九年级数学上册2.3.1用公式法求解一元二次方程教案
人教版九年级数学上册《公式法解一元二次方程》公开课说课稿
人教版九年级数学上册《公式法解一元二次方程》公开课说课稿一. 教材分析《公式法解一元二次方程》是人教版九年级数学上册的一节重要内容。
这一节内容是在学生已经掌握了方程的解法、一元二次方程的定义等知识的基础上进行学习的。
通过这一节内容的学习,使学生掌握一元二次方程的解法,能够熟练运用公式法求解一元二次方程,培养学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一元二次方程的概念和性质有一定的了解。
但是,对于公式法解一元二次方程的步骤和应用,还需要进一步的引导和培养。
因此,在教学过程中,要注重引导学生掌握公式法解题的步骤,培养学生的解题能力。
三. 说教学目标1.知识与技能目标:使学生掌握一元二次方程的解法,能够熟练运用公式法求解一元二次方程。
2.过程与方法目标:通过学生的自主探究、合作交流,培养学生的解决问题能力和合作精神。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和积极的学习态度。
四. 说教学重难点1.教学重点:使学生掌握公式法解一元二次方程的步骤和应用。
2.教学难点:如何引导学生理解并掌握一元二次方程的解法,能够灵活运用到实际问题中。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生自主探究、合作交流。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,进行生动、直观的教学。
六. 说教学过程1.导入:通过复习一元二次方程的定义和解法,引导学生进入本节内容的学习。
2.自主探究:让学生自主探究公式法解一元二次方程的步骤,引导学生发现解题规律。
3.案例教学:通过典型案例的讲解,使学生掌握公式法解题的方法和技巧。
4.小组合作:让学生进行小组合作,共同解决实际问题,培养学生的合作精神和解决问题的能力。
5.总结提升:对本节内容进行总结,强化学生对公式法解一元二次方程的理解和掌握。
6.巩固练习:布置适量的练习题,让学生进行巩固练习,提高解题能力。
数学《用公式法解一元二次方程》教案
数学《用公式法解一元二次方程》教案教学目标:1.掌握二次方程的概念和基本形式。
2.掌握用公式法解一元二次方程的步骤和方法。
3.培养学生独立解决问题的能力。
教学重点:1.用公式法解一元二次方程的方法。
2.培养学生的思维能力。
教学难点:1.理解二次方程的本质。
2.掌握公式法解二次方程的方法。
教学准备:1.黑板、粉笔、草稿纸、尺子等。
2.教学课件和教学视频。
教学过程:Step 1 引入新知二次方程概念及基本形式1.请同学们回忆一下关于方程的知识,存在的意义是什么?2.初步定义二次方程:含有未知数的二次方的方程被称为二次方程。
3.请同学们熟悉二次方程的基本形式:ax²+bx+c=0 (其中a≠0)Step 2 用公式法解一元二次方程1. 引导同学们发掘出解一元二次方程的公式-x1=-b+√(b²-4ac)/2a,x2=-b-√(b²-4ac)/2a。
2.解释公式的含义:通过计算,我们可以求出二次方程的两个解,也就是方程的两个根。
3.请同学们举例说明如何用公式法解一元二次方程。
4.当 b²-4ac=0 时,x1=x2=-b/2a,这个式子大家应该知道,它的意思是“根相等”,请举例说明。
Step 3 通过例题训练能力1.请同学们分组,自行完成以下二次方程的求解:[1] x²-5x+6=0;[2] 3x²-5x+2=0;[3] 5x²-2x-1=0。
2.请同学们互相交流讨论,然后用课本提供的答案核对。
Step 4 课堂总结1.请同学们谈谈对本节课所学内容的理解,以及对解一元二次方程的方法有哪些拓展和应用。
2.出示题目:已知一个矩形长和宽均为a,若面积为S,请问矩形的对角线长是多少?3.引导同学们思考,建立方程并通过解方程来得出答案。
Step 5 课后作业1.完成课后练习题。
2.自行选择几个实际问题,建立相关方程并通过解方程来得出答案。
3.扩展阅读本章相关内容,为下一次课的学习做准备。
北师大版九年级数学上册第二章2.3用公式法解一元二次方程(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用物理抛物线运动的例子来演示一元二次方程的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax² + bx + c = 0的方程,其中a、b、c是常数,且a≠0。它是解决许多现实问题的有力工具,尤其在物理学、经济学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用公式法解决实际问题中的一元二次方程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.教学难点
-求根公式中各个参数的代入和计算过程,尤其是根号内判别式的计算;
-理解并应用根的判别式Δ来判断根的性质,包括Δ>0、Δ=0、Δ<0三种情况;
-在实际问题中,如何将问题转化为标准的一元二次方程形式,以便应用求根公式;
-对于系数a、b、c为分数或小数时,如何进行精确计算。
举例:在解决一元二次方程2x² - 5x + 3 = 0时,学生可能会在计算判别式Δ时出错,或者在将分数系数化简为整数时遇到困难。教师需要针对性地解释和演示如何进行这些计算,以及如何避免常见的计算错误。
公式法解一元二次方程---教案
《公式法解一元二次方程》教案一、教学内容解析1.具体内容:《公式法解一元二次方程》这个内容在人教版教材中对应的是九年级上册第一章第三节《公式法》.本节主要研究一元二次方程的公式解法,一元二次方程的求根公式是用配方法得到的,可以说,公式法是配方法的一般化和程式化,利用求根公式可以更为便捷地解一元二次方程.本节课的教学内容包括以下三个方面:①承接上节内容,提出用配方法求解方程ax2+bx+c=0(a≠0)的问题,进而推导求根公式;②用公式法求解一元二次方程,同时体会用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程;③通过对b2-4ac的讨论,得出根的判别式与方程根的情况之间的关系.《课标》中对本节课的要求是能用公式法解数字系数的一元二次方程,会用一元二次方程个根的判别式判别方程是否有实数根和两个实数根是否相等.2.教育价值:在思想方法上,求根公式的推导运用了配方法,其基本思想是降次,通过配方法转化为可直接开方的形式,推导过程中还涉及分类讨论的思想.数学思想方法凝聚着数学的精髓和灵魂,尽管学生走上社会后,数学知识似乎渐渐淡忘了,但留存的应是那种铭刻在心头的数学思想、数学思维方式.从运算的角度看,公式包含了初中阶段所学过的全部六种代数运算:加、减、乘、除、乘方、开方,体现了公式的和谐统一.各级运算的顺序自动决定了一元二次方程的解题顺序.开平方运算不是总能进行的,要根据判别式的符号来判断方程是否有实数根,如果有实数根,则由三个系数来确定.通过运算可以完美地解决根的存在性、根的个数、根的求法三个问题,可以说是“万能”求根公式.它向我们展示了抽象性、一般性和简洁性等数学的美和魅力.3.与相关内容的联系:方程是初中数学的核心概念,在初中数学中占有重要的地位.在学习一元二次方程之前学生已经学会了解一元一次方程、二元一次方程和分式方程等,积累了一定的解方程的经验,体会到解分式方程时需要通过去分母将分式方程转化为整式方程,渗透了转化的数学思想,为研究一元二次方程的解法奠定了基础.,同时一元二次方程的“公式法”是在学习了直接开方法和配方法之后必须掌握的另一种解一元二次方程的方法,是配方法的一般化和程式化,利用它可以更便捷地解一元二次方程.另外,一元二次方程的解法为高中阶段学习二元二次方程组和一元高次方程的解法提供了方法的引领,发挥着重要的作用.从知识的发展来看,学生通过一元二次方程的学习,不仅是对已经学过的实数、整式、二次根式等知识的巩固,也为今后学习二次函数以及高中阶段的算法等知识奠定基础,起到了承上启下的作用.二、教学目标1.经历一元二次方程的求根公式的推导过程,领悟其基本思想(降次化归)与基本方法(配方法);2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况,能够运用公式法求解一元二次方程(数字系数);3.通过推导求根公式,加强推理技能训练,发展逻辑思维能力和善于发现问题的思维素质.三、学生学情分析学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;学生原有的认知结构中已有的知识是直接开平方法解一元一次方程以及用配方法解数字系数的一元二次方程,学生通过直接开平方法、配方法解一元二次方程的学习,对于降次化归的理论依据(开平方)以及基本思路(将一元二次方程转化为两个一元一次方程)已比较熟悉.这节课可以借助学生已有的配方经验,从具体到抽象,得到一元二次方程一般形式的解,即求根公式.但是九年级学生的思维水平处于具体形象思维向抽象思维过渡阶段,对于一般形式的一元二次方程求解过程以及公式法求解一元二次方程本质的理解仍然存在一定的困难.具体体现在以下几个方面:1.学生独自运用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式的过程会遇到困难.2.在用配方法进行公式推导时,忽视对b 2-4ac 取值的讨论是学生的易错点,也是难点,此讨论又是分类思想的渗透,判别式的应用也在此得以体现.3.对 2244-2a ac b a b x ±=+的化简也会存在问题,有些学生会对由2244-2a ac b a b x ±=+到aac b a b x 2422-±=+的变化不理解. 4.用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程,只要确定系数a 、b 、c 的值,代入公式就能求出方程的根,学生对这个本质的理解会存在困难.四、教学策略分析策略1——课前通过用配方法解数字系数的一元二次方程,回忆用配方法解一元二次方程的一般步骤,为本节课中的用配方法推导一元二次方程的求根公式奠定理论基础,同时为了降低学生解字母系数的一元二次方程的难度,将推导的过程分为两个环节,第一环节以填空题的形式,让学生明确二次项系数化为1、移项、配方等过程,掌握每一步的具体做法以及变形的依据.第二环节则采用小组讨论和全班共同探索的方式进行,这样就解决了学生独立推导求根公式所面临着种种困难的问题.策略2——当推导到22a 4ac 4-b )a 2b (=+2x 这一步时,通过设计问题串引发学生的思考,逐步意识到只有当配方的结果是一个非负数时才能进行开方运算,于是针对22a 4ac4-b 展开进一步的探讨,渗透分类讨论的数学思想,此环节采用小组交流的方式进行,避免了学生独立思考时思维的局限性.策略3——对2244-2a ac b a b x ±=+ 进行化简时可能会出现两种情况,一部分学生会误认为2244a acb -的化简结果就是a 2ac 4-b 2,没有考虑到4a 2开方的结果是a 2,缺少分类讨论的思想;还有一部分是对aac b a b x 2422-±=+不会化简,为了突破这个难点,在教学设计时采用采用多媒体课件及板书的结合,以填空的形式引发学生的思考,∵a ≠0,当a >0时2244-2a ac b a b x ±=+ ,当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有2244-2a ac b a b x ±=+ ,这样也就解决了学生在推导公式过程中的又一个难题.策略4——为了强化学生对用公式法求解一元二次方程本质的理解,在教学活动中不是直接告诉学生这个过程就是代数式求值的过程,而是通过具体的例题展示和练习让学生自己经历先确定系数a 、b 、c ,再判断b 2-4ac ,最后代入公式求解一元二次方程的过程,亲身感受到用公式法求解一元二次方程本质就是一个代数式求值的过程.另外,为了便于学生理解,教学环节中又设计了一个程序图来表示用公式法解一元二次方程的步骤,更能直观形象地反映这一本质,同时揭示了“神器”的奥秘,引申出高中阶段要学习的算法知识,体现了知识的前后联系.五、教学过程第一环节情境引入活动内容:数学竞赛,比一比看谁做的又快又准.用配方法解下列方程:(1)2x2-3x+1=0; (2)3x2-6x+4=0.找男生代表和女生代表到前面板演,其余同学在题单上运算.设计意图:与本节课有实质性联系的内容是前一节的配方法,以此为新知识的生长点呈现练习题:用配方法解两个上述方程,即激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.使学生认识到每一个数字系数的一元二次方程都可以用配方法来求解,同时体验到配方法的局限性.由此产生疑难和困惑,感悟到具体的配方法已经不够了.思考:(1)回忆用配方法解一元二次方程的基本思路是什么?体现了哪种数学思想?设计意图:通过提问,一方面加深对学生数学思想方法的渗透,另一方面,与本节课公式法解一元二次方程的本质形成对比,增强学生对知识的理解和掌握.(2)用配方法解一元二次方程的一般步骤有哪些?设计意图:复习用配方法解一元二次方程的步骤为后面用配方法推导一元二次方程的求根公式做铺垫.(3)所有的一元二次方程都能用配方法求解吗?你喜欢配方法吗?为什么?(4)能否有更简便和更一般的方法求一元二次方程的根呢? 出示 “计算神器”,指出只要知道a 、b 、c 就能很快判断出方程根的情况,并且很快计算出方程的根.用“计算神器”计算上面两个一元二次方程,并让学生随机说出一个一元二次方程,进行求解.设计意图:借助“计算神器”,一方面激发学生学习数学的兴趣,调动积极性;另一方面,使学生初步感受到一元二次方程的根的情况就是由系数a 、b 、c 决定的.特别是计算神器的原理又是高中阶段的算法的程序图,这样处理体现知识的前后联系.第二环节 新知探究活动1:推导求根公式.用配方法解一元二次方程:ax 2+bx +c =0(a ≠0)学生阅读题单上小亮同学的用配方法解方程ax 2+bx +c =0(a ≠0)时的一部分过程,请将横线上的部分补充完整,并指出每一步的依据.解:∵a ≠0∴方程两边都除以a 得0ac x a b x 2=++ ,得 ac x a b x 2-=+ 配方,得 222ac x a b x ) () (+-=++ 即: 2x )____(+=思考:(1)按照配方法的步骤,下一步应该做什么呢?(2)现在能直接两边开平方吗?如果能开平方,写出开平方后的结果,如果不能,说明理由.(学生小组内讨论)(3)什么情况下 04422≥-a ac b? 引导学生分析∵ a ≠0∴ 4a 2>0 要使04422≥-aac b 只要 b 2-4ac ≥0即可.当b 2-4ac ≥0时,两边开平方取“±” 得:2244-2a ac b a b x ±=+ (4)如何2244-2a ac b a b x ±=+对进行化简呢? (学生先独立思考再小组交流讨论)PPT 呈现:对2244-2a ac b a b x ±=+化简结果进行分析∵a ≠0当a >0时aac b a b x 2422-±=+ 当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有aac b a b x 2422-±=+ 最后得出aac b b x 242-±-=设计意图:由于用配方法推导求根公式是本节课的一个难点,为了突破这个难点,于是将公式的推导过程分为两个部分,第一部分,只要学生知道配方法的步骤及每一步对应的依据就能很快完成推导过程,但是后一部分对开方的条件的判断以及对2244a ac b ab x -±=+的化简结果的讨论都是本节课上学生的困难所在,于是采用多媒体课件及板书的结合,以填空的形式引发学生的思考,大大降低了推导公式的难度,达到让学生跳一跳就能摘到桃子的效果.(5)如果b 2-4ac <0时,会出现什么问题?归纳:我们把a ac b b x 242-±-=称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.设计意图:理解一元二次方程求根公式中各字母代表的意义及条件,理解公式的结构特征,突出数学问题的本质.活动2:典例示范.例:用公式法解方程:2x 2-3x +1=0 .板书示范 解:这里 a =2, b =-3, c =1.b 2-4ac =(-3)2-4×2×1=1>0.413221)3(±=⨯±--=x ,即,11=x , 212=x . 思考:例题与第一环节中的第(1)题对比,哪种解法更简捷? 设计意图:回到情境中的练习,运用求根公式解方程2x 2-7x +3=0,使学生体会到求根公式的优越性,感悟从特殊到一般、发现提出问题的方法.请模仿例题完成下面的做一做做一做:用公式法解下列方程(1)2x2-22x+1=0 ;(2)5x²-3x=x+1 ; (3)x2+17=8x .思考:(1)第(2)题与第一环节中的第(2)题对比,哪种解法更简捷?(2)通过例题与练习题的学习,请思考用公式法求解一元二次方程的一般步骤有哪些?(3)观察这三道题,你还有什么发现?归纳:对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac>0时,一元二次方程实数根;当b2-4ac=0时,一元二次方程实数根;当b2-4ac<0时,一元二次方程实数根.一元二次方程ax2+bx+c=0(a≠0)的根的情况由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ来表示.设计意图:通过解方程使学生进一步体会求根公式的实质是代数式求值的过程,并归纳用求根公式解一元二次方程的基本思路.使学生运用求根公式解方程的同时,体验判别式与根的个数的关系,特别是判别式小于0时直接得到无实数根而不用代入求根公式,概括出在用求根公式解一元二次方程时可以先确定判别式的值代入求根公式,从而丰富和优化学生的认知结构.第三环节 巩固应用1.判断下列方程根的情况:(1)x 2+5x +6=0 (2)9x ²+12x+4=0设计意图:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度.第四环节 感悟收获谈谈本节课的收获和体会?你还有哪些问题?学生发言,互相补充,教师点评完善. 既要关注知识的整理与归纳,更要关注本节课研究问题的过程以及运用的数学思想方法.设计意图:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,引导学生建立知识之间的内在联系,概括本节课的核心知识及运用的数学思想和研究方法,旨在使学生生成组织良好的数学认知结构网络.另外,用程序图表示用公式法解一元二次方程的步骤,揭开神器的秘密,学生的好奇心得到满足.第五环节 当堂检测1.一元二次方程y 2+3y -4=0的根的情况为( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定2.已知关于x 的一元二次方程x ²+2x +a =0有两个相等的实数根,则a 的值是( ) A. 1 B. -1 C. 41 D. 413.用公式法解方程4x2+9=12x设计意图:紧扣目标点设计达标测评题,全面了解学生学习水平,及时发现学生认识中存在的问题,给予有效指导,保证当堂落实.第六环节布置作业必做题:习题2.5 知识技能第1、2、3题选做题:尝试用不同种方法解一元二次方程2x²-3x+1=0,通过解答过程谈一谈每种解法的优势与不足.六、教学反思本节课的设计目标明确,重点突出,课前以数学竞赛(用配方法解一元二次方程)引入,调动了学生学习数学的积极性,同时激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.公式的推导过程本来是本节课的难点所在,课前设计的各种为了突破难点的策略都发挥了极大的作用,学生在问题的引导下,同伴的互助下很顺利地推导出了一元二次方程的求根公式.公式的训练、落实有效,对判别式的归纳从特殊到一般思路很清晰,归纳也条理.在整个课堂教学活动中,不仅关注数学知识与能力的发展,同时也重视数学思想方法的渗透;不仅有学生独立思考解决问题的环节,同时也关注了学生之间的合作交流,培养了学生之间的合作精神,不仅注重了对学生基础知识和基本技能的评价,同时又注重了对学生情感态度的评价.。
初中数学北师大版九年级上册《23用公式法解一元二次方程第一课时》教案
用公式法一元二次方程 教学设计第1课时 用公式法解一元二次方程教材分析:能够根据具体问题中的数量关系,列出方程;体会方程是刻画现实世界的一个有效的数学模型;能根据具体的实际意义,检验结果是否合理。
本节主要为了巩固解方程的方法,同时考虑到单纯的式的训练,比较枯燥,因此设计了一个方案设计活动,需要自行设计方案 教学目标:【知识与技能】1.一元二次方程的求根公式的推导2.会用求根公式解一元二次方程【过程与方法】1.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力.2.会用公式法解简单的数字系数的一元二次方程.【情感态度与价值观 】1.通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯.2.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力。
教学重难点:【教学重点】重点:掌握用公式法解一元二次方程【教学难点】难点:对公式法中求根公式的推导过程的理解.关键:运用配方法推导出一元二次方程的求根公式。
课前准备:多媒体教学过程:一、复习引入活动内容:你能举例说明什么是一元二次方程吗?它有什么特点?怎样用配方法解一元二次方程?怎样用公式法解一元二次方程?【设计意图】帮助学生回忆一元二次方程及其解法,为后面说明设计方案的合理性作铺垫。
二、 讲授新课问题:你能用配方法解方程02=++c bx ax 吗? 通过推导得出答案:aac b b x 242+±-=)(042≥-ac b【设计意图】这个公式说明方程的根是由方程的系数a 、b 、c 所确定的,利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的解.三、典例精析例1:解方程(1) 01872=--x x(2) x x 4142=+解:(1).这里 a =1 , b =-7 , c = -18.∵ b2 - 4ac = (-7 )2 - 4×1×(-18 )=121 >0,∴.2117121217±=⨯±=x即 x1 = 9 x2 = -2.例2 解方程:02342=+-x x要点归纳:公式法解方程的步骤:1.变形: 化已知方程为一般形式;2.确定系数:用a,b,c 写出各项系数;3.计算: ac b 42-的值;4.判断:若ac b 42- ≥0,则利用求根公式求出;若ac b 42-<0,则方程没有实数根.【设计意图】规范配方法解一元二次方程的过程,让学生充分理解掌握用公式法解一元二次方程的基本思路四、拓展延伸活动1:问题:对于一元二次方程02=++c bx ax (a ≠0),如何来判断根的情况?对一元二次方程:02=++c bx ax (a ≠0)ac b 42->0时,方程有两个不相等的实数根.ac b 42-= 0时,方程有两个相等的实数根.ac b 42- < 0时,方程无实数根.我们把ac b 42-叫做一元二次方程02=++c bx ax 根的判别式,用符号“Δ”来表示. 练一练:不解方程判别下列方程的根的情况.(1)016-2=+x x ;(2)02-22=+x x ;(3)0412-92=+x x要点归纳:根的判别式使用方法:1、化为一般式,确定a,b,c 的值.2、计算 ∆的值,确定∆的符号3、判别根的情况,得出结论.活动2:例3 若关于x 的一元二次方程()01412=++-x x k 有两个不相等的实数根,则k 的取值范围是( )A. k <5B.k <5且k ≠1C. k ≤5且k ≠1D. k >5【设计意图】不解方程判别下列方程的根的情况,是中考新增加的一部分内容,因此拓展延伸需详细讲解和加以巩固。
2.3二次函数与一元二次方程、不等式 2.3.1二次函数与一元二次方程、不等式 教案
2.3二次函数与一元二次方程、不等式【素养目标】1.理解一元二次方程与二次函数的关系.(数学抽象)2.掌握图象法解一元二次不等式.(直观想象)3.会从实际情境中抽象出一元二次不等式模型.(数学抽象)4.会解可化为一元二次不等式(组)的简单分式不等式.(数学运算)5.会用分类讨论思想解含参数的一元二次不等式.(逻辑推理)6.会解一元二次不等式中的恒成立问题.(数学运算)【学法解读】在从函数观点看一元二次方程和一元二次不等式的学习中,可以先以讨论具体的一元二次函数变化情况为情境,使学生发现一元二次函数与一元二次方程的关系,引出一元二次不等式的概念;然后进一步探索一般的一元二次函数与一元二次方程、一元二次不等式的关系,归纳总结出用一元二次函数解一元二次不等式的程序.2.3.1 二次函数与一元二次方程、不等式一、必备知识·探新知基础知识知识点1:一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________________.一元二次不等式的一般形式是:_________________________或_________________________.知识点2:二次函数与一元二次方程、不等式的解的对应关系思考2:如何用图解法解一元二次不等式?提示:图解法解一元二次不等式的一般步骤:(1)将原不等式化为标准形式ax2+bx+c>0或ax2+bx+c<0(a>0);(2)求Δ=b2-4ac;(3)若Δ<0,根据二次函数的图象直接写出解集;(4)若Δ≥0,求出对应方程的根,画出对应二次函数的图象,写出解集.基础自测1.判断正误(对的打“√”,错的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(3)设二次方程f(x)=0的两解为x1,x2,且x1<x2,则一元二次不等式f(x)>0的解集不可能为{x|x1<x<x2}.()(4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的解集为空集,则方程ax2+bx+c=0无实根.()[解析](1)当m=0时,是一元一次不等式;当m≠0时,它是一元二次不等式.(2)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为∅.(3)当二次项系数小于0时,不等式f(x)>0的解集为{x|x1<x<x2}.(4)当Δ<0时,一元二次不等式的解集为空集,此时方程无实根.2.不等式2x≤x2+1的解集为()A.∅B.RC.{x|x≠1} D.{x|x>1或x<-1}[解析]将不等式2x≤x2+1化为x2-2x+1≥0,∴(x-1)2≥0,∴解集为R,故选B.3.不等式(2x-5)(x+3)<0的解集为_____________________.二、关键能力·攻重难题型探究题型一解一元二次不等式例题1:解下列不等式.(1)2x2-3x-2>0;(2)x2-4x+4>0;(3)-x2+2x-3<0;(4)-3x2+5x-2>0.[分析]根据三个二次之间的关系求解即可.[归纳提升]解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)的形式.(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)根据对应的二次函数的图象,写出不等式的解集.【对点练习】❶不等式6x2+x-2≤0的解集为______________________.题型二三个“二次”的关系例题2:已知不等式ax2-bx+2<0的解集为{x|1<x<2},求a,b的值.[分析]给出了一元二次不等式的解集,则可知a的符号和方程ax2-bx+2=0的两根,由根与系数的关系可求a,b的值.【对点练习】❷若不等式ax2+bx+c≤0的解集为{x|x≤-3或x≥4},求不等式bx2+2ax-c-3b≥0的解集.题型三解含有参数的一元二次不等式例题3:解关于x的不等式2x2+ax+2>0.[分析]二次项系数为2,Δ=a2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.②当a=4时,Δ=0,方程有两个相等实根,x1=x2=-1,∴原不等式的解集为{x|x≠-1}.③当a=-4时,Δ=0,方程有两个相等实根,x1=x2=1,∴原不等式的解集为{x|x≠1}.④当-4<a<4时,Δ<0,方程无实根,故原不等式的解集为R.[归纳提升]在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数a>0,a=0,a<0;(2)关于不等式对应方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0);(3)关于不等式对应方程的根的大小的讨论:x1>x2,x1=x2,x1<x2.【对点练习】❸解关于x的不等式ax2-x>0.。
九年级数学北师大版上册 第2章《用公式法求解一元二次方程》教学设计 教案
教学设计用公式法求解一元二次方程一、学生知识状况分析学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.二、教学任务分析公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。
所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。
其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。
为此,本节课的教学目标是:①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。
④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力三、教学过程分析本课时分为以下七个教学环节:第一环节:回忆巩固;第二环节:公式的推导;第三环节:公式的运用;第四环节:巩固运用;第五环节:感悟与收获;第六环节:检测反馈;第七环节:布置作业。
第一环节;回忆巩固1.一元二次方程的一般形式是_____________________________________2.一元二次方程 0962=-+x x 二次项系数a 为____,一次项系数b 为_______, 常数项c 为________,ac b 42-=____________3.方程01872=--x x 的解为_____________________第二环节 公式的推导活动内容:配方法推导一元二次方程的求根公式提出问题:解一元二次方程:ax 2+bx+c=0(a ≠0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。
九年级数学教案--2.3用公式法求解一元二次方程(2)
导学案年级:九年级 上册第二章一元二次方程 第3节用公式法求解一元二次方程(2)学习目标:1、用公式法解一元二次方程的过程中,进一步理解代数式b 2-4ac 对根的情况的判断作用2、能用b 2-4ac 的值判别一元二次方程根的情况预习案课前导学:1. 议一议:一元二次方程ax 2 + bx+c =0(a≠0)在什么情况下有实数根?在什么情况下没有实数根?尝试练习1.写出求根公式:2.用公式法解一元二次方程 :(1) x 2-2x =1 (2)4y 2+12y+9=0学习案知识点拨一元二次方程ax 2 + bx+c =0(a≠0)在求解时, 起着重要的作用,我们可以根据 的值的符号来判断的根的情况,因此,我们把 24b ac -叫做___________________,通常用符号“ (读作delta ,它是希腊字母)”来表示,即 =24b ac -(1)()22004ax bx c a b ac ++=≠-在一元二次方程中,△=若△>0 则方程______________________若△ =0 则方程________________若△<0则方程_______________________(2)()22004ax bx c a b ac ++=≠-在一元二次方程中,△=若方程有两个不相等的实数根,则__________若方程有两个相等的实数根,则___________若方程没有实数根,则____________课内训练1、不解方程判别下列方程根的情况:(1) x2+3x-1 =0 (2)2y2-3y+4=02、k取什么值时,方程x2-kx +4=0有两个相等的实数根?反馈案基础训练1、方程3x2+2=4x的判别式b2-4ac= ,所以方程的根的情况是 .2、一元二次方程x2-4x+4=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3下列方程中,没有实数根的方程式()A.x2=9B.4x2=3(4x-1)C.x(x+1)=1D.2y2+6y+7=04、方程(2x+1)(9x+8)=1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5、若方程2610-+=有实数根,则k的范围是_____________________。
用公式法解一元二次方程说课稿
2.3用公式法解一元二次方程说课稿今天我说课的内容是北师大版九年级数学上册第二章《2.3用公式法解一元二次方程》。
我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明.一、教材分析(一)教材的地位和作用“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。
通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。
一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式二、教学法分析教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习——课时小结——布置作业。
2.3用公式法求解一元二次方程(第一课时)学历案北师大版数学九年级上册
2023学年九年级数学自主学历案13班级: 年级 班 姓名: 学号:一、学习指南:【课程名称】用公式法求解一元二次方程(1)【知识技能目标】1、推导一元二次方程的求根公式;2、会用求根公式解一元二次方程.3、会用根的判别式判别方程根的情况.【思维发展目标】通过推导求根公式,让学生进一步理解配方法.二、学习任务:1.用配方法解下列方程:(1)01422=++x x(2))0(02≠=++a c bx ax小结:一元二次方程)0(02≠=++a c bx ax 的求根公式是 , 用求根公式解一元二次方程的方法称为 .【例题演练】用公式法解下列方程:(1)01872=--x x解:这里a= ,b= ,c= ∵=-ac b 42(2)01692=++x x(3)0322=+-x x小结:用公式法解一元二次方程的一般步骤是:【基础训练】1.一元二次方程2310x x +-=根的判别式的值为______.2.下列一元二次方程中,没有实数根的是( )A .230x =B .(3)(2)0x x -+=C .22550x x -+=D .2440x x ++=3.关于x 的一元二次方程x 2﹣6x +m =0有两个不相等的实数根,则m 的值可能是( )A .8B .9C .10D .11【自我检测】4.用公式法解一元二次方程3x 2﹣4x =8时,化方程为一般式,当中的a ,b ,c 依次为( ) A .3,﹣4,8 B .3,﹣4,﹣8 C .3,4,﹣8 D .3,4,85.关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .m <26.若一元二次方程2x 2﹣3x+c =0无实数根,则c 的取值范围为 .7.若关于x 的一元二次方程ax 2+4x ﹣2=0有实数根,则a 的取值范围为 .8.用公式法解方程:(1)012=--x x(2)()()1532=--x x(3)03322=+-x x【拓展提升】已知关于x 的方程mx 2﹣(3m ﹣1)x +2m ﹣2=0.(1)求证:无论m 取任何实数时,方程恒有实数根.(2)若m 是整数,且方程总有两个整数根,求m 的值.。
北师大版数学九年级上册2.3《公式法》教案
北师大版数学九年级上册2.3《公式法》教案一. 教材分析《北师大版数学九年级上册2.3《公式法》》这一节主要讲述了一元二次方程的解法——公式法。
通过前面的学习,学生已经掌握了一元二次方程的概念和性质,以及配方法解一元二次方程。
本节课通过公式法解一元二次方程,使学生能够更加深入地理解一元二次方程的解法,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念和性质,以及配方法解一元二次方程。
但部分学生对于公式的理解和运用还不够熟练,需要通过本节课的学习,加强学生对公式法的理解和运用。
三. 教学目标1.让学生掌握一元二次方程的公式法解法。
2.培养学生运用公式法解决实际问题的能力。
3.培养学生合作学习、积极探究的学习态度。
四. 教学重难点1.掌握一元二次方程的公式法解法。
2.运用公式法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过自主学习、合作交流,掌握一元二次方程的公式法解法。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过复习一元二次方程的配方法解法,引导学生思考:是否有一元二次方程的通用解法?从而引出本节课的内容——公式法。
2.呈现(10分钟)呈现一元二次方程的公式法解法,引导学生理解公式法的原理。
公式法解一元二次方程的步骤:(1)确定方程的系数a、b、c;(2)计算判别式Δ=b²-4ac;(3)根据公式x=(-b±√Δ)/(2a),求出方程的解。
3.操练(10分钟)让学生分组讨论,运用公式法解一元二次方程。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成练习题,巩固公式法解一元二次方程的方法。
5.拓展(10分钟)引导学生思考:公式法解一元二次方程的应用场景。
让学生举例说明,培养学生的应用能力。
6.小结(5分钟)教师引导学生总结本节课的学习内容,使学生对公式法解一元二次方程有一个清晰的认识。
北师大版九年级上册第二章2.3 .1用公式法求解一元二次方程(教案)
2.3 .1用公式法求解一元二次方程教学目的:1、理解一元二次方程求根公式的推导过程,理解公式法的概念,会纯熟应用公式法解一元二次方程.2、复习详细数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0〔a≠0〕•的求根公式的推导公式,并应用公式法解一元二次方程.教学重难点:重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式法的推导.教学过程一、复习引入惯用配方法解一元二次方程的一般步骤.2+bx+c=0(a≠0)?3.前面我们学习过解一元二次方程的“直接开平方法〞,比方,方程〔1〕x2=4 (2)(x-2) 2=7提问1 这种解法的〔理论〕根据是什么?提问2 这种解法的局限性是什么?〔只对那种“平方式等于非负数〞的特殊二次方程有效,不能施行于一般形式的二次方程。
〕4.面对这种局限性,怎么办?〔使用配方法,把一般形式的二次方程配方成可以“直接开平方〞的形式。
〕〔学生活动〕用配方法解方程 2x2+3=7x总结用配方法解一元二次方程的步骤:(1)现将方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;〔4〕方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;〔5〕变形为(x+p)2=q的形式,假如q≥0,方程的根是x=-p±q;假如q<0,方程无实根.二、探究新知用配方法解方程(1)a x2-7x+3 =0 (2)a x2+bx+3=0(3)假如这个一元二次方程是一般形式ax2+bx+c=0〔a≠0〕,你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:ax 2+bx+c=0〔a ≠0〕,试推导它的两个根x 1,x 2(这个方程一定有解吗?什么情况下有解?) 分析:因为前面详细数字已做得很多,我们如今不妨把a 、b 、c 也当成一个详细数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+x=-配方,得:x 2+x+〔〕2=-+〔〕2即〔x+〕2=∵4a 2>0,4a2>0, 当b 2-4ac ≥0时≥0 ∴〔x+〕2)2 直接开平方,得:x+=即 ∴x 1,x 2由上可知,一元二次方程ax 2+bx+c=0〔a ≠0〕的根由方程的系数a 、b 、c 而定,因此:2ba 2ba 2b a 2244b ac a -2244b a c a -2b a 2ba〔1〕解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这表达了公式的统一性与和谐性。
用公式法解一元二次方程教学设计
第二章一元二次方程3.用公式法求解一元二次方程(一)教学目标知识点1.一元二次方程的求根公式的推导。
2.会用求根公式解一元二次方程。
3. 能根据一元二次方程的系数判断根的情况。
能力训练要求1.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力。
2.会用公式法解简单的数字系数的一元二次方程。
情感与价值观要求通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯。
教学重点1. 正确推导出一元二次方程的求根公式2.正确、熟练地使用一元二次方程的求根公式解方程,提高综合运算能力。
教学难点1. 正确推导出一元二次方程的求根公式2.正确、熟练地使用一元二次方程的求根公式解方程,提高综合运算能力。
教法学法启发引导与自主探索相结合。
教学过程第一环节: 回顾巩固1.用配方法解下列方程:(1)2x2+3=7x (2)3x2+2x+1=02.总结用配方法解方程的一般方法:第二环节:探究新知活动一:自主推导求根公式。
提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生可互相交流推导过程及碰到的问题,然后由师生共同讨论推导过程。
活动二:归纳总结公式法定义和根的判别式。
在推导过程中碰到开平方时自动导入对b2-4ac的判断(1) b2-4ac≥0时可以开平方,方程有两个不相等的实数根。
(2) b2-4ac=0时可以开平方,方程有两个相等的实数根。
(3) b2-4ac<0时不可以开平方,方程没有实数根。
第三环节:巩固新知1、判断下列方程是否有解:(学生口答)(1) 2x2+3=7x (2)x2-7x=18 (3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3 (6) 2x2-9x+8=0学生迅速演算或口算出b2-4ac,从而判断出根的情况。
2、上述方程如果有解,求出方程的解请几名同学到黑板上书写过程。
师生共同指正过程并强调书写格式。
3、当堂检测(1)一个直角三角形三边的长为三个连续的偶数,求这个三角形的三条边长。
九年级数学上册《用公式法求解一元二次方程》教案、教学设计
难点:判断根的情况,并解释其对应的实际意义。
3.重点:培养学生运用一元二次方程解决实际问题的能力。
难点:将复杂问题简化为一元二次方程,并进行有效求解。
(二)教学设想
1.创设情境,激发兴趣:
结合生活实例,如抛物线运动、面积计算等,引入一元二次方程,激发学生的学习兴趣。
-小组研究题:选取一个话题,小组合作研究一元二次方程在该话题中的应用,并准备课堂分享。
作业布置时,我会强调以下几点:
-作业量适中,确保学生有足够的时间进行思考和练习。
-鼓励学生独立完成作业,遇到困难时可以寻求同学或老师的帮助。
-强调作业的完成质量,要求学生书写规范,步骤清晰。
-鼓励学生在作业中展现自己的思考过程,包括解题思路、遇到的困难和解决方案。
-对作业进行及时反馈,指导学生改正错误,提高解题能力。
-探究题:给定一个开放性问题,要求学生通过建立和求解一元二次方程来探究问题的不同解决方案。
-拓展题:鼓励学生探索一元二次方程在其他学科领域的应用,如经济学、生物学等。
4.小组合作题:这类题目要求学生在课后小组合作完成,旨在培养学生的团队协作能力。
-小组讨论题:小组共同讨论一元二次方程的实际应用案例,并撰写总结报告。
4.巩固练习,提高解题能力:
设计不同难度的习题,让学生在练习中巩固所学知识,提高解题能力。针对学生的个体差异,进行分层指导,使每个学生都能得到提高。
5.课堂小结,强化重点:
通过对本节课内容的总结,强调一元二次方程公式法的求解步骤、根的判别式等关键知识点。
6.拓展延伸,提高素养:
将一元二次方程与实际应用相结合,如几何图形、物理运动等,提高学生运用数学知识解决实际问题的能力。
北师大版数学九年级上册《用公式法求解一元二次方程》教案1
北师大版数学九年级上册《用公式法求解一元二次方程》教案1一. 教材分析北师大版数学九年级上册《用公式法求解一元二次方程》是学生在学习了一元二次方程的解法基础上,进一步学习用公式法求解一元二次方程。
通过本节课的学习,学生能够掌握一元二次方程的公式法解法,并能够灵活运用解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了一元二次方程的解法,对于解一元二次方程有一定的基础。
但是,对于公式法解一元二次方程可能还不太熟悉,需要通过本节课的学习来进一步掌握和运用。
三. 教学目标1.让学生掌握一元二次方程的公式法解法。
2.让学生能够灵活运用公式法解一元二次方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:让学生掌握一元二次方程的公式法解法。
2.教学难点:让学生能够灵活运用公式法解一元二次方程解决实际问题。
五. 教学方法采用问题驱动法,通过引导学生思考和解决问题,让学生主动探索和发现一元二次方程的公式法解法,从而达到掌握和运用的目的。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)通过复习一元二次方程的解法,引导学生思考如何用公式法解一元二次方程。
2.呈现(10分钟)讲解一元二次方程的公式法解法,让学生理解并掌握公式法解一元二次方程的步骤和原理。
3.操练(10分钟)让学生通过PPT上的练习题,运用公式法解一元二次方程,教师巡回指导,及时解答学生的疑问。
4.巩固(10分钟)让学生通过黑板上的练习题,运用公式法解一元二次方程,教师进行点评和讲解,巩固学生对公式法解法的掌握。
5.拓展(10分钟)让学生思考和解决实际问题,运用公式法解一元二次方程,培养学生的解决问题的能力。
6.小结(5分钟)总结本节课的学习内容,让学生明确一元二次方程的公式法解法及其应用。
7.家庭作业(5分钟)布置相关的练习题,让学生课后巩固和提高一元二次方程的公式法解法。
8.板书(5分钟)板书一元二次方程的公式法解法及其步骤。
2.3.1 用公式法求解一元二次方程(第一课时)
(3)原方程可化为 4y2 – 2.4y+0.36=0 , 这里 a=4,b=-2.4,c=0.36, ∵b2-4ac=(-2.4)2-4×4×0.36=0, ∴原方程有两个相等的实数根.
2.用公式法解下列方程: (1)2x2 –9x+8=0; (3)16x2+8x=3;
解:(1)这里 a=2,b=-9,c=8, ∵b2-4ac=(-9)2-4×2×8=17>0,
x 9 17 9 17
22
4
x1 9 4 17
,
x2
9
4
17
(2)9x2+6x +1=0; (4)x (x –3)+5=0
(2)这里 a=9,b=6,c=1, ∵b2-4ac=62-4×9×1=0,
x 6 0 1 29 3
即
x1
x2
1 3
2.用公式法解下列方程: (1)2x2 –9x+8=0; (3)16x2+8x=3;
(2)3x2 + 2x + 1 = 0
解:移项,得 2x2 -7x=-3, 方程两边同除以2,得
解: 方程化为 x2 + 2 x 1 0,
33
x2 7 x 3, 22
x2
+
2 3
x
1 3
2
1 3
2
1 3
0,
配方,得
x2
7 2
x+
7 4
2
3 2
7 4
2
,
x
1 3
2
2 9
x+ b = 2a
b2 4ac 4a2
,
即
x= b 2a
北师大版九年级数学2.3用公式法求解一元二次方程(1)教案
2.3 用公式法求解一元二次方程(1)教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.4. 根据根的判别式值的情况,体会数学分类思想。
教学目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx+c=0(a ≠0)的求根公式的推导公式,并应用公式法解一元二次方程.重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导.教学过程一、复习引入总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)化—化二次项系数为1;(2)移—移项,使得方程左边为二次项和一次项,右边为常数项;(3)配—配方,方程两边都加上一次项系数一半的平方;(4)开—如果方程的右边是非负数,就可左右两边开平方 ;(5)解—解一元二次方程。
二、探索新知如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.用配方法解方程:已知ax 2+bx+c=0(a ≠0)解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a)2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0∴2244b ac a-≥0直接开平方,得:x+2b a=即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,将a 、b 、c 代入式子 (2)式子b ²-4ac 叫做一元二次方程ax ²+bx +c =0根的判别式,通常用希腊字母“Δ”表示它,即Δ=b 2-4ac .(3)上面这个式子称为一元二次方程的求根公式。
人教版九年级数学上册《公式法解一元二次方程》公开课教学设计
人教版九年级数学上册《公式法解一元二次方程》公开课教学设计一. 教材分析人教版九年级数学上册《公式法解一元二次方程》是本学期的重要内容,它为学生提供了解决实际问题的工具,同时也为学习更高阶的数学知识打下基础。
本节课通过讲解公式法解一元二次方程的原理和步骤,使学生能够理解和掌握公式法解一元二次方程的方法。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元二次方程有了初步的了解。
但是,对于公式法解一元二次方程的原理和步骤,他们还不够熟悉。
因此,在教学过程中,需要注重引导学生理解和掌握公式法解一元二次方程的方法。
三. 教学目标1.知识与技能:使学生理解和掌握公式法解一元二次方程的原理和步骤。
2.过程与方法:通过实例演示和练习,培养学生运用公式法解一元二次方程解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.教学重点:公式法解一元二次方程的原理和步骤。
2.教学难点:理解和掌握公式法解一元二次方程的方法,以及如何运用公式法解决实际问题。
五. 教学方法采用问题驱动法、实例演示法、练习法、小组合作学习法等教学方法,引导学生主动探究、积极参与,提高学生的学习兴趣和效果。
六. 教学准备1.教学PPT:制作详细的PPT,内容包括公式法解一元二次方程的原理、步骤和实例。
2.练习题:准备一些练习题,用于巩固学生的学习效果。
3.小组分组:将学生分成若干小组,便于小组合作学习。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出一元二次方程,激发学生的兴趣。
2.呈现(10分钟)讲解公式法解一元二次方程的原理和步骤,让学生理解和掌握。
3.操练(10分钟)让学生分组进行练习,运用公式法解一元二次方程。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)挑选一些练习题,让学生独立完成,巩固所学知识。
5.拓展(5分钟)引导学生思考如何将公式法解一元二次方程应用于实际问题,进行拓展训练。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:2.3.1用公式法求解一元二次方程
教学目标:
1.能运用公式法解数字系数的一元二次方程。
不解方程,会用一元二次方程根的判别式判别方程是否有实数根和两个实数根是否相等.
2.理解一元二次方程求根公式的推导过程,领悟所包含的数学思想和基本方法,培养熟练而准确的运算能力.
3.通过公式的引入与推导和判别方程根的情况的过程中,培养学生数学推理的严密性及严谨性,寻求简便方法的探索精神及创新意识.
教学重、难点:
重点:掌握公式和运用公式法解一元二次方程.
难点:求根公式的推导过程及应用.
课前准备:制作多媒体课件.
教学过程:
一、创设情境,导入新课
(课件展示)
活动内容:回答下列问题.
问题1:用配方法解方程2x2-9x+8=0.
问题2:用配方法解方程x2+2bx+4ac=0(b2-4ac≥0).
问题3:问题2中,如果没有限制条件b2-4ac≥0呢?
处理方式:问题1、2由学生尝试用配方法解方程,并回顾用配方法解方程步骤;对于问题3先让学生分类讨论,如果b2-4ac≥0,就按上面的解题过程,如果b2-4ac<0那么方程没有实数解.
设计意图:通过两个具体的题目回顾配方法的过程,回忆配方法的过程,尤其第二题为推导公式法做了铺垫,尤其是对判别式的讨论.
二、探究学习,感悟新知
探索:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成这个问题.
活动1:自主推导求根公式。
问题1:你能用配方法解一元二次方程ax2+bx+c=0(a≠0)吗?
处理方式:先鼓励学生自主推导求根公式, 并针对自己推导过程中预见的问题在小范围内自由研讨,特别是对配方后开方需满足的条件先由学生独立判断,再经过相互交流,学生将会印象深刻,有助于理解求根公式.老师巡回期间,进行引导、质疑、解惑,最后教师再利用课件演示推导过程. (课件展示)
解:移项,得:ax 2
+bx =-c .
二次项系数化为1,得x 2
+
b a x =-c
a . 配方,得x 2+
b a x +(2b a )2=-
c a +(2b a
)2,
即(x +2b a )2=22
44b ac
a
-. 当b 2
-4ac ≥0,
直接开平方,得:x +2b a
即x
∴x 1x 2
当b 2
-4ac <0 时方程没有实数解.
活动2:归纳总结一元二次方程的求根公式和公式法定义.
处理方式:教师再利用出示课件形式归纳总结一元二次方程的求根公式和公式法定义.学生看课本理解识记公式.
由上可知,一元二次方程ax 2
+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2
+bx +c =0,当b -4ac ≥0时,将
a 、
b 、
c 代入式子x
(2)x
(3)利用求根公式解一元二次方程的方法叫公式法.
注: (1)在运用求根公式求解时,应先计算b 2
-4ac 的值;当b 2
-4ac ≥0时,可以用公式求出两个实数解;当b 2
-4ac <0时,方程没有实数解.就不必再代入公式计算了.
(2)把方程化为一般形式后,在确定a 、b 、c 时,需注意符号.
设计意图: 学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。
三、例题解析,应用新知 活动内容1:
问题1:例1 解方程:x 2
―7x ―18=0.
问题2:试一试:通过例1你能总结用公式法解一元二次方程的一般步骤吗? 处理方式:问题1先给学生10秒钟时间观察思考,再口述解题过程,教师板书.在学生口述过程中,教师可进行有针对性的提问.教师分析板演解题过程:
解:这里a =1,b =―7,c =―18.
∵b 2
-4ac =(―7)2
―4×1×(―18)=121>0, ∴x =7±1212×1 ,
即:x 1=9,x 2 =-2.
问题2先由学生根据例1解题过程独自思考,再分组交流分享,展示,其他组补充完善,最后教师以课件的形式梳理总结用公式法解一元二次方程的一般步骤.
(课件展示)
(1)把方程化为一般形式,进而确定a 、b ,c 的值.(注意符号) (2)求出b 2-4ac 的值.(先判别方程是否有根)
(3)在b 2
-4ac ≥0的前提下,把a 、b 、c 的直代入求根公式,求出最后写出方程的根.
活动内容2:
例2 解方程:x +=23. 例3 解方程:(x -2)(1-3x )=6.
问题3:议一议:通过例1、例2、例3你有什么发现?与同伴交流.
处理方式:对于例2、例3鼓励学生仿照例1的解题过程尝试完成,对于例2的解学生可能不易理解:同一个数为什么算两个根?这里可以作为一种约定告诉学生。
对于问题3先鼓励学生独立完成,如果学生有困难,教师可以引导学生观察一元二次方程根的情况与
b2-4ac的符号的关系,再与同伴分、展示,最后教师以课件的形式总结展示.(课件展示) (1)b2-4ac叫做一元二次方程的根的判别式.
(2)由求根公式可知,b2-4ac≥0时一元二次方程有两个不相等实数根.
b2-4ac=0时一元二次方程有两个相等实数根.
b2-4ac<0时一元二次方程没有实数根.
设计意图:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度.
四、强化训练,巩固新知
问题1:判断下列方程是否有解:(学生口答)
(1) 2x2+3=7x;(2)x2-7x=18;(3)3x2+2x+1=0;
(4)9x2+6x+1=0; (5)16x2+8x=3; (6) 2x2-9x+8=0.
问题2:一个直角三角形三边的长为三个连续偶数,求这个三角形的三边长.
处理方式:问题1学生迅速演算或口算出b2-4a,从而判断出根的情况。
问题2学生口述,教师配同课件展示.
设计意图:第一题让学生熟练根的判别式的运用,加深对判别式的记忆和理解,第二题让学生熟悉解题格式步骤.
五、回顾反思,提炼升华
提出问题:
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?
2.如何判断一元二次方程根的情况?
3.用公式法解方程应注意的问题是什么?
4.你在解方程的过程中有哪些小技巧?
处理方式:让学生在四人小组中进行回顾与反思后,进行组间交流发言。
鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。
设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.
六、达标检测,反馈提高
(多媒体出示)
A组:
1.(2014•自贡)一元二次方程x2﹣4x+5=0的根的情况是()
A.有两个不相等的实数根 B.有两个相等的实数根
C. 只有一个实数根
D.没有实数根
2.解下列方程:(1)2x2+3=7x;(2)4x2+1=4x.
B组:
3.(2014•株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c 分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.
设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.
七、布置作业,课堂延伸
必做题:课本 43页习题2.5 第1题(1)、(2)小题,第2题(1)、(2)小题.选做题:课本 43页习题2.5 第1题(3)小题,第2题(3)、(4)小题.
板书设计:。