家用太阳能聚光器自动跟踪系统的设计
《2024年太阳能自动跟踪系统的设计与实现》范文
《太阳能自动跟踪系统的设计与实现》篇一一、引言随着环境保护和可再生能源的日益重视,太阳能的利用成为了全球关注的焦点。
太阳能自动跟踪系统作为一种提高太阳能利用效率的重要手段,其设计与实现显得尤为重要。
本文将详细阐述太阳能自动跟踪系统的设计原理、实现方法和应用前景。
二、系统设计目标本系统的设计目标是为了提高太阳能的利用率和发电效率,通过自动跟踪太阳的运动,使太阳能电池板始终面向太阳,从而最大限度地接收太阳辐射。
同时,系统应具备操作简便、稳定可靠、成本低廉等特点。
三、系统设计原理太阳能自动跟踪系统主要由传感器、控制系统和执行机构三部分组成。
传感器负责检测太阳的位置,控制系统根据传感器的数据控制执行机构进行相应的动作,使太阳能电池板能够自动跟踪太阳。
1. 传感器部分:传感器采用光电传感器或GPS传感器,实时检测太阳的位置。
光电传感器通过检测太阳光线的强度和方向来确定太阳的位置,而GPS传感器则通过接收卫星信号来确定地理位置和太阳的位置。
2. 控制系统部分:控制系统是太阳能自动跟踪系统的核心部分,负责接收传感器的数据,并根据数据控制执行机构的动作。
控制系统采用微处理器或单片机等控制器件,通过编程实现控制算法。
3. 执行机构部分:执行机构主要负责驱动太阳能电池板进行动作。
常见的执行机构有电机、齿轮、导轨等,通过控制执行机构的动作,使太阳能电池板能够自动跟踪太阳。
四、系统实现方法1. 硬件实现:太阳能自动跟踪系统的硬件主要包括传感器、控制系统和执行机构。
传感器和执行机构的选择应根据实际需求和预算进行选择,而控制系统的硬件则需根据所采用的微处理器或单片机等器件进行设计。
2. 软件实现:软件实现主要包括控制算法的编写和系统调试。
控制算法的编写应根据传感器的数据和执行机构的动作进行编程,通过控制算法实现太阳能电池板的自动跟踪。
系统调试则需要对整个系统进行测试和调整,确保系统的稳定性和可靠性。
五、应用前景太阳能自动跟踪系统的应用前景广阔,可以广泛应用于太阳能发电、太阳能热水器、太阳能干燥等领域。
太阳能自动跟踪系统的设计
太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。
但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。
跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。
光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。
光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。
而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。
该系统适用于各种需要跟踪太阳的装置。
该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。
系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。
跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。
任意时刻太阳的位置可以用太阳视位置精确表示。
太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。
太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。
系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。
上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。
自动跟踪式太阳能聚光集热器设计ok
自动跟踪式太阳能聚光集热器的设计机电一体化专业【摘要】:能源与环境问题是当代世界各国面临的重大的社会问题。
而能源是国民经济建设和改善人民生活条件的重要物质基础。
我国幅员辽阔,且多处于中低纬度,太阳能资源十分丰富。
研究和重视太阳能的开发和利用,对于我国资源环境持续发展及全球环境保护有着深远的意义。
目前对太阳能的集热装置很多,但在我国广泛应用的还是平板集热器。
目前,抛物槽集熱器在一些发达国家已经得到较好的利用,并且获得两块较好的效果,但在我国,该项技术却很少被研究。
本设计,就是从更加有效的利用太阳能的目的出发,着力提高入射阳光的能量密度,使之聚焦在较小的集热面进行表面处理以降低热损失,使得在较高的集热温度下,得到较高的集热效率,并且能充分利用好一整天的太阳能,从而大大的提高各种太阳能利用系统的总效率。
这就是本次设计的自动跟踪式抛物槽聚光集热器。
【关键词】:太阳能集热器真空集热管跟踪装置Design of automatic tracking solar collectorGu Mingwei(Southwest University of Science and Technology Network Institute of electromechanical integration professional 13spring)【Abstract】: the problem of energy and environment is amajor soc ial problem facing the contemporary world. While the energy is the i mportant material base of national economic development and improv ement of people's living conditions. China has a vast territory, and in the lowlatitude, solar energy resources are very rich. Research and util ization of solar energy and the importance of thedevelopment, is far-rea ching meaning for the sustainable development of resources and envir onment in China andglobal environment protection. At present a lot o f heat collector of solar energy, but widely used in China or flat plate heat collector. At present, collector is better utilized in some developed countries parabolic trough, and obtain two pieces of good results, but in our country, the technologyhas seldom been studied.This is the purpose of design, from solar energy more effectively use o f incident sunlight, focus on improving theenergy density, so that the f ocus of surface treatment in the heat collecting small surface to reduce heat loss, so in the hot set higher temperature to obtain higher thermal efficiency, and can make full use of solar energy all dayand thus gre atly improve the efficiency of the whole systemof all kinds of solar e nergy utilization. This is the design of the automatic tracking parabolic trough collector.【Keywords】: solar energy solar collector vacuum tube;tracking device目录一、绪论 (3)二、集热器介绍 (4)(一)平板集热器 (4)(二)真空管集热器 (4)(三)聚光集热器 (5)三、集热器的选择 (5)(一)集热器的类型及选择 (5)(二)聚光集热器的类型选择 (6)四、聚光集热器的结构组成以及设计 (7)(一)集热系统的设计 (8)(二)聚光系统的设计 (9)(三)跟踪系统的机械设计 (13)(四)跟踪系统的控制设计 (14)(五)机架系统的设计 (16)结论 (20)参考文献 (22)致谢辞 (23)一、绪论能源是经济的首要问题,是发展工业、农业、国防、科学技术和提高人民生活水平的重要物质基础。
太阳能自动跟踪装置设计
太阳能自动跟踪装置设计摘要随着能源需求的不断增长和传统能源的禁限,太阳能作为一种可再生,环保且无限可用的清洁能源显得越来越重要。
但是由于其发电量受到日照角度的影响,因此需要设计一种能够自动跟踪太阳光线的装置,以最大化太阳能电池板的能量输出。
本文设计了一种太阳能自动跟踪装置,并对其原理、结构、控制系统以及实验结果进行了分析和评价。
实验结果表明,本文设计的太阳能自动跟踪装置可以有效提高太阳能电池板的能量输出,同时具有结构简单、节能环保等优点。
关键词:太阳能,自动跟踪,电池板,能量输出AbstractWith the continuous increase of energy demand and the limitations of traditional energy, solar energy as a renewable, environmentally friendly and unlimited clean energy is becoming more and more important. However, sinceits power generation is affected by the angle of sunlight, it is necessary to design a device that can automatically track solar rays in order to maximize the energy output of solar panels. In this paper, a solar automatic tracking device is designed, and the principle, structure, control system and experimental results are analyzed and evaluated. The experimental results show that the solar automatic tracking device designed in this paper can effectively improve the energy output of solar panels, and has the advantages of simple structure, energy saving and environmental protection.Keywords: solar energy, automatic tracking, solar panel, energy output.1.引言随着环保意识的提高和可再生能源需求的不断增长,太阳能作为一种非常重要的清洁能源被广泛应用于各个领域。
太阳能自动跟踪系统的设计
太阳能自动跟踪系统的设计
太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。
但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。
跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。
光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。
光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。
而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。
该系统适用于各种需要跟踪太阳的装置。
该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。
系统总体设计
本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。
跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。
太阳能_自动跟踪_系统设计
摘要人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。
太阳光线自动跟踪装置解决了太阳能利用率不高的问题。
本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。
第一,机械部分设计:机械结构主要包括底座、主轴、齿轮和齿圈等。
当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。
第二,控制部分设计:主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。
系统采用光电检测追踪模式实现对太阳的跟踪。
传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。
当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。
关键词太阳能;跟踪;光敏电阻;单片机;步进电机AbstractHuman being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed.First, the mechanical part is designed.Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rays has a deviation, small gear are rotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together.Second, control system part is designed.Control system mainly includes the sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection system is used to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances received different light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors.Keywords Solar energy Tracking Photosensitive resistance SCM Stepping motor目录1绪论 (1)1.1课题来源 (1)1.2课题背景 (1)1.2.1能源现状及发展 (1)1.2.2我国太阳能资源 (1)1.2.3目前太阳能的开发和利用 (2)1.2.4太阳能的特点 (2)1.3课题研究的目的 (2)1.4研究课题的意义 (2)1.4.1新环保能源 (2)1.4.2提高太阳能的利用率 (3)1.5太阳能利用的国内外发展现状 (3)1.6太阳追踪系统的国内外研究现状 (4)1.7论文的研究内容 (5)1.8论文结构 (5)2太阳能自动跟踪系统总体设计 (5)2.1太阳运行的规律 (5)2.2跟踪器机械执行部分比较选择 (6)2.2.1立柱转动式跟踪器 (6)2.2.2陀螺仪式跟踪器 (7)2.2.3齿圈转动式跟踪器 (7)2.2.4本课题的机械设计方案 (8)2.3跟踪方案的比较选择 (8)2.3.1视日运动轨迹跟踪 (9)2.3.2光电跟踪 (9)2.3.3视日运动轨迹跟踪和光电跟踪相结合 (11)2.3.4本设计的跟踪方案 (12)3机械设计部分 (13)3.1太阳能自动跟踪系统机械设计方案 (13)3.2第一齿轮转动计算 (13)3.2.1材料选择 (13)3.2.2尺寸计算 (13)3.2.3校核计算 (14)3.2.4齿根弯曲疲劳强度验算 (15)3.3第二齿轮转动计算 (17)3.3.1材料选择 (17)3.3.2尺寸计算 (17)3.3.3校核计算 (17)3.3.4齿根弯曲疲劳强度验算 (19)3.4轴瓦校核计算 (20)3.4.1大轴瓦校核计算 (20)3.4.2小轴瓦校核计算 (22)3.5键联接计算 (24)3.5.1主轴与大齿轮的键联接 (24)3.5.2小轴与齿圈的键联接 (25)3.5.3步进电机1输出轴与小齿轮1的联接 (25)3.5.4步进电机2输出轴与小齿轮2的联接 (25)3.6抗风性分析 (26)3.6.1底座上螺钉校核 (26)3.6.2轴校核 (26)4自动跟踪系统设计 (27)4.1系统总体结构 (27)4.2光电转换器 (28)4.2.1光电转换电路 (28)4.3单片机及其外围电路 (29)4.3.1 AT89C51单片机 (29)4.3.2外围电路 (31)4.4步进电动机及驱动电路 (32)4.4.1步进电动机介绍 (32)4.4.2步进电机的主要特性 (32)4.4.3步进电机的选择 (33)4.4.4驱动电路 (34)4.5系统的实现 (35)4.5.1光敏电阻光强比较法 (35)4.5.2光敏电阻光强比较法的工作过程 (36)4.5.3系统的流程图 (37)5结论 (39)5.1结论 (39)5.2展望 (39)致谢 (40)参考文献 (41)附录1 (43)附录2 (50)1绪论1.1课题来源模拟生产实际课题:太阳能自动跟踪系统设计。
太阳光线自动跟踪系统的设计
第8卷第1期正德学院学报 Vol.8 No.1 2010年6月 Journal of Zhengde College Jun 2010太阳光线自动跟踪系统的设计白延敏正德职业技术学院江苏省南京市 211106【摘要】随着太阳能的广泛利用,如何提高对太阳能的利用率,成为太阳能研究的焦点问题之一。
太阳光线自动跟踪系统基于ARM体系结构的LPC2131嵌入式处理器、驱动模块ST-24HB和步进电机组成驱动系统,使用光敏电阻构成跟踪传感器,并采用双轴式跟踪调整装置,使系统太阳电池板自动跟踪并垂直接收太阳光线,大大提高了太阳能利用率。
【关键词】太阳能自动跟踪 ARM 步进电机传感器在传统能源紧缺的今天,新能源和可再生能源的利用越来越受到各国政府的重视。
其中,太阳能以其取之不尽、用之不竭、绿色环保的特点成为人们瞩目的焦点,太阳能的利用已成为21世纪重大的研究课题之一。
人类对太阳能的利用主要有两种形式:光热转换形式和光电转换形式。
然而,这两种形式的太阳能利用都存在着能源密度低、利用的间歇性、空间分布时刻变化的问题。
在光电转换形式中,由于太阳能的利用受自然条件及日照的影响,无法保持太阳光始终垂直于太阳电池板,因此太阳能电池板昂贵、转化光电效率低而未能得到普及利用[1] [2]。
为提高太阳能利用率,本文设计了一种结构简单、成本低廉、具有应用价值的太阳光自动跟踪系统,可实现各种天气状况下的太阳跟踪,能使太阳能电池板最大限度地对准太阳,保持最大的发电效率。
整个太阳光线自动跟踪系统由跟踪系统和控制系统两部分组成。
跟踪系统包括跟踪传感器和转动式跟踪装置,而控制系统包括嵌入式最小系统、传感器接口、驱动电路。
一、跟踪系统结构1.太阳光线跟踪传感器设计跟踪传感器的设计主要是基于光敏电阻,光敏电阻器是利用半导体光电导效应制成的一种特殊电阻器,对光线十分敏感。
它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小。
本系统选用的可见光敏电阻器型号为MG42-5,其最高工作电压为20V,额定功率5mW,亮电阻≤20KΩ,暗电阻≥2MΩ。
家用太阳能聚光器自动跟踪系统的设计
本设 计 中的家 用太 阳能 聚光器 自动跟 踪 部分 主要 由讯 号单 元 、 制单 元 、 行单 元 、 电池组 4 控 执 蓄 个 单 元组 成 , 其原理 方框 图如 图 1 示 。该 控制 器一 维跟踪 工作过 程 如下 : 所 当太 阳光 沿聚 光器 主轴 照
・6 ・ O
西 北 轻 工 业 学 院 学 器 工 作 原 理 方 框 图
角 简称 正午 太 阳高度 , 即一 日内太 阳在 当地 的最大 仰角 ) 其大 小 随纬度 和季节 变化 而有 规律 地 变化 。 , 某 地正 午太 阳高度 可 以用下 面 的公 式来 计算 :
宁铎 刘 莉 萍 李 莉 , ,
( . 西 科 技 大 学 自动 控 制 工 程 系 , 1陕 陕西 咸 阳 7 2 8 ;. 西 科 技大 学 科 技 处 , 西 成 阳 1 0 1 2陕 陕 728) 1 0 1
摘 要 : 对 家用太 阳能聚 光 器 的使 用特 点 , 计 了一 种 由讯 号 单元 、 制 单元 、 行 单 针 设 控 执
元 、 电 池 组 组 成 的 太 阳 能 聚 光 器 自动 跟 踪 系统 , 系统 采 用 一 维 驱 动 、 维 跟 踪 的 伺 服 蓄 该 二
机 构 , 有较 高的运 行可 靠性 。 具
关键 词 : 阳能应 用 ; 太 自动 跟踪 ; 射 式聚光 反 中图分 类号 : K5 3 4 T 1 . 文献 标识 码 : A
动跟 踪 , 而南 北方 向的跟 踪 由东西运 行 的拖动来 实现 。 由于太 阳对 地球 某地 的仰 角在 一年 四季 中 的变
化是 不规 则 的 , 果在 实 现南北 跟 踪时 只是 简单地 利 用机械 装 置使 原动 机 构 的转 动转 换 成步 进 式 的 如 平 动 来 改变 聚光器 倾 角 的话 , 然会 导致 跟踪 误差 加 大 , 此采 用 了凸 轮传 动机 构 , 现 了精 确 的二 必 为 实 维跟 踪 , 原理 如下 所述 。 其
家用太阳能聚光器自动跟踪系统的设计
家用太阳能聚光器自动跟踪系统的设计
宁铎;刘莉萍;李莉
【期刊名称】《陕西科技大学学报(自然科学版)》
【年(卷),期】2002(020)002
【摘要】针对家用太阳能聚光器的使用特点,设计了一种由讯号单元、控制单元、执行单元、蓄电池组组成的太阳能聚光器自动跟踪系统,该系统采用一维驱动、二维跟踪的伺服机构,具有较高的运行可靠性.
【总页数】4页(P59-62)
【作者】宁铎;刘莉萍;李莉
【作者单位】陕西科技大学自动控制工程系,陕西,咸阳,712081;陕西科技大学自动控制工程系,陕西,咸阳,712081;陕西科技大学科技处,陕西,咸阳,712081
【正文语种】中文
【中图分类】TK513.4
【相关文献】
1.基于澳大利亚国立大学太阳能碟式聚光器结构研究的一种小型聚光器的结构设计[J], 王逸隆;CHUASRITRAKUL Panvadee
2.适用于太阳能驱动热声发动机的二次聚光器设计 [J], 陈翔;丁夏琛;康慧芳
3.基于抛物线方程和梯度折射率计算方法的太阳能聚光器设计 [J], 赵天野;姜肇国;徐熙平;尹鹏
4.平板型太阳能聚光器的无漏光设计 [J], 尹鹏;徐熙平;姜肇国;吕家祺;高少华
5.槽式太阳能聚光器支架测量附件设计 [J], 马宗瑞;燕必希;董明利;孙鹏;王君
因版权原因,仅展示原文概要,查看原文内容请购买。
太阳能跟踪系统设计
太阳能跟踪系统设计摘要太阳能作为一种可以永续使用的绿色可再生能源,有着巨大的开发应用潜力。
但由于光伏电池的输出特性与外界环境因素的变化有很大关系,目前大规模量产的光伏电池光电转换效率仍然不高且价格昂贵。
光伏发电自动跟踪装置是提高太阳能利用率,降低光伏发电成本的有效途径。
研究精确的太阳跟踪装置,可使光伏电池板接收到更多的太阳辐射能量,增加发电量。
本文实现了用廉价的光敏元件和单片机电路进行太阳跟踪的功能。
分析了太阳运行规律,在对比目前常用跟踪方法的基础上,改进了以往的跟踪方式。
提出将光电跟踪作为主要跟踪方式,视日运动轨迹跟踪方式作为特殊天气情况下补充跟踪方式的方案。
通过两种跟踪方式互补,一方面可以充分发挥光电跟踪准确性高的优势,另一方面在阴天等天气条件下仍能实现跟踪。
此外,为了确保跟踪的结果准确,在方位角和高度角调整之后,增加了一组传感器电路进行跟踪结果的验证。
通过对控制系统所实现的功能分析,论文完成了跟踪系统的硬件和软件设计。
主要内容包括:单片机接口电路设计、光强检测电路设计、控制执行部件设计以及光电跟踪和视日运动轨迹跟踪模块的软件设计。
完成了跟踪系统试验装置的制作。
本文所设计的光伏发电自动跟踪系统结构简单,成本低廉,运行稳定,可广泛应用于并网和离网光伏发电系统。
关键词光伏发电,单片机,光强检测,自动跟踪I沈阳工程学院毕业设计(论文)AbstractThe solar energy has ail enormous developing application capacity as one kind of green renewable energy source which Call be continuously used forever.But there is tremendous relationship between photovoltalc cellsoutput characteristies and the change of external environmental factors,currently the efficiency of PV cells is not only low but also expensive on a large scale of production.The photovoltaic automatically tracking device can raise the solar energy utilization rate and bring down the cost of the solar electrical energy generation.Precise solar tracking mechanism can make solar panel receive more radiant energy and increase generating capacity.This paper makes to realize the function of sun tracking.Use of cheap photo sensors and MCU circuit.Analyzed the law of the sun, compared the current tracking methods,and improved the previous tracking mode.Proposed electro opticaltracking as the major tracking mode while the sun trajectory tracking mode as additional tracking mode on unusual weather conditions.Through two complementarytracking modes,on the one hand,electro-optical tracking can give play to the advantages of high accuracy;on the other hand,the system can still achieve tracking on cloudy weather conditions.In addition,In order to guarantee that the track result is accurate.after azimuth and elevation angle adjustment,increased a group of sensor electric circuit to CatTy on the track result confirmation.Through the implementation of functional analysis of control system,the thesis completed hardware and software design of the tracking device.Include:MCUinterface cuit design,optical detector circuit design,control and implementation component design and the software design of electro―optical tracking and sall trajectory tracking module.The tracking system test equipment manufacture is completed.The experimental results showed that,the system could fully realize the tracking of the sun.Finally,proposed improvement program and new method to treat fast cloud according to thetracking effect of the trial.In this paper,the designs of photovoltaic automatic tracking device have simple structure,low cost and stable operation.The device cail be widely applied to grid and off-grid PV power system.Keywords photovoltaic,MCU, light intensity detect, automatictrackingII太阳能跟踪系统设计目录摘要 ........................................................................... .. (I)Abstract ..................................................................... ...............................................................II 1 引言 ........................................................................... ............................................................1 1.1 光伏发电的特点 ........................................................................... ..............................1 1.1.1 光伏发电的优点 ........................................................................... .....................1 1.1.2 光伏发电存在的问题 ........................................................................... .............1 1.2 光伏发电自动跟踪技术 ........................................................................... .................2 1.3 本文主要完成的工作 ........................................................................... .....................2 2 太阳跟踪方法及策略 ........................................................................... .............................3 2.1 太阳运动轨迹对太阳能发电的影响 (3)2.1.1 太阳赤纬角 ........................................................................... ..............................3 2.1.2 计算太阳高度和太阳方位 ........................................................................... ....4 2.2 太阳运动轨迹的跟踪方式 ........................................................................... ............5 2.2.1 单轴跟踪 ........................................................................... ...................................5 2.2.2 双轴跟踪 ........................................................................... ...................................6 2.2.3 视日运动轨迹跟踪与光电跟踪相结合 .........................................................6 2.3 控制系统总体设计.....................................................................................................7 2.3.1 控制系统所要实现的功能分析 (7)2.3.2 控制系统的工作过程 ........................................................................... .............8 2.3.3 机械执行装置 ........................................................................... ..........................8 3 自动跟踪系统的硬件设计 ........................................................................... .................. 10 3.1 控制系统硬件总体设计 ........................................................................... .............. 10 3.2 控制系统核心部件的选择 ........................................................................... ......... 11 3.3 光强检测电路设计 ........................................................................... ...................... 13 3.4 单片机接口电路设计 ........................................................................... .................. 15 3.4.1 电源电路 ........................................................................... . (15)III沈阳工程学院毕业设计(论文)3.4.2 串口通信电路 ........................................................................... ....................... 16 3.4.3 模拟量转换电路 ........................................................................... .................. 17 3.4.4 看门狗和晶振 ........................................................................... ....................... 18 3.4.5 实时时钟电路 ........................................................................... ....................... 19 3.5 控制执行部件设计 ........................................................................... ...................... 20 3.5.1 步进电机驱动控制系统 ........................................................................... ..... 20 3.5.2 本系统所采用的步进电机及驱动模块 ...................................................... 21 3.6 整体电路图的设计 ........................................................................... ...................... 22 4 系统软件流程及调试 ........................................................................... .......................... 24 4.1 主控制模块的软件设计 ........................................................................... .............. 24 4.2 光电跟踪模块程序设计 ........................................................................... .............. 25 4.3 视日运动轨迹跟踪模块程序设计 (26)5 结论 ........................................................................... ......................................................... 27 6 致谢 ........................................................................... ......................................................... 28 7 参考文献 ........................................................................... ................................................ 29 8 附录 ........................................................................... (30)IV太阳能跟踪系统设计1 引言1.1 光伏发电的特点1.1.1 光伏发电的优点光伏发电技术(Photovoltaic)是将太阳能转化为电能的技术,其核心是可释放电子的半导体物质。
太阳能自动跟踪器系统设计
太阳能自动跟踪器系统设计摘要:人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点。
但是太阳能又存在着低密度间歇性空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高,太阳能自动跟踪装置解决了太阳能利用率不高的问题。
采用光线自动跟踪的方式,使太阳能电池板的朝向始终精确跟随太阳位置的变化,保持太阳能电池板表面与太阳光垂直,这样会大大提高发电效率。
本文主要介绍太阳能跟踪控制系统的设计,该控制系统具有结构简单、稳定性好、精度高的特点。
关键词:太阳能;自动跟踪;能源;自动化;光伏发电1系统总体结构太阳能自动跟踪装置由四象限光电探测器、照度传感器、方位角跟踪机构、高度角跟踪机构和自动控制装置组成。
方位角跟踪机构由电源、方位角传感器、放大器、执行器组成。
执行器由步进电机和传动齿轮组成。
方位角传感器由外壳与安装在外壳内的一对光电二极管组成。
高度角跟踪机构由高度角传感器、放大器、执行器组成。
执行器包括电机和传动齿条。
高度角传感器的一对光电二极管与方位角传感器和照度传感器的光电二极管安装在一个传感器壳内。
控制单元由运算放大器、晶体管和继电器组成,并与照度传感器、方位角和高度角传感驱动电机连接。
(见图1)2太阳能自动跟踪器工作原理太阳能自动跟踪装置采用四象限光电探测器,该器件实际由四个光电探测器构成,每个探测器一个象限,器件由于象限化,当太阳光辐射到器件各象限的辐射通量相等时,各象限输出的光电流相等。
而当光线发生偏移时,象限辐射量的变化将引起各象限输出光电流的变化,由此可测出太阳的方位并实现跟踪。
跟踪方式采用光电跟踪与太阳视日运动轨迹跟踪相结合,可加强系统的稳定性,步骤如下:步骤1 通过太阳视日运动轨迹跟踪,将系统带入一个预知的足够小的范围内,再启动光电跟踪或视日运动轨迹跟踪。
步骤2 开机后光电检测电路检测白天还是黑夜。
当检测为黑夜时系统停止运行;若检测为白天,系统进行初始化。
太阳能自动跟踪系统的设计
太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。
但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。
跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。
光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。
光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。
而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。
该系统适用于各种需要跟踪太阳的装置。
该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。
系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。
跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。
任意时刻太阳的位置可以用太阳视位置精确表示。
太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。
太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。
系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。
上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。
小型太阳能自动跟踪系统的设计
小型 太阳能 自动跟踪 系统 的设计
术
高敬媛
( 河北建 材职 业技 术 学院 , 河北 秦 皇 岛 0 6 6 0 0 0 ) 摘 要 : 设计 了一款 太 阳能 自动跟 踪 系统 , 阐述该 系统 的 工作 原理 并 对其 机 构进 行 了分 析 , 介 绍 了 目前 太 阳能 自
能轨道 的全 方位 跟踪 ,自动使 太 阳能光伏 板和 太 阳
用于各个领域 , 如安装在车辆 、 船舶上 , 都可 以实现光伏
基 金 项 目秦皇岛科技局 自 筹经费项 目 “ 用于光伏发 电的阳光跟
踪 系统 的研 究’ 研 究成 果 . 项目 编号 2 0 1 6 0 2 A3 4 2 。
动跟踪 系统的 发展状 况 。 关 键词 : 自动 跟 踪 ; 检 测 电路 ; 太 阳能 ; 微 控 制 器
0引 言
为了提高太 阳能 电池 的转换效率 , 目前 使用 的方
法有: 仿植 物 吸收太 阳能转换 方法 , 改 变 太 阳 能 电 池
的材料 。 如 量 子 电池 的 制 造 : 利 用 是 太 阳 能 电 池 板 固
一
r— l
遮 板
硅 I
光 池
。
电
年 中每 天 各 个 时刻 太 阳 位 置 , 通 过 存 储 器 储 存 的 每
天 各 个 时 刻 的 太 阳方 位 数 据 来 实 现 跟 踪 。这 种 太 阳能 跟踪 系统一旦 安装 . 就不 容易移 动 。 如 果 移 动 则 需 要 对 纬 度 和 经 度 的数 据 进行 重 新 设 置 , 非 专 业 人 员 不 能 随 便 操 作 。因此 , 设计一种使用方便 、 成 本 低 的 太 阳能
太阳光自动跟踪仪系统设计论文
太阳光自动跟踪仪系统设计论文内蒙古科技大学本科生毕业设计说明书题目:太阳光自动跟踪仪系统设计以常规能源为基础的能源结构随着资源的不断耗用将愈来愈不适应可持续发展的需要,加速开发利用以太阳能为主体的可再生能源己成为人们的共识。
光伏发电系统可以直接将太阳光能转换为高品位能源—电能。
由于太阳在天空中的位置是不断变化的,为此本文采用了自动跟踪系统。
介绍了目前国内太阳跟踪器的发展现状,各类跟踪器的性能特点。
对目前跟踪器存在的问题进行了分析,提出了新型自适应复精度太阳跟踪平台和通过单片机控制步进电机的太阳跟踪平台的系列方案。
关键词:太阳能自动跟踪摘要 (I)Abstract (II)第一章绪论太阳能光伏发电概述 (1)1.1 开发新能源的迫切需要 (1)1.2 光伏发电的特点 (1)1.3 光伏发电的现状及发展前景 (2)1.4 光伏发电系统的简单介绍 (4)1.5 本课题研究目的及所做的工作 (5)第二章光伏电池的研究与分析 (6)2.1 光伏电池的原理 (6)2.1.1 光伏电池的光伏效应 (6)2.1.2 光伏电池的物理模型 (7)2.2 光伏电池的输出特性及其影响因素 (9)2.2.1 光伏电池的I-V和P-V特性曲线 (9)2.2.2 光伏电池的主要参数 (10)2.2.3 太阳的光照强度对光伏电池转换效率的影响 (11)2.2.4 温度对光伏电池输出特性的影响 (12)第三章光伏发电系统中聚光器的研究与设计 (13)3.1 聚光比 (13)3.2 典型聚光器的性能分析 (14)3.2.1抛物面反射镜的聚光性能 (14)3.2.2复合抛物面(CPC)聚光器 (16)3.2.3折射式菲涅尔聚光器 (17)3.3 聚光器的选择和开发 (19)3.3.1 聚光器的选择 (19)3.3.2 CPC聚光器的实际应用设计 (20)第四章光伏电池最大功率点的跟踪 (22)4.1 最大功率点跟踪及其实现目标 (22)4.2 常用最大功率点跟踪方法比较 (22)4.2.1 电压反馈法 (22)4.2.2 扰动法 (23)4.2.3 电导增量法 (25)4.3 最大功率点控制方法的选择及改进—断续扰动法 (26)第五章自动跟踪系统 (27)5.1 自动跟踪器的研究概况 (27)5.1.1 国内太阳能自动跟踪器的研究现状 (27)5.1.2 目前太阳能自动跟踪器所存在的问题 (29)5.1.3 新型跟踪平台的开发 (31)5.2 自适应复精度太阳跟踪平台 (31)5.2.1 太阳位置探测单元 (32)5.2.2 信号处理与控制单元 (34)5.2.3 动力单元 (37)5.2.4 实际电路 (39)5.3 通过单片机控制步进电机的太阳跟踪平台 (41)5.3.1 自动跟踪系统的工作原理 (41)5.3.2 传感器光敏二极管的工作过程 (41)5.3.3 步进电机及其特性 (44)5.3.4 基于单片机ADμC812控制的驱动电路 (46)5.3.5 自动跟踪的控制电路 (54)5.3.6 软件流程 (54)第六章蓄电池 (56)6.1 蓄电池的概念 (56)6.2 光伏发电系统蓄电池的选用 (56)6.3 铅酸蓄电池的电池反应 (57)6.4 铅酸蓄电池的充放电特性 (58)6.5蓄电池容量的设计及其充电特性 (60)6.5.1 蓄电池容量的设计 (60)6.5.2蓄电池的充电特性 (61)第七章结论 (62)参考文献 (63)致谢 (64)第一章绪论太阳能光伏发电概述1.1开发新能源的迫切需要人们很难想象,如果没有电人类的生活会变成什么样子。
太阳能自动跟踪装置控制系统设计
题目太阳能自动跟踪装置控制系统设计目录摘要 (1)1 设计研究背景及意义 (2)2 主要研究内容 (3)2.1 系统的设计目标 (3)2.2 设计的主要内容 (3)3 系统的总体设计 (4)3.1 太阳自动跟踪方式的确定 (4)3.2 本设计的设计思想 (4)4 太阳能充电控制器的设计 (5)4.1 太阳能电池的选型 (5)4.2 蓄电池的选型 (7)4.2.1 铅酸蓄电池基本概念 (7)4.2.2 本系统蓄电池的选型 (8)4.3 太阳能充电控制器的设计 (8)4.3.1 UC3906芯片的介绍 (9)4.3.2 BUCK电路的设计 (9)4.4 充电控制器外围电路设计 (11)5 跟踪系统传感器检测装置的设计 (13)5.1 阴天检测装置的设计 (13)5.2 白天黑夜检测装置 (14)5.3 太阳位置传感器的介绍 (15)5.3.1 传感器检测部分的设计 (15)5.3.2 光敏二极管的介绍 (17)5.3.3 LM324芯片的介绍 (17)6 视日运动轨迹模块设计 (18)6.1 太阳赤纬角的计算 (18)6.2 太阳高度角的计算 (18)6.3 太阳方位角的计算 (18)6.4 日出日落时间计算 (19)7 执行器件的选型 (19)7.1 步进电机的选型 (19)7.2 步进电机驱动器的选型 (20)7.3 执行器件的连接方式 (21)8 控制系统的设计 (21)8.1 单片机电源模块的设计 (22)8.2 驱动器电源模块的设计 (23)8.2.1 GS3660芯片介绍 (23)8.2.2 Boost电路基本拓扑设计 (25)8.2.3 驱动器电源模块的硬件设计 (26)8.3 单片机硬件系统设计 (27)8.3.1单片机简介 (27)8.3.2 单片机的特点 (27)8.3.3 AT89C51单片机的特性 (28)8.4 单片机软件系统的设计 (28)8.4.1 主程序的设计 (28)8.4.2 光电追踪模块 (31)8.4.3 视日跟踪模块 (31)9 结论 (32)参考文献: (34)谢辞 (35)附录 (36)李鹏万指导老师:杨宛章、张静摘要:太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。
自动跟踪太阳的光纤导光照明系统的设计
2 . 山东省半导体光电子工程技术研究 中心 , 济南 2 5 0 1 0 0
1 . S c h o ol o f I n f o r ma t i o n S c i e n c e a n d E n g i n e e r i n g , S h a n d o n g Un i v e r s i t y , J i n a n 2 5 0 1 0 0 , Ch i n a 2 . S e mi c o n d u c t o r Op t o e l e c t r O n i c s En g i n e e r i n g T e c h n o l o g y Ce n t e r o f S h a n d o n g P r o v i n c e , J i n a n 2 5 0 1 0 0 , Ch i n a
Ke y wo r d s : s o l a r p o we r ; S i n g l e C h i p Mi c r o c o mp u t e r ( S CM ) ; t r a c k i n g ; c o n d e n s a t i o n ; o p t i c a l i f b e r ; l i g h t i n g
00然后在每个时间段的初单片机并计算出太阳的高度角和方位角然后与10min之始时刻将系统调节为正对太阳太阳聚焦后的光斑照射在前测得的结果相减并将这次测量结果储存根据两次差值光纤输入端用lm200光功率计测试光纤输出端的可见光计算的太阳高度角和方位角偏差确定脉冲的个数然后通功率将此值作为比较参考值然后启动光纤导光系统跟踪过步进电机控制云台转动聚光器始终对准太阳从而保证器开始跟踪太阳每间隔10min记录光纤输出端的可见光聚光器最大限度地接收阳光实现实时跟踪