t检验以及spss软件使用

合集下载

SPSS简明教程(X2检验和T检验)

SPSS简明教程(X2检验和T检验)

S P S S最适用的统计学方法(X 2检验和T检验)1.SPSS的启动(1)在windows[开始]→[程序]→[spss20],进入SPSSforWindows对话框,2.创建一个数据文件三个步骤:(1)选择菜单【文件】→【新建】→【数据】新建一个数据文件。

(2)单击左下角【变量视窗】标签进入变量视图界面,定义每个变量类型。

(1(2所示)在SPSS6.语言切换:编辑(E)—选项(N)--用户界面-语言--简体中文第六章:描述性统计分析(X2检验)完成计数资料和等级资料的统计描述和一般的统计检验,我们常用的X2检验也在其中完成。

6.1.1界面说明界面如下所示:分析—描述统计—频率用于定义需要计算的其他描述统计量。

现将各部分解释如下:PercentileValues复选框组定义需要输出的百分位数,可计算1.四分位数(Quartiles)、2.每隔指定百分位输出当前百分位数(Cutpointsforequalgroups)3.直接指定某个百分位数(Percentiles),如直接P2.5和P97.5o Centraltendency复选框组用于定义描述集中趋势的一组指标:均数(Mean)、中位数(Median)、众数(Mode)、总和(Sum)。

o Dispersion复选框组用于定义描述离散趋势的一组指标:标准差(Std.deviation)、方差(Variance)、全距(Range)、最小值(Minimum)、604.473.644.345.186.143.244.903.05解:为节省篇幅,这里只给出精确频数表的做法,假设数据已经输好,变量名为X,具体解法如下:得出结果后手工计算出CV 。

6.1.3结果解释上题除直方图外的的输出结果如下:Frequencies统计量 XN有效101缺失0均值 4.6995中值 4.6100标准差.8616225 3.0455百分位数97.5 6.4565最上方为表格名称,左上方为分析变量名,可见样本量N为101例,缺失值0例,均数Mean=4.69,中位数Median=4.61,标准差STD=0.8616,P2.5=3.04,P97.5=6.45。

依据调查问卷,进行单样本T检验SPSS操作步骤

依据调查问卷,进行单样本T检验SPSS操作步骤

依据调查问卷,进行单样本T检验SPSS
操作步骤
本文档将介绍如何使用SPSS进行单样本T检验,以便根据调查问卷数据进行统计分析。

步骤一:准备数据
1. 打开SPSS软件并导入数据文件。

2. 确保数据文件中包含了需要分析的目标变量。

步骤二:进行单样本T检验
1. 点击菜单栏中的"分析(Analyse)"选项。

3. 将目标变量拖动到"因变量"栏中,并将参照组变量(在这里通常是一个常数)拖动到"因子"栏中。

4. 点击"确定(OK)"按钮。

步骤三:查看结果
1. 在SPSS输出窗口中,查找单样本T检验的结果。

2. 结果中将显示均值、标准误差、95%置信区间、T值和P值
等统计信息。

请注意,进行单样本T检验前需要确保数据满足一些前提条件,例如正态分布和同方差性。

如果数据不满足这些条件,可能需要使
用非参数测试方法进行分析。

以上是依据调查问卷进行单样本T检验的SPSS操作步骤。


望本文档能够帮助您进行统计分析。

t检验(t test)

t检验(t test)
(2)t检验结果:t=4.027, υ=7,双侧检验P=0.04 <0.05, 因此拒绝H0,接受H1,认为二组差异有统计学意义,即:两种 饲料喂养的大白鼠肝中维生素A含量差别有统计学意义。
三、两独立样本资料t检验
(Indepandent-Sample t Test)
【原理】
适用于完全随机设计两样本均数的比较。
上机练习 建议大家自己建数据库
答案: 练习4-1
练习4-2
练习4-3
①菜单选择:Analyze—> Compare Means—> Paired Sample T Test进入配对样本 资料t检验模块。
②将分析变量“normal和 treatment”同时选入Current Selections,点击向右箭头 进入Paired Variables—> OK,运行结果。
(2)两独立样本t检验:
①Analyze—> Compare Means—>Independent Sample T Test进入两独立样 本资料t检验模块。
②分析变量(weight)选入Test Variable(s)的变量列表中—> 将分组变量(group)选入 Grouping Variable中。
3. 主要输出结果
(1)正态性检验输出结 果:给出正态性检验 统计量Z值,双侧检验 P值。
(2)t检验输出结果:给出单样本t检验的统计量, 自由度,双侧检验P值,以及样本均数与总体均数 的差值,差值95%置信区间。

4. 结果解释: (1)正态性检验结果:Z=0.598,P=0.868>0.05,
②将分析变量“浓度”选入 Test Variable List的变量 列表中,选中 “Normal”—>OK

SPSS统计分析教程独立样本T检验doc

SPSS统计分析教程独立样本T检验doc

SPSS统计分析教程-独立样本T检验.docSPSS统计分析教程:独立样本T检验一、简介独立样本T检验(Independent Sample T-test)是统计分析中常见的一种方法,主要用于比较两组数据的均值是否存在显著差异。

这种检验的前提假设是,两组数据来自正态分布的独立样本。

独立样本T检验在SPSS中的实现相对简单,下面将详细介绍其操作步骤和解读结果。

二、数据准备在进行独立样本T检验之前,需要准备好数据。

数据通常存储在Excel或SPSS数据文件中。

为了方便起见,我们将使用SPSS数据文件进行说明。

三、操作步骤1.打开SPSS软件,点击“分析”(Analyze)菜单,然后选择“比较均值”(Compare Means)中的“独立样本T检验”(Independent Sample T-test)。

2.在弹出的对话框中,将左侧的“组别”(Grouped By)字段设置为一组变量,如“性别”(Gender),将右侧的“组1”(Group 1)和“组2”(Group 2)字段设置为另一组变量,如“年龄”(Age)。

3.点击“确定”(OK)按钮开始进行独立样本T检验。

四、结果解读1.假设检验(Hypothesis Test):在结果中,可以看到假设检验的结果。

如果p值小于显著性水平(通常为0.05),则拒绝原假设(即两组数据的均值无显著差异),认为两组数据的均值存在显著差异。

反之,如果p值大于显著性水平,则接受原假设,认为两组数据的均值无显著差异。

2.均值(Mean):在结果中,可以看到每组数据的均值。

如果两组数据的均值存在显著差异,则可以通过均值的大小来判断哪组数据更好或更优。

3.标准差(Standard Deviation):在结果中,还可以看到每组数据的标准差。

标准差反映了数据分布的离散程度,标准差越大,说明数据分布越不集中。

4.t统计量(t-statistic):t统计量是用来衡量两组数据之间差异大小的一个指标。

统计软件spss操作3_常用假设检验与相关分析

统计软件spss操作3_常用假设检验与相关分析


例:
二、连续变量的统计推断:t-检验

例: 以张文彤《SPSS统计分析基础教程》261页 案例数据做配对检验。(文件:配对样本t检 验(治疗前后舒张压拘束比较:张文彤261页 案例).sps)
二、连续变量的统计推断:t-检验

结果解读: 输出结果中”均值“”标准差“”标准误“和” 可信区间“等都是针对配对差值的统计量。由 结果可见,差值均值为10,相应的 P=0.027>0.025,故可以认为该药物对血压治 疗有影响。由于治疗前-治疗后的差值均值为 正,故可推断是使得病人血压下降。

例5:在轿车拥有率案例中,控制城市影响条 件下,更准确研究收入与轿车拥有率的关系。
三、无序分类变量的统计推断:卡方检验

五)分层卡方检验 (控制某些分类因素) 操作: “分析”—“描述统计”—“交叉表” (“层”框中选入城市变量S0) (“统计量”选中“风险”、 “Cochran‟s…”)
三、无序分类变量的统计推断:卡方检验



功能:比较两个总体样本的均值是否相等。实际功 能可以理解为判断是一个总体的样本还是两个总体 的样本,又称为成组设计两样本均数比较。(通常 数据中有一个变量显示分组情况) 也有前面说的两种情况,SPSS只做一种。 操作:“分析”—“比较均值”—“独立样本 t 检验”

例:
比较“均值比较”数据中男女生“自信心”的均值 是否有差异。(即,是同属于一个总体还是分属两 个不同总体)
用p-p图检验CCSS的年龄S3是否符合正态分布。
“分析”—“描述统计”—“p-p图”
一、分布类型检验

三)用p-p图直观数据分布形状 例3:
用茎叶图比较index和S3分布形状。

用SPSS进行T检验解析

用SPSS进行T检验解析

对变量框内,单击
,输出表3-11、3-12和表3-13
所示结果。
图3-8 配对样本T检验对话框
表3-11 两种处理方法结果基本统计量 表3-12两种处理方法结果的相关关系 表3-13 两种处理方法的t 检验结果
3.结果说明(参照例3.3的结果说明)
表3-10 仔猪饲料对比试验 单位:kg
◆ 具体步骤: 1.数据输入 (1)在这数据编辑窗口底部的变量视图标签,进入变量视 图界面,分别命名变量:甲饲料和乙饲料,小数位数都 定义为1,如图3-9a所示。
图3-9a 例3.3资料的变量命名
(2)在这数据编辑窗口底部的 数据视图标签,进入数据 视图界面,按图3-9b格式输入 数据资料。
图3-3 例3.2资料的变量命名
(2)在这数据编辑窗口底部的数 据视图标签,进入数据视图 界面,按图3-3格式输入数据 资料。
组别取值1表示A料, 取值2表示B料。
图3-4 例3.2数据输入格式
2. 统计分析 (1)简明分析步骤
分析→比较均值→独立样本T检验
检验变量:产鱼量
分析的变量为产鱼量
分组变量:组别
二、本节重点、难点: 1. SPSS中进行T检验分析的基本命令与操作; 2. SPSS进行T检验分析所得结果的含义。
一、单样本t检验
(一)基本原理和方法(略)
(二)例题及统计分析
【例3.1】成虾的平均体重一般为21g,在配合饲料中添加 了0.5%的酵母培养物养成虾时,随机抽取16对成虾,体 重为20.1、21.6、22.2、23.1、20.7、19.9、21.3、 21.4、22.6、22.3、20.9、21.7、22.8、21.7、21.3、 20.7,试检验在添加了0.5%的酵母培养物养对成虾体重 是否有影响。

SPSS对数据进行T检验统计分析

SPSS对数据进行T检验统计分析

SPSS对数据进行T检验统计分析下面将做此项目的最后一个环节,即使用SPSS进行统计分析。

先用SPSS来做组设计两样本均数比较的T检验,其步骤如下。

(1)执行Analyze/Compare Means/Independent-Samples T test命令,打开如图1-43所示的对话框。

(2)在该对话框中选择X放入TEST列表框中,选择Group放入Grouping Variable文本框中,如图1-44所示。

图1-43 打开T检验对话框图1-44 选择入列表(3)单击Define Groups按钮,系统弹出比较组定义对话框,如图1-45所示。

(4)在该对话框中的两个值框中分别输入1和2,然后单击Continue按钮,如图1-46所示。

图1-45 比较组定义对话框图1-46 输入值(5)单击T检验对话框中的OK按钮,如图1-47所示。

图1-47 进行T检验(6)系统经过计算后,会弹出结果浏览窗口。

首先给出的是两组的基本情况描述,如样本量、均数等,然后是T检验的结果,如图1-48所示。

图1-48 T检验结果从上图中可见,结果分为两大部分:第一部分为Levene's方差检验,用于判断两体方差是否齐,这里的检验结果为F=0.032,p=0.860,可见在本例中方差齐;第二部分则分别给出两组所在部体方差齐和方差不齐时的T检验结果,即上面一行列出的T=2.542,V=22,p=0.019。

从而最终的统计结论为按=0.05水准,拒绝H0,认为克山病患者与健康人的血磷值是不同的。

从样本均数来看,可以确定克山病患者的血磷值较高。

《证券理论与实务》模块八考试精要(证券市场基础知识)模块八考试精要一、单项选择题1、涉及证券市场的法律、法规第一个层次是指()。

A、法律B、行政法规C、厂纪厂规D、部门规章2、涉及证券市场的法律、法规第二个层次是指()。

A、法律B、行政法规C、厂纪厂规D、部门规章3、涉及证券市场的法律、法规第三个层次是指()。

统计描述与t检验-SPSS应用

统计描述与t检验-SPSS应用
6
计量资料的统计描述
集 中 趋 势 统 计 指 标
算术均数(Mean) 几何均数(Geometric Mean)
中位数(Median)
众数(Mode)
7
计量资料的统计描述
离 散 趋 势 统 计 指 标
极差(Range) 四分位数间距(Quartile range)
方差(Variance)
标准差(Standard Deviation)
统计学描述的基本方法有数据频数分布 特征描述、集中趋势值和离散趋势值的计算 等。

3
资料分类
针对不同的资料类型,采用的统计学 描述方法也不同。


那么,常见的资料类型有哪些呢? 计量资料 资 料 类 型 计数资料 等级资料
4
资料分类
计量资料:可分为连续型和离散型,是指对每个 观察对象的观察指标用定量方法测定其数值大小所得, 一般带有度量衡单位。例如:血压值、身高、体重等。
• 实例1:某年抽样调查某地120名18--35岁 健康男性居民血清铁含量(umol/L),请 大家利用spss软件进行统计性描述。
21
Descriptives操作过程
该界面类似于Frequencies的界面,其中Save standardized values as variables是指将标准化得分另存为变量(Z)。
35
Explore结果分析
上图是对按性别不同对身高进行的方差齐性检验,采用了四种 方法计算统计量:Based on Mean(基于均数的统计量)、 Based on Median (基于中位数的统计量)、 Based on Median and with adjusted df(基于中位数并调整自由度的统计量)、Based on trimmed Mean (基于调整均数的统计量)。Df1是分子自由度、 df2为分母自由度。经检验,上述四种方法的计算出的P值均大于 0.05,不拒绝零假设,可以认为两组总体方差相同。

如何使用SPSS进行独立样本T检验

如何使用SPSS进行独立样本T检验

使用“住房状况调查”数据,对不同性别、户口状况的居民现住面积进行独立样本T检验并解释其结果。

答:对不同性别的居民现住面积进行独立样本T检验:①SPSS操作:第一步:点击“分析”、依次选择“比较平均值”、“独立样本T检验”;第二步:将“现住面积”选入“检验变量”,“性别”选入“分组变量”,在点击“定义组”,在“组1”中键入1,在“组2”中键入2,点击“继续”、“确定”。

②结果输出:③结果解读:先用F检验对不同性别的居民现住面积的方差是否向相等加以验证,然后利用t检验对不同性别的居民现住面积的均值是否存在差异进行检验。

从独立样本检验输出图中可以看到:F统计量为1.598,p值为0.206,在显著性水平0.05下,p值大于0.05,不拒绝原假设,即认为不同性别的居民现住面积的方差相等,没有差别。

由于不同性别的居民现住面积的方差没有差别,t检验将看假定等方差一栏。

t统计量为2.982,p值为0.003,在显著性水平0.05下,p值小于0.05,拒绝原假设,即认为不同性别的居民现住面积的均值有显著性差异。

对不同户口状况的居民现住面积进行独立样本T检验:④SPSS操作:第一步:点击“分析”、依次选择“比较平均值”、“独立样本T检验”;第二步:将“现住面积”选入“检验变量”,“户口状况”选入“分组变量”,在点击“定义组”,在“组1”中键入1,在“组2”中键入2,点击“继续”、“确定”。

⑤结果输出:⑥结果解读:先用F检验对不同户口状况的居民现住面积的方差是否向相等加以验证,然后利用t检验对不同户口状况的居民现住面积的均值是否存在差异进行检验。

从独立样本检验输出图中可以看到:F统计量为5.966,p值为0.015,在显著性水平0.05下,p值小于0.05,拒绝原假设,即认为不同户口状况的居民现住面积的方差存在显著差异。

由于不同户口状况的居民现住面积的方差存在显著差异,t检验将看不假定等方差一栏。

t统计量为3.314,p值为0.001,在显著性水平0.05下,p值小于0.05,拒绝原假设,即认为不同户口状况的居民现住面积的均值有显著性差异。

独立样本t检验spss的步骤

独立样本t检验spss的步骤

独立样本t检验spss的步骤独立样本t检验SPSS的步骤概述:独立样本t检验(Independent Samples t-test)是一种常见的统计方法,用于比较两组独立样本的均值是否存在显著差异。

在SPSS (Statistical Package for the Social Sciences)软件中进行独立样本t检验是一项相对简单而又方便的任务。

本文将详细介绍如何使用SPSS进行独立样本t检验的步骤。

步骤一:准备数据和SPSS环境在进行独立样本t检验之前,首先需要准备好需要进行比较的两组数据以及将其输入到SPSS软件中。

确保数据的格式正确,即每一组数据都应该是一个单独的变量。

打开SPSS软件,并在数据编辑器中将这两组数据输入到不同的变量列中。

步骤二:指定假设在进行独立样本t检验之前,需要明确要比较的两组数据的假设。

独立样本t检验有一对假设需要检验,分别是零假设(H0)和备择假设(H1)。

零假设(H0):两组数据的均值相等。

备择假设(H1):两组数据的均值不相等。

步骤三:进行独立样本t检验在SPSS软件中,进行独立样本t检验需要使用“Analyze”和“Compare Means”菜单。

按照以下步骤进行操作:1. 选择菜单栏中的“Analyze”。

2. 选择“Compare Means”。

3. 在“Compare Means”菜单下,选择“Independent-Samples T Test”。

在弹出的对话框中,将需要比较的两组数据变量选择到“Test Variables”框中。

点击“箭头”按钮将其移至“Grouping Variable”框中。

点击“OK”按钮,SPSS将自动为你进行独立样本t检验,并生成相应的结果报告。

步骤四:解读结果SPSS生成的独立样本t检验结果报告包含了一些关键的统计信息。

以下是一些常见的结果:1. “Mean Difference”(平均数差异):表示两组数据均值之间的差异。

两独立样本T检验SPSS操作详解

两独立样本T检验SPSS操作详解

两独立样本T检验-SPSS操作详解为了解某一新药降血压的效果,将28名高血压患者随机分为实验组和对照组,实验组采用新药,对照组采用常规药,测得治疗前后的血压变化,问新药是否优于常规药?两种药物治疗前后的舒张压(mmHg)编号 1 2 3 4 5 6 7 8 9 10 11 新药前102 100 92 98 118 100 100 92 126 117 109 后90 90 85 90 114 95 86 88 102 92 98编号 1 2 3 4 5 6 7 8 9 10 11前98 110 109 94 110 92 95 90 108 90 110 常规药后100 103 105 98 109 95 94 88 104 85 1101 打开SPSS软件,定义变量。

变量1设置:name-group , decimals-0 , label-分组, value-(1=新药,2=常规药) 变量2设置:name-value , decimals-0 , label-血压下降值2 输入数据---血压差=用药前血压-用药后血压3 单击菜单栏analyze/compare means/independent-samples t test4 将血压下降值调入test variables下矩形框5 将分组(group)调入grouping variable 下矩形框6单击define groups…定义分组group1为1 定义group2为2 单击continue 7 options选项默认8 bootstrap选项默认9 单击OK 输出结果10 结果界面11 结果解释表1表示两独立样本t检验基本统计量-group statistics表2表示两独立样本t检验结果,方差方程的levene检验(Levene’s Test for Equality of Variances 方差齐性检验)F=,P=,认为两样本来自的总体方差齐。

两独立样本T检验SPSS操作详解

两独立样本T检验SPSS操作详解

两独立样本T检验SPSS操作详解以下是步骤详解:1.打开SPSS软件,并导入数据文件。

在“文件”菜单中选择“打开”选项,浏览并选择你的数据文件,并点击“打开”。

数据文件需要包含两组要比较的两个变量。

2.选择菜单中的“分析”选项,然后选择“比较均值”子选项,再选择“独立样本T检验”。

3.在弹出的独立样本T检验对话框中,将你要比较的两个变量移动到变量框中。

其中一个变量移动到“依赖变量”框中,另一个变量移动到“提取组变量”框中。

4.点击“定义组”按钮,在出现的对话框中输入两个组的编号,并点击“添加”按钮。

然后关闭“定义组”对话框。

5.在独立样本T检验对话框中,确定其他参数,如显著性水平(默认为0.05)和描述统计量选项。

6.点击“确定”按钮运行分析。

SPSS将计算出两组的均值、标准差、样本大小等统计量,并给出T值、自由度和显著性水平。

7.分析结果将显示在输出窗口的“独立样本T检验”表中。

主要关注的结果包括均值差异、T值、自由度和显著性水平。

8.可以根据需要导出分析结果。

在输出窗口中选择你感兴趣的表格或图表,然后在菜单中选择“文件”选项,再选择“另存为”选项,将分析结果保存为你想要的格式。

需要注意的是,在进行两独立样本T检验之前,要确保数据满足T检验的假设:两组样本是独立的、来自正态分布总体和方差齐性。

如不满足这些假设,可以考虑使用非参数检验或进行数据转换。

此外,对于SPSS软件的具体操作细节可能会因软件版本而有些差异,但基本的步骤和参数设置是相同的。

以上就是两独立样本T检验SPSS操作的详解。

通过SPSS软件进行数据分析可以更方便地得到结果,并为研究者提供科学依据。

t检验使用条件及在SPSS中地应用

t检验使用条件及在SPSS中地应用

t检验使用条件及在SPSS中的应用t检验是对均值的检验,有三种用途,分别对应不同的应用场景:1)单样本t检验(One Sample T Test):对一组样本,检验相应总体均值是否等于某个值;2)相互独立样本t检验(Independent-Sample T Test):利用来自某两个总体的独立样本,推断两个总体的均值是否存在显著性差异;3)配对样本t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

下文将分别介绍三种t检验的使用条件以及在SPSS中的实现。

一、单样本t检验1.1简介1)单样本t检验的目的利用来自某总体的样本数据,推断该总体的均值是否与指定的检验值之间存在显著性差异,它是对总体均值的检验。

2)单样本t检验的前提样本来自的总体应服从和近似服从正态分布,且只涉及一个总体。

如果样本不符合正态分布或不清楚总体分布的形状,就不能用单样本t检验,而要改用单样本的非参数检验。

3)单样本t检验的步骤a)提出假设单样本t检验需要检验总体的均值是否与指定的检验值之间存在显著性差异,为此,给定检验值μ,提出假设::μ = μ(原假设,null hypothesis):μ≠μ(备择假设,alternative hypothesis,)b)选择检验统计量属于总体均值和方差都未知的检验采用t统计量:μ,其中,和分别为样本均值和方差,t的自由度为n-1SPSS中还将显示均值标准误差,计算公式为,即t统计量的分母部分。

c)计算统计量的观测值和概率将样本均值、样本方差、μ带入t统计量,得到t统计量的观测值,查t分布界值表计算出概率P值。

d)给出显著性水平α,作出统计判断给出显著性水平α,与检验统计量的概率P值作比较。

当检验统计量的概率值小于显著性水平时,则拒绝原假设,认为总体均值与检验值μ之间有显著性差异;反之,如果检验统计量的概率值大于显著性水平,则接受原假设,认为总体均值与检验值μ之间没有显著性差异。

SPSS数据分析——t检验

SPSS数据分析——t检验

SPSS中t检验全都集中在分析—比较均值菜单中。

关于t检验再简单说一下,我们知道一个统计结果需要表达三部分内容,即集中性、变异性、显著性。

集中性的表现指标是均值变异的的表现指标是方差、标准差或标准误显著性的则是根据统计量判断是否达到显著性水平由于t分布样本均值的抽样分布,那么基于t分布的t检验就是样本均值的检验,是对均值差异的显著性检验。

t检验可以在以下三种分析中使用1.样本均数与总体均数的差异性分析(单样本t检验)2.配对设计样本均数或两非独立两样本均数差异性分析(配对t检验)3.两独立样本均数差异性分析(独立样本t检验)==============================================一、分析—比较均值—单样本T检验单样本T检验用来分析样本均值与总体均值的差异,以此来判断这个样本来自总体的均值是否等于(大于或小于)某个已知总体的均值,适用条件是样本数据分布呈正态分布,小样本情况下需要检验,大样本情况下近似正态,该方法比较稳健,只要不是严重偏态都可以使用。

二、分析—比较均值—配对样本T检验当配对设计的数据为连续变量时,可以使用配对T检验,配对T检验认为如果两种处理实际上没有差异,则每对数据的差值的总体均值应该为0,实际上就是已知均值为0的单样本T检验,因此适用条件也和单样本T检验一样。

三、分析—比较均值—独立样本T检验和配对设计相对应,独立样本t检验是针对成组设计,数据资料被分为两组,也就是两个样本,它们之间是相互独立的,检验的目的是判断这两个样本来自的总体均值是否存在差异。

由于涉及到两个总体,而每个总体的离散程度即方差也不一定相同,因此需要先对两样本的方差齐性做出检验,并且根据结果分为方差相同和方差不同两种算法。

独立样本t检验和配对样本t检验的区别:1.独立样本t检验用于检验两个独立样本是否来自具有相同均值的总体,也就是检验两个正态分布的总体均值是否相等。

配对样本t检验用于检验两个相关样本是否来自具有相同均值的正态总体,也就是检验两相关样本的差值的均值和零均值之间的差异显著性2.独立样本是指不同样本均值的比较,配对样本是相同样本均值的比较,例如同一个体的两次测量,如果分为实验组和对照组,那么就应该是独立样本。

t检验使用条件及在SPSS中地应用

t检验使用条件及在SPSS中地应用

t检验使用条件及在SPSS中的应用t检验是对均值的检验,有三种用途,分别对应不同的应用场景:1)单样本t检验(One Sample T Test):对一组样本,检验相应总体均值是否等于某个值;2)相互独立样本t检验(Independent-Sample T Test):利用来自某两个总体的独立样本,推断两个总体的均值是否存在显著性差异;3)配对样本t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

下文将分别介绍三种t检验的使用条件以及在SPSS中的实现。

一、单样本t检验1.1简介1)单样本t检验的目的利用来自某总体的样本数据,推断该总体的均值是否与指定的检验值之间存在显著性差异,它是对总体均值的检验。

2)单样本t检验的前提样本来自的总体应服从和近似服从正态分布,且只涉及一个总体。

如果样本不符合正态分布或不清楚总体分布的形状,就不能用单样本t检验,而要改用单样本的非参数检验。

3)单样本t检验的步骤a)提出假设单样本t检验需要检验总体的均值是否与指定的检验值之间存在显著性差异,为此,,提出假设:给定检验值μH0:μ= μ(原假设,null hypothesis)H1:μ≠μ(备择假设,alternative hypothesis,)b)选择检验统计量属于总体均值和方差都未知的检验采用t统计量:t =X ̅−μ0S ̂√n ⁄,其中,X ̅和S ̂分别为样本均值和方差,t 的自由度为n-1SPSS 中还将显示均值标准误差,计算公式为S ̂√n⁄,即t 统计量的分母部分。

c) 计算统计量的观测值和概率将样本均值、样本方差、μ0带入t 统计量,得到t 统计量的观测值,查t 分布界值表计算出概率P 值。

d) 给出显著性水平α,作出统计判断给出显著性水平α,与检验统计量的概率P 值作比较。

当检验统计量的概率值小于显著性水平时,则拒绝原假设,认为总体均值与检验值μ0之间有显著性差异;反之,如果检验统计量的概率值大于显著性水平,则接受原假设,认为总体均值与检验值μ0之间没有显著性差异。

SPSS常用分析方法操作步骤

SPSS常用分析方法操作步骤

SPSS常用分析方法操作步骤SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它提供了多种分析方法,可以帮助用户进行数据分析和统计推断。

下面是一些SPSS常用分析方法的操作步骤,供参考。

1.描述性统计分析:- 打开SPSS软件,导入数据文件(.sav或者.csv格式)。

-菜单栏选择"分析",然后选择"描述性统计",再选择"统计"。

-在弹出的对话框中,选择要进行描述性统计分析的变量,并选择要计算的统计量(如均值、标准差、最大值、最小值等)。

-点击"确定"进行分析,结果将显示在输出窗口中。

2.T检验:-导入数据文件,选择"分析",然后选择"比较手段",再选择"独立样本T检验"(或相关样本T检验)。

-在弹出的对话框中,选择要进行T检验的自变量和因变量,并指定群组变量(如性别)。

-可以选择自定义选项,如置信水平、方差齐性检验等。

-点击"确定"进行分析,结果将显示在输出窗口中。

3.方差分析:-导入数据文件,选择"分析",然后选择"比较手段",再选择"单因素方差分析"(或多因素方差分析)。

-在弹出的对话框中,选择要进行方差分析的自变量和因变量,并指定分组变量(如教育程度)。

-可以选择自定义选项,如置信水平、效应大小等。

-点击"确定"进行分析,结果将显示在输出窗口中。

4.相关分析:-导入数据文件,选择"分析",然后选择"相关",再选择"双变量"(或多变量)。

-在弹出的对话框中,选择要进行相关分析的变量,并进行相关系数类型的选择(如皮尔逊相关系数、斯皮尔曼等级相关系数)。

SPSS中T检验的应用

SPSS中T检验的应用

本文指在简述SPSS中的T检验,主要说明了T检验的原理和应用,及使用范围。

和SPSS中的基本操作。

T检验是检验样本的均值和给定的均值是否存在显著性差异。

T检验分为3类:单样本T检验、两独立样本T检验和两配对样本T检验。

关键词:T检验、SPSS、显著性水平、统计量、概率P-值、自由度、线性相关、置信区间、零假设。

目录一、单样本T检验 (4)1.单样本T检验的目的 (4)2.单样本T检验的基本步骤 (4)3.单样本T检验的应用举例 (5)三、两独立样本T检验 (6)1.两独立样本T检验的目的 (6)2.两独立样本T检验的基本步骤 (6)3.两独立样本T检验的应用举例 (8)三、两配对样本T检验 (10)1.两配对样本T检验的目的 (10)2.两配对样本T检验的基本步骤 (10)3.两配对样本T检验的应用举例 (10)四、参考文献 (12)一、单样本T 检验1.单样本T 检验的目的。

单样本检验的目的是利用来自某总体的样本数据,推断该总体的均值是否与制定的t 检验值之间存在显著性差异。

它是对总体均值的假设检验。

2.单样本T 检验的基本步骤。

⑴.提出原假设。

单样本T 检验的原假设为:总体均值与检验值之间不存在显著差异,表述为:0H 0H 。

为总体均值,为检验值。

0μμ=μ0μ⑵.选择检验统计量。

当总体分布为正态分布时,样本均值的抽样分布仍为正态分布,该正态分),(2σμN 布的均值为,方差为/,即μ2σn),(~2nN X σμ式中,为总体均值,当原假设成立时,;为总体方差;为样本数。

总μ0μμ=2σn 体分布近似服从正态分布时。

通常总体方差是未知的,此时可以用样本方差替代,得到2S 的检验统计量为统计量,数学定义为:t①nSX t 2μ-=式中,统计量服从n-1自由度为分布。

单样本检验的检验统计量即为统计量。

当t t t t 认为原假设成立时用代入。

μ0μ⑶计算检验统计量观测值和概率P-值该步目的是甲酸检验统计量的观测值和相应的概率P-值。

独立样本T检验SPSS操作步骤

独立样本T检验SPSS操作步骤

独立样本T检验SPSS操作
例如:男生和女生之间的学业自我效能感有没有统计学意义上的差异
第一步:点击分析→比较均值→独立样本T检验
第二步:出现如下界面,将“学业自我效能感”选入检验变量,将“性别”选入分组变量。

第三步:点击“定义组”,在“使用指定值”下“组1”文本框中填入“1”,“组2”文本框中填入
“2”(因为数据中“1”代表男生,“2”代表女生),然后点击“继续”。

第四步:点击“确定”,出现得到T检验的结果。

第五步:分析结果。

第一张表的名字叫组统计量,实际上这个性别就是男性组和女性组,即按照不同的组别进行分组。

统计出男性组和女性组每一组的均值和标准差。

一列数据是可以选择用均值和标准差来表示的,均值表示的是这一组的学业自我效能感分数的一个均衡状态,标准差反映的就是同学们得分与这个均衡状态的这个偏离程度。

男性和女性在均值上的差异是否具有统计学意义,我们还需要继续考察独立样本T检验的表。

假设方差相等,看F和F对应的显著性水平,要看显著性水平是不是小于0.05,判断方差是否齐性。

若这个数小于0.05,说明假设方差相等的可能性小
于0.05,小概率事件发生,拒绝原假设,即假设方
差不相等,看第二行的数据t和t对应的显著性水平。

如果方差齐性,也就是sig值大于0.05,就看第一
行的数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t检验
• 一、样本平均数与总体平均数的比较 • 二、完全随机设计两样本均的比较 • 三、配对设计两样本均数的比较
t检验的条件
• 独立 • 正态 • 方差齐
探索性分析
• 对数据进行初步检查,判断有无离群值 (outliers)和(或)极值(extreme value )、可 疑值。仅适用于正态分布。 • 对前提条件假定,如正态分布和方差齐性。不满 足正态分布和方差齐性时,提示数据转换方法, 最后决定使用参数检验方法,或非参数检验方法。 • 能直观地了解组间差异的特征及分布。
组的age、height、wt、SBP、DBP、
pulse做检验。
F值
P值
t值
自由度
P值(双侧)
方差齐性检验
假设方差齐性
假设方差不齐
练习
• 为了检验随机分组的均衡性,对治疗前两
组的height、wt、SBP、DBP、pulse做检
验。
三、配对设计两样本均数比较
• 1、自身配对 • 2、同源配对
• 临床试验数据clinical trial.sav
• 比较试验药组和安慰剂组治疗前后的4对血
常规检查指标。
• Analyze • Compare Mean • Paired Samples T Test
分组 = 试验药
相关关系分析
线性相关
两变量之差的均数
7725KJ,已知11名20-30岁成年女性每日
摄入食物的热量,见t-test_1.sav,问11名
20-30岁成年女性的每日摄入食物的平均热
量是否足够?
1. 正态性检验
2、统计分析
• Analyze • Compare Mean • One Samples T Test
样本数
平均数
均数标准误差
标准差
P值(双侧概率) t值
差值的95%置信区间
均数差值 自由度
二、完全随机设计两样本均数比较
• Analyze • Compare Mean • Independed Samples T Test
• 临床试验数据clinical trial.sav
• 为了检验随机分组的均衡性,对治疗前两
正态分布和方差齐性检验——探索性分析
正态性检验
方差齐性检验
在n≤50时给出
不服从正态分布
方差齐
分组——文件拆分
正态分布——非参数检验方法
服从正态分布
t检验
• 一、样本平均数与总体平均数的比较 • 二、完全随机设计两样本均数的比较 • 三、配对设计两样本均数的比较
• 成年女性每日摄入食物的推荐平均热量为
相关文档
最新文档