漏电流带来的误操作,从而减少错误逻辑操作数,降低运算误码率,保证结果的准确性,完善了忆阻运算阵列的性能。

基于IMP逻辑的忆阻运算阵列的提出,是对传统IMP逻辑研究的扩展与实际应用,为构建非冯·诺依曼架构的新型存储与计算融合架构提供了选择。

忆阻器的电路模型及其应用研究

忆阻器的电路模型及其应用研究

忆阻器的电路模型及其应用研究
忆阻器的电路模型及其应用研究
学习忆阻器的电路模型和应用是很重要的,因为它们在很多电子系统中都有着广泛的应用。

忆阻器是一种特殊的电阻,它能够记住之前的电流电压,这样就可以使电路保持在特定的工作状态。

忆阻器的电路模型是一个可以记忆和控制电流的模型。

它使用一个小电流来控制一个大的电流,这样就可以实现电路的自动化控制,从而达到更好的效果。

忆阻器的最常见的类型是双门电路,其原理是通过一根线将输入电流与输出电流连接起来,当输入电流发生变化时,输出电流也会相应地发生变化。

当输入电流变化时,输出电流会被锁定在输入电流变化之前的水平上,从而达到自动控制的目的。

这也是忆阻器的电路模型。

忆阻器的应用非常广泛,它可以用于电源供电的稳定性,可以用于电路的自动调节,也可以用于精确的测量和检测等等。

例如,它可以用于液晶显示器的背光控制,调节电脑系统中各个设备的供电电压,控制电源的输出等等。

另外,忆阻器也可以用于声学设备、数字设备和功率设备的控制,能够有效地提高电路的功率效率,并且可以减少不必要的能量损耗。

此外,忆阻器还可以用于计算机系统中的自动化控制,比如自动化的静态隔离,它可以实现自动的电压控制,从而更好地控制计算机系统的稳定性和性能。

因此,忆阻器的电路模型和应用都是非常重要的,它能够被用于很多不同的电子系统中来提高系统的性能和稳定性,从而保证电子系统的可靠性和可用性。

!!忆阻器的发展与应用

!!忆阻器的发展与应用

忆阻器元件的实现
忆阻器的存在 借助于现代纳 米技术中突破性 的成果,惠普实 验室于2008年证 明了忆阻器的存 在。
忆阻器元件的实现
——忆阻器的存在
HP 的 Crossbar Latch研究
Crossbar Latch技术的原理是由一排横向和一排纵向的 电线组成的网格,在每一个交叉点上,要放一个「开关」连 结一条横向和纵向的电线。如果能让这两条电线控制这个开 关的状态的话,那网格上的每一个交叉点都能储存一个位的 数据。这种系统下数据密度和存取速度都是前所未闻的,但 是什么样的材料能当这个开关?HP 的工程师当时并不知道 要寻找的这种材料正是忆阻发展
忆阻器的定义 Chua从电路变量关系完整性角度,定义了 增量忆阻M(Q)来描述φ、Q 间的这一 关系: M(Q)=dφ(Q)/dQ (1)
满足公式(1)所定义关系的电路元件被称为忆阻器。
同时,由dφ=Vdt,dQ=Idt 可得: M(Q)=V/I (2)
参考文献
[1]蔡坤鹏,王睿,第四种无源电子元件忆阻器的研究及应用进展, 电子元件与材料,2010 .4,第29 卷 第4 期 [2] Ralph Raiola,忆阻器的应用,今日电子无源器件特刊, 2008.11,总第183期 [3]向辉,存储芯片设计实现新突破,世界科学,2008.7 [4]于京生, 刘振永,关于忆阻器的一些思考,石家庄师范专科学校 学报,2003.5,第5卷第3期 [5] CHUA L O. Memristor - the missing circuit element [J]. IEEE Trans Circuit Theory, 1971, 18(5): 507-519 [6] Andy Yang,忆阻器,瘾科学,2010.3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 西南大学 电子信息工程学 院, 重庆

4 0 0 7 1 5 )
要: 基 于传 统感知 器在 分 类 中的优 势 , 结合新 型 的 电路 元件— — 忆 阻 器作 突触 , 提 出新
型 的忆 阻感 知 器。推 导 了忆 导 变化 与权 值 更新 的 关 系, 构 建 了单层 忆 阻感知 器和 多层 忆 阻感知 器模 型 , 提 出了忆 阻突触 的权值 更 新规 则 。通过 Ma t l a b仿真 , 用单 层 忆 阻 感知 器 实现 了线性 可
Ab s t r a c t :A n e w me mr i s t i v e p e r c e p t r o n w a s p r o p o s e d b a s e d o n t h e a d v a n t a g e s o f p e r c e p t r o n i n l o g i c a l
分逻 辑 “ 与” 和逻辑 “ 或” 分 类 问题 , 用 多层 忆 阻感 知 器 实现 了线 性 不 可 分 的逻 辑 “ 异或” 和“ 同 或” 分类 问题 , 从 而证 实 了该方 案 的有效 性 。 关 键 词: 忆 阻器 ; 感知 器 ; 逻辑 分类 文 献标 识码 : A 文章 编号 : 1 6 7 4—8 4 2 5 ( 2 0 1 3 ) 0 1 —0 0 7 1 — 0 5
c l a s s i ic f a t i o n c o mb i n i n g wi t h me mr i s t o r s ,n e w c i r c u i t e l e me n t s . Th e r e l a t i o n s h i p be t we e n me mr i s t i v e c o nd u c t a n c e a n d s y na p s e we i g h t u p d a t i ng wa s d e iv r e d . Th e mo d e l i n g o f s i n g l e — l a y e r me mr i s t i v e p e r -
c e p t r o n a n d mu l t i — l a y e r me mr i s t i v e p e r c e p t r o n we r e b u i l t ,a n d w e i g h t u p d a t i n g r u l e o f me mr i s t i c t i r c a n d I n f o r ma t i o n E n g i n e e r i n g ,S o u t h w e s t U n i v e r s i t y , C h o n g q i n g 4 0 0 7 1 5 , C h i n a )
中 图分类 号 : T M5
Me mr i s t i v e Pe r c e pt r o n wi t h Ap pl i c a t i o ns i n Lo g i c a l Cl a s s i ic f a t i o n
DUAN Me i — t a o, W ANG L i — d a n, DUAN S h u — k a i
第2 7卷
Vo 1 . 2 7
第1 期
No . 1
重 庆 理 工 大 学 学 报( 自然科 学)
J o u r n a l o f C h o n g q i n g U n i v e r s i t y o f T e c h n o l o g y ( N a t u r a l S c i e n c e )
a p s e wa s p r o p o s e d.Ma t l a b s i mu l a t i o n c o n ir f m e d t h a t t h e me mr i s t i v e p e r c e p t r o n c a n r e a l i z e t h e l o g i c a l c l a s s i ic f a t i o n.Th a t i s t o s a y,a s i ng l e — l a y e r me mr i s t i v e p e r c e pt r o n c a n r e a l i z e t h e c l a s s i ic f a t i o n o f l i ne — a r s e pa r a b l e l o g i c a l AND a n d OR ,a nd t he l i n e a r i n s e p a r a b l e l o g i c a l XOR a n d NXOR c a n b e i mpl e - me n t e d wi t h mu l t i — l a y e r me mr i s t i v e pe r c e p t r o n.Me mr i s t i v e p e r c e p t r o n c o u l d b e u s e d f o r s o l v i ng e o m—
2 0 1 3年 1月
J a n .2 01 3
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 4 - 8 4 2 5 ( Z ) . 2 0 1 3 . 0 1 . 0 1 5
忆 阻感 知 器 在 逻 辑分 类 中 的应 用
段 美涛 , 王丽丹 , 段 书凯
相关文档
最新文档