最新双星及三星模型

合集下载

444核心素养培养双星三星模型——模型建构能力的培养

444核心素养培养双星三星模型——模型建构能力的培养
(2)特点
①各自所需的向心力由彼此间的万有引力提供,即
GmL12m2=m1ω21r1,GmL12m2=m2ω22r2
r1
②两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2
③两颗星的半径与它们之间的距离关系为:r1+r2=L
(3)两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21。

双星问题提示: 两星间的万有引力分别给两星 提供做圆周运动的向心力,且 两星的角速度相等.
8
@《创新设计》
转到解析
目录
备选训练
2. 2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋 转的超大质量双黑洞系统,如图所示。这也是天文学家首次在正常星系中发现超大质量 双黑洞。这对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应性等都具有 十分重要的意义。我国今年底也将发射全球功能最强的暗物质探测卫星。若图中双黑洞 的质量分别为M1和M2,它们以两者连线上的某一点为圆心做匀速圆周运动。根据所学 知识,下列选项正确的是( )
n3 A. k2T
n3 B. k T
n2 C. k T
n D. kT
区分开星体间距与 轨道半径的不同
审题 1、此双星满足什么物理规 设疑 律?
2、双星质量改变后,原表达式要进行 哪些修改?
对 m 恒星:GMLm2 =m2Tπ2·r 对 M 恒星:GMLm2 =M2Tπ2(L-r)
2
@《创新设计》
L r2
目录
课堂互动
2.三星模型
(1)三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为 R 的圆形轨道上运行(如 图 7 甲所示)。其中一个环绕星由其余两颗星的引力提供向心力:GRm22+(G2Rm)2 2=ma

卫星变轨问题 双星模型-高考物理复习

卫星变轨问题 双星模型-高考物理复习

①G2Rm22+GRM2m=ma 向 ②GLm2 2×cos 30°×2=ma 向
常见的 四星模型
①GLm2 2×cos 45°×2+ G2mL22=ma 向
②GLm2 2×cos 30°×2+GLmM2=ma 向
3
例5 如图所示,“食双星”是两颗相距为d的恒星A、B,只在相互引力

作用下绕连线上O点做匀速圆周运动,彼此掩食(像月亮挡住太阳)而造成
例6 (多选)2019年人类天文史上首张黑洞图片正式公布.在宇宙中当一 颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相 互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的 黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称为“潮汐瓦解事 件”.天鹅座X-1就是一个由黑洞和恒星组成的双星系统,它们以两者 连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短 时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是
A.34mv2+3G4mr地m C.58mv2+3G4mr地m
B.34mv2-3G4mr地m
√D.58mv2-3G4mr地m
当卫星在 r1=r 的圆轨道上运行时,有 Gmr地2m=mvr02,解 得在此圆轨道上运行时通过 A 点的速度为 v0= Gmr 地,
所以发动机在 A 点对卫星做的功为 W1=12mv2-21mv02=12mv2-Gm2r地m; 当卫星在 r2=2r 的圆轨道上运行时,有 Gm2地rm2=mv02′r 2,解得在此圆 轨道上运行时通过 B 点的速度为 v0′= G2mr地,
④两星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21.
⑤双星的运动周期 T=2π
L3 Gm1+m2.

“双星”及“三星”问题

“双星”及“三星”问题

“双星”及“三星”问题宇宙中,因天体间的相互作用而呈现出诸如双星、三星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。

现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。

而三星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。

多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。

由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。

一、“双星”问题:两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。

1.要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。

由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。

2.要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。

3.要明确两子星圆周运动的动力学关系。

设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。

4.“双星”问题的分析思路质量m1,m2;球心间距离L;轨道半径 r1 ,r2;周期T1,T2 ;角速度ω1,ω2 线速度V1 V2;周期相同:(参考同轴转动问题) T1=T2角速度相同:(参考同轴转动问题)ω1 =ω2向心力相同:Fn1=Fn2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)轨道半径之比与双星质量之比相反:(由向心力相同推导)r1:r2=m2:m1m1ω2r1=m2ω2r2m1r1=m2r2 r1:r2=m2:m1线速度之比与质量比相反:(由半径之比推导) V1:V2=m2:m1V1=ωr1 V2=ωr2双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为,经过一段时间演化后,两星总质量变为原来的倍,两星之间的距离变为原来的倍,则此时圆周运动的周期为()A. B.C. D.设两颗恒星的质量分别为和,两颗恒星的运行半径分别为和,两恒星之间的距离,两恒星运动时都是由它们之间的万有引力提供向心力,即,,联立得两恒星的质量和,故,当质量和变为原来的k倍,距离变为原来倍时,两恒星做圆周运动的周期,B项正确.二、“三星”问题有两种情况:第一种三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;第二种三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的外接圆轨道运行,三星运行周期相同。

2021学年高中物理微专题四双星三星模型课件人教版必修2.ppt

2021学年高中物理微专题四双星三星模型课件人教版必修2.ppt

(1)对第一种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有
GRm12 2+G2Rm122=mR1(2Tπ)2. (2)对第二种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有Gm2 r2源自cos30°+Grm2 2
cos 30°=mR22Tπ2
答案:BD
练 2 月球与地球质量之比约为 1:80,有研究者认为月球和
地球可视为一个双星系统,它们都围绕地月连线上某点 O 做匀
速圆周运动.据此观点,可知月球与地球绕 O 点运动线速度大
小之比约为( )
A.1:6 400 B.1:80
C.80:1
D.6 400:1
解析:月球和地球绕 O 点做匀速圆周运动,它们之间的万有引 力提供各自的向心力,则地球和月球的向心力相等.且月球、地球 和 O 点始终共线,说明月球和地球有相同的角速度和周期.因此有 mω2r=Mω2R,所以vv′=Rr =Mm,线速度和质量成反比.故选 C.
微专题(四) 双星、三星模型
模型建构
模型一 双星模型
1.模型构建 在天体运动中,将两颗彼此相距较近,且在相互之间万有引 力作用下绕两者连线上的某点做周期相同的匀速圆周运动的星 球称为双星.
2.模型特点:它们间的距离为 L.此双星问题的特点是:
(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某 一点.
【解析】 双星系统周期相同(角速度相同),所受万有引力作 为向心力相同,所以 B 项错误,D 项正确;由 F=mω2r,m1r1ω2= m2r2ω2,得 m1v1=m2v2,vv12=mm21=23,A 项错误;rr12=mm21又 r1+r2=L,

双星和多星问题

双星和多星问题

双星和多星问题
双星问题的处理方法
创新微课
• 双星间的万有m1r1 2
m2r2 2
• (1)由此得出即某恒星的运动半径与质量成反比 m1r1 m2r2 ;
• (2)由于
2 T
所以两恒星的质量之和
m1
m2
4 2r 3
GT 2
r1 r2 L
创新微课 现在开始
双星和多星问题
双星和多星问题
创新微课
1.双星模型 (1)定义: 绕公共圆心转动的两个星体组成的系统,我们称之为 双星系统,如图所示.
双星和多星问题
创新微课
• 2.双星问题特点
• 如图所示为质量分别是m1和m2的两颗相距较近的 恒星。它们间的距离为L。
• (1)运行轨道为同心圆,圆心是它们之间连线上某一点: • (2)两星的向心力大小相等,由它们间的万有引力提供; • (3)两星的运动周期、角速度相同; • (4)运动半径之和等于它们间的距离,即r1+r2=L。
有引力合力为零
双星和多星问题
创新微课
2.多星
(1)定义:所研究星体的万有引力的 完全 提供做圆周运动的向心力, 除中央星体外,各星体的角速度或周期相同. (2)三星模型:
双星和多星问题
创新微课
(3)四星模型:
①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿 着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示). ②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位
已知引力常量为G。下列说明正确的是( )
A.双星系统的平均密度为 3
GT 2
B.O点离质量较大的星体较远
C.双星系统的总质量为
4 2r3 GT 2
D.若在O点放一物体,则物体受两星体的万

人造卫星运行特点和双星三星模型

人造卫星运行特点和双星三星模型

人造卫星运行特点和双星三星模型人造卫星是人类制造并放置在地球或其他天体轨道上的设备,用于进行通讯、导航、科学研究等任务。

它具有以下几个运行特点:1.轨道类型多样:人造卫星的轨道类型多样,包括地球静止轨道(GEO)、中地球轨道(MEO)、低地球轨道(LEO)等。

不同轨道类型的卫星可以实现不同的功能和应用。

例如,GEO卫星主要用于通信,MEO卫星主要用于导航,LEO卫星则多用于科学研究等。

2.高速运行:人造卫星在轨道上的速度非常快。

以低地球轨道为例,其高度约为300至2000公里,每小时速度可达数万公里。

这是因为卫星需要保持足够的离心力以与地球的引力保持平衡,确保始终在轨道上稳定飞行。

3.周期性运动:人造卫星的运行是周期性的,在轨道上按照一定的周期绕行。

轨道的周期与轨道高度有关,例如地球静止轨道的周期约为24小时,低地球轨道的周期约为90分钟。

卫星在轨道上按照规律定时落地点上。

4.数据传输:人造卫星用于通信、导航等任务,需要与地面或其他卫星进行数据传输。

卫星通过天线接收地面或其他卫星发来的信号,并通过自身的设备进行处理和转发,使数据能够在不同地点之间传播。

双星三星模型是指两颗或三颗卫星组成的系统。

它们通过特殊的轨道排布和通信协议,实现更加灵活、高效的数据传输和通信服务。

双星三星模型的优势包括:1.提高通信覆盖范围:通过在不同轨道上部署多颗卫星,可以实现更广泛的通信覆盖范围。

这非常适用于偏远地区、海洋、航空航天等领域,可以保持持续不间断的通信服务。

2.改善网络质量和容量:双星三星模型可以提供更高的网络质量和更大的容量。

多颗卫星之间可以进行数据传输和通信的互联互通,共享网络负载,提供更快的响应速度和更强的带宽,满足大规模的通信需求。

3.提高系统可靠性和容错能力:双星三星模型通过多颗卫星的冗余设计,提高了系统的可靠性和容错能力。

当其中一颗卫星发生故障或失效时,其他卫星可以接替其任务,保证通信服务的连续性和稳定性。

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得

核心素养培养双星三星模型——模型建构能力的培养课件

核心素养培养双星三星模型——模型建构能力的培养课件

双星三星模型的特点
综合性
双星三星模型涵盖了知识 、技能、态度和价值观等 多个方面,旨在培养学生
的全面发展。
实践性
该模型强调实践和应用, 通过项目式学习和合作学 习等方式,让学生在实践
中提升核心素养。
动态性
双星三星模型的评估标准 是动态的,根据学生的表 现和需求进行适时调整,
以实现个性化发展。
双星三星模型的应用范围
核心素养培养双星三星模型— —模型建构能力的培养
CONTENTS
• 引言 • 双星三星模型概述 • 模型建构能力的培养 • 核心素养与双星三星模型的关
系 • 案例分析 • 总结与展望
01
引言
背景介绍
随着社会的发展和科技的进步,人们越来越认识到教育的重要性。在教 育领域中,核心素养的培养成为了关注的焦点。为了更好地培养学生的 核心素养,研究者提出了双星三星模型这一概念。
题的能力。
案例二:利用双星三星模型培养物理实验能力
总结词
双星三星模型能够帮助学生更好地理解 物理实验的设计思路和操作过程,提高 实验能力。
VS
详细描述
在物理实验教学中,教师采用双星三星模 型引导学生进行实验设计和操作。学生需 要根据实验目标,设计实验方案,选择合 适的实验器材,进行实验操作并记录数据 ,最后分析实验结果并得出结论。这种教 学方法能够帮助学生更好地理解物理实验 的设计思路和操作过程,提高实验能力。
双星三星模型强调在教育过程中注重学生的主体性和主动性,通过引导 学生进行自我认知、自我规划和自我评价,培养学生的自主学习和终身
学习的能力。
在双星三星模型中,模型建构能力的培养是其中的一个重要方面。模型 建构能力是指学生能够运用所学知识,通过分析和解决问题,构建出相 应的模型,从而解决实际问题的能力。

高中物理三星模型归纳总结

高中物理三星模型归纳总结

高中物理三星模型归纳总结物理作为一门科学,是研究物质和能量之间相互关系的学科。

在高中物理学习中,三星模型是一种常用的解释物质结构和性质的基本模型。

本文将对三星模型进行归纳总结。

一、三星模型的概述三星模型是指由质子、中子和电子组成的原子结构模型。

在三星模型中,质子和中子集中于原子核中,而电子则绕着原子核轨道旋转。

三星模型的提出为解释原子的结构和性质提供了基础。

二、质子质子是构成原子核的基本粒子,质子具有正电荷。

质子的质量约为1.67×10^-27千克,质子的数量决定了原子的元素性质。

三、中子中子也是构成原子核的基本粒子,中子不带电荷,中子的质量约为质子的质量。

中子的存在稳定了原子核的结构。

四、电子电子是绕着原子核轨道运动的基本粒子,电子带有负电荷。

电子的质量约为9.11×10^-31千克。

电子的数量决定了原子的化学性质。

五、原子核原子核是由质子和中子组成的,质子和中子都被束缚在原子核内。

原子核的直径约为10^-15米,是整个原子的核心。

六、原子原子是由原子核和绕其运动的电子组成的,是物质的最小单位。

原子的大小约为10^-10米,原子是所有物质的基本组成单元。

七、元素元素是由只含有一种类型的原子组成的纯物质。

根据原子核中质子的数量,元素具有不同的原子序数。

元素的性质由其原子的结构和电子分布决定。

八、分子分子是由不同元素的原子通过化学键结合而成的,分子是化学反应的基本单位。

分子的大小和结构决定了物质的宏观性质。

九、固态、液态和气态物质在不同条件下可以存在于固态、液态和气态。

固态中,原子或分子以紧密有序的方式排列。

液态中,原子或分子之间的距离较近,但没有固定的位置。

气态中,原子或分子之间的距离较远,运动自由度较大。

十、能量能量是物质存在并进行变化的基本原因。

在物理学中,能量可以存在于不同形式,例如动能、势能、热能等。

能量的转化和传递是物理学中研究的重要内容。

总结:高中物理教学中,三星模型是解释原子结构和性质的重要基础。

(完整版)双星三星四星问题

(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

双星模型、三星模型、四星模型

双星模型、三星模型、四星模型

双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。

双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。

双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。

【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。

双星系统在银河系中很普遍。

利用双星系统中两颗恒星的运动特征可推算出它们的总质量。

已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。

(引力常量为G )【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。

根据题意有21ωω= ① r r r =+21 ② 根据万有引力定律和牛顿定律,有G1211221r w m r m m = ③ G 1221221r w m rm m = ④ 联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥ 联立③⑤⑥式解得 322214r GT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=2.7×105 m/s ,运行周期T=4.7π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗? (G=6.67×10-11 N·m 2/kg 2,m s =2.0×1030 kg ) 解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。

双星三星四星问题说课讲解

双星三星四星问题说课讲解

双星三星四星问题双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

多星系统模型讲课教案

多星系统模型讲课教案

5.化变力为恒力求变力做功
变力做功直接求解时,通常都比较复杂,但 若通过转换研究对象,有时可转化为求恒力 做功,可以用W=Flcos α求解。此法常应用于 轻绳通过定滑轮拉物体的问题中。
结束语
谢谢大家聆听!!!
32
特点: 四颗行星转动的方向相同,周期、角速度、线速度的大小相等
(2)三颗质量相等的行星位于三角形的三个顶点上,另一 颗恒星位于三角形的中心o点,三颗行星以o点为圆心。绕正 三角形的外接圆做匀速圆周运动。
特点: 外围三颗行星转动的方向相同,周期、角速度、线速度的大小相等
解题模板
谢谢观看
高中物理微课堂
3.用F-x图象求变力做功
在F-x图象中,图线与x轴所围“面积”的代数和就表 示力F在这段位移方向上所做的功,且位于x轴上方的 “面积”为正,位于x轴下方的“面积”为负,但此方法中 学阶段只适用于便于求图线所围面积的情况(如三角 形、矩形、圆等规则的几何图)。
例3(图象法)一物体所受的力F随位移x变化的图象如 图所示,求在这一过程中,力F对物体做的功为多少?
4.利用微元法求变力做功
将物体的位移分割成许多小段,因小段很小,每一小 段上作用在物体上的力可以视为恒力,这样就将变力 做功转化为在无数个无穷小的位移方向上的恒力所 做元功的代数和。此法在中学阶段常应用于求解大 小不变、方向改变的变力做功问题。
例5(微元法)如图所示,在水平面上,有一弯曲的槽道 AB,槽道由半径分别为 R/2 和R的两个半圆构成。现用 大小恒为F的拉力将一光滑小球从A点沿槽道拉至B点, 若拉力F的方向时刻与小球运动方向一致,则此过程中拉 力所做的功为
特点: 两行星转动的方向相同,周期、角速度、线速度的大小 相等
(2)三颗质量相等的行星位于一正三角形的顶点处,都绕 三角形的中心做圆周运动。每颗行星运行所需要的向心力都 由其余两颗行星对其的引力的合力来提供。

卫星变轨问题、双星模型(解析版)

卫星变轨问题、双星模型(解析版)

万有引力与宇宙航行卫星变轨问题、双星模型素养目标:1.会处理人造卫星的变轨和对接问题。

2.掌握双星、多星系统,会解决相关问题。

3.会应用万有引力定律解决星球“瓦解”和黑洞问题。

1.神舟十六号载人飞船入轨后顺利完成人轨状态设置,采用自主快速交会对接模式成功对接于天和核心舱径向端口。

对接过程的示意图如图所示,神舟十六号飞船处于半径为1r 的圆轨道Ⅰ,运行周期为T 1,线速度为1v ,通过变轨操作后,沿椭圆轨道Ⅰ运动到B 处与天和核心舱对接,轨道Ⅰ上A 点的线速度为2v ,运行周期为T 2;天和核心舱处于半径为3r 的圆轨道Ⅰ,运行周期为T 3,线速度为3v ;则神舟十六号飞船( )A .213v v v >>B .T 1>T 2>T 3C .在轨道Ⅰ上B 点处的加速度大于轨道Ⅰ上B 点处的加速度D .该卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能大 【答案】A【解析】A .飞船从轨道Ⅰ变轨到轨道Ⅰ需要加速,所以经过A 点时21v v >圆轨道时,根据22GMm v m r r= 所以13v v >综合得213v v v >>故A 正确;B .根据开普勒第三定律,轨道半长轴越大,周期越大,故B 错误;C .根据2GMmma r= 则同一点处的加速度应该相等,故C 错误;D .根据变轨原理可知,从低轨道到高轨道应点火加速,外力做正功,则卫星在轨道Ⅰ运行时的机械能比在轨道Ⅰ运行时的机械能小,故D 错误。

故选A 。

考点一 卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示。

(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,G Mm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在椭圆轨道B 点(远地点),G Mm r 22>m v B 2r 2,将做近心运动,再次点火加速,使G Mmr 22=m v B ′2r 2,进入圆轨道Ⅲ。

宇宙多星系统模型

宇宙多星系统模型
(2)若相邻星球旳最小距离均为a,求两种构成形式下天体运
动旳周期之比
解析:(1)三颗星绕另一颗中心星运动时,其中任意一种绕行星球受 到另三个星球旳万有引力旳合力提供向心力,三个绕行星球旳向心 力一定指向同一点,且中心星受力平衡,因为星球质量相等,具有对 称关系,所以向心力一定指向中心星,绕行星一定分布在以中心星为 重心旳等边三角形旳三个顶点上,如图甲所示。
GLm2 2×2×cos 30°=ma 向 其中 L=2r cos 30°。 三颗行星运行的方向相同,周期、 角速度、线速度的大小相等。
【例3】 宇宙中存在某些离其他恒星较远旳、由质量相等旳 三颗星构成旳三星系统,一般可忽视其他星体对它们旳引力作 用。已观察到稳定旳三星系统存在旳一种形式是三颗星位于 等边三角形旳三个顶点上,并沿外接于等边三角形旳圆轨道运 营,其周期为T。设每个星体旳质量均为m, 万有引力常量为G,则星体之间旳距离应 为多少?
a2
( 2a)2
T22 2
解得T2
2
=
4(4
2)
7Gm
2
a3

故 T1 = (4 2)(3 3) 。
T2
4
(1)三星同线模型 ①如图所示,三颗质量相等的行星,一颗行星位于中心位 置不动,另外两颗行星围绕它做圆周运动。这三颗行星始终位 于同一直线上,中心行星受力平衡。运转的行星由其余两颗行 星的引力提供向心力:Grm2 2+G2mr22=ma 向
两行星运营旳方向相同,周期、角 速度、线速度旳大小相等。
②如图所示,三颗质量相等的行星位于一正三角形的顶点处, 都绕三角形的中心做圆周运动。每颗行星运行所需向心力都由其 余两颗行星对其万有引力的合力来提供。
3GmT2
4 2

双星模型、三星模型、四星模型

双星模型、三星模型、四星模型

双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律.双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。

双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21.【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。

双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量。

已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G)【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2.根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G1211221r w m rm m = ③G1221221r w m rm m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得322214r GT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T 。

(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示)。

模型 双星或多星模型(解析版)

模型  双星或多星模型(解析版)

模型双星或多星模型学校:_________班级:___________姓名:_____________模型概述1.双星问题(1)模型构建:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.(2)特点:①各自所需的向心力由彼此间的万有引力提供,即G m 1m 2L 2=m 1ω21r 1,G m 1m 2L2=m 2ω22r 2.②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2.③两颗星的轨道半径与它们之间的距离关系为:r 1+r 2=L .④两星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2).⑥双星的总质量m 1+m 2=4π2L 3GT 22.多星模型:所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度、周期相同。

常见的多星模型及其规律:Gm 2(2R )2+GMmR2=ma 向Gm 2L2×cos30°×2=ma 向Gm 2L 2×cos45°×2+Gm 2(2L )2=ma 向Gm 2L2×cos30°×2+GMmL 32=ma 向典题攻破1.双星问题1.(2024·重庆·高考真题)在万有引力作用下,太空中的某三个天体可以做相对位置不变的圆周运动,假设a 、b 两个天体的质量均为M ,相距为2r ,其连线的中点为O ,另一天体(图中未画出)质量为m (m <<M ),若c 处于a 、b 连线的垂直平分线上某特殊位置,a 、b 、c 可视为绕O 点做角速度相同的匀速圆周,且相对位置不变,忽略其他天体的影响。

引力常量为G 。

则()A.c 的线速度大小为a 的3倍B.c 的向心加速度大小为b 的一半C.c 在一个周期内的路程为2πrD.c 的角速度大小为GM8r 3【答案】A【详解】D .a 、b 、c 三个天体角速度相同,由于m <<M ,则对a 天体有G MM(2r )2=Mω2r 解得ω=GM4r 3故D 错误;A .设c 与a 、b 的连线与a 、b 连线中垂线的夹角为α,对c 天体有2G Mmrsin α2cos α=mω2rtan α解得α=30°则c 的轨道半径为r c =rtan30°=3r由v =ωr ,可知c 的线速度大小为a 的3倍,故A 正确;B .由a =ω2r ,可知c 的向心加速度大小是b 的3倍,故B 错误;C .c 在一个周期内运动的路程为s =2πr =23πr 故C 错误。

第28课时卫星变轨问题双星模型2025届高考物理一轮复习课件

第28课时卫星变轨问题双星模型2025届高考物理一轮复习课件


解析:由于在彼此绕行的周期逐渐减小,根据公式ω= 可知,每颗

星球的角速度都在逐渐变大,设双星转动的角速度为ω,双星间距离
1 2
为L,星球的质量分别为m1、m2,由万有引力提供向心力有 2 =

m1ω2r1=m2ω2r2,解得ω=
(1 +2 )
,可知距离L逐渐的变小,故
3

1 2
2
230°
目录
高中总复习·物理
【典例3】 宇宙中存在一些离其他恒星较远的、由质量相等的三颗
星组成的三星系统,可忽略其他星体对三星系统的影响。稳定的三星
系统存在两种基本形式:一种是三颗星位于同一直线上,两颗星围绕
中央星在同一半径为R的轨道上运行,如图甲所示,周期为T1;另一
种是三颗星位于边长为R的等边三角形的三个顶点上,并沿等边三角
空间站向祖国人民送上新春祝福。空间站的运行轨道可近似看作圆
形轨道Ⅰ,椭圆轨道Ⅱ为神州十五号载人飞船与空间站对接前的运行
轨道,已知地球半径为R,两轨道相切于P点,地球表面重力加速度
大小为g,下列说法正确的是(

目录
高中总复习·物理
A. 空间站在轨道Ⅰ上的运行速度小于
B. 神州十五号载人飞船在P点的加速度小于空间站在P点的加速度
5
关系知,三颗星体做圆周运动的半径为R'=

力充当向心力,即有F合=2G 2 cos

2πR

1
,则 =2
3
2
3
R,任一星体所受的合
3
4π2
30°=m 2
2
×
3
R,解得T2=
3
3
,故B正确。

(完整版)双星三星四星问题

(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《双星及三星模型》导学提纲
设计人: 审核人:高三物理备课组
班级: 组名: 姓名:
【学习目标】
1. 理解双星模型特点
2. 掌握双星及三星运动的向心力来源 【导读流程】
一.
双星模型条件及特点 :
例1 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )
A.T k n 23
B.T k n 3
C.T k
n 2
D.T k n
例2(2015•天门模拟)经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且
双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.则可知( )
A. m 1、m 2做圆周运动的线速度之比为3:2
B. m 1、m 2做圆周运动的角速度之比为3:2
C. m 1做圆周运动的半径为 2/5L
D. m 2做圆周运动的半径为 2/5L
二. 三星模型的向心力来源 :
例3. (2015安微理综)由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运
动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)。

若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:
(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T 。

例4.宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用,已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为
的圆轨道上运行,如图甲所示。

另一种形式是
三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,如图乙所示,设每个星体的质量均为

(1)试求第一种形式下,星体运动的线速度和周期;
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?。

相关文档
最新文档