永州市双牌县2016年初中毕业学业考试模拟数学试题(一)
湖南省永州市数学中考一模试卷
湖南省永州市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,满分40分,每小题4分) (共10题;共34分)1. (4分)下列关于“﹣1”的说法中,错误的是()A . ﹣1的相反数是1B . ﹣1是最小的负整数C . ﹣1的绝对值是1D . ﹣1是最大的负整数2. (2分)(2019·三亚模拟) 如图所示的几何体的俯视图是()A .B .C .D .3. (4分)(2013·义乌) 2012年,义乌市城市居民人均可支配收入约为44500元,居全省县级市之首,数字44500用科学记数法可表示为()A . 4.45×103B . 4.45×104C . 4.45×105D . 4.45×1064. (4分)(2019·晋宁模拟) 一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A . 平均数B . 中位数C . 众数D . 方差5. (4分)(2017·恩施) 如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A . 5B . 4C . 3D . 26. (2分)下列图形中,不是轴对称图形的是()A .B .C .D .7. (2分)(2016·云南) 位于第一象限的点E在反比例函数y= 的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A . 4B . 2C . 1D . ﹣28. (4分) (2016七上·秦淮期末) 如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D′、C′处,若∠1=56°,则∠DEF的度数是()A . 56°B . 62°C . 68°D . 124°9. (4分) (2015·义乌) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A . 2πB . πC .D .10. (4分)(2018·秀洲模拟) 如图,平面直角坐标系中,抛物线交x轴于点B,C,交y 轴于点A,点P(x,y)是抛物线上的一个动点,连接PA,AC,PC,记△ACP面积为S.当y≤3时,S随x变化的图象大致是()A .B .C .D .二、填空题(共6小题,满分30分,每小题5分) (共6题;共30分)11. (5分)分解因式:a2﹣b2+2b﹣1=________ .12. (5分)(2019·云霄模拟) 如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转36°,点A旋转到A'的位置,则图中阴影部分的面积为________(结果保留π).13. (5分)(2020·遵化模拟) 将一列有理数-1,2,-3,4,-5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,(1)“峰6”中D的位置是有理数________;(2) 2018应排在A,B,C,D,E中的________位置.14. (5分)如图,△AB C中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为________ .15. (5分)如图,若正六边形ABCDEF绕着中心点O旋转α度后得到的图形与原来图形重合,则α的最小值为________°.16. (5分)以三角形一边为直径的圆恰好与另一边相切,则此三角形是________.三、解答题(本题有8小题,第17~20题每题8分,第21题10分 (共8题;共68分)17. (8分) (2019九上·张家港期末) 计算: .18. (8分) (2020九下·汉中月考) 化简:19. (8分)(2017·河北模拟) 如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2 ,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.20. (8分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量夕(件)与销售单价x (万元)之间存在着如图所示的一次函数关系(1)求y关于x的函数关系式(直接写出结果)(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利一月销售额一月销售产品总进价一月总开支,)(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元21. (10.0分)(2020·台州模拟) 为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.22. (12分)(2017·兰州) 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣ x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求 AM+CM它的最小值.23. (12分)如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.24. (2分)(2017·石家庄模拟) 如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m),且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)判断直线BE与抛物线交点的个数;(3)求证:CD垂直平分BE;(4)若P是该抛物线上的一个动点,是否存在这样的点P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,满分40分,每小题4分) (共10题;共34分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共6小题,满分30分,每小题5分) (共6题;共30分)11-1、12-1、13-1、13-2、14-1、15-1、16-1、三、解答题(本题有8小题,第17~20题每题8分,第21题10分 (共8题;共68分) 17-1、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、。
历年中考数学模拟试题(含答案)(148)
2016 年湖南省永州市中考数学试卷一、选择题:本大题共 12 小题,每题 4分,共 48 分1.﹣的相反数的倒数是()A. 1B .﹣1C. 2016D.﹣20162.不等式组的解集在数轴上表示正确的选项是()A.B.C.D.3.以下图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.以下运算正确的选项是()A .﹣ a?a 3=a3B .﹣( a2)2=a4C . x﹣ x=D .(﹣ 2)(+2)=﹣15.如图,将两个形状和大小都同样的杯子叠放在一同,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲竞赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则以下说法中错误的选项是()A.甲、乙得分的均匀数都是 8B.甲得分的众数是 8,乙得分的众数是 9C.甲得分的中位数是 9,乙得分的中位数是 6D.甲得分的方差比乙得分的方差小7.对以下生活现象的解说其数学原理运用错误的选项是()A .把一条曲折的道路改成直道能够 短行程是运用了“两点之 段最短”的 原 理B .木工 傅在刨平的木板上任两个点就能画出一条笔挺的墨是运用了“直 外一点与直上各点接的全部段中,垂段最短”的原理C .将自行 的 架 三角形形状是运用了“三角形的 定性”的原理D .将 形是运用了“ 的旋 称性”的原理8 .抛 物 y=x 2+2x+m 1 与 x 有 两 个 不 同 的 交 点 , m 的 取 范 是( ) A . m < 2 B . m > 2 C . 0 < m ≤2 D . m < 29.如,点 D ,E 分在段 AB ,AC 上,CD 与 BE 订交于 O 点,已知 AB=AC,增添以下的哪个条件仍不可以判断△ABE ≌△ACD ()A . ∠B= ∠CB . AD=AEC .BD=CED . BE=CD 10 . 桌 面( 桌 面 中有 一 个 直 径0.4m 的洞 )正 上 方 的 灯 泡( 看 作 一 个点) 出的光 照耀平行于地面的桌面后,在地面上形成如 所示的 形阴 影 . 已 知 桌 面 直 径 1.2m , 桌 面 离 地 面 1m , 若 灯 泡 离 地 面 3m , 地 面 形暗影的面是()A . 0.324 πm 2B . 0.288 πm 2C . 1.08 πm 2D . 0.72 πm 211.以下式子的是()A . cos40 °=sin50 °B . tan15 °?tan75 °=1C . sin 2 25 °+cos 225 °=1 D . sin60 °=2sin30 ° 12.我 依据指数运算,得出了一种新的运算,如表是两种运算 关系的一 例 :指 数 1=22 2=423=83 1=33 2=93 3=27 2 ⋯⋯ 运 算新 运 2 2=1log 2 4=2log 28=3log 3 3=1log 39=2log 3 27=3log ⋯⋯算依据上表 律,某同学写出了 三 个 式 子 : ① log 2 16=4 , ② log 5 25=5 , ③ log 2= 1.此中正确的选项是()A . ①②B .①③C . ②③D .①②③二、填空:本大共 8小,每小4分,共 32 分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二”“”五时期水利建设的一号工程,也是国务院要点推动的重要工程,此中灌区工程总投资约39 亿元.请将 3900000000用科学记数法表示为.14.在 1 ,π,,2,﹣3.2这五个数中随机拿出一个数,则拿出的这个数大于2的概率是.15 .已知反比例函数 y= 的图象经过点 A ( 1 ,﹣ 2),则 k=.16.方程组的解是.17.化简:÷=.18.如图,在⊙O 中,A,B 是圆上的两点,已知∠AOB=40 °,直径 CD ∥AB ,连接 AC ,则∠BAC=度.19 .已知一次函数 y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值 y 随 x 的增大而减小,则 k 所有可能取得的整数值为.20 .如图,给定一个半径长为 2 的圆,圆心 O 到水平直线 l 的距离为 d,即OM=d .我们把圆上到直线 l 的距离等于 1 的点的个数记为 m .如 d=0 时, l 为经过圆心 O 的一条直线,此时圆上有四个到直线 l 的距离等于 1 的点,即m=4 ,由此可知:( 1)当 d=3 时, m=;( 2)当 m=2时,d的取值范围是.三、解答题:本大题共 7小题,共 79 分21 .计算:﹣(3﹣π)0﹣|﹣3+2|22.二孩政策的落实惹起了全社会的关注,某校学生数学兴趣小组为了认识本校同学对父亲母亲生育二孩的态度,在学校抽取了部分同学对父亲母亲生育二孩所持的态度进行了问卷检查,检查分别为特别赞成、赞成、无所谓、不赞成样四种态度,现将检查统计结果制成了如图两幅统计图,请联合两幅统计图,回答以下问题:( 1)在这次问卷调查中一共抽取了名学生,a=% ;( 2)请补全条形统计图;( 3)持“不赞成”态度的学生人数的百分比所占扇形的圆心角为度 ;( 4)若该校有 3000 名学生,请你预计该校学生对父亲母亲生育二孩持“赞成”和“特别赞成”两种态度的人数之和.23.如图,四边形 ABCD 为平行四边形,∠BAD 的角均分线 AE 交 CD 于点 F ,交 BC 的延伸线于点 E . (1)求证:BE=CD ;(2)连结 BF ,若 BF ⊥AE ,∠BEA=60°,AB=4 ,求平行四边形 ABCD 的面积 .24.某种商品的标价为 400 元/件,经过两次降价后的价钱为 324 元/件,而且两次降价的百分率同样.( 1)求该种商品每次降价的百分率;( 2)若该种商品进价为 300 元/件,两次降价共售出此种商品 100 件,为使两次降价销售的总收益许多于 3210 元.问第一次降价后起码要售出该种商品多少件?25.如 图,△ABC 是⊙O 的内接三角形,AB 为直径,过点 B 的切线与 AC 的延伸线交于点 D ,E 是 BD 中点,连结 CE .( 1)求证:CE 是⊙O 的切线;( 2)若 AC=4 ,BC=2 ,求 BD 和 CE 的长.26.已 知 抛 物 线 y=ax 2+bx ﹣ 3 经 过( ﹣ 1 , 0 ),( 3 , 0 )两 点 ,与 y 轴 交 于 点 C , 直 线 y=kx 与 抛 物 线 交 于 A , B 两点.(1)写出点 C 的坐标并求出此抛物线的分析式;(2)当原点 O 为线段 AB 的中点时,求 k 的值及 A , B 两点的坐标;( 3)是否存在实数 k 使得△ ABC的面积为?若存在,求出k的值;若不存在,请说明原因.27.问题研究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(比如圆的直径就是圆的“面径”).2.解决问题已知等边三角形 ABC的边长为2.(1)如图一,若 AD ⊥BC,垂足为 D,试说明 AD 是△ABC 的一条面径,并求 AD 的长;(2)如图二,若 ME∥BC,且 ME 是△ABC 的一条面径,求面径 ME 的长;(3)如图三,已知 D 为 BC 的中点,连结 AD ,M 为 AB 上的一点(0<AM< 1),E是 DC 上的一点,连结 ME ,ME 与 AD 交于点 O,且 S△MO A=S △DOE.①求证:ME 是△ABC的面径;②连结 AE,求证:MD∥AE;( 4)请你猜想等边三角形 ABC的面径长 l 的取值范围(直接写出结果)2016 年湖南省永州市中考数学试卷参照答案与试题分析一、选择题:本大题共 12 小题,每题 4分,共 48 分1.﹣的相反数的倒数是()A. 1B .﹣1C. 2016D.﹣2016【考点】倒数;相反数.【剖析】直接利用相反数的观点以及倒数的定义剖析,从而得出答案.【解答】解:﹣的相反数是:,∵×2016=1 ,∴﹣的相反数的倒数是:2016.应选:C.2.不等式组的解集在数轴上表示正确的选项是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【剖析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:.应选 A.3.以下图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解:A、是轴对称图形.也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.应选:A .4.以下运算正确的选项是( )A . ﹣ a?a 3 =a 3B . ﹣ ( a 2) 2 =a 4C . x ﹣ x=D .(﹣ 2)( +2)=﹣1【考点】二次根式的混淆运算;归并同类项;同底数幂的乘法;幂的乘方与积的乘方.【剖析】利用同底数的幂的乘法法例、幂的乘方、归并同类项法例,以及平方差公式即可判断.【 解 答 】 解 : A 、 ﹣ a?a 3 = ﹣ a 4, 故 选 项 错 误 ;224B 、 ﹣ ( a )= ﹣ a , 选 项 错 误 ;C 、 x ﹣x=x , 选 项 错 误 ;D 、( ﹣2)( +2)=()2﹣22=3﹣4=﹣1,选项正确.应选 D .5.如 图,将两个形状和大小都同样的杯子叠放在一同,则该实物图的主视图 为 ()A .B .C .D .【考点】简单组合体的三视图.【剖析】依据图形的三视图的知识,即可求得答案.【解答】解:该实物图的主视图为.应选 B .6.在“爱我永州”中学生演讲竞赛中,五位评委分别给甲、乙两位选手的评分如 下 :甲:8、7、9、8、8 乙:7、9、6、9、9则以下说法中错误的选项是( )A .甲、乙得分的均匀数都是 8B .甲得分的众数是 8,乙得分的众数是 9C .甲得分的中位数是 9,乙得分的中位数是 6D.甲得分的方差比乙得分的方差小【考点】方差;算术均匀数;中位数;众数.【剖析】分别求出甲、乙的均匀数、众数、中位数及方差可逐个判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是 8分,即众数为 8分,乙得分最多的是 9分,即众数为9分,故此选项正确;C、∵甲得分从小到大摆列为:7、8、8、8、9,∴甲的中位数是 8分;∵乙得分从小到大摆列为:6、7、9、9、9,∴乙的中位数是 9 分;故此选项错误;D 、∵=×[( 8﹣ 8)2+( 7﹣ 8)2+( 9﹣ 8 )2+( 8 ﹣ 8 )2+( 8 ﹣ 8)2] =×2=0.4,=×[( 7﹣ 8)2+( 9﹣ 8)2+( 6﹣ 8)2+( 9﹣ 8)2+( 9﹣ 8)2]=×8=1.6,∴<,故 D正确;应选:C.7.对以下生活现象的解说其数学原理运用错误的选项是()A.把一条曲折的道路改成直道能够缩短行程是运用了“两点之间线段最短”的原理B.木工师傅在刨平的木板上任选两个点就能画出一条笔挺的墨线是运用了“直线外一点与直线上各点连结的全部线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳固性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【考点】圆的认识;线段的性质:两点之间线段最短;垂线段最短;三角形的稳固性.【剖析】依据圆的相关定义、垂线段的性质、三角形的稳固性等知识联合生活中的实例确立正确的选项即可.【解答】解:A、把一条曲折的道路改成直道能够缩短行程是运用了“两点之间线段最短”的原理,正确;B、木工师傅在刨平的木板上任选两个点就能画出一条笔挺的墨线是运用了“两点确立一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳固性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,应选 B.8 .抛物线 y=x 2+2x+m ﹣ 1 与 x 轴有两个不同的交点,则 m 的取值范围是()A . m < 2B . m > 2C . 0 < m ≤2D . m<﹣ 2【考点】抛物线与 x 轴的交点.【分析】由抛物线与 x 轴有两个交点,则△ =b 2﹣ 4ac > 0,从而求出 m 的取值范围.【解答】解:∵抛物线 y=x 2+2x+m ﹣ 1 与 x 轴有两个交点,∴ △ =b 2﹣ 4ac > 0 , 即 4 ﹣ 4m+4 > 0 ,解 得 m < 2,应选 A .9.如图,点 D ,E 分别在线段 AB ,AC 上,CD 与 BE 订交于 O 点,已知 AB=AC ,现增添以下的哪个条件仍不可以判断△ABE ≌△ACD ()A . ∠B= ∠CB . AD=AEC .BD=CED . BE=CD【考点】全等三角形的判断.【剖析】欲使△ABE ≌△ACD ,已知 AB=AC ,可依据全等三角形判断定理 AAS 、SAS 、ASA增添条件,逐个证明即可.【解答】解:∵AB=AC ,∠A 为公共角,A 、如增添∠B=∠C ,利用 ASA即可证明△ABE ≌△ACD ; B 、如添 AD=AE ,利用 SAS即可证明△ABE ≌△ACD ;C 、如添 BD=CE ,等量关系可得 AD=AE,利用 SAS 即可证明 △ABE ≌△ACD ;D 、如添 BE=CD ,由于 SSA ,不可以证明△ABE ≌△ACD ,所以此选项不可以作为增添的条件. 应选:D .10 .圆 桌 面( 桌 面 中 间 有 一 个 直 径 为 0.4m的 圆 洞 )正 上 方 的 灯 泡( 看 作 一 个点)发出的光芒照耀平行于地面的桌面后,在地面上形成如下图的圆环形阴 影 . 已 知 桌 面 直 径 为 1.2m , 桌 面 离 地 面 1m , 若 灯 泡 离 地 面 3m , 则 地 面 圆 环形暗影的面积是()A . 0.324 πm 2B . 0.288 πm 2C . 1.08 πm 2D . 0.72πm 2【考点】中心投影.【剖析】先依据 AC ⊥OB ,BD ⊥OB 可得出 △AOC ∽△BOD ,由相像三角形的对 应 边 成 比 例 可 求 出 BD 的 长 , 进 而 得 出 BD ′=0.3m , 再 由 圆 环 的 面 积 公 式 即可得出结论.【解答】解:如下图:∵AC ⊥OB ,BD ⊥OB , ∴ △AOC ∽△BOC ,∴= ,即 = ,解 得 : BD=0.9m ,同 理 可 得 : AC ′=0.2m , BD ′=0.3m ,∴ S 圆环 形 阴 影 =0.9 2π 0.3 2π=0.72 π( m 2).故 :D .11.以下式子 的是( )A . cos40 °=sin50 °B . tan15 °?tan75 °=1C . sin 2 25 °+cos 225 °=1 D . sin60 °=2sin30 °【考点】互余两角三角函数的关系;同角三角函数的关系;特别角的三角函数 . 【剖析】依据正弦和余弦的性 以及正切、余切的性即可作出判断.【 解 答 】 解 : A 、 sin40°=sin (90 ° 50 °) =cos50 °,式子正确;B 、 tan15 °?tan75 °=tan15 °?cot15 °=1,式子正确;C 、 sin 2 25 °+cos 225 °=1 正 确 ;D 、 sin60 °= , sin30°= ,sin60 °=2sin30 °.故D .12.我 依据指数运算,得出了一种新的运算,如表是两种运算关系的一例 :指 数 1=22 2=423 =83 1=33 2=93 3=27 2 ⋯⋯ 运 算新 运 2 2=1log 2 4=2log 28=3log 3 3=1log 39=2log 3 27=3log ⋯⋯算根 据 上 表 律 ,某 同 学 写 出 了 三 个 式 子 : ① log 2 16=4 , ② log 5 25=5 , ③ log 2= 1.此中正确的选项是()A . ①②B .①③C .②③D .①②③【考点】 数的运算.【剖析】依据指数运算和新的运算法 得出 律,依据 律运算可得 .【解答】解:① 因 24=16 ,所以此 正确;② 因 55=3125 ≠25,所以此 ;﹣1③因2 = ,所以此 正确;二、填空:本大 共 8小 ,每小 4分,共 32 分13.涔 天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”时期水利建设的“一号工程”,也是国务院要点推动的重要工程,此中灌区工程总投资约 39 亿元.请将3900000000 用科学记数法表示为 3.9×109. 【考点】科学记数法—表示较大的数.【 分 析 】科 学 记 数 法 的 表 示 形 式 为 a ×10 n的 形 式 ,其 中 1 ≤|a| < 10 ,n 为 整 数 .确定 n 的 值 时 ,要 看 把 原 数 变 成 a 时 ,小 数 点 移 动 了 多 少 位 , n 的 绝 对 值 与 小 数点 移 动 的 位 数 相 同 . 当 原 数 绝 对 值 大 于 10 时 , n 是 正 数 ; 当 原 数 的 绝 对 值 小于 1 时 , n 是 负 数 .【 解 答 】 解 : 3900000000=3.9 ×10 9,故 答案为: 3.9 ×109.14 . 在 1 , π, , 2 ,﹣3.2这五个数中随机拿出一个数,则拿出的这个数大于 2的概率是.【 考点】概率公式.【剖析】第一找出大于 2的数字个数,从而利用概率公式求出答案.【 解 答 】 解 : ∵ 在 1 , π, , 2, ﹣ 3.2 这 五 个 数 中 , 只 有 π这 个 数 大 于 2,∴随机拿出一个数,这个数大于 2的概率是:.故答案为:.15 . 已 知 反 比 例 函 数 y= 的 图 象 经 过 点 A ( 1 , ﹣ 2), 则 k=﹣ 2 .【考点】反比率函数图象上点的坐标特点.【 分 析 】 直 接 把 点 A ( 1 , ﹣ 2 ) 代 入 y=求 出 k 的 值 即 可 .【 解 答 】 解 : ∵ 反 比 例 函 数 y= 的 图 象 经 过 点 A ( 1 , ﹣ 2),∴﹣2=,解 得 k= ﹣ 2 . 故答案为:﹣2.16.方程组 的解是 .【考点】二元一次方程组的解. 【剖析】代入消元法求解即可.【解答】解:解方程组,由 ① 得 : x=2 ﹣ 2y ③ ,将 ③ 代 入 ② , 得 : 2( 2﹣ 2y ) +y=4 , 解 得 : y=0 ,将 y=0 代 入 ① , 得 : x=2 ,故方程组的解为,故答案为:.17.化简:÷=.【考点】分式的乘除法.【剖析】将分子、分母因式分解,除法转变为乘法,再约分即可.【解答】解:原式=?=,故答案为:.18.如图,在⊙O 中,A,B 是圆上的两点,已知∠AOB=40°,直径 CD ∥AB ,连接 AC ,则∠BAC=35 度.【考点】圆周角定理.【剖析】先依据等腰三角形的性质求出∠ABO 的度数,再由平行线的性质求出∠BOC 的度数,依据圆周角定理即可得出结论.【解答】解:∵∠AOB=40°,OA=OB,∴ ∠ ABO==70 °.∵直径 CD∥AB ,∴ ∠ BOC= ∠ ABO=70°,∴ ∠ BAC=∠ BOC=35°.故答案为:35.19 .已知一次函数 y=kx+2k+3 的图象与 y 轴的交点在 y 轴的正半轴上,且函数值 y 随 x 的增大而减小,则 k 所有可能取得的整数值为﹣ 1 .【考点】一次函数图象与系数的关系.【分析】由一次函数图象与系数的关系可得出关于 k 的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:﹣<k<0.∵k 为整数,∴ k= ﹣ 1 .故答案为:﹣1.20 .如图,给定一个半径长为 2 的圆,圆心 O 到水平直线 l 的距离为 d,即OM=d .我们把圆上到直线 l 的距离等于 1 的点的个数记为 m .如 d=0 时, l 为经过圆心 O 的一条直线,此时圆上有四个到直线 l 的距离等于 1 的点,即m=4 ,由此可知:( 1)当 d=3时, m=1;( 2)当 m=2时, d 的取值范围是0< d< 3 .【考点】直线与圆的地点关系.【剖析】依据直线与圆的地点关系和直线与圆的交点个数以及命题中的数据剖析即可获得答案.【解答】解:( 1 )当 d=3 时,∵ 3> 2,即 d > r ,∴直线与圆相离,则 m=1 ,故答案为:1;( 2)当 m=2时,则圆上到直线l的距离等于1的点的个数记为2,∴直线与圆订交或相切或相离,∴0< d< 3,∴d 的取值范围是 0 < d < 3 ,故答案为: 0 < d < 3 .三、解答题:本大题共 7小题,共 79 分21 .计算:﹣(3﹣π)0﹣|﹣3+2|【考点】实数的运算;零指数幂.【剖析】直接利用立方根的性质化简再联合零指数幂的性质以及绝对值的性质化简求出答案.【解答】解:﹣(3﹣π)0﹣|﹣3+2|=2﹣1﹣1=0 .22.二孩政策的落实惹起了全社会的关注,某校学生数学兴趣小组为了认识本校同学对父亲母亲生育二孩的态度,在学校抽取了部分同学对父亲母亲生育二孩所持的态度进行了问卷检查,检查分别为特别赞成、赞成、无所谓、不赞成样四种态度,现将检查统计结果制成了如图两幅统计图,请联合两幅统计图,回答以下问题:(1)在此次问卷检查中一共抽取了50 名学生, a= 37.5% ;(2)请补全条形统计图;(3)持“不赞成”态度的学生人数的百分比所占扇形的圆心角为36 度;(4)若该校有 3000 名学生,请你预计该校学生对父亲母亲生育二孩持“赞成”和“特别赞成”两种态度的人数之和.【考点】条形统计图;用样本预计整体;扇形统计图.【分析】( 1 )由赞同的人数 20 ,所占 40% ,即可求出样本容量,进而求出 a 的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图增补完好;(3)求出不同意人数的百分数,即可求出圆心角的度数;(4)求出“赞成”和“特别赞成”两种态度的人数所占的百分数,用样本预计整体的思想计算即可.【解答】解:( 1)20÷40%=50 (人),无所谓态度的人数为 50﹣ 10﹣20﹣5=15 ,则 a=×100%=37.5%;(2)补全条形统计图如下图:(3)不同意人数占总人数的百分数为×100%=10%,持“不赞成”态度的学生人数的百分比所占扇形的圆心角为 10%×360°=36°,(4)“赞成”和“特别赞成”两种态度的人数所占的百分数为×100%=60%,则该校学生对父亲母亲生育二孩持“赞成”和“特别赞成”两种态度的人数之和为3000 ×60%=1800(人).故答案为(1)50;37.6;(3)36.23.如图,四边形 ABCD为平行四边形,∠BAD的角均分线AE交CD于点F,交 BC 的延伸线于点 E.( 1)求证:BE=CD;( 2)连结 BF,若BF ⊥ AE ,∠ BEA=60°,AB=4 ,求平行四边形 ABCD的面积.【考点】平行四边形的性质;全等三角形的判断与性质.【剖析】(1)由平行四边形的性质和角均分线得出∠BAE= ∠BEA ,即可得出AB=BE;(2)先证明△ABE 是等边三角形,得出 AE=AB=4 求出 BF ,由AAS 证明△ADF ≌△ECF ,得出△ADF ,AF=EF=2 ,由勾股定理的面积=△ECF 的面积,所以平行四边形 ABCD 的面积=△ABE 的面积= AE?BF,即可得出结果.【解答】(1)证明:∵四边形 ABCD是平行四边形,∴AD ∥BC,AB ∥CD,AB=CD ,∴ ∠ B+ ∠ C=180 °,∠ AEB= ∠ DAE ,∵AE 是∠BAD 的均分线,∴∠BAE= ∠DAE ,∴ ∠BAE= ∠AEB ,∴ AB=BE ,∴ BE=CD ;( 2)解:∵ AB=BE ,∠ BEA=60 °,∴△ABE是等边三角形,∴AE=AB=4 ,∵BF⊥AE ,∴AF=EF=2 ,∴BF===2,∵AD ∥BC,∴ ∠D= ∠ ECF ,∠DAF= ∠E,在△ADF和△ECF中,,∴ △ADF ≌△ECF ( AAS ),∴△ADF的面积=△ECF的面积,∴平行四边形 ABCD的面积=△ABE的面积=AE?BF=×4×2=4.24.某种商品的标价为 400 元/件,经过两次降价后的价钱为 324 元/件,而且两次降价的百分率同样.(1)求该种商品每次降价的百分率;(2)若该种商品进价为 300 元/件,两次降价共售出此种商品 100 件,为使两次降价销售的总收益许多于 3210 元.问第一次降价后起码要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】( 1 )设该种商品每次降价的百分率为 x% ,根据“两次降价后的售价 = 原价×( 1 ﹣降价百分比)的平方”,即可得出关于 x 的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品 m 件,则第二次降价后售出该种商品件,依据“总收益=第一次降价后的单件收益×销售数目+第二次降价后的单件收益×销售数量”,即可的出关于 m 的一元一次不等式,解不等式即可得出结论.【解答】解:( 1 )设该种商品每次降价的百分率为 x% ,依题意得: 400 ×( 1 ﹣ x% )2=324 ,解得: x=10 ,或 x=190 (舍去).答:该种商品每次降价的百分率为 10%.(2)设第一次降价后售出该种商品 m 件,则第二次降价后售出该种商品件,第一次降价后的单件收益为:400×(1﹣10%)﹣300=60 (元/件);第二次降价后的单件收益为:324﹣300=24 (元/件).依题意得: 60m+24 ×=36m+2400≥3210 ,解得: m≥22.5 .∴ m≥23 .答:为使两次降价销售的总收益许多于 3210 元.第一次降价后起码要售出该种商品 23件.25.如图,△ABC 是⊙O 的内接三角形,AB 为直径,过点 B 的切线与 AC 的延伸线交于点 D,E是 BD 中点,连结 CE.(1)求证:CE 是⊙O 的切线;(2)若 AC=4 ,BC=2 ,求 BD 和 CE 的长.【考点】切线的判断与性质.【剖析】(1)连结 OC,由弦切角定理和切线的性质得出∠CBE= ∠A,∠ ABD=90°,由圆周角定理得出∠ACB=90 °,得出∠ACO+ ∠BCO=90 °,∠ BCD=90°,由直角三角形斜边上的中线性质得出 CE=BD=BE,得出∠ BCE= ∠CBE= ∠A,证出∠ACO= ∠BCE ,得出∠ BCE+ ∠BCO=90°,得出CE⊥OC,即可得出结论;( 2)由勾股定理求出 AB ,再由三角函数得出 tanA=== ,求出 BD=AB=,即可得出 CE 的长.【解答】(1)证明:连结 OC,如下图:∵BD 是⊙O 的切线,∴ ∠ CBE= ∠ A ,∠ ABD=90°,∵AB 是⊙O 的直径,∴∠ ACB=90 °,∴ ∠ ACO+ ∠ BCO=90°,∠ BCD=90°,∵E是BD 中点,∴CE= BD=BE ,∴ ∠BCE= ∠CBE= ∠A,∵OA=OC ,∴ ∠ACO= ∠A,∴ ∠ACO= ∠BCE ,∴ ∠ BCE+ ∠ BCO=90°,即∠ OCE=90°,CE⊥ OC,∴CE 是⊙O的切线;(2)解:∵ ∠ ACB=90 °,∴ AB===2,∵ tanA=== =,∴ BD=AB=,∴ CE=BD=.26 .已知抛物线 y=ax 2+bx ﹣ 3 经过(﹣ 1 , 0 ),( 3 , 0 )两点,与 y 轴交于点 C ,直线 y=kx 与抛物线交于 A , B 两点.(1)写出点 C 的坐标并求出此抛物线的分析式;(2)当原点 O 为线段 AB 的中点时,求 k 的值及 A , B 两点的坐标;( 3)是否存在实数 k 使得△ ABC的面积为?若存在,求出k的值;若不存在,请说明原因.【考点】二次函数综合题.【分析】( 1 )令抛物线解析式中 x=0求出y值即可得出C点的坐标,有点(﹣1,0)、(3,0)利用待定系数法即可求出抛物线的分析式;(2)将正比例函数解析式代入抛物线解析式中,找出关于 x 的一元二次方程,根据根与系数的关系即可得出“x A +x B =2+k , x A ?x B = ﹣ 3 ”,结合点 O 为线段AB 的中点即可得出 x A +x B =2+k=0 ,由此得出 k 的值,将 k 的值代入一元二次方程中求出 x A、 x B,在代入一次函数解析式中即可得出点 A 、 B 的坐标;(3)假设存在,利用三角形的面积公式以及( 2 )中得到的“x A +x B =2+k ,x A ?x B =﹣ 3”,即可得出关于 k 的一元二次方程,结合方程无解即可得出假设不成了,从而得出不存在满足题意的 k 值.【解答】解:( 1 )令抛物线 y=ax 2+bx ﹣ 3 中 x=0 ,则 y= ﹣ 3 ,∴点 C 的坐标为(0,﹣3).∵抛物线 y=ax 2+bx ﹣ 3 经过(﹣ 1 , 0 ),( 3, 0)两点,∴有,解得:,∴此抛物线的解析式为 y=x 2﹣ 2x ﹣ 3 .( 2)将 y=kx代入y=x2﹣2x﹣3中得:kx=x2﹣2x﹣3,整理得: x 2﹣( 2+k ) x ﹣ 3=0 ,∴ x A +x B =2+k , x A ?x B = ﹣ 3 .∵原点 O 为线段 AB 的中点, ∴ x A +x B =2+k=0 ,解 得 : k= ﹣ 2 .当 k= ﹣ 2 时 , x 2 ﹣ ( 2+k ) x ﹣ 3=x 2﹣ 3=0 ,解 得 : x A = ﹣ , x B = .∴ y A = ﹣ 2x A =2 , y B = ﹣ 2x B =2.故 当 原 点 O 为 线 段 AB 的 中 点 时 ,k 的 值 为 ﹣ 2 ,点 A 的 坐 标 为( ﹣,2),点 B 的坐标为( , ﹣ 2).(3)假定存在.由 ( 2 ) 可 知 : x A +x B =2+k , x A ?x B = ﹣ 3 ,S△AB C =OC ?|x A ﹣ x B |= ×3 × =,∴ ( 2+k ) 2 ﹣ 4×(﹣3 ) =10 , 即 ( 2+k ) 2+2=0 .∵ ( 2+k )2非负,无解.故假定不可了. 所 以 不 存 在 实 数 k 使 得 △ ABC 的 面 积 为.27.问题研究: 1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(比如圆的直径就是圆的“面径”).2.解决问题已知等边三角形 ABC 的边长为 2.( 1)如图一,若 AD ⊥BC ,垂足为 D ,试说明 AD 是△ABC 的一条面径,并求 AD 的长; ( 2)如图二,若 ME ∥BC ,且 ME 是△ABC 的一条面径,求面径 ME 的长;( 3)如图三,已知 D 为 BC 的中点,连结 AD ,M 为 AB 上的一点(0<AM < 1),E 是 DC 上的一点,连结 ME ,ME 与 AD 交于点 O ,且 S △MOA =S △DOE .① 求证:ME 是△ABC的面径;② 连结 AE ,求证:MD ∥AE ;( 4) 请 你 猜 测 等 边 三 角 形 ABC 的 面 径 长 l 的 取 值 范 围 ( 直 接 写 出 结 果 ) 【考点】圆的综合题;等边三角形的性质.【剖析】(1)依据等腰三角形三线合一即可证明,利用直角三角形 30°性质,即可求出 AD .(2)依据相像三角形性质面积比等于相像比的平方,即可解决问题.( 3)如图三中,作 MN ⊥AE 于 N,DF ⊥AE于 F,先证明 MN=DF ,推出四边形 MNFD 是平行四边形即可.( 4)如图四中,作 MF ⊥ BC 于 F ,设 BM=x, BE=y ,求出 EM ,利用不等式性质证明 ME≥即可解决问题.【解答】解:(1)如图一中,∵ AB=AC=BC=2,AD⊥ BC,∴BD=DC ,∴S△ AB D=S△ ADC,∴线段 AD 是△ABC 的面径.∵ ∠B=60 °,∴sin60 °=,∴=,∴AD=.(2)如图二中,∵ME∥BC,且 ME 是△ABC的一条面径,∴ △AME ∽△ABC ,=,∴=,∴ME=.(3)如图三中,作 MN ⊥AE 于 N,DF⊥AE 于 F.∵S△M OA =S△DOE,∴ S△AEM =S△AED,历年中考数学模拟试题(含答案)(148)∴?AE ?MN=?AE ?DF ,∴MN=DF ,∵MN∥DF,∴四边形 MNFD是平行四边形,∴DM ∥AE .(4)如图四中,作 MF ⊥ BC 于 F ,设 BM=x , BE=y ,∵DM ∥AE ,∴=,∴= ,∴xy=2 ,在 RT△MBF中,∵ ∠ MFB=90°,∠ B=60 °, BM=x ,∴ BF=x ,MF=x,∴ ME===≥,∴ME≥,∵ME 是等边三角形面径,AD ∴等边三角形 ABC 的面径长也是等边三角形面积径,l 的取值范围≤l≤.21。
【3套试卷】永州市中考第一次模拟考试数学精选含答案
中考一模数学试题及答案(1)一.填空题(满分18分,每小题3分)1.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|c﹣2b|+|a+2b|=.2.在直角坐标系中,O是坐标原点,点P(m,n)在反比例函数的图象上.(1)若m=k,n=k﹣2,则k=;(2)若m+n=k,OP=2,且此反比例函数,满足:当x>0时,y随x的增大而减小,则k=.3.若关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,则代数式(k﹣2)2+2k(1﹣k)的值为.4.如图所示,△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠BOC的度数是.5.如图,在△ABC中,点D是AB上一点,∠ACD=∠B.已知AD=2,BD=1,则AC=.6.按如图所示的方法用小棒摆正六边形,摆2个正六边形要11根小棒,摆3个正六边形要16根小棒,摆n个正六边形需要根小棒.二.选择题(满分32分,每小题4分)7.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克8.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π9.使分式的值等于0的x的值是()A.﹣1 B.﹣1或5 C.5 D.1或﹣510.若一个多边形的每个内角都是108°,则这个多边形的内角和为()A.360°B.540°C.720°D.900°11.下列计算结果正确的是()A.B.C.D.12.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20°B.25°C.30°D.35°13.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.70 14.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点B′,AB与CD相交于点F,若AB=3,sin∠CAB=,则DF的长度是()A.1 B.2 C.D.3三.解答题(共9小题,满分70分)15.(6分)已知:如图,∠1=∠2.请添加一个条件,使得△ABD≌△CDB,然后再加以证明.16.(6分)先化简,再求值:,其中a=﹣2.17.(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70 aB组70≤x<80 8C组80≤x<90 12D组90≤x<100 14(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,则所抽取学生成绩为“优”的占所抽取学生的百分比是多少?18.(6分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.19.(7分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.20.(8分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x… ﹣2 ﹣1 0 1 2 … y =ax 2+bx +c … t m ﹣2 ﹣2 n…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)写出关于x的一元二次方程ax2+bx+c=t的根;(3)若m=﹣1,求此二次函数的解析式.21.(8分)“绿水青山就是金山银山”,高新区凌水河治理工程正式启动,若由甲工程队单独完成需10个月;若由甲、乙两工程队合做4个月后,剩下工程由乙工程队再做5个月可以完成.(1)乙工程队单独完成这项工程需几个月的时间?(2)已知甲工程队每月施工费用为15万元,比乙工程队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲、乙工程队同时开工,甲工程队做a个月,乙工程队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?22.(9分)如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积.23.(12分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案一.填空题1.解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,c﹣2b>0,a+2b<0,则原式=a+c﹣(c﹣2b)﹣a﹣2b=a+c﹣c+2b﹣a﹣2b=0.故答案为:02.解:(1)根据题意,得k﹣2==1,∴k=3.(2)∵点P(m,n)在反比例函数y=的图象上.∴mn=k又∵OP=2,∴=2,∴(m+n)2﹣2mn﹣4=0,又m+n=k,mn=k,得k2﹣2k=4,(k﹣1)2=5,∵x>0时,y随x的增大而减小,则k>0.∴k﹣1=,k=1+.3.解:∵关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,∴△=0,即(﹣2k)2﹣4××(1﹣4k)=0,整理得,2k2+4k﹣1=0,∴k2+2k=,∴(k﹣2)2+2k(1﹣k)=k2﹣4k+4+2k﹣2k2=﹣k2﹣2k+4=﹣(k2+2k)+4=﹣+4=3.故答案为:3.4.解:∵△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,∴∠AOC=∠BOD=35°,且∠AOD=90°,∴∠BOC=20°,故答案为20°5.解:在△ADC与△ACB中,∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB;∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=AD+BD=2+1=3,∴AC2=3×2=6,∴AC=,故答案为.6.解:设摆n个正六边形需要a n根小棒.∵a1=6=1×5+1,a2=11=2×5+1,a3=16=3×5+1,…,∴a n=5n+1.故答案为:(5n+1).二.选择题7.解:0.00 000 0076克=7.6×10﹣8克,故选:C.8.解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选:B.9.解:∵分式的值等于0,∴x2﹣4x﹣5=0,且x+1≠0,解得:x=5.故选:C.10.解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,则此多边形的内角和为(5﹣2)×180°=540°,故选:B.11.解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.12.解:∵AD切⊙O于点D,∴OD⊥AD,∴∠ODA=90°,∵∠A=40°,∴∠DOA=90°﹣40°=50°,由圆周角定理得,∠BCD=∠DOA=25°,故选:B.13.解:这些运动员成绩的中位数、众数分别是4.70, 4.75.故选:C.14.解:∵sin∠CAB=∴∠CAB=30°∵折叠可知:∠FAC=∠BAC=30°∵四边形ABCD是矩形,∴DC∥AB,∠D=90°,DC=AB=3∴∠FCA=∠CAB=30°,∴FC=FA,∠DAF=30°FA=FC=DC﹣FD=3﹣FD∴sin∠DAF==解得DF=1.所以DF的长为1.故选:A.三.解答题15.解:AB=CD,理由是:∵在△ABD和△CDB中∵,∴△ABD≌△CDB(SAS),故答案为:AB=CD(答案不唯一).16.解:原式=(﹣)•=•=﹣,当a=﹣2时,原式=.17.解:(1)抽取的学生成绩有14÷35%=40(个),则a=40﹣(8+12+14)=6,故答案为:40,6;(2)直方图如图所示:(3)扇形统计图中“B”的圆心角=360°×=72°.(4)成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比=×100%=65%.18.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.19.解:(1)依题意列表如下:1 2 3 4 5 61 2,1 3,1 4,1 5,1 6,12 1,2 3,2 4,2 5,2 6,23 1,3 2,3 4,3 5,3 6,34 1,4 2,4 3,4 5,4 6,45 1,5 2,5 3,5 4,5 6,56 1,6 2,6 3,6 4,6 5,6由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率==.20.解:(1)根据图表可知:二次函数y=ax2+bx+c的图象过点(0,﹣2),(1,﹣2),∴对称轴为直线x==,c=﹣2;(2)根据二次函数的对称性可知:(﹣2,t)关于对称轴x=的对称点为(3,t),即﹣2和3是关于x的方程ax2+bx+c=t的两个根;(3)若m=﹣1,则抛物线经过点(﹣1,﹣1),(0,﹣2),(1,﹣2),代入y=ax2+bx+c得,解得,∴此二次函数的解析式为y=x2﹣x﹣2.21.解:(1)设乙队需要x个月完成,根据题意得: +=1,解得:x=15,经检验x=15是原方程的根,答:乙队需要15个月完成;(2)根据题意得:,解得: a≤4 b≥9.∵a≤12,b≤12且a,b都为正整数,∴9≤b≤12又a=10﹣b,∴b为3的倍数,∴b=9或b=12.当b=9时,a=4;当b=12时,a=2∴a=4,b=9或a=2,b=12.方案一:甲队作4个月,乙队作9个月;方案二:甲队作2个月,乙队作12个月;22.证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=BD=,PB=PD=3,在Rt△DEP中,∵PD=,DE=,∴PE==2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即=,解得DF=12,在Rt△BDH中,BH=BD=,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=•12•﹣﹣×(2)2=9﹣2π.23.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.中考模拟考试数学试卷含答案一、选择题(每小题3分,共24分)1.(3分)《世界保护益鸟公约》规定每年的4月1日为“国际爱鸟日”.因为有它们,给我们的生活增添了靓丽的光彩.鸟类最昌盛的时期,约有160万种,用科学记数法可表示为()A.1.6×105B.1.6×106C.1.6×107D.1.6×1082.(3分)下列运算正确的是()A.a2+a3=a5B.(a3)2=a5C.(a+3)2=a2+9D.﹣2a2•a=﹣2a33.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°4.(3分)由一些大小相同的小正方形组成的几何体俯视图和左视图如图所示,那么,组成这个几何体的小正方体个数可能有()A.8块B.6块C.4块D.12块5.(3分)不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<26.(3分)一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则这组数据的众数为()A.6B.8C.9D.107.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②2a+b=0;③3a+c>0;④4a﹣2b+c<0:⑤9a+3b+c<0.其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)9.(3分)因式分解:a3﹣9ab2=.10.(3分)计算的结果是0﹣(﹣1)2016﹣2的结果是.11.(3分)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.12.(3分)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是.13.(3分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.14.(3分)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为.15.(3分)如图,在矩形ABCD中,已知MN⊥MC,且M为AD的中点,AN=2,tan∠MCN=,则AB的长为.16.(3分)如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是.(把你认为正确结论的序号都填上)三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.18.(8分)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.四、解答题(每小题10分,共20分)19.(10分)在2018年4月23日世界读书日之前,某校为了解学生的阅读习惯,对学生2017年读课外书的数量进行了调查.下面是根据随机抽取的部分学生的读书数量情况,整理的表格和两幅不完整的统计图.2017年学生的读书数量的分组A B C D E0本1~3本4~7本8~12本12本(不含)以上请根据图中提供的信息,解答下列问题.(1)此次抽样调查共调查了学生名.(2)请将条形统计图补充完整;(3)请说明样本数据中,学生读书数量的中位数落在哪个范围内;(4)该校共有学生900名,估计2017年读课外书的数量超过12本的学生有多少名?20.(10分)某同学报名参加校运动会,有以下4个项目可选择.径赛项目:100m跑,200m跑,400m跑(分别用A I,A2,A3表示.)田赛项目:跳远(用B表示).(1)该同学从4个项目中任选1个是径赛项目的概率为.(2)该同学从4个项目中任选2个,请用画树状图或列表的方法列举出所有可能出现的结果,并求参赛项目都是径赛的概率.五、解答题(每小题10分,共20分)21.(10分)某天,停泊在A地在海上巡逻船接到指挥所的命令,要求去拦下一艘停泊在巡逻船正西方向的B地可疑船只,与此同时可疑船只正沿西北方向远离港口,为了尽快追上可疑船只,巡逻船马上沿北偏西75°的方向追赶可疑船只,假设两船同时出发,AB 两地相距30海里,那么可疑船只走了多少海里就被巡逻船追上(可疑船只和巡逻船在行进过程中均不改变航线和速度,结果保留根号)?22.(10分)如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E 是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB•EF.六、解答题(每小题10分,共20分)23.(10分)超市里,某商户先后两次购进若干千克的黄瓜,第一次用了300元,第二次用了900元,但第二次的进货单价比第次的要高1.5元,而所购的黄瓜数量是第一次的2倍.(1)问该商户两次一共购进了多少千克黄瓜?(2)当商户按每千克6元的价格卖掉了时,商户想尽快卖掉这些黄瓜,于是商户决定将剩余的黄瓜打折销售,请你帮忙算算,剩余的黄瓜至少打几折才能使两次所进的黄瓜总盈利不低于360元?24.(10分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.七、解答题(12分)25.(12分)如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)八、解答题(14分)26.(14分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PCO=∠POC?若存在,求出符合条件的点P的坐标;若不存在,说明理由;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.2017-2018学年辽宁省鞍山市台安县九年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【解答】解:将160万用科学记数法表示为:1.6×106.故选:B.2.【解答】解:A、a2,a3不是同类项,无法计算;B、(a3)2=a6,故此选项错误;C、(a+3)2=a2+9+6a,故此选项错误;D、﹣2a2•a=﹣2a3,正确.故选:D.3.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选:D.4.【解答】解:从俯视图可得最底层有4个小正方体,由左视图可得第二层最少有1个小正方体,最多有3个小正方体,所以组成这个几何体的小正方体个数可能有5~7个正方体.故选:B.5.【解答】解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,故选:D.6.【解答】解:由题意得,(8+x)÷2=9,解得:x=10,则这组数据中出现次数最多的是10,故众数为10.故选:D.7.【解答】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选:C.8.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0即b2>4ac,∴①正确;又∵抛物线对称轴是直线x=1即﹣=1,可得2a+b=0,∴②正确;∵从图象可以看到,当x=﹣1时,y<0∴a﹣b+c<0由②可知b=﹣2a∴3a+c<0,∴③错误;∵从图象可知,当x=﹣2时,y>0∴4a﹣2b+c>0,∴④错误;根据抛物线的轴对称性可知,它与x轴的另一个交点应该在3、4之间,∴当x=3时,y<0∴9a+3b+c<0,∴⑤正确.故选:C.二、填空题(每小题3分,共24分)9.【解答】解:a3﹣9ab2=a(a2﹣9b2)=a(a﹣3b)(a+3b).故答案为:a(a﹣3b)(a+3b).10.【解答】解:原式=1﹣1+4=4,故答案为:4.11.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.12.【解答】解:依题意列方程组解得k<1且k≠0.13.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.14.【解答】解:设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OP=••b=3.故答案为:3.15.【解答】解:∵MN⊥MC,tan∠MCN=,∴,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴,∴,∴DC=32,∴AB=32.故答案为:32.16.【解答】解:①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B∴∠ADE=∠C,∴△ADE∽△ACD;故①正确,②作AG⊥BC于G,∵AB=AC=10,∠ADE=∠B=α,cosα=,∴BG=AB cos B,∴BC=2BG=2AB cos B=2×10×=16,∵BD=6,∴DC=10,∴AB=DC,在△ABD与△DCE中,∴△ABD≌△DCE(ASA).故②正确,③当∠AED=90°时,由①可知:△ADE∽△ACD,∴∠ADC=∠AED,∵∠AED=90°,∴∠ADC=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=,AB=10,BD=8.当∠CDE=90°时,易△CDE∽△BAD,∵∠CDE=90°,∴∠BAD=90°,∵∠B=α且cosα=.AB=10,∴cos B==,∴BD=.故③正确.④易证得△CDE∽△BAD,由②可知BC=16,设BD=y,CE=x,∴=,∴=,整理得:y2﹣16y+64=64﹣10x,即(y﹣8)2=64﹣10x,∴0<x≤6.4.故④正确.故答案为:①②③④三、解答题(每小题8分,共16分)17.【解答】解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.18.【解答】(1)证明:∵将△ADE绕点E旋转180°得到△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵D、E分别为AB,AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解:在Rt△ABC中,BC=8,AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.四、解答题(每小题10分,共20分)19.【解答】解:(1)此次抽样调查共调查了学生20÷20%=100(名),故答案为:100;(2)C组的人数为100﹣(5+15+20+35)=25(名),补全图形如下:(3)∵共有100个数据,∴其中位数是第50、51个数据的平均数,而第50、51个数据均落在D组内,∴学生读书数量的中位数落在D组8~12本;(4)估计2017年读课外书的数量超过12本的学生有900×=315(名).20.【解答】解:(1)小明从4个项目中任选一个,恰好是径赛项目的概率P=;故答案为:;(2)画树状图为:共有12种等可能的结果数,其中一个田赛项目和一个径赛项目的结果数为6,所以恰好是一个田赛项目和一个径赛项目的概率P1==.五、解答题(每小题10分,共20分)21.【解答】解:作AD⊥CB交CB的延长线于D,由题意得,∠C=180°﹣45°﹣90°﹣15°=30°,∠CAB=15°,∴∠ABD=45°,∴BD=AD=AB=15,在Rt△ADC中,tan C=,即CD===15,∴BC=CD﹣BD=15(﹣),答:可疑船只走了15(﹣)海里就被巡逻船追上.22.【解答】解:(1)连接OD.∵∠BCD=36°,∴∠DOB=72°∴的长==2π.(2)连接OD.∵AE=EC,OB=OC,∴OE∥AB,∵CD⊥AB,∴OE⊥CD,∵OD=OC,∴∠DOE=∠COE,在△EOD和△EOC中,,∴△EOD≌△EOC,∴∠EDO=∠ECO=90°,∴OD⊥DE,∴DE是⊙O的切线.(3)∵OE⊥CD,∴DF=CF,∵AE=EC,∴AD=2EF,∵∠CAD=∠CAB,∠ADC=∠ACB=90°,∴△ACD∽△ABC,∴AC2=AD•AB,∵AC=2CE,∴4CE2=2EF•AB,∴2CE2=EF•AB.六、解答题(每小题10分,共20分)23.【解答】解:(1)设第一次的进货单价为x元/千克,则第二次的进货单价为(x+1.5)元/千克.依题意,得2×=.解得x=3.经检验:x=3是原方程的解,且符合题意.所以=100(千克).2×100=200(千克)100+200=300(千克)答:该商户两次一共购进了300千克黄瓜.(2)设剩余黄瓜打x折,依题意得:6×300×+6×300ו﹣300﹣900≥360.解得x≥8.答:剩余的黄瓜至少打8折才能使两次所进的黄瓜总盈利不低于360元.24.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.七、解答题(12分)25.【解答】(1)证明:∵四边形CADF、CBEG是正方形,∴AD=CA,∠DAC=∠ABC=90°,∴∠DAD1+∠CAB=90°,∵DD1⊥AB,∴∠DD1A=∠ABC=90°,∴∠DAD1+∠ADD1=90°,∴∠ADD1=∠CAB,在△ADD1和△CAB中,,∴△ADD1≌△CAB(AAS),∴DD1=AB;(2)解:AB=DD1+EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH+BH=DD1+EE1;(3)解:AB=DD1﹣EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH﹣BH=DD1﹣EE1.八、解答题(14分)26.【解答】解:(1)由A(4,0),可知OA=4,∵OA=OC=4OB,∴OA=OC=4,OB=1,∴C(0,4),B(﹣1,0).设抛物线的解析式是y=ax2+bx+c,则,解得:.则抛物线的解析式是:y=﹣x2+3x+4;(2)存在.作线段OC的垂直平分线l,与抛物线的交点即为点P.∵C(0,4),O(0,0),∴直线l的表达式为y=2;把y=2代入抛物线的表达式,得2=﹣x2+3x+4;解得,x=∴点P的坐标是:(,2)或(,2)(3)存在.第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,∴∠MCP1=∠OAC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,设P(m,﹣m2+3m+4),则m=﹣m2+3m+4﹣4,解得:m1=0(舍去),m2=2.∴﹣m2+3m+4=6,即P(2,6).第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,设P2(n,﹣n2+3n+4),则n=(﹣n2+3n+4)+4解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4=﹣6,则P2的坐标是(﹣2,﹣6).综上所述,P的坐标是(2,6)或(﹣2,﹣6).中考模拟考试数学试题含答案一、选择题(本大题共8小题,共24.0分)1.下列各组数中,互为倒数的是()A. 和B. 和C. 和100D. 1和2.下列图形中既不是轴对称也不是中心对称图形的是()A. B. C. D.3.下列代数式运算正确的是()A. B.C. D.4.如图,圆内接四边形ABCD是由四个全等的等腰梯形组成,AD是⊙O的直径,则∠BEC的度数为()A. B. C. D.5.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A. B. C. D.6.如图,△ABC中,DE∥BC,DE分别交AB,AC于D,E,S△ADE=2S△DCE,则=()A.B.C.D.7.为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数及其方差s2如表所示:甲乙丙丁12″3315″2910″2610″26S21.1 1.6 1.3 1.1如果从中选拔一名学生去参赛,应派()去.A. 甲B. 乙C. 丙D. 丁8.如图,点A(-2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y=(k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)9.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为______.10.在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有______个.11.如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是______(结果保留π).12.二次函数y=ax2-12ax+36a-5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为______13.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则=______.14.棱长分别为7cm,6cm两个正方体如图放置,点P在E1F1上,且E1P=E1F1,一只蚂蚁如果要沿着长方体的表面从点A爬到点P,需要爬行的最短距离是______.三、计算题(本大题共1小题,共8.0分)15.(1)计算:(1-)(2)解不等式组,并求其最小整数解.四、解答题(本大题共9小题,共70.0分)16.用圆规,直尺作图,不写作法,但要保留作图痕迹如图,OA、OB表示两条道路,在OB上有一车站(用点P表示).现在要在两条道路形成的∠AOB的内部建一个报亭,要求报亭到两条道路的距离相等且在过点P与AO平行的道路上.请在图中作出报亭的位置.17.春节期间某商场搞促销活动,方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里同时摸出两个球,根据这两个小球所标金额之和可获相应价格的礼品;(1)若某顾客在甲商商场消费320元,至少可得价值______元的礼品,至多可得价值______元的礼品;(2)请用画树状图或列表的方法,求该顾客去商场消费,获得礼品的总价值不低于50元的概率.18.某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈,cos35°≈,tan35°≈)19.某工厂的甲、乙两个车间各生产了400个新款产品,为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围在165≤x<180为合格),分别从甲、乙两个车间生产的产品中随机各抽取了20个样品迸行检测,获得了它们的数据(尺寸),并对数据进行了整理、描述和分析.下面给出了部分信息:a.甲车间产品尺寸的扇形统计图如下(数据分为6组:165≤x<170,170≤x<175,175≤x <180,180≤x<185,185≤x<190,190≤x≤195):b.甲车间生产的产品尺寸在175≤x<180这一组的是:175 176 176 177 177 178 178 179 179(1)表中m的值为______;(2)此次检测中,甲、乙两车间生产的产品合格率更高的是______(填“甲”或“乙”),理由是______;(3)如果假设这个工厂生产的所有产品都参加了检测,那么估计甲车间生产该款新产品中合格产品有______个.。
2016年湖南省永州市中考数学试题及参考答案(word解析版)
2016年湖南省永州市中考数学试题及参考答案与解析一、选择题(本大题共有8小题,每小题3分,共24分,每小题只有一个正确的答案)1.12016-的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣20162.不等式组12xx-⎧⎨⎩≥<的解集在数轴上表示正确的是()A.B.C.D.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.1233x x-=D.)221=-5.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9 C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.抛物线y=x 2+2x+m ﹣1与x 轴有两个不同的交点,则m 的取值范围是( ) A .m <2 B .m >2 C .0<m≤2 D .m <﹣29.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD10.圆桌面(桌面中间有一个直径为0.4m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m ,桌面离地面1m ,若灯泡离地面3m ,则地面圆环形阴影的面积是( )A .0.324πm 2B .0.288πm 2C .1.08πm 2D .0.72πm 2 11.下列式子错误的是( )A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30° 12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=﹣1.其中正确的是( )A .①②B .①③C .②③D .①②③ 二、填空题(本大题共8小题,每小题4分,共32分)13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为 .14.在1,π2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是 . 15.已知反比例函数ky x=的图象经过点A (1,﹣2),则k= . 16.方程组2224x y x y +=⎧⎨+=⎩的解是 .17.化简:()22233442x x xx x x ++÷=-+- .18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.三、解答题(本大题共7小题,共79分)213﹣π)0﹣|﹣3+2|22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E 是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC?若存在,求出k的值;若不存在,请说明理由.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MOA=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)参考答案与解析一、选择题(本大题共12小题,每小题4分,共48分)1.12016-的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣2016【知识考点】倒数;相反数.【思路分析】直接利用相反数的概念以及倒数的定义分析,进而得出答案.【解答过程】解:12016-的相反数是:12016,∵12016×2016=1,∴12016-的相反数的倒数是:2016.故选:C.【总结归纳】此题主要考查了相反数、倒数的定义,正确把握定义是解题关键.。
湖南省永州市中考数学模拟试卷(一)
湖南省永州市中考数学模拟试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016九上·婺城期末) ﹣2016的相反数是()A .B .C . 6102D . 20162. (2分) (2018八上·海淀期末) 已知可以写成一个完全平方式,则可为()A . 4B . 8C . 16D .3. (2分)(2017·宁德模拟) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为4500元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A . 平均数不变,方差变大B . 平均数不变,方差变小C . 平均数不变,方差不变D . 平均数变小,方差不变4. (2分) (2018七上·金堂期末) 下边几何体的俯视图是()A . AB . BC . CD . D5. (2分)如果反比例函数y=的图像经过点(-3,-4),那么函数的图像应在()A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限6. (2分)(2019·邵阳模拟) 在平面直角坐标系中,若点P(m-2,m+1)在第二象限,则m的取值范围是()A . m<-1B . m>2C . -1<m<2D . m>-17. (2分)(2018·阳新模拟) 如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD 的度数是()A . 65°B . 75°C . 85°D . 105°8. (2分) (2013·绵阳) 如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC 交于G,则GH=()A . cmB . cmC . cmD . cm9. (2分)(2018·河南模拟) 在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A .B .C .D .10. (2分)(2012·贺州) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①4a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0.其中错误的个数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共10分)11. (1分) (2020八上·通榆期末) 若(x+m)(x-8)中不含x的一次项,则m的值为________。
湖南省永州市2016年中考试题(数学-解析版)
一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣20162.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣15.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣29.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm211.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=.16.方程组的解是.17.化简:÷=.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx 与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△M O A=S△D O E.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)答案一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣2016【考点】倒数;相反数.【分析】直接利用相反数的概念以及倒数的定义分析,进而得出答案.【解答】解:﹣的相反数是:,∵×2016=1,∴﹣的相反数的倒数是:2016.故选:C.2.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:.故选A .3.下列图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形.也是中心对称图形,故此选项正确;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误.故选:A .4.下列运算正确的是( )A .﹣a •a 3=a 3B .﹣(a 2)2=a 4C .x ﹣x=D .(﹣2)(+2)=﹣1【考点】二次根式的混合运算;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.【解答】解:A 、﹣a •a 3=﹣a 4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据图形的三视图的知识,即可求得答案.【解答】解:该实物图的主视图为.故选B.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】方差;算术平均数;中位数;众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×=×2=0.4,=×=×8=1.6,∴<,故D正确;故选:C.7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【考点】圆的认识;线段的性质:两点之间线段最短;垂线段最短;三角形的稳定性.【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B.8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【考点】抛物线与x轴的交点.【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.9.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2【考点】中心投影.【分析】先根据AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的对应边成比例可求出BD的长,进而得出BD′=0.3m,再由圆环的面积公式即可得出结论.【解答】解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOC,∴=,即=,解得:BD=0.9m,同理可得:AC′=0.2m,则BD′=0.3m,∴S圆环形阴影=0.92π﹣0.32π=0.72π(m2).故选:D.11.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【考点】互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.【分析】根据正弦和余弦的性质以及正切、余切的性质即可作出判断.【解答】解:A、sin40°=sin(90°﹣50°)=cos50°,式子正确;B、tan15°•tan75°=tan15°•cot15°=1,式子正确;C、sin225°+cos225°=1正确;D、sin60°=,sin30°=,则sin60°=2sin30°错误.故选D.12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③【考点】实数的运算.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为 3.9×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3900000000=3.9×109,故答案为:3.9×109.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.【考点】概率公式.【分析】首先找出大于2的数字个数,进而利用概率公式求出答案.【解答】解:∵在1,π,,2,﹣3.2这五个数中,只有π这个数大于2,∴随机取出一个数,这个数大于2的概率是:.故答案为:.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.16.方程组的解是.【考点】二元一次方程组的解.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y)+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.17.化简:÷=.【考点】分式的乘除法.【分析】将分子、分母因式分解,除法转化为乘法,再约分即可.【解答】解:原式=•=,故答案为:.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=35度.【考点】圆周角定理.【分析】先根据等腰三角形的性质求出∠ABO的度数,再由平行线的性质求出∠BOC的度数,根据圆周角定理即可得出结论.【解答】解:∵∠AOB=40°,OA=OB,∴∠ABO==70°.∵直径CD∥AB,∴∠BOC=∠ABO=70°,∴∠BAC=∠BOC=35°.故答案为:35.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为﹣1.【考点】一次函数图象与系数的关系.【分析】由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:﹣<k<0.∵k为整数,∴k=﹣1.故答案为:﹣1.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是0<d<3.【考点】直线与圆的位置关系.【分析】根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案.【解答】解:(1)当d=3时,∵3>2,即d>r,∴直线与圆相离,则m=1,故答案为:1;(2)当m=2时,则圆上到直线l的距离等于1的点的个数记为2,∴直线与圆相交或相切或相离,∴0<d<3,∴d的取值范围是0<d<3,故答案为:0<d<3.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|【考点】实数的运算;零指数幂.【分析】直接利用立方根的性质化简再结合零指数幂的性质以及绝对值的性质化简求出答案.【解答】解:﹣(3﹣π)0﹣|﹣3+2|=2﹣1﹣1=0.22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=37.5%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=37.5%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;37.6;(3)36.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可的出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.【考点】切线的判定与性质.【分析】(1)连接OC,由弦切角定理和切线的性质得出∠CBE=∠A,∠ABD=90°,由圆周角定理得出∠ACB=90°,得出∠ACO+∠BCO=90°,∠BCD=90°,由直角三角形斜边上的中线性质得出CE=BD=BE,得出∠BCE=∠CBE=∠A,证出∠ACO=∠BCE,得出∠BCE+∠BCO=90°,得出CE⊥OC,即可得出结论;(2)由勾股定理求出AB,再由三角函数得出tanA===,求出BD=AB=,即可得出CE的长.【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx 与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令抛物线解析式中x=0求出y值即可得出C点的坐标,有点(﹣1,0)、(3,0)利用待定系数法即可求出抛物线的解析式;(2)将正比例函数解析式代入抛物线解析式中,找出关于x的一元二次方程,根据根与系数的关系即可得出“x A+x B=2+k,x A•x B=﹣3”,结合点O为线段AB的中点即可得出x A+x B=2+k=0,由此得出k的值,将k的值代入一元二次方程中求出x A、x B,在代入一次函数解析式中即可得出点A、B的坐标;(3)假设存在,利用三角形的面积公式以及(2)中得到的“x A+x B=2+k,x A•x B=﹣3”,即可得出关于k的一元二次方程,结合方程无解即可得出假设不成了,从而得出不存在满足题意的k值.【解答】解:(1)令抛物线y=ax2+bx﹣3中x=0,则y=﹣3,∴点C的坐标为(0,﹣3).∵抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,∴有,解得:,∴此抛物线的解析式为y=x2﹣2x﹣3.(2)将y=kx代入y=x2﹣2x﹣3中得:kx=x2﹣2x﹣3,整理得:x2﹣(2+k)x﹣3=0,∴x A+x B=2+k,x A•x B=﹣3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=﹣2.当k=﹣2时,x2﹣(2+k)x﹣3=x2﹣3=0,解得:x A=﹣,x B=.∴y A=﹣2x A=2,y B=﹣2x B=2.故当原点O为线段AB的中点时,k的值为﹣2,点A的坐标为(﹣,2),点B的坐标为(,﹣2).(3)假设存在.由(2)可知:x A+x B=2+k,x A•x B=﹣3,S△A B C=OC•|x A﹣x B|=×3×=,∴(2+k)2﹣4×(﹣3)=10,即(2+k)2+2=0.∵(2+k)2非负,无解.故假设不成了.所以不存在实数k使得△ABC的面积为.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△M O A=S△D O E.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)【考点】圆的综合题;等边三角形的性质.【分析】(1)根据等腰三角形三线合一即可证明,利用直角三角形30°性质,即可求出AD.(2)根据相似三角形性质面积比等于相似比的平方,即可解决问题.(3)如图三中,作MN⊥AE于N,DF⊥AE于F,先证明MN=DF,推出四边形MNFD是平行四边形即可.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,求出EM,利用不等式性质证明ME≥即可解决问题.【解答】解:(1)如图一中,∵AB=AC=BC=2,AD⊥BC,∴BD=DC,∴S△A B D=S△A D C,∴线段AD是△ABC的面径.∵∠B=60°,∴sin60°=,∴=,∴AD=.(2)如图二中,∵ME∥BC,且ME是△ABC的一条面径,∴△AME∽△ABC,=,∴=,∴ME=.(3)如图三中,作MN⊥AE于N,DF⊥AE于F.∵S△M O A=S△D O E,∴S△A E M=S△A E D,∴•AE•MN=•AE•DF,∴MN=DF,∵MN∥DF,∴四边形MNFD是平行四边形,∴DM∥AE.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,∵DM∥AE,∴=,∴=,∴xy=2,在RT△MBF中,∵∠MFB=90°,∠B=60°,BM=x,∴BF=x,MF=x,∴ME===≥,∴ME≥,∵ME是等边三角形面径,AD也是等边三角形面积径,∴等边三角形ABC的面径长l的取值范围≤l≤.。
2016年湖南省永州市中考数学试卷
2016年湖南省永州市中考数学试卷一、选择题:本大题共12小题,每小题4分,共48分 1. −12016的相反数的倒数是( )A.1B.−1C.2016D.−2016【答案】 C【考点】 倒数 相反数【解析】直接利用相反数的概念以及倒数的定义分析,进而得出答案. 【解答】解:−12016的相反数是:12016, ∵ 12016×2016=1, ∴ −12016的相反数的倒数是:2016.故选:C .2. 不等式组{x ≥−1x <2的解集在数轴上表示正确的是( )A.B.C. D.【答案】 A【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】把各不等式的解集在数轴上表示出来即可. 【解答】解:不等式组{x ≥−1x <2的解集在数轴上表示为:.故选A .3. 下列图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A【考点】中心对称图形轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.4. 下列运算正确的是()A.−a⋅a3=a3B.−(a2)2=a4C.x−13x=23D.(√3−2)(√3+2)=−1【答案】D【考点】二次根式的混合运算平方差公式同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.【解答】解:A,−a⋅a3=−a4,故选项错误;B,−(a2)2=−a4,选项错误;C,x−13x=23x,选项错误;D,(√3−2)(√3+2)=(√3)2−22=3−4=−1,选项正确.故选D.5. 如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】根据图形的三视图的知识,即可求得答案.【解答】解:主视图是在物体正面从前向后观察物体得到的图形.由题意可得,该实物图的主视图为上方杯子主视图与下方杯子主视图的组合,上方杯子的主视图是一个上底比下底长的等腰梯形,下方杯子的主视图是一个上底比下底短的等腰梯形.故选项B符合题意,其余选项不符合题意.故选B.6. 在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【答案】C【考点】方差众数中位数算术平均数【解析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A ,x 甲¯=8+7+9+8+85=8,x 乙¯=7+9+6+9+95=8,故此选项正确;B ,甲得分次数最多是8分,即众数为8分;乙得分最多的是9分,即众数为9分,故此选项正确;C ,∵ 甲得分从小到大排列为:7,8,8,8,9, ∴ 甲的中位数是8分.∵ 乙得分从小到大排列为:6,7,9,9,9, ∴ 乙的中位数是9分,故此选项错误;D ,∵ S 甲2=15×[(8−8)2+(7−8)2+(9−8)2+(8−8)2+(8−8)2]=15×2=0.4,S 乙2=15×[(7−8)2+(9−8)2+(6−8)2+(9−8)2+(9−8)2]=15×8=1.6, ∴ S 甲2<S 乙2,故此选项正确. 故选C .7. 对下列生活现象的解释其数学原理运用错误的是( )A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理 【答案】 B【考点】三角形的稳定性 圆的有关概念线段的性质:两点之间线段最短 直线的性质:两点确定一条直线【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可. 【解答】解:A 、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B 、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C 、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D 、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确, 故选B .8. 抛物线y =x 2+2x +m −1与x 轴有两个不同的交点,则m 的取值范围是( ) A.m <2B.m >2C.0<m ≤2D.m <−2【答案】A【考点】抛物线与x轴的交点【解析】由抛物线与x轴有两个交点,则△=b2−4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m−1与x轴有两个交点,∴Δ=b2−4ac>0,即4−4m+4>0,解得m<2.故选A.9. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,再添加以下的哪个条件,仍不能判定△ABE≅△ACD()A.∠B=∠CB.AD=AEC.BD=CED.BE=CD【答案】D【考点】全等三角形的判定【解析】此题主要考查学生对全等三角形判定定理的理解和掌握.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≅≅ACD;B、如添AD=AE,利用SAS即可证明△ABE≅≅ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≅≅ACD;D、如添BE=CD,因为SSA,不能证明△ABE≅≅ACD,所以此选项不能作为添加的条件.故选D.10. 圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2【答案】D【考点】中心投影【解析】先根据AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的对应边成比例可求出BD的长,进而得出BD′=0.3m,再由圆环的面积公式即可得出结论.【解答】解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOC,∴OAOB =ACBD,即23=0.6BD,解得:BD=0.9m,同理可得:AC′=0.2m,则BD′=0.3m,∴S圆环形阴影=0.92π−0.32π=0.72π(m2).故选:D.11. 下列式子错误的是()A.cos40∘=sin50∘B.tan15∘⋅tan75∘=1C.sin225∘+cos225∘=1D.sin60∘=2sin30∘【答案】D【考点】特殊角的三角函数值互余两角三角函数的关系同角三角函数的关系【解析】根据正弦和余弦的性质以及正切、余切的性质即可作出判断.【解答】解:A,cos40∘=cos(90∘−50∘)=sin50∘,正确;B,tan15∘⋅tan75∘=tan15∘⋅cot15∘=1,正确;C,sin225∘+cos225∘=1,正确;D,sin60∘=√32,sin30∘=12,则sin60∘=2sin30∘错误.故选D.12. 我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=−1.其中正确的是()A.①②B.①③C.②③D.①②③【答案】B【考点】定义新符号有理数的乘方【解析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①∵24=16,∴此选项正确;②∵55=3125≠25,∴此选项错误;③∵2−1=12,∴此选项正确.故正确的是①③.故选B.二、填空题:本大题共8小题,每小题4分,共32分涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为________.【答案】3.9×109【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3900000000=3.9×109,故答案为:3.9×109.在1,π,√3,2,−3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是________.【答案】15【考点】 概率公式 【解析】首先找出大于2的数字个数,进而利用概率公式求出答案. 【解答】解:∵ 在1,π,√3,2,−3.2这五个数中,只有π这个数大于2, ∴ 随机取出一个数,这个数大于2的概率是:15. 故答案为:15.已知反比例函数y =kx 的图象经过点A(1, −2),则k =________.【答案】 −2【考点】反比例函数图象上点的坐标特征 【解析】直接把点A(1, −2)代入y =kx 求出k 的值即可.【解答】∵ 反比例函数y =kx 的图象经过点A(1, −2),∴ −2=k1,解得k =−2.方程组{x +2y =22x +y =4的解是________.【答案】 {x =2y =0【考点】二元一次方程组的解 【解析】代入消元法求解即可. 【解答】解:解方程组{x +2y =2①2x +y =4②,由①得:x =2−2y ③,将③代入②,得:2(2−2y)+y =4, 解得:y =0,将y =0代入①,得:x =2,故方程组的解为{x =2y =0,故答案为:{x =2y =0.化简:x+3x 2−4x+4÷x 2+3x(x−2)2=________. 【答案】1x【考点】分式的乘除运算 【解析】将分子、分母因式分解,除法转化为乘法,再约分即可. 【解答】解:原式=x+3(x−2)2⋅(x−2)2x(x+3) =1x , 故答案为:1x .如图,在⊙O 中,A ,B 是圆上的两点,已知∠AOB =40∘,直径CD // AB ,连接AC ,则∠BAC =________度.【答案】 35【考点】 圆周角定理 【解析】先根据等腰三角形的性质求出∠ABO 的度数,再由平行线的性质求出∠BOC 的度数,根据圆周角定理即可得出结论. 【解答】∵ ∠AOB =40∘,OA =OB , ∴ ∠ABO =180−402=70∘.∵ 直径CD // AB ,∴ ∠BOC =∠ABO =70∘, ∴ ∠BAC =12∠BOC =35∘.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为________.【答案】 −1【考点】一次函数图象与系数的关系 【解析】由一次函数图象与系数的关系可得出关于k 的一元一次不等式组,解不等式组即可得出结论. 【解答】解:由已知得:{2k +3>0,k <0 ,解得:−32<k <0.∵ k 为整数, ∴ k =−1. 故答案为:−1.如图,给定一个半径长为2的圆,圆心O 到水平直线l 的距离为d ,即OM =d .我们把圆上到直线l 的距离等于1的点的个数记为m .如d =0时,l 为经过圆心O 的一条直线,此时圆上有四个到直线l 的距离等于1的点,即m =4,由此可知: (1)当d =3时,m =________;(2)当m =2时,d 的取值范围是________.【答案】 1;(2)当m =2时,则圆上到直线l 的距离等于1的点的个数记为2, ∴ 直线与圆相交或相切或相离, ∴ 0<d <3,∴ d 的取值范围是0<d <3, 故答案为:0<d <3.【考点】直线与圆的位置关系 【解析】根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案. 【解答】 解:(1)当d =3时, ∵ 3>2,即d >r ,∴ 直线与圆相离,则m =1,(2)当m =2时,则圆上到直线l 的距离等于1的点的个数记为2, ∴ 直线与圆相交或相切或相离, ∴ 0<d <3,∴ d 的取值范围是0<d <3,三、解答题:本大题共7小题,共79分3−(3−π)0−|−3+2|计算:√8【答案】3−(3−π)0−|−3+2|解:√8=2−1−1=0.【考点】实数的运算零指数幂、负整数指数幂【解析】直接利用立方根的性质化简再结合零指数幂的性质以及绝对值的性质化简求出答案.【解答】3−(3−π)0−|−3+2|解:√8=2−1−1=0.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了________名学生,a=________%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为________度;(4)若该校有3000名学生,请估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【答案】50,30(2)补全条形统计图如图所示:36×100%=60%,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为10+2050则估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).【考点】条形统计图扇形统计图用样本估计总体【解析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)样本容量为20÷40%=50(人),无所谓态度的人数为50−10−20−5=15,×100%=30%;则a=1550故答案为:50;30.(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为5×100%=10%,50持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360∘=36∘.故答案为:36.(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为10+2050×100%=60%,则估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60∘,AB=4,求平行四边形ABCD的面积.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD // BC,AB // CD,AB=CD,∴∠ABC+∠DCB=180∘,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60∘,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF=√AB2−AF2=√42−22=2√3,∵AD // BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,{∠D=∠ECF,∠DAF=∠E,AF=EF,∴△ADF≅△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=12AE⋅BF=12×4×2√3=4√3.【考点】三角形的面积平行四边形的性质勾股定理等边三角形的性质角平分线的性质全等三角形的判定全等三角形的性质平行线的性质【解析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≅△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=12AE⋅BF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD // BC,AB // CD,AB=CD,∴∠ABC+∠DCB=180∘,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60∘,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF=√AB2−AF2=√42−22=2√3,∵AD // BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,{∠D=∠ECF,∠DAF=∠E,AF=EF,∴△ADF≅△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=12AE⋅BF=12×4×2√3=4√3.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?【答案】解:(1)设该种商品每次降价的百分率为x,根据题意,得:400(1−x)2=324,解得:x=0.1=10%或x=1.9(不合题意,舍去),答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,根据题意得:[400(1−10%)−300]m+(324−300)(100−m)≥3120解得:m≥20,答:第一次降价后至少要售出该种商品20件.【考点】一元二次方程的应用一元一次不等式的实际应用【解析】此题暂无解析【解答】解:(1)设该种商品每次降价的百分率为x,根据题意,得:400(1−x)2=324,解得:x=0.1=10%或x=1.9(不合题意,舍去),答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,根据题意得:[400(1−10%)−300]m+(324−300)(100−m)≥3120解得:m≥20,答:第一次降价后至少要售出该种商品20件.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.【答案】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90∘,∵AB是⊙O的直径,∴∠ACB=90∘,∴∠ACO+∠BCO=90∘,∠BCD=90∘,∵E是BD中点,∴CE=12BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90∘,即∠OCE=90∘,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90∘,∴AB=√AC2+BC2=√42+22=2√5,∵tan A=BDAB =BCAC=24=12,∴BD=12AB=√5,∴CE=12BD=√52.【考点】切线的判定与性质【解析】(1)连接OC,由弦切角定理和切线的性质得出∠CBE=∠A,∠ABD=90∘,由圆周角定理得出∠ACB=90∘,得出∠ACO+∠BCO=90∘,∠BCD=90∘,由直角三角形斜边上的中线性质得出CE=12BD=BE,得出∠BCE=∠CBE=∠A,证出∠ACO=∠BCE,得出∠BCE+∠BCO=90∘,得出CE⊥OC,即可得出结论;(2)由勾股定理求出AB,再由三角函数得出tan A=BDAB =BCAC=12,求出BD=12AB=√5,即可得出CE的长.【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90∘,∵AB是⊙O的直径,∴∠ACB=90∘,∴∠ACO+∠BCO=90∘,∠BCD=90∘,∵E是BD中点,∴CE=12BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90∘,即∠OCE=90∘,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90∘,∴AB=√AC2+BC2=√42+22=2√5,∵tan A=BDAB =BCAC=24=12,∴BD=12AB=√5,∴CE=12BD=√52.已知抛物线y=ax2+bx−3经过(−1, 0),(3, 0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为3√102?若存在,求出k的值;若不存在,请说明理由.【答案】解:(1)令抛物线y=ax2+bx−3中x=0,则y=−3,∴点C的坐标为(0, −3).∵抛物线y=ax2+bx−3经过(−1, 0),(3, 0)两点,∴有{0=a−b−3,0=9a+3b−3,解得:{a=1,b=−2,∴此抛物线的解析式为y=x2−2x−3.(2)将y=kx代入y=x2−2x−3中得:kx=x2−2x−3,整理得:x2−(2+k)x−3=0,∴x A+x B=2+k,x A⋅x B=−3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=−2.当k=−2时,x2−(2+k)x−3=x2−3=0,解得:x A=−√3,x B=√3.∴y A=−2x A=2√3,y B=−2x B=−2√3.故当原点O为线段AB的中点时,k的值为−2,点A的坐标为(−√3, 2√3),点B的坐标为(√3, −2√3).(3)假设存在.由(2)可知:x A+x B=2+k,x A⋅x B=−3,S△ABC=12OC⋅|x A−x B|=12×3×√(x A+x B)2−4x A⋅x B=3√102,∴(2+k)2−4×(−3)=10,即(2+k)2+2=0.∵(2+k)2非负,无解.故假设不成立.所以不存在实数k使得△ABC的面积为3√102.【考点】二次函数综合题【解析】(1)令抛物线解析式中x=0求出y值即可得出C点的坐标,有点(−1, 0)、(3, 0)利用待定系数法即可求出抛物线的解析式;(2)将正比例函数解析式代入抛物线解析式中,找出关于x的一元二次方程,根据根与系数的关系即可得出“x A+x B=2+k,x A⋅x B=−3”,结合点O为线段AB的中点即可得出x A+x B=2+k=0,由此得出k的值,将k的值代入一元二次方程中求出x A、x B,在代入一次函数解析式中即可得出点A、B的坐标;(3)假设存在,利用三角形的面积公式以及(2)中得到的“x A+x B=2+k,x A⋅x B =−3”,即可得出关于k的一元二次方程,结合方程无解即可得出假设不成了,从而得出不存在满足题意的k值.【解答】解:(1)令抛物线y=ax2+bx−3中x=0,则y=−3,∴点C的坐标为(0, −3).∵抛物线y=ax2+bx−3经过(−1, 0),(3, 0)两点,∴有{0=a−b−3,0=9a+3b−3,解得:{a=1,b=−2,∴此抛物线的解析式为y=x2−2x−3.(2)将y=kx代入y=x2−2x−3中得:kx=x2−2x−3,整理得:x2−(2+k)x−3=0,∴x A+x B=2+k,x A⋅x B=−3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=−2.当k=−2时,x2−(2+k)x−3=x2−3=0,解得:x A=−√3,x B=√3.∴y A=−2x A=2√3,y B=−2x B=−2√3.故当原点O为线段AB的中点时,k的值为−2,点A的坐标为(−√3, 2√3),点B的坐标为(√3, −2√3).(3)假设存在.由(2)可知:x A+x B=2+k,x A⋅x B=−3,S△ABC=12OC⋅|x A−x B|=12×3×√(x A+x B)2−4x A⋅x B=3√102,∴(2+k)2−4×(−3)=10,即(2+k)2+2=0.∵(2+k)2非负,无解.故假设不成立.所以不存在实数k使得△ABC的面积为3√102.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME // BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC 上的一点,连接ME,ME与AD交于点O,且S△MOA=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD // AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)【答案】解:(1)如图一中,∵AB=AC=BC=2,AD⊥BC,∴BD=DC,∴S△ABD=S△ADC,∴线段AD是△ABC的面径.∵∠B=60∘,∴sin60∘=ADAB,∴√32=AD2,∴AD=√3.(2)如图二中,∵ME // BC,且ME是△ABC的一条面径,∴△AME∽△ABC,S△AMES△ABC =12,∴MEBC =2,∴ME=√2.(3)如图三中,作MN⊥AE于N,DF⊥AE于F.①∵S△MOA=S△DOE,∴S△ABD=S△BME,∵BD=DC,∴S△ABD=12S△ABC,∴S△EMB=12S△ABC,∴ME是△ABC的面径;②∵S△MOA=S△DOE,∴S△AEM=S△AED,∴12⋅AE⋅MN=12⋅AE⋅DF,∴MN=DF,∵MN // DF,∴四边形MNFD是平行四边形,∴DM // AE.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,∵DM // AE,∴BMBA =BDBE,∴x2=1y,∴xy=2,在RT△MBF中,∵∠MFB=90∘,∠B=60∘,BM=x,∴BF=12x,MF=√32x,∴ME=√MF2+EF2=√(√32x)2+(y−12x)2=√x2+y2−xy≥√2xy−xy,∴ME≥√2,∵ME是等边三角形面径,AD也是等边三角形面积径,∴等边三角形ABC的面径长l的取值范围√2≤l≤√3.【考点】圆的综合题等边三角形的判定方法【解析】(1)根据等腰三角形三线合一即可证明,利用直角三角形30∘性质,即可求出AD.(2)根据相似三角形性质面积比等于相似比的平方,即可解决问题.(3)如图三中,作MN⊥AE于N,DF⊥AE于F,先证明MN=DF,推出四边形MNFD是平行四边形即可.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,求出EM,利用不等式性质证明ME≥√2即可解决问题.【解答】解:(1)如图一中,∵AB=AC=BC=2,AD⊥BC,∴BD=DC,∴S△ABD=S△ADC,∴线段AD是△ABC的面径.∵∠B=60∘,∴sin60∘=ADAB,∴√32=AD2,∴AD=√3.(2)如图二中,∵ME // BC,且ME是△ABC的一条面径,∴△AME∽△ABC,S△AMES△ABC =12,∴MEBC =1√2,∴ME=√2.(3)如图三中,作MN⊥AE于N,DF⊥AE于F.①∵S△MOA=S△DOE,∴S△ABD=S△BME,∵BD=DC,∴S△ABD=12S△ABC,∴S△EMB=12S△ABC,∴ME是△ABC的面径;②∵S△MOA=S△DOE,∴S△AEM=S△AED,∴12⋅AE⋅MN=12⋅AE⋅DF,∴MN=DF,∵MN // DF,∴四边形MNFD是平行四边形,∴DM // AE.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,∵DM // AE,∴BMBA =BDBE,∴x2=1y,∴xy=2,在RT△MBF中,∵∠MFB=90∘,∠B=60∘,BM=x,∴BF=12x,MF=√32x,∴ME=√MF2+EF2=(√32x)−12x)=√x2+y2−xy≥√2xy−xy,∴ME≥√2,∵ME是等边三角形面径,AD也是等边三角形面积径,∴等边三角形ABC的面径长l的取值范围√2≤l≤√3.。
【初中数学】湖南省永州市2016年中考数学模拟试卷(解析版) 人教版
湖南省永州市2016年中考数学模拟试卷一、选择题(本大题共有10小题,每小题4分,共40分,每小题只有一个正确的答案,请把答案填在答题卡中对应题号的表格内)1.|﹣2|的值等于()A.2 B.﹣C.D.﹣2【考点】绝对值.【分析】直接根据绝对值的意义求解.【解答】解:|﹣2|=2.故选A.2.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()A.18°B.36°C.45°D.54°【考点】平行线的性质.【分析】根据角平分线的定义求出∠BCD,再根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∠DCE=18°,∴∠BCD=2∠DCE=2×18°=36°,∵AB∥CD,∴∠B=∠BCD=36°.故选B.3.不等式2x﹣3<1的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先解不等式得到x<2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D选项正确.【解答】解:2x<4,解得x<2,用数轴表示为:.故选D.4.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.5.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1x2的值是()A.﹣2 B.﹣3 C.2 D.3【考点】根与系数的关系.【分析】由“x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=”可得x1x2=,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,∴x1x2===﹣3.故选B.6.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据反比例函数的性质可得:函数的图象在第一三象限,由一次函数与系数的关系可得函数y=x﹣1的图象在第一三四象限,进而选出答案.【解答】解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,故选:C.7.下列计算正确的是()A.a3÷a2=a3•a﹣2 B.C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式;负整数指数幂;二次根式的性质与化简.【分析】根据合并同类项的法则、同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a3÷a2=a3•a﹣2,计算正确,故本选项正确;B、=|a|,计算错误,故本选项错误;C、2a2+a2=3a2,计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,计算错误,故本选项错误;故选A.8.为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:169141112101681719则这组数据的中位数和极差分别是()A.13,16 B.14,11 C.12,11 D.13,11【考点】极差;中位数.【分析】根据中位数及极差的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选D.9.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.10.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣1【考点】一次函数图象上点的坐标特征.【分析】利用待定系数法代入正比例函数y=﹣x可得m的值.【解答】解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在答题卡中对应题号后的横线上)11.我国南海面积约为350万平方千米,这个数用科学记数法表示为 3.5×106平方千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将350万用科学记数法表示为:3.5×106.故答案为3.5×10612.计算: +(﹣1)﹣1+(﹣2)0=2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.【解答】解:原式=2﹣1+1=2.故答案为:2.人成绩的平均数为 3.1.【分析】利用加权平均数的计算方法列式计算即可得解.【解答】解:×(5×3+4×1+3×2+2×2+1×2)=×(15+4+6+4+2)=×31=3.1.所以,这10人成绩的平均数为3.1.故答案为:3.1.14.如图是某个几何体的三视图,该几何体是三棱柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故答案为:三棱柱.15.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是18°.【考点】等腰三角形的性质.【分析】根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故答案为:18°.16.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1.【考点】抛物线与x轴的交点.【分析】令y=0,则关于x的方程kx2+2x﹣1=0只有一个根,所以k=0或根的判别式△=0,借助于方程可以求得实数k的值.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.三、解答题(本大题共有9小题,共86分,请把解答过程或证明步骤写在答题卡中对应题号内)17.解方程:=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6+6=x+3,解得:x=3,经检验x=3是增根,原方程无解.18.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】利用等腰三角形的性质得到∠B=∠C,然后证明△ABD≌△ACE即可证得结论.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.19.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共3吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?【考点】条形统计图;扇形统计图.【分析】(1)根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;(2)求得C组所占的百分比,即可求得C组的垃圾总量;(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可;【解答】解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.20.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)根据题意画出△ABC关于y轴对称的△A1B1C1即可;(2)根据题意画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中扫过的面积为扇形BCC2的面积,求出即可.【解答】解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,线段BC旋转过程中所扫过得面积S==.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用-方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=.又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)解:如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=CD=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE==.售价如表所示:(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【解答】解:(1)设商场应购进A型台灯x盏,则B型台灯为盏,根据题意得,30x+50=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.24.如图,△ABC 内接于⊙O ,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线;(2)求证:AC 2=CO •CP ;(3)若PD=,求⊙O 的直径.【考点】相似三角形的判定与性质;切线的判定.【分析】(1)连结OA 、AD ,如图,利用圆周角定理得到∠CAD=90°,∠ADC=∠B=60°,则∠ACD=30°,再利用AP=AC 得到∠P=∠ACD=30°,接着根据圆周角定理得∠AOD=2∠ACD=60°,然后根据三角形内角和定理可计算出∠OAP=90°,于是根据切线的判定定理可判断AP 与⊙O 相切;(2)通过△ACO ∽△PCA ,得到=,由于AC=AP 于是得到结论;(3)连接AD ,证得△AOD 是等边三角形,得到∠OAD=60°,求得AD=PD=,得到OD=,即可得到结论.【解答】(1)证明:连结OA 、AD ,如图,∵CD 为直径,∴∠CAD=90°,∵∠ADC=∠B=60°,∴∠ACD=30°,∵AP=AC ,∴∠P=∠ACD=30°,∵∠AOD=2∠ACD=60°,∴∠OAP=180°﹣60°﹣30°=90°,∴OA ⊥PA ,∴AP 与⊙O 相切;(2)证明:∵∠P=∠ACP=∠CAO=30°,∴△ACO ∽△PCA ,∴=,∵AC=AP∴AC 2=CO .CP ;(3)解:连接AD ,∵AO=DO ,∠ADC=60°,∴△AOD 是等边三角形,∴∠OAD=60°,∴∠PAD=30°,∴∠P=∠PAD,∴AD=PD=,∴OD=,∴⊙O的直径CD=2.25.已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G 有公共点时,求n的取值范围.【考点】二次函数综合题;解一元一次方程;根的判别式;一次函数图象上点的坐标特征;平移的性质.【分析】(1)把x=0和x=2代入得出关于t的方程,求出t即可;(2)把A的坐标代入抛物线,即可求出m,把A的坐标代入直线,即可求出k;(3)求出点B、C间的部分图象的解析式是y=﹣(x﹣3)(x+1),得出抛物线平移后得出的图象G的解析式是y=﹣(x﹣3+n)(x+1+n),﹣n﹣1≤x≤3﹣n,直线平移后的解析式是y=4x+6+n,若两图象有一个交点时,得出方程4x+6+n=﹣(x﹣3+n)(x+1+n)有两个相等的实数解,求出判别式△=6n=0,求出的n的值与已知n>0相矛盾,得出平移后的直线与抛物线有两个公共点,设两个临界的交点为(﹣n﹣1,0),(3﹣n,0),代入直线的解析式,求出n的值,即可得出答案.【解答】(1)解:∵二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等,∴代入得:0+0+=4(t+1)+4(t+2)+,解得:t=﹣,∴y=(﹣+1)x2+2(﹣+2)x+=﹣x2+x+,∴二次函数的解析式是y=﹣x2+x+.(2)解:把A(﹣3,m)代入y=﹣x2+x+得:m=﹣×(﹣3)2﹣3+=﹣6,即A(﹣3,﹣6),代入y=kx+6得:﹣6=﹣3k+6,解得:k=4,即m=﹣6,k=4.(3)解:由题意可知,点B、C间的部分图象的解析式是y=﹣x2+x+=﹣(x2﹣2x﹣3)=﹣(x﹣3)(x+1),﹣1≤x≤3,则抛物线平移后得出的图象G的解析式是y=﹣(x﹣3+n)(x+1+n),﹣n﹣1≤x≤3﹣n,此时直线平移后的解析式是y=4x+6+n,如果平移后的直线与平移后的二次函数相切,则方程4x+6+n=﹣(x﹣3+n)(x+1+n)有两个相等的实数解,即﹣x2﹣(n+3)x﹣n2﹣=0有两个相等的实数解,判别式△=[﹣(n+3)]2﹣4×(﹣)×(﹣n2﹣)=6n=0,即n=0,∵与已知n>0相矛盾,∴平移后的直线与平移后的抛物线不相切,∴结合图象可知,如果平移后的直线与抛物线有公共点,则两个临界的交点为(﹣n﹣1,0),(3﹣n,0),则0=4(﹣n﹣1)+6+n,n=,0=4(3﹣n)+6+n,n=6,即n的取值范围是:≤n≤6.。
2016年初中毕业生学业模拟考试数学试卷
2016年初中毕业生学业模拟考试数学试卷2016年初中毕业生学业考试数学模拟参考答案一、1、D 2、B 3、B 4、A 5、A 6、B 7、C 8、B 9、D 10、B二、11、2)1(+a b 12、21≠≥x x 且 13、2 14、125 15、212 16、π2 三、17、解:①+②:153=x5=x ……………3分把5=x 代入①得:7352=+⨯y1-=y ……………5分∴方程组的解为⎩⎨⎧-==15y x …………………6分18、解法一;2222222b a ab b a b a Q P -+-+=+=))(()(2b a b a b a -++……………4分 =ba b a -+…………………5分 当52323,2,3=-+===原式时b a …………………6分 解法二;2222222b a ab b a b a Q P ---+=-=))(()(2b a b a b a -+-…………………4分 =ba b a +-…………………5分 当512323,2,3=+-===原式时b a …………………6分 解法三;2222222b a b a b a ab P Q -+--=-=))(()(2b a b a b a -+--………………4分 =ba b a +-…………………5分 当512332,2,3-=+-===原式时b a ………………6分 19、(1)作图(略)……………2分(2)方法一:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC .…………………4分∵AE=CF .∴AD-AE=BC-CF ,即DE=BF -…………5分∴四边形BFDE 是平行四边形.…………………6分方法二:证明:(1)∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB=CD .在△ABE 和△CDF 中,∵AB=CD ,∠A=∠C ,AE=CF ,∴△ABE ≌△CDF(SAS).…………4分∴∠AEB=∠CFD∵四边形ABCD 是平行四边形∴ED ∥BF∴∠AEB=∠CFD=∠EDF∴BE ∥FD ……………………5分∴四边形BFDE 是平行四边形.………………6分四、20、解:(1)P(得到负数)=31 ……………3分 (2)……………6分P(两人“不谋而合”)=3193=………………7分 21、解:(1)设4、5两月平均每月降价的百分率为x ,根据题意,得l4000(1-x )2=12600.……………2分化简,得(1-x )2=O.9,解得1x ≈0.05,2x ≈1.95(不合题意,舍去).…………3分 因此,4、5两月平均每月降低的百分率约为5%.………4分(2)如果房价按此降价的百分率继续回落,预测7月份该市的商品房成交均价为l2600(1-x )2=12600×0.9=11340>10000,…………6分因此可知,7月份该市的商品房成交均价不会跌破l0000元/2m ……7分22、(1)在梯形ABCD 中,AD ∥BC , ∴∠DAF=∠ACE .……………1分∵∠DFC=∠AEB ,∠DFC=∠DAF+∠ADF ,∠AEB=∠ACE+∠CAE .∴∠ADF=∠CAE ,………………2分∴△ADF∽△CAE………………3分(2)∵ AD=8,DC=6,∠ADC=900,∴AC=10.……………4分又∵F 是AC 的中点,∴AF=5.∵△ADF∽△CAE,∴,CE CA AF AD =∴,1058CE =∴425=CE ……………5分E 是BC 的中点,∴ BC=225……………6分 ∴直角梯形ABCD 的面积=21236)8225(21=⨯+⨯………………7分 五、23.(1)根据题意,当0=x 时,5=y ;当1=x 时,2=y ,所以⎩⎨⎧++==c b c 125………………1分 解得⎩⎨⎧=-=54c b …………………2分所以,该二次函数关系式为542+-=x x y ……………3分(2)因为1)2(5422+-=+-=x x x y ,………………4分所以当2=x 时,y 有最小值,最小值是1.…………5分(3)因为A(m ,1y ),B(2,1y m +)两点都在函数542+-=x x y 的图象上,所以,.225)1(4)1(,5422221+-=++-+=+-=m m m m y m m y , .32)54()22(2212-=+--+-=-m m m m m y y …………6分所以,当032<-m ,即23<m 时;;21y y >……………………7分 当,032=-m 即23=m 时,;21y y =……………………8分 当032>-m ,即23>m 时,.21y y <…………………9分 24、(1) ∵AB 是⊙O 的直径,AP 是切线,∴∠BAP=900.…………………………………1分在Rt△PAB 中,AB=2,∠P=300,∴BP=2AB=2×2=4.………………………2分由勾股定理,得AP=32242222=-=-AB BP ………………3分(2)如图,连接OC 、AC .∵AB 是⊙O 的直径,∴∠BCA=900,∠ACP=900.……………4分在Rt△APC 中.D 为AP 的中点,∴CD=21AP=AD .……………5分 ∴∠DAC=∠DCA .……………6分又0C=OA .∴∠OAC=∠OCA .…………………7分∵∠0AC+∠DAC=∠PAB=900,∴∠0CA+∠DCA=∠0CD=900.即OC ⊥CD .…………8分∴直线CD 是⊙O 的切线.……………………9分25、(1)(4,O)、(0,3).………………2分(2)当O<t ≤4时,OM=t . 由△OMN∽△OAC,得OCON OA OM = ∴ON=,43t 28321t ON OM S =⨯⨯=…………………4分 当4<t <8时,如图,直线MN 交x 轴于D 点,∵OD=t ,∴OAD=t -4.由△DAM∽△AOC,可得AM=),4(43-t 而△OND 的高是2,∴S=△0ND 的面积-△OMD 的面积 =.383)4(43213212t t t t t +-=-⨯⨯-⨯⨯……………………6分 (3)有最大值.当0<t ≤4时,∴抛物线S=283t 的开口向上,在对称轴t =0的右边,S 随t 的增大而增大.∴当4=t 时,S 可取到最大值64832=⨯;……………7分 当4<t <8时,∴抛物线S=t t 3832+-的开口向下,它的顶点是(4,6), ∴S<6.…………8分综上所述,当t =4,S 有最大值6.………………9分。
湖南省永州市中考数学一模考试试卷
湖南省永州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(下列各题的四个选项中只有一个符合题意.共12小题,每 (共12题;共33分)1. (3分) (2016七上·淳安期中) 的平方根是()A . 4B . ±4C . 2D . ±22. (3分)下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A . 1B . 2C . 3D . 43. (3分) (2018八上·台州期中) 下列各式中不能用平方差公式计算的是()A .B .C .D .4. (2分)从正面观察如图的两个物体,看到的是()A .B .C .D .5. (3分) (2017九上·深圳期中) 下列命题正确的是()A . 方程x2-4x+2=0无实数根;B . 两条对角线互相垂直且相等的四边形是正方形C . 甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是D . 若是反比例函数,则k的值为2或-1。
6. (3分)(2017·淮安模拟) 体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A . 平均数B . 频数分布C . 中位数D . 方差7. (2分)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为()A . 18海里/小时B . 18海里/小时C . 36海里/小时D . 36海里/小时8. (3分) (2018八上·新疆期末) 某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()A .B .C .D .9. (3分) (2019九上·江汉月考) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A .B .C .D .10. (2分)(2018·温州模拟) 在一个不透明的袋中,装有3个黄球,2个红球和5个白球,它们除颜色外其它都相同,从袋中任意摸出一个球,是红球的概率是()A .B .C .D .11. (3分)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A . 40°B . 100°C . 40°或70°D . 40°或100°12. (3分)(2018·聊城) 如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A . (﹣)B . (﹣)C . (﹣)D . (﹣)二、填空题 (共5题;共15分)13. (3分) (2017八上·十堰期末) 若,,则代数式的值是________.14. (3分) (2017八下·东营期末) 已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为________cm.15. (3分)使分式的值是整数的x(整数)的值有________16. (3分)有一块直角三角形的白铁皮,其两条直角边分别为6cm和8cm,若从这块白铁皮上剪出一块尽可能大的圆铁皮,那么这块圆铁皮的面积为________平方厘米;从余下的白铁皮中再剪出一块尽可能大的圆铁皮,则这块圆铁皮的半径为________ 厘米.17. (3分)将杨辉三角中的每一个数换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形,第9行第2个数是________.三、解答题(本题4个小题,每小题6分,共24分) (共4题;共20分)18. (6分)(2019·巴中) 计算.19. (2分) (2017七下·长春期末) 解不等式:并在数轴上表示出它的解集.20. (6分) (2019八上·金坛月考) 已知一次函数y1=kx+b的图象经过点(0,﹣2),(3,1).(1)求一次函数的表达式,并在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x________时,y1=0;(3)求直线y1=kx+b、直线y2=﹣2x+4与y轴围成的三角形的面积.21. (6分)(2019·崇川模拟) 有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,求小红第二次取出的数字能够整除第一次取出的数字的概率.四、(本题7分) (共2题;共14分)22. (7.0分) (2015八下·杭州期中) 如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.23. (7.0分) (2018七上·铁西期末) 某校为了解七年级学生体育课足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,按A、B、C、D四个等级进行统计,制成了如图所示的不完整的统计图(说明:A等级:8分~10分;B等级:7分~7.9分;C等级:6分~6.9分;D等级:1分~5.9分):根据所给信息,解答以下问题:(1)在扇形统计图中,求等级C对应的扇形圆心角的度数,并补全条形统计图;(2)该校七年级有300名学生,请估计足球运球测试成绩达到A等级的学生有多少人?五、(本题8分) (共1题;共8分)24. (8分) (2020八上·越城期末) 在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.六、(本题10分) (共1题;共10分)25. (10分)(2015·台州) 图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x (min)之间的关系如图2所示.(1)根据图2填表:x(min)036812…y(m)…(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径.七、(本题13分) (共1题;共13分)26. (13.0分) (2019九上·农安期中) 如图,在矩形中,,,点从点出发沿以2 的速度向点终点运动,同时点从点出发沿以1 的速度向点终点运动,它们到达终点后停止运动.(1)几秒后,点、的距离是点、的距离的2倍;(2)几秒后,的面积是24 .参考答案一、选择题(下列各题的四个选项中只有一个符合题意.共12小题,每 (共12题;共33分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共15分)13-1、14-1、15-1、16-1、17-1、三、解答题(本题4个小题,每小题6分,共24分) (共4题;共20分)18-1、19-1、20-1、20-2、20-3、21-1、四、(本题7分) (共2题;共14分)22-1、22-2、23-1、23-2、五、(本题8分) (共1题;共8分) 24-1、24-2、六、(本题10分) (共1题;共10分) 25-1、25-2、25-3、七、(本题13分) (共1题;共13分) 26-1、26-2、。
永州市初三中考数学一模模拟试题【含答案】
永州市初三中考数学一模模拟试题【含答案】一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.参考答案与试题解析一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;故选:A.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.7.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3【分析】根据m=1和m≠1两种情况,根据一次函数的性质、二次函数与方程的关系解答.【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系、灵活运用分情况讨论思想是解题的关键.9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成A→B、B→C、C→O三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:D.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=0.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1﹣4=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)不等式组的解集是﹣1≤x<3.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.【点评】本题考查了扇形的面积公式,正确理解公式是关键.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为或.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP是菱形;②连接BP,当∠ABP=45°时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=P A,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP =120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=P A,∵OA=OP,∴OA=OP=P A,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?【分析】(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意,列出方程即可(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550,求即可(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000,分情况讨论即可.【解答】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意得=,解得x=80,经检验x=80 是原分式方程的解.∴x﹣30=80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得,40≤a≤55.∵a为整数,∴该超市有16 种进货方案(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15∴①当8<m<10 时,即10﹣m>0,w随a的增大而增大,故当a=55 时,所获总利润w最大,即A品牌台灯55 盏、B品牌台灯45 盏;②当m=10 时,w=3000;故当A品牌台灯数量满足40≤a≤55时,利润均为3000元;③当10<m<15 时,即10﹣m<0,w随a的增大而减小,故当a=40 时,所获总利润w最大,即A品牌台灯40 盏、B品牌台灯60 盏【点评】此题为一次函数的应用,渗透了函数与方程的思想,关键是掌握销售利润公式:利润=(售价﹣成本)×数量.22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是AF=BE;②∠ABE=90°;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.【分析】(1)只要证明△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF,∠ABE=a.只要证明△ADF≌△EDB,即可解决问题;(3)分两种情形分别求解即可;【解答】解(1)如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,∴△ADF≌△EDB,∴AF=BE,∴∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,又∵AD=DE,∴△ADF≌△EDB,∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)①如图3﹣1中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴==,∵AB=8,∴AF=2,∴BE=AF=2,②如图3﹣2中,当点D在BC的延长线上时,∵AC∥DF,∴==,∵AB=8,∴AF=4,故答案为2或4.【点评】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.【分析】(1)先把A点坐标代入y=﹣3x+c求出得到B(0,3),然后利用待定系数法求抛物线解析式;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),由于S△P AB=S△POB+S△ABO﹣S△POA,S△P AB=2S△AOB,则S△POB﹣S△POA=S△ABO,讨论:当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,然后分别解方程求出x即可得到对应P 点坐标;(3)解方程﹣x2﹣2x+3=0得C(﹣3,0),则可判断△OBC为等腰直角三角形,讨论:当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),表示出DE=BE=(3﹣t),接着利用tan∠MCB=tan∠ABO得到==,所以3﹣(3﹣t)=(3﹣t),解方程求出t得到D点坐标,接下来利用待定系数法确定直线CD的解析式为y=x+,然后解方程组得此时M点坐标;当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,设N(k,﹣3k+3),证明△ABC∽△ACN,利用相似比求出AN=,再利用两点间的距离公式得到(k﹣1)2+(﹣3k+3)2=()2,解方程求出t得N 点坐标为(﹣,),易得直线CN的解析式为y=2x+6,然后解方程组得此时M点坐标.【解答】解:(1)把A(1,0)代入y=﹣3x+c得﹣3+c=0,解得c=3,则B(0,3),把A(1,0),B(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),S△P AB=S△POB+S△ABO﹣S△POA,∵S△P AB=2S△AOB,∴S△POB﹣S△POA=S△ABO,当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,解得x1=﹣2,x2=3(舍去),此时P点坐标为(﹣2,3);当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,解得x1=﹣2(舍去),x2=3(舍去),综上所述,P点坐标为(﹣2,3);(3)存在.当y=0时,﹣x2﹣2x+3=0,解得x1=﹣1,x2=﹣3,则C(﹣3,0),∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=∠OCB=45°,BC=3,当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),∵∠DBE=45°,∴△BDE为等腰直角三角形,∴DE=BE=BD=(3﹣t),∵∠MCB=∠ABO,∴tan∠MCB=tan∠ABO,∴==,即CE=3DE,∴3﹣(3﹣t)=(3﹣t),解得t=,则D(0,),设直线CD的解析式为y=mx+n,把C(﹣3,0),D(0,)代入得,解得,∴直线CD的解析式为y=x+,解方程组得或,此时M点坐标为(,);当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,AB=,AC设N(k,﹣3k+3),∵∠MCB=∠ABO,∠CBO=∠OCB,∴∠NCA=∠ABC,而∠BAC=∠CAN,∴△ABC∽△ACN,∴AB:AC=AC:AN,即:4=4:AN,∴AN=,∴(k﹣1)2+(﹣3k+3)2=()2,整理得(k﹣1)2=,解得k1=(舍去),k2=﹣,∴N点坐标为(﹣,),易得直线CN的解析式为y=2x+6,解方程组,得或,此时M点坐标为(﹣1,4),综上所述,满足条件的M点的坐标为(,)或(﹣1,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,能把求函数交点问题转化为解方程组的问题;灵活运用锐角三角函数的定义和相似比进行几何计算;理解坐标与图形性质,记住两点间的距离公式.中学数学一模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9 3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°。
永州市中考数学模拟考试试卷
永州市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·乐昌期中) 下列各数:3,0,﹣10,0.58,﹣(﹣6),﹣|﹣9|,(﹣4)2 中,负数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019八上·遵义月考) 下面四个美术字可以看作轴对称图形的是()A .B .C .D .3. (2分) (2019七上·金平期末) 四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学计数法表示为()A . 元B . 元C . 元D . 元4. (2分) (2016九上·杭州期中) 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是的中点,连结AD,AG,CD,则下列结论不一定成立的是()A . CE=DEB . ∠ADG=∠GABC . ∠AGD=∠ADCD . ∠GDC=∠BAD5. (2分)(2013·丽水) 在数0,2,﹣3,﹣1.2中,属于负整数的是()A . 0B . 2C . ﹣3D . ﹣1.26. (2分)(2018·永州) 已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为()A . 45,48B . 44,45C . 45,51D . 52,537. (2分)如图,在△ABC中,D为AB上的一点,过点D作DE∥BC交AC于点E,过点D作DF∥AC交BC 于点F,则下列结论错误的是()A .B .C .D .8. (2分) (2018九下·江都月考) 用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A . (SAS)B . (SSS)C . (AAS)D . (A SA)9. (2分) (2019八上·洪山期末) 某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为()A . + =B . - =C . +1=﹣D . +1= +10. (2分)(2017·苏州模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P以每秒一个单位的速度沿着B﹣C﹣A运动,⊙P始终与AB相切,设点P运动的时间为t,⊙P的面积为y,则y与t之间的函数关系图象大致是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)分解因式:m2﹣10m=________12. (1分) (2017七下·海珠期末) 在,,3.1415926,2π中,其中无理数________个.13. (1分)如果一个n边形的内角和是1440°,那么n=________.14. (1分) (2019九上·济阳期末) 已知扇形的圆心角为,面积为,则扇形的半径是________.15. (1分)(2018·重庆) 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为________.16. (1分) (2020九下·镇江月考) 已知一直立的电线杆在地面上的影长为28m,同时,高为1.4m的测竿在地面上的影长为2.8m,由此可知该电线杆的长为________m.三、解答题 (共9题;共69分)17. (5分)(2017·兰山模拟) 计算:()﹣1﹣(π﹣3.14)0﹣+2sin60°.18. (5分) (2017七下·杭州期中) 解不等式组: .19. (10分) (2017八下·罗平期末) 如图,每个小正方形的边长为1.(1)求四边形ABCD的周长;(2)求证:∠BCD=90°.20. (7分)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.21. (5分) (2017七下·椒江期末) 在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.22. (6分)(2017·宁波模拟) 如图,已知反比例函数y1= 与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式 x+b的解.23. (10分) (2018九下·市中区模拟) 植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?24. (11分)(2018·嘉兴模拟) 某公司对一款新高压锅进行测试,放入足量的水和设定某一模式后,在容积不变的情况下,根据温度t(℃)的变化测出高压锅内的压强p(kpa)的大小.压强在加热前是100kpa,达到最大值后高压锅停止加热。
2016年中考模拟数学试题(附答案)
2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。
中考数学摸拟试卷一含解析1
湖南省永州市零陵区石山脚乡中学2016年中考数学摸拟试卷(一)一、选择题(本题共8个小题,每小题3分,共24分)1.的平方根是()A.B.2 C.±2 D.2.﹣的绝对值是()A.﹣ B.C.﹣2 D.23.如图是由5个大小相同的正方体摆成的立方体图形,它的主视图是图中的()A.B.C.D.4.有30位同学参加数学竞赛,已知他们的分数互不相同,按分数从高到低选15位同学进入下一轮比赛.小明同学知道自己的分数后,还需知道哪个统计量,才能判断自己能否进入下一轮比赛?()A.众数 B.方差 C.中位数D.平均数5.已知△ABC如图所示.则与△ABC相似的是下列图中的()A.B.C.D.6.已知⊙O1的半径为3cm,⊙O2的半径为7cm,若⊙O1和⊙O2的公共点不超过1个,则两圆的圆心距不可能为()A.0 cm B.4 cm C.8 cm D.12 cm7.下列计算中,正确的是()A.2x+3y=5xy B.x•x4=x4C.x8÷x2=x4D.(x2y)3=x6y38.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.若MN与⊙O相切,则C.若∠MON=90°,则MN与⊙O相切D.l1和l2的距离为2二、填空题(本题共8个小题,每小题3分,共24分)9.函数y=,当x=2时没有意义,则a= .10.纳米(nm)是一种长度度量单位,1nm=,用科学记数法表示= m(保留两个有效数字).11.将化成小数,则小数点后第2009位数字为.12.数轴上A、B两点所表示的有理数的和是.13.已知直线y=2x+k和双曲线y=的一个交点的纵坐标为﹣4,则k的值为.14.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是.15.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.16.如图,在等腰直角三角形ABC中,点D为斜边AB的中点,已知扇形GAD,HBD的圆心角∠DAG,∠DBH都等于90°,且AB=2,则图中阴影部分的面积为.三、解答题(72分)17.计算:(π﹣2011)0+(sin60°)﹣1﹣|tan30°﹣|+.18.先化简,再求值:,其中x=2.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).20.有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.21.2011年3月11日下午,日本东北部地区发生里氏9级特大地震和海啸灾害,造成重大人员伤亡和财产损失.强震发生后,中国军队将筹措到位的第一批次援日救灾物资打包成件,其中棉帐篷和毛巾被共320件,毛巾被比棉帐篷多80件.(1)求打包成件的棉帐篷和毛巾被各多少件?(2)现计划租用甲、乙两种飞机共8架,一次性将这批棉帐篷和毛巾被全部运往日本重灾区宫城县.已知甲种飞机最多可装毛巾被40件和棉帐篷10件,乙种飞机最多可装毛巾被和棉帐篷各20件.则安排甲、乙两种飞机时有几种方案?请你帮助设计出来.22.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.23.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D 作DE⊥AC,垂足为E.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为5,∠BAC=60°,求DE的长.24.如图,直角△ABC中,∠C=90°,,,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.(1)求AC、BC的长;(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.25.如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.2016年湖南省永州市零陵区石山脚乡中学中考数学摸拟试卷(一)参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.的平方根是()A.B.2 C.±2 D.【考点】算术平方根;平方根.【分析】首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.【解答】解:∵ =4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选C.【点评】本题主要考查了平方根和算术平方根的定义.解题注意算术平方根和平方根的区别.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.﹣的绝对值是()A.﹣ B.C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:B.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.如图是由5个大小相同的正方体摆成的立方体图形,它的主视图是图中的()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从物体正面看,左边1个正方形,中间2个正方形,右边1个正方形,故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.4.有30位同学参加数学竞赛,已知他们的分数互不相同,按分数从高到低选15位同学进入下一轮比赛.小明同学知道自己的分数后,还需知道哪个统计量,才能判断自己能否进入下一轮比赛?()A.众数 B.方差 C.中位数D.平均数【考点】统计量的选择.【分析】由于选15位同学进入下一轮比赛,共有30位同学参加数学竞赛,故应根据中位数的意义分析.【解答】解:因为15位同学的成绩肯定是30位同学中最高成绩,而且30个不同的分数按从小到大排序后,中位数及中位数之后的共有15个数,故只要知道自己的分数和中位数就可以知道是否进入下一轮比赛了.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.已知△ABC如图所示.则与△ABC相似的是下列图中的()A.B.C.D.【考点】相似三角形的判定.【分析】依据等腰三角形的性质求得∠A的值,然后相似三角形的判定定理回答即可.【解答】解:∵AB=AC,∠B=75°,∴∠B=∠C=75°.∴∠A=30°.依据两边对应成比例且夹角相等的两三角形相似可知答案为C.故选:C.【点评】本题主要考查的是相似三角形的判断、等腰三角形的性质,掌握相似三角形的判断定理是解题的关键.6.已知⊙O1的半径为3cm,⊙O2的半径为7cm,若⊙O1和⊙O2的公共点不超过1个,则两圆的圆心距不可能为()A.0 cm B.4 cm C.8 cm D.12 cm【考点】圆与圆的位置关系.【分析】因为⊙O1和⊙O2的公共点不超过1个,所以两圆的位置关系不可能是相交,所以4<d<10范围内的值是不可能的.【解答】解:∵⊙O1和⊙O2的公共点不超过1个,∴两圆不可能相交,∴圆心距不可能在4<d<10范围,∴将四选项与圆心距范围比较,则C不可能.故选C.【点评】本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.7.下列计算中,正确的是()A.2x+3y=5xy B.x•x4=x4C.x8÷x2=x4D.(x2y)3=x6y3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、2x与3y不是同类项,不能合并,故本选项错误;B、应为x•x4=x1+4=x5,故本选项错误;C、应为x8÷x2=x8﹣2=x6,故本选项错误;D、(x2y)3=x6y3,正确.故选D.【点评】本题考查了同底数幂的乘法和除法,积的乘方的性质,需熟练掌握且区分清楚,才不容易出错.8.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.若MN与⊙O相切,则C.若∠MON=90°,则MN与⊙O相切D.l1和l2的距离为2【考点】直线与圆的位置关系.【分析】根据直线与圆的相关知识,逐一判断.【解答】解:A、平移MN使点B与N重合,∠1=60°,AB=2,解直角三角形得,正确;B、当MN与圆相切时,M,N在AB左侧以及M,N在A,B右侧时,AM=或,错误;C、若∠MON=90°,连接NO并延长交MA于点C,则△AOC≌△BON,故CO=NO,△MON≌△MOC,故MN上的高为1,即O到MN的距离等于半径.正确;D、l1∥l2,两平行线之间的距离为线段AB的长,即直径AB=2,正确.故选B.【点评】本题考查了直线与圆相切的判断方法和性质.二、填空题(本题共8个小题,每小题3分,共24分)9.函数y=,当x=2时没有意义,则a= 1 .【考点】函数自变量的取值范围.【分析】根据分式无意义的条件:分母等于0,即当x=2时,分母x﹣2a=0,即可求得a的值.【解答】解:∵函数y=,当x=2时没有意义,∴2﹣2a=0,解得:a=1.故答案是:1.【点评】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.纳米(nm)是一种长度度量单位,1nm=,用科学记数法表示= ×10﹣10m(保留两个有效数字).【考点】科学记数法与有效数字.【分析】首先将纳米转化为米,然后用科学记数法表示即可.【解答】解:=×==×10﹣10≈×10﹣10故答案为:×10﹣10【点评】本题考查了本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.用科学记数法表示的数,有效数字只与前面a有关,而与n的大小无关.11.将化成小数,则小数点后第2009位数字为0 .【考点】有理数的除法.【分析】先把分数化成小数的形式,发现规律后再用2009除以3即可.【解答】解:将化成小数为:…,∵2009÷3=669…2,∴小数点后第2009位数字为0.【点评】解决此题的关键是把分数化为小数,然后找到规律,再进行除法运算得到答案.12.数轴上A、B两点所表示的有理数的和是﹣1 .【考点】有理数的加法;数轴.【分析】此题借助数轴用数形结合的方法求解.由数轴可知点A表示的数是﹣3,点B表示的数是2,所以A,B两点所表示的有理数的和是﹣1.【解答】解:由数轴得,点A表示的数是﹣3,点B表示的数是2,∴A,B两点所表示的有理数的和是﹣3+2=﹣1.【点评】本题考查数轴的有关知识.借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.13.已知直线y=2x+k和双曲线y=的一个交点的纵坐标为﹣4,则k的值为﹣8 .【考点】反比例函数与一次函数的交点问题.【分析】因为正比例函数y=2x+k的图象与反比例函数y=的图象有一个交点的纵坐标是﹣4,即当y=﹣4时,有相等的x的值,故可将y=﹣4代入两式,令两式x相等,即可求出k 的值.【解答】解:把y=﹣4分别代入解析式y=2x+k得,﹣4=2x+k,x=;把y=﹣4分别代入解析式y=得,﹣4=,x=,于是=﹣,解得k=﹣8.故答案为:﹣8.【点评】解答此题的关键是根据函数图象的交点坐标适合函数的解析式,将交点纵坐标代入,利用横坐标相等的隐含条件建立等式,体现了数形结合的思想.14.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是.【考点】概率公式.【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【解答】解:因为从小明等6名学生中任选1名作为“世博会”志愿者,可能出现的结果有6种,选中小明的可能性有一种,所以小明被选中的概率是.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是76 .【考点】勾股定理.【分析】通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【解答】解:设将AC延长到点D,连接BD,根据题意,得CD=6×2=12,BC=5.∵∠BCD=90°∴BC2+CD2=BD2,即52+122=BD2∴BD=13∴AD+BD=6+13=19∴这个风车的外围周长是19×4=76.故答案为:76.【点评】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.16.如图,在等腰直角三角形ABC中,点D为斜边AB的中点,已知扇形GAD,HBD的圆心角∠DAG,∠DBH都等于90°,且AB=2,则图中阴影部分的面积为﹣.【考点】扇形面积的计算;等腰直角三角形.【分析】分析题干可知,阴影部分面积等于阴影部分扇形面积﹣两个三角形面积.【解答】解:∵AB=2,点D为斜边AB的中点,∴S扇形HBD=××1,S空白三角形=,∴S阴影=2(S扇形HBD﹣S空白三角形)=﹣.故答案为:﹣.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=αr2.三、解答题(72分)17.计算:(π﹣2011)0+(sin60°)﹣1﹣|tan30°﹣|+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、负指数幂、特殊角的锐角三角函数值、立方根、绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1++﹣+2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:,其中x=2.【考点】分式的化简求值.【分析】先化简代数式:利用完全平方公式和提取公因式法分解中的分子和分母,再约为最简形式;然后通分,进行四则运算;最后将x=2代入求值.【解答】解:原式=×﹣=﹣==﹣;当x=2时,原式=一(5分)【点评】本题考查了分式的化简求值.在化简分式时,借用了完全平方差公式和提取公因式法分解因式.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).【考点】弧长的计算;作图-旋转变换.【分析】(1)按图2中的程序旋转一一找到对应点,第一次是绕点A顺时针旋转90°,得到对应点,再绕点B顺时针旋转90°,得到对应点.再绕点C顺时针旋转90°,得到对应点,再绕点D顺时针旋转90°,得到对应点即可.(2)从中可以看出它的路线长是4段弧长,根据弧长公式计算即可.【解答】解:(1)如图;(2)∵,∴点P经过的路径总长为6π.【点评】本题主要考查了旋转变换作图,但本题的题型很新,用程序输入的方法,是一道有创新的题.20.有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)根据题意画树状图,然后根据树状图求得所有等可能的结果,即可求得点Q的所有可能坐标;(2)根据(1)中的树状图,求得点Q落在直线y=x﹣3上的情况,根据概率公式求解即可求得答案.【解答】解:(1)树状图如下:∴Q点的所有可能是Q(1,﹣1);Q(1,2);Q(1,﹣2);Q(2,﹣1);Q(2,2);Q(2,﹣2).(2)∵只有Q(1,﹣2),Q(2,﹣1)在直线y=x﹣3上,∴点Q落在直线y=x﹣3上的概率为: =.【点评】此题考查了列表法或树状图法求概率.注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.21.2011年3月11日下午,日本东北部地区发生里氏9级特大地震和海啸灾害,造成重大人员伤亡和财产损失.强震发生后,中国军队将筹措到位的第一批次援日救灾物资打包成件,其中棉帐篷和毛巾被共320件,毛巾被比棉帐篷多80件.(1)求打包成件的棉帐篷和毛巾被各多少件?(2)现计划租用甲、乙两种飞机共8架,一次性将这批棉帐篷和毛巾被全部运往日本重灾区宫城县.已知甲种飞机最多可装毛巾被40件和棉帐篷10件,乙种飞机最多可装毛巾被和棉帐篷各20件.则安排甲、乙两种飞机时有几种方案?请你帮助设计出来.【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)设打包成件的棉帐篷有x件,则毛巾被有(x+80)件,根据题意建立方程求出其解就可以得出结论;(2)设租用甲种飞机y辆,则租用乙种飞机(8﹣y)辆,根据题意建立不等式组,求出其解,再根据x的取值范围就可以确定租用的方案.【解答】(1)设打包成件的棉帐篷有x件,则毛巾被有(x+80)件,由题意得:x+(x+80)=320,解得:x=120,∴毛巾被有:120+80=200件答:打包成件的毛巾被和棉帐篷分别为200件和120件.(2)设租用甲种飞机y辆,则租用乙种飞机(8﹣y)辆,由题意,得解得:2≤x≤4,∵x为整数,∴x=2或3或4,∴中国军队安排甲、乙两种飞机时有3种方案.设计方案分别为:①甲飞机2辆,乙飞机6辆;②甲飞机3辆,乙飞机5辆;③甲飞机4辆,乙飞机4辆.【点评】本题考查了列一元一次方程及列一元一次不等式组解实际问题的运用,在解答时先根据条件列出方程求出棉帐篷和毛巾被的件数是关键.22.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【考点】菱形的性质;全等三角形的判定;平行四边形的性质.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.23.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D 作DE⊥AC,垂足为E.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为5,∠BAC=60°,求DE的长.【考点】切线的判定与性质;圆周角定理;解直角三角形.【分析】(1)连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠0DE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案;(2)结合(1)中的结论,可以证明△BOD是等边三角形,即可求得CD和BD的长,再根据锐角三角函数即可计算DE的长.【解答】(1)证明:如图,连接OD.∵OA=OB,CD=BD,∴OD∥AC.∴∠0DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.(2)解:∵OD∥AC,∠BAC=60°,∴∠BOD=∠BAC=60°,∠C=∠0DB.∴△BOD是等边三角形.∴∠C=∠ODB=60°,CD=BD=5.∵DE⊥AC,∴DE=CDsin∠C=5×sin60°=.【点评】本题考查了切线的判定与性质,用到的知识点是圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.24.如图,直角△ABC中,∠C=90°,,,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.(1)求AC、BC的长;(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.【考点】二次函数的最值;勾股定理;相似三角形的判定与性质.【分析】(1)在Rt△ABC中,根据∠B的正弦值及斜边AB的长,可求出AC的长,进而可由勾股定理求得BC的长;(2)由于PD∥AB,易证得△CPD∽△CBA,根据相似三角形得出的成比例线段,可求出CD 的表达式,也就求出AD的表达式,进而可以AD为底、PC为高得出△ADP的面积,即可求出关于y、x的函数关系式,根据所得函数的性质,可求出y的最大值及对应的x的值.【解答】解:(1)在Rt△ABC中,,,得,∴AC=2,根据勾股定理得:BC=4;(3分)(2)∵PD∥AB,∴△ABC∽△DPC,∴;设PC=x,则,,∴∴当x=2时,y的最大值是1.(8分)【点评】此题主要考查了解直角三角形、相似三角形的判定和性质、二次函数的应用等知识.25.如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.【考点】二次函数综合题.【分析】(1)根据图形,易得点A、B、C、D的坐标;进而可得抛物线上三点D、M、N的坐标,将其代入解析式,求可得解析式;(2)有(1)的解析式,可得顶点坐标,即OE、DE的长,易得△BFD∽△EOD,再由EF=FD ﹣DE的关系代入数值可得答案;(3)首先根据CD的坐标求出CD的直线方程,在根据切线的性质,可求得P的坐标,进而可得P是否在抛物线上.【解答】解:(1)∵圆心O在坐标原点,圆O的半径为1∴点A、B、C、D的坐标分别为A(﹣1,0)、B(0,﹣1)、C(1,0)、D(0,1)∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C∴M(﹣1,﹣1)、N(1,1)∵点D、M、N在抛物线上,将D(0,1)、M(﹣1,﹣1)、N(1,1)的坐标代入y=ax2+bx+c,得:解之,得:∴抛物线的解析式为y=﹣x2+x+1.(2)∵y=﹣x2+x+1=﹣(x﹣)2+∴抛物线的对称轴为∴OE=,DE=连接BF,则∠BFD=90°∴△BFD∽△EOD∴又DE=,OD=1,DB=2∴FD=∴EF=FD﹣DE=.(3)点P在抛物线上.设过D、C点的直线为y=kx+b将点C(1,0)、D(0,1)的坐标代入y=kx+b,得k=﹣1,b=1∴直线DC为y=﹣x+1过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=﹣1将y=﹣1代入y=﹣x+1,得x=2∴P点的坐标为(2,﹣1)当x=2时,y=﹣x2+x+1=﹣22+2+1=﹣1所以,P点在抛物线y=﹣x2+x+1上.【点评】本题考查学生将二次函数的图象与圆的位置关系,要求学生将图象与解析式互相结合分析、处理问题.。
【3套试卷】永州市中考第一次模拟考试数学精选含答案
中考一模数学试题及答案一.选择题(共10小题)1.﹣5的相反数是()A.5B.C.﹣5D.2.浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A.0.1018×105B.1.018×105C.0.1018×106D.1.018×1063.下列运算正确的是()A.x2+x3=x6B.(x3)2=x6C.2x+3y=5xy D.x6÷x3=x24.如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是()A.B.C.D.5.不等式3x<2(x+2)的解是()A.x>2B.x<2C.x>4D.x<46.作业时间是中小学教育质量综合评价指标的考查要点之一,某班主任随机抽查了本班6位学生每天课外作业时间分别是(单位:分):75,85,95,60,45,120,则这组数据的中位数是()A.60B.75C.80D.857.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.B.C.D.8.如图,已知梯形ABCD中BC∥AD,AB=BC=CD=AD,点A与原点重合,点D(4,0)在x轴上,则点C的坐标是()A.(3,2)B.(3,)C.(,2)D.(2,3)9.如图:AB是所对的弦,AB的中垂线CD分别交于C,交AB于D,AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,交AB于H,下列结论中不正确的是()A.=B.=C.=D.EF=GH10.如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AB=6cm;②直线NH的解析式为y=﹣5t+90;③△QBP不可能与△ABE相似;④当∠PBQ=30°时,t=13秒.其中正确的结论个数是()A.1B.2C.3D.4二.填空题(共6小题)11.因式分解:a3﹣9ab2=.12.如图,△ABC中,AB=BC=5,AC=8,将△ABC绕点C顺时针方向旋转60°得到△DEC,连接BD,则BD的长度为.13.如图,将△ABC绕点A按逆时针方向旋转至△AB′C′(B与B′,C与C′分别是对应顶点),使AB′⊥BC,B′C′分别交AC,BC于点D,E,已知AB=AC=5,BC=6,则DE的长为.14.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交于点D,连接BD,当BD⊥x轴时,k的值是.15.小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要分钟才能到家.16.现有一张五边形的钢板ABCDE如图所示,∠A=∠B=∠C=90°,现在AB边上取一点P,分别以AP,BP为边各剪下一个正方形钢板模型,所剪得的两个正方形面积和的最大值为m2.三.解答题(共7小题)17.计算:.18.某校允许学生在同个系列的校服里选择不同款式,新生入学后,学校就新生对校服款式选择情况作了抽样调查,调查分为款式A、B、C、D四种,每位新生只能选择一种款式,现将调查统计结果制成了如下两幅不完整的统计图,请结合这两幅统计图,回答下列问题:(1)在本次调查中,一共抽取了多少名新生,并补全条形统计图;(2)若该校有847名新生,服装厂已生产了270套B款式的校服,请你按相关统计知识判断是否还要继续生产B款式的校服.19.在平面直角坐标系中,关于x的一次函数的图象经过点M(4,7),且平行于直线y=2x.(1)求该一次函数表达式.(2)若点N(a,b)是该一次函数图象上的点,且点N在直线y=3x+2的下方,求a的取值范围.20.如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.21.我区中小学生广播操比赛中,无人机对此次比赛的全过程进行了航拍,如图,某一时刻,无人机刚好飞至小琪头顶上方,而站在离小琪35米远的小珺仰望无人机,仰角为36°,已知小珺的眼睛离地面的距离AB为1.63m,那么此时无人机离地面大约有多高?(结果精确到0.1m)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)22.已知:二次函数y=ax2+bx满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(﹣x+5)2+b(﹣x+5)=a(x﹣3)2+b(x﹣3)都成立.(1)求二次函数y=ax2+bx的解析式;(2)若当﹣2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.23.如图,∠BAO=90°,AB=8,动点P在射线AO上,以P A为半径的半圆P交射线AO 于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连结BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE=时,直接写出△CDP与△BDP面积比.参考答案与试题解析一.选择题(共10小题)1.﹣5的相反数是()A.5B.C.﹣5D.【分析】只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.【解答】解:﹣5的相反数是5.故选:A.2.浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A.0.1018×105B.1.018×105C.0.1018×106D.1.018×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:101800用科学记数法表示为:1.018×105,故选:B.3.下列运算正确的是()A.x2+x3=x6B.(x3)2=x6C.2x+3y=5xy D.x6÷x3=x2【分析】根据同类项、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、x2与x3不是同类项,不能合并,错误;B、(x3)2=x6,正确;C、2x与3y不是同类项,不能合并,错误;D、x6÷x3=x3,错误;故选:B.4.如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是()A.B.C.D.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,进而得出答案.【解答】解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一列两行都只有一个正方体,所以此几何体如图所示:.故选:B.5.不等式3x<2(x+2)的解是()A.x>2B.x<2C.x>4D.x<4【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:3x<2(x+2),3x<2x+4,3x﹣2x<4,x<4,故选:D.6.作业时间是中小学教育质量综合评价指标的考查要点之一,某班主任随机抽查了本班6位学生每天课外作业时间分别是(单位:分):75,85,95,60,45,120,则这组数据的中位数是()A.60B.75C.80D.85【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:45、60、75、85、95、120,处在第3、4位两个数的平均数为中位数.所以本题这组数据的中位数是(75+85)÷2=80.故选:C.7.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.B.C.D.【分析】让是负数的卡片数除以总卡片数即为所求的概率,即可选出.【解答】解:∵五张卡片分别标有0,﹣1,﹣2,1,3五个数,数字为负数的卡片有2张,∴从中随机抽取一张卡片数字为负数的概率为.故选:B.8.如图,已知梯形ABCD中BC∥AD,AB=BC=CD=AD,点A与原点重合,点D(4,0)在x轴上,则点C的坐标是()A.(3,2)B.(3,)C.(,2)D.(2,3)【分析】根据题意得出AF=1,EF=BC=AB=CD=2,进而利用勾股定理得出答案.【解答】解:过点B作BF⊥AD,于点F,过点C作CE⊥AD于点E,∵梯形ABCD中BC∥AD,AB=BC=CD=AD,点A与原点重合,点D(4,0)在x 轴上,∴DE=AF=EF,∴AF=1,EF=BC=AB=CD=2,∴CE==.则点C的坐标是:(3,).故选:B.9.如图:AB是所对的弦,AB的中垂线CD分别交于C,交AB于D,AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,交AB于H,下列结论中不正确的是()A.=B.=C.=D.EF=GH【分析】由AB是所对的弦,AB的中垂线CD分别交于C,交AB于D,AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,根据垂径定理与弦与弧的关系,即可求得答案,注意排除法在解选择题中的应用.【解答】解:连接EG,AE,∵AB的中垂线CD分别交于C,∴=,故A正确;∵AD的中垂线EF分别交于E,交AB于F,DB的中垂线GH分别交于G,∴=,故B正确;∴四边形EFHG是矩形,∴EF=GH,故D正确.∵AE>AF=DF,∴AE>EC,∴>,故C错误.故选:C.10.如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AB=6cm;②直线NH的解析式为y=﹣5t+90;③△QBP不可能与△ABE相似;④当∠PBQ=30°时,t=13秒.其中正确的结论个数是()A.1B.2C.3D.4【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED 的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:①根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=10cm,S△BCE=BC•AB=30,∴AB=6cm,故①正确;②根据10﹣12秒面积不变,可得ED=2,当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=18,故点H的坐标为(18,0),设直线NH的解析式为y=kx+b,将点H(18,0),点N(12,30)代入可得:,解得:.故直线NH的解析式为:y=﹣5t+90,故②正确;③当△ABE与△QBP相似时,点P在DC上,由勾股定理,得AE=8,如图2所示:∵tan∠BPQ=tan∠ABE==,∴=,即=,解得:t=,∵BQ=10cm,PQ=7.5cm,大于DC(DC=6cm),∴不可能;故③正确;④如图2所示,tan∠PBQ===,解得t=,故④错误;综上可得①②③正确.故选:C.二.填空题(共6小题)11.因式分解:a3﹣9ab2=a(a﹣3b)(a+3b).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣9ab2=a(a2﹣9b2)=a(a﹣3b)(a+3b).故答案为:a(a﹣3b)(a+3b).12.如图,△ABC中,AB=BC=5,AC=8,将△ABC绕点C顺时针方向旋转60°得到△DEC,连接BD,则BD的长度为4﹣3.【分析】如图连接AD、延长DB交AC于H.只要证明DH⊥AC,求出DH,BH即可解决问题.【解答】解:如图连接AD、延长DB交AC于H.∵将△ABC绕点C顺时针方向旋转60°得到△DEC,∴AC=DC,∠ACD=60°,∴△ADC是等边三角形,∴AD=DC,在△DBA和△DBC中,,∴△DBA≌△DBC,∴∠ADB=∠CDB,∵DA=DC,∴DH⊥AC,AH=CH=4,易知DH=×8=4,BH===3,∴DB=DH﹣BH=4﹣3,故答案为4﹣3.13.如图,将△ABC绕点A按逆时针方向旋转至△AB′C′(B与B′,C与C′分别是对应顶点),使AB′⊥BC,B′C′分别交AC,BC于点D,E,已知AB=AC=5,BC=6,则DE的长为.【分析】由AB=AC,AB'⊥BC可得BF,AF,B'F的长,根据三角函数可得EF的长,由此CE的长,再由三角函数可得DE的长【解答】解:如图∵AB=AC=5,AB'⊥BC∴BF=CF=BC=3,∠B=∠C∴根据勾股定理得:AF=4∵旋转,∴AB=AB'=5,∠B=∠B'∴B'F=1,∵tan∠B=∴tan∠B'=∴EF=∴EC=FC﹣EF=∵∠B'+∠BEB'=90°,且∠C=∠B=∠B',∠BEB'=∠CED∴∠C+∠DEC=90°∵sin∠C=sin∠B∴∴DE=故答案为:14.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交于点D,连接BD,当BD⊥x轴时,k的值是﹣12.【分析】延长AC交y轴于E,如图,根据菱形的性质得AC∥OB,则AE⊥y轴,再由∠BOC=60°得到∠COE=30°,则根据含30度的直角三角形三边的关系得到CE=OE =3,OC=2CE=6,接着根据菱形的性质得OB=OC=6,∠BOA=30°,于是在Rt△BDO中可计算出BD=OB=2,所以D点坐标为(﹣6,2),然后利用反比例函数图象上点的坐标特征可求出k的值.【解答】解:延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC∥OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,而顶点C的坐标为(m,3),∴OE=3,∴CE=OE=3,∴OC=2CE=6,∵四边形ABOC为菱形,∴OB=OC=6,∠BOA=30°,在Rt△BDO中,∵BD=OB=2,∴D点坐标为(﹣6,2),∵反比例函数y=的图象经过点D,∴k=﹣6×2=﹣12.故答案为﹣12.15.小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要 2.5分钟才能到家.【分析】根据题意和函数图象可以求得小明爸爸刚开始的速度,从而可以起求得当小鹏回到学校时,爸爸还需要的时间.【解答】解:设爸爸从家到与小明相遇的过程中的速度为a米/分钟,由题意和图象可得,,解得,a=120,∴当小鹏回到学校时,爸爸还需要:=2.5(分钟),故答案为:2.5.16.现有一张五边形的钢板ABCDE如图所示,∠A=∠B=∠C=90°,现在AB边上取一点P,分别以AP,BP为边各剪下一个正方形钢板模型,所剪得的两个正方形面积和的最大值为14.5m2.【分析】设PB=x,两个正方形面积和为S,作辅助线,计算以PB为正方形时的最大边长为3.5m,根据面积公式表示S,根据二次函数的增减性可得S的最大值.【解答】解:过D作DF∥BC,过E作EF⊥BC,则EF=DF=2,∴△DEF是等腰直角三角形,设PB=x,两个正方形面积和为S,则NG=DG=x﹣3,∵BM=BC﹣CM=4﹣(x﹣3)=7﹣x,由BM=MN得:7﹣x=x,x=3.5,∴3≤x≤3.5,S=(5﹣x)2+x2=2x2﹣10x+25=2(x﹣2.5)2+12.5,当x=3.5时,S有最大值,S=2×(3.5﹣2.5)2+12.5=14.5,故答案为:14.5.三.解答题(共7小题)17.计算:.【分析】按照实数的运算法则依次计算,注意(﹣1)2008=1,()﹣1=4.【解答】解:原式=1﹣4+4﹣=.18.某校允许学生在同个系列的校服里选择不同款式,新生入学后,学校就新生对校服款式选择情况作了抽样调查,调查分为款式A、B、C、D四种,每位新生只能选择一种款式,现将调查统计结果制成了如下两幅不完整的统计图,请结合这两幅统计图,回答下列问题:(1)在本次调查中,一共抽取了多少名新生,并补全条形统计图;(2)若该校有847名新生,服装厂已生产了270套B款式的校服,请你按相关统计知识判断是否还要继续生产B款式的校服.【分析】(1)根据统计图中的数据可以求得本次调查中抽取的学生数,并计算出选择C 款式的学生,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以计算出该校需要的B款式的校服数然后与270比较即可解答本题.【解答】解:(1)在本次调查中,一共抽取的学生有:20÷40%=50(名),选择C款式的有:50﹣10﹣20﹣5=15(名),补全的条形统计图如右图所示;(2)∵847×40%=338.8>270,∴该服装厂还要继续生产B款式的校服.19.在平面直角坐标系中,关于x的一次函数的图象经过点M(4,7),且平行于直线y=2x.(1)求该一次函数表达式.(2)若点N(a,b)是该一次函数图象上的点,且点N在直线y=3x+2的下方,求a的取值范围.【分析】(1)根据两直线平行可知该一次函数斜率k=2,设出解析式,将点P的坐标代入即可;(2)根据直线上的点N(a,b)在直线y=3x+2的下方可得2a﹣1<3a+2,解不等式可得a的范围.【解答】解:(1)∵一次函数的图象平行于直线y=2x,∴可设该一次函数解析式为y=2x+b,将点M(4,7)代入得:8+b=7,解得:b=﹣1,故一次函数解析式为:y=2x﹣1;(2)∵点N(a,b)是该一次函数图象上的点,∴b=2a﹣1,又∵点N在直线y=3x+2的下方,∴2a﹣1<3a+2,解得:a>﹣3.20.如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.【分析】(1)根据角平分线的性质结合等腰三角形的性质可得出∠CDE=∠ABE,结合对顶角相等,即可证出△AEB∽△CED;(2)根据相似三角形的性质,即可得出=,代入数据即可求出CE的长度.【解答】(1)证明:∵BE是△ABC的角平分线,∴∠ABE=∠CBE.∵BC=CD,∴∠CDE=∠CBE=∠ABE.又∵∠AEB=∠CED,∴△AEB∽△CED;(2)解:∵BC=4,BC=CD,∴CD=4.∵△CED∽△AEB,∴=,即=,∴CE=2.21.我区中小学生广播操比赛中,无人机对此次比赛的全过程进行了航拍,如图,某一时刻,无人机刚好飞至小琪头顶上方,而站在离小琪35米远的小珺仰望无人机,仰角为36°,已知小珺的眼睛离地面的距离AB为1.63m,那么此时无人机离地面大约有多高?(结果精确到0.1m)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)【分析】根据锐角三角函数和题目中的数据可以求得CE的长,由AB=ED,从而可以求得CD的长,本题得以解决.【解答】解:作AE⊥CD于点E,由题意可得,AE=35m,AB=1.63m,∠CAE=36°,∵tan∠CAE=,∴0.73=,得CE=25.55,∴CD=CE+ED=25.55+1.63=27.18≈27.2,即此时无人机离地面大约有27.2m.22.已知:二次函数y=ax2+bx满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(﹣x+5)2+b(﹣x+5)=a(x﹣3)2+b(x﹣3)都成立.(1)求二次函数y=ax2+bx的解析式;(2)若当﹣2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.【分析】(1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出二次函数解析式;(2)进行分类讨论,分别求出t和r的值.【解答】解:(1)y=ax2+bx与y=x联立得:ax2+(b﹣1)x=0,∵抛物线y=ax2+bx与直线y=x只有一个交点,∴△=0,∴(b﹣1)2=0,解得b=1.∵对称轴为:=1,∴﹣=1,∴a=﹣.∴二次函数解析式为:y=﹣x2+x.(2)因为y=﹣x2+x=﹣(x﹣1)2+,所以顶点坐标为(1,).当﹣2<r<1,且r≠0时,当x=r时,y最大=﹣r2+r=1.5r,解得r=﹣1,当x=﹣2时,y最小=﹣4,所以,这时t=﹣4,r=﹣1.当r≥1时,y最大=,所以1.5r=,所以r=,不符合题意,舍去,综上所述,t=﹣4,r=﹣1.23.如图,∠BAO=90°,AB=8,动点P在射线AO上,以P A为半径的半圆P交射线AO 于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连结BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE=时,直接写出△CDP与△BDP面积比.【分析】(1)由P A=PC=PD知∠PDC=∠PCD,再由CD∥BP知∠BP A=∠PCD、∠BPD=∠PDC,据此可得∠BP A=∠BPD,证△BAP≌△BDP即可得;(2)易知四边形ABEF是矩形,设BE=AF=x,可得PF=x﹣4,证△BDE≌△EFP得PE=BE=x,在Rt△PFE中,由PF2+FE2=PE2,列方程求解可得答案;(3)①分点C在AF的左侧和右侧两种情况求解:左侧时由AF=3CF知CF=AP=PC =m、PF=2m、PE=BE=AF=3m,在Rt△PEF中,由PF2+EF2=PE2可得关于m的方程,解之可得;右侧时,由AF=3CF知CF=AP=PC=m、PF=m、PE=BE=AF=m,利用勾股定理求解可得.②作DG⊥AC于点G,延长GD交BE于点H,由△BAP≌△BDP知S△BDP=S△BAP=AP •AB,据此可得==,再分点D在矩形内部和外部的情况求解可得.【解答】解:(1)如图1,∵P A=PC=PD,∴∠PDC=∠PCD,∵CD∥BP,∴∠BP A=∠PCD、∠BPD=∠PDC,∴∠BP A=∠BPD,∵BP=BP,∴△BAP≌△BDP,∴∠BDP=∠BAP=90°.(2)∵∠BAO=90°,BE∥AO,∴∠ABE=∠BAO=90°,∵EF⊥AO,∴∠EF A=90°,∴四边形ABEF是矩形,设BE=AF=x,则PF=x﹣4,∵∠BDP=90°,∴∠BDE=90°=∠PFE,∵BE∥AO,∴∠BED=∠EPF,∵△BAP≌△BDP,∴BD=BA=EF=8,∴△BDE≌△EFP,∴PE=BE=x,在Rt△PFE中,PF2+FE2=PE2,即(x﹣4)2+82=x2,解得:x=10,∴BE的长为10.(3)①如图1,当点C在AF的左侧时,∵AF=3CF,则AC=2CF,∴CF=AP=PC=m,∴PF=2m,PE=BE=AF=3m,在Rt△PEF中,由PF2+EF2=PE2可得(2m)2+82=(3m)2,解得:m=(负值舍去);如图2,当点C在AF的右侧时,∵AF=3CF,∴AC=4CF,∴CF=AP=PC=m,∴PF=m﹣m=m,PE=BE=AF=m+m=m,在Rt△PEF中,由PF2+EF2=PE2可得(m)2+82=(m)2,解得:m=4(负值舍去);综上,m的值为或4;②如图3,过点D作DG⊥AC于点G,延长GD交BE于点H,∵△BAP≌△BDP,∴S△BDP=S△BAP=AP•AB,又∵S△CDP=PC•DG,且AP=PC,∴==,当点D在矩形ABEF的内部时,由tan∠DBE==可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH﹣DH=8x,则===;如图4,当点D在矩形ABEF的外部时,由tan∠DBE==可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH+DH=18x,则===,综上,△CDP与△BDP面积比为或.中考模拟考试数学试题含答案一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x43.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图的几何体的左视图是()A.B.C.D.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12 6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)7.方程=0的解为()A.﹣2 B.2 C.5 D.无解8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=二.填空题(共10小题)11.数据0.0007用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.分解因式5a3b﹣10a2b+5ab=.14.计算:=.15.不等式组的整数解是.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=.三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:C.2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x4【分析】分别根据去括号法则、积的乘方法则、合并同类项法则以及同底数幂相除法则逐一判断即可.【解答】解:A.﹣3(x﹣4)=﹣3x+12,故本选项符合题意;B.(﹣3x)2=9x2,故本选项不合题意;C.3x与x2不是同类项,故不能合并,故本选项不合题意;D.x8÷x2=x6,故本选项不合题意.故选:A.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,也是轴对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项正确;C、不是中心对称图形,但是轴对称图形,故本选项错误;D、不是中心对称图形,但是轴对称图形,故本选项错误.故选:B.4.如图的几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看去,左边是3个正方形,右边是2个正方形.故选:A.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12【分析】连接OB,OD,根据⊙O是等边△ABC的内切圆,求出∠OBD=30°,求出OB=2OD =4,根据勾股定理求出BD,同理求出CD,得到BC,求出AD,即可得出答案.【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30°,∠BDO=90°,∴OB=2OD=4,由勾股定理得:BD==2,同理CD=2,∴BC=BD+CD=4,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=BC•AD=12.6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)【分析】根据抛物线的解析式可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.7.方程=0的解为()A.﹣2 B.2 C.5 D.无解【分析】根据解分式方程的步骤依次计算可得.【解答】解:两边都乘以x﹣5,得:2﹣x+3=0,解得:x=5,检验:当x=5时,x﹣5=0,所以方程无解.故选:D.8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=AC•BD=×6×8=24,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=.故选:C.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣【分析】根据图象上的点满足函数解析式,可求得a,从而求得点P的坐标,根据待定系数法,可得k值,进而求得ak的值.【解答】解:一次函数y=x+1的图象过点(a,2),∴a+1=2,∴a=1∵y=的图象过点(1,2)∴2=,解得k=2,∴ak=2.故选:A.10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理即可判断;【解答】解:∵DE∥BC,∴=,∴=,故选:C.二.填空题(共10小题)11.数据0.0007用科学记数法表示为7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4.故答案为:7×10﹣4.12.在函数y=中,自变量x的取值范围是x≠6 .【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.13.分解因式5a3b﹣10a2b+5ab=5ab(a﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.。
2016年湖南省永州市中考数学试卷及答案
(3)是否存在实数 k 使得△ABC 的面积为
?若存在,求出 k 的值;若不存
在,请说明理由.
27.(12 分)问题探究: 1.新知学习 若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”, 其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是 圆的“面径”). 2.解决问题
∴AE=AB=4,
∵BF⊥AE,
∴AF=EF=2,
∴BF=
=
=2 ,
∵AD∥BC, ∴∠D=∠ECF,∠DAF=∠E, 在△ADF 和△ECF 中,
,
∴△ADF≌△ECF(AAS), ∴△ADF 的面积=△ECF 的面积, ∴平行四边形 ABCD 的面积=△ABE 的面积= AE•BF= ×4×2 =4 .
∴AB=
=
=2 ,
∵tanA= = = = ,
∴BD= AB= ,
∴CE= BD= .
26、解:(1)令抛物线 y=ax2+bx﹣3 中 x=0,则 y=﹣3, ∴点 C 的坐标为(0,﹣3). ∵抛物线 y=ax2+bx﹣3 经过(﹣1,0),(3,0)两点,
∴有
,解得:
,
∴此抛物线的解析式为 y=x2﹣2x﹣3. (2)将 y=kx 代入 y=x2﹣2x﹣3 中得:kx=x2﹣2x﹣3, 整理得:x2﹣(2+k)x﹣3=0, ∴xA+xB=2+k,xA•xB=﹣3. ∵原点 O 为线段 AB 的中点, ∴xA+xB=2+k=0, 解得:k=﹣2.
D.①②③
二、填空题:本大题共 8 小题,每小题 4 分,共 32 分 13.(4 分)涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双牌县2016年初中毕业学业考试模拟卷(一)
数 学
(时限:120分钟 总分:130分 制卷人 张艳霓)
一、填空题(本大题共8个小题,每小题3分,共24分)
1、某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有 人。
2、如图,在平行四边形ABCD 中,∠A=130°,在AD 上取DE=DC ,则∠ECB 的度数是 。
3、用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数
是 。
4、如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______。
主视图 左视图 俯视图
5、如图,在△ABC 中,∠B=45°,cos ∠C=5
3,AC=5a , 则△ABC 的面积用含a的式子表示是 。
6、屏幕上有四张卡片,卡片上分别有大写的英文字母“A ,Z ,E ,X ”,现已将字母隐藏.只要用手指触摸其中一张,上面的字母就会显现出来.某同学任意触摸其中2张,上面显现的英文字母都是中心对称图形的概率是 。
7、函数y=1
3+-x x 的自变量x 的取值范围是__________________。
8、已知a +b =2,ab =-1,
+a b b a = 。
二、选择题(本大题共10个小题,每小题只有一个正确选项,每小题3分,共30分)
9、温度从-2°C 上升3°C 后是( )
A .1°C
B . -1°
C C .3°C
D .5°C
10、分式1
12+-x x 的值为0,则( ) A.x =-1 B . x=1 C .x=±1 D .x=0
11、下面计算中正确的是( )
A .+23=5 B.1)1(--=1
C .2016)5(-=20165
D . 2x .3x =6
x
12、一根直尺EF 压在三角板30°的角∠BAC 上,与两边AC ,AB 交于M 、
N.那么∠CME+∠BNF 是( )
A .150°
B .180°
C .135°
D .不能确定
13、从0、2、3三个数中任取两个,组成两位数,则在组成的两位数中
是奇数的概率为( ) A.41 B.61 C.21 D.4
3
14、△ABC 中,∠A=30°,∠C=90°,作△ABC 的外接圆。
如图,若
的长为12cm ,那么 的长是( ) A .10cm B .9cm C .8cm D .6cm
15、在电子显微镜下测得一个圆球体细胞的直径是5×510-cm ,2×310个
这样的细胞排成的细胞链的长是( )
A .210-cm
B .110-cm
C .310-cm
D .410-cm
16、关于x 的一元二次方程 x 2+nx+m=0的两根,只有一个等于0,则下列条件正确的是 ( )
A. m=0, n=0
B. m=0, n ≠0
C. m ≠0, n=0
D. m ≠0, n ≠0
17、函数1y =x ,2y =31x+3
4.当1y > 2y 时, x 的范围是( )
A. x <-1 B .-1<x <2
C .x <-1或x >2
D .x >2
18、如图,直线l 是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将
BC 边在直线l上滑动,使A ,B 在函数y=x
k 的图象上.那么k 的值是 A.3 B .6 C .12 D .4
15
三、解答题(本大题共10小题,共76分,解答题要求写出证明步骤或解
答过程)
19、解方程(6分) 20、计算(6分)
4x 2-25=0 6tan 030+ (3.6-π)0-12+(
2
1)1-
21、(本小题8分)若关于x的一元二次方程2x+4x+2k=0有两个实数根,求k的取值范围及k的非负整数值。
22、(本小题8分)如图,将正方形ABCD中的△ABD绕对称中心O
旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜
想BM与FN有怎样的数量关系?并证明你的结论。
23、(本小题8分)2010年,世博会在我国的上海举行,在网上随机调取了5月份中的某10天持票入园参观的人数,绘成下面的统计图.根据图中的信息回答下列问题:
(1)求出这10天持票入园人数的平均数、中位数和众数;
(2)不考虑其它因素的影响,以这10天的数据作为样本,估计在世博会开馆的184天中,持票入园人数超过..30万人的有多少天?
24、(本小题10分)如图,已知反比例函数y=x
k 与一次函数y=x+b 的图象在第一象限相交于点A(1,-k+4) 。
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围。
25、(本小题10分如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连结BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连结DF .
(1)求证:AB 为⊙O 的切线;
(2)若⊙O 的半径为5,sin ∠DFE=5
3 求EF 的长。
26、(本小题10分)国家推行“节能减排,低碳经济”
政策后,某环保节能设备生产企业的产品供不应
求.若该企业的某种环保设备每月的产量保持在一定
的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式,1y =170-2x 月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.
(1)直接写出....2y 与x 之间的函数关系式;
(2)求月产量x 的范围;
(3)当月产量x (套)为多少时,
这种设备的利润W (万元)最大?最大利润是多少?
27、(本小题10分)如图,直角梯形OABC 的直角顶点O 是坐标原点,边OA ,OC 分别在x 轴、y 轴的正半轴上,OA ∥BC ,D 是BC 上一点,BD=
4
1OA=2,AB=3,∠OAB=45°,E 、F 分别是线段OA 、AB 上的两动点,且始终保持∠DEF=45°.
(1)直接写出....D 点的坐标;
(2)设OE=x ,AF=y ,试确定y 与x 之间的函数关系;
(3)当EF=AF 时,将△AEF 沿EF 折叠,得到△EF A ',求△EF A '与五边形OEFBC 重叠部分的面积.。