三 交流电的图象
交流电发电原理及有效值DOC
第三讲交流电发电原理及有效值知识要点1.交流电:方向和强弱都随时间呈周期性变化的电流叫做交变电流,其中方向和强弱随时间按正弦规律变化的交变电流称为正弦交变电流。
2.交流电的产生:闭合线圈在磁场中旋转的过程中,产生了交流电。
(1)当线圈平面和磁感线垂直时,磁通量最大,而感应电动势为零,改位置称其为中性面。
(2)当线圈平面和磁感线平行时,磁通量最小,而感应电动势最大,为εm=2Blv=Bsω。
3.交流电的图像:如图所示为正弦交流电的图象。
4.表征交流电的物理量:5.交流电的瞬时值:交变电流某一时刻的值,它可以准确地描述交变电流变化的规律。
符号用小写字母书写,如:i、e、u。
6.交流电的最大值:瞬时值中的极大值,即最大的瞬时值。
7.交流电的有效值:交变电流的有效值是根据电流的热效应定义的,即把和交变电流热效应相同的直流电的值叫做交变电流的有效值。
对正弦交变电流,其有效值=最大值/2。
注意:对不同变化规律的交变电流,其有效值和最大值的关系,只能根据有效值的定义,结合交变电流的变化规律进行推导,而不能简单套用上述关系。
交变电流的有效值,是在实际中使用最广泛的,交流电表测定的值、各种用电器铭牌上的标称值等都是交变电流的有效值,且在以有效值表示交变电流的情况下,直流电路中的一些规律在交变电路中是通用的。
对于正弦交流电例1 图甲是小型交流发电机的示意图,两磁极N 、S间的磁场可视为水平方向的匀强磁场,为交流电流表.线圈绕垂直于磁场的水平轴OO ′沿逆时针方向匀速转动,从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示.以下判断正确的是A .电流表的示数为10 AB .线圈转动的角速度为50π rad/sC .0.01 s 时线圈平面与磁场方向平行D .0.02 s 时电阻R 中电流的方向自右向左例2、通过一阻值R=100Ω的电阻的交变电流如图所示,其周期为1s.电阻两端电压的有效值为A .12VB .410VC .15VD .85V例3:试电笔上的氖管,起辉电压为86.6V 。
第八课时:交流电的有效值及图像问题
专题二:交流电的有效值和图像问题一.交流电有效值的问题交变电流的大小和方向随时间作周期性变化。
为方便研究交变电流的特性,根据电流的热效应引入了有效值这一物理量。
定义:若某一交流电与另一直流电在相同时间内通过同一电阻产生相等的热量,则这一直流电的电压、电流的数值分别是该交流电的电压、电流的有效值。
教材中给出了正弦交流电的有效值I与最大值Im 的关系IIm2,那么非正弦交流电的有效值又该如何求解呢?其方法是从定义出发,根据热效应求解。
例1. 如图1所示的交变电流,周期为T,试计算其有效值I。
例2. 如图2所示表示一交变电流随时间变化的图象,其中,从t=0开始的每个T2时间内的图象均为半个周期的正弦曲线。
求此交变电流的有效值。
例3. 求如图3所示的交变电流的有效值,其中每个周期的后半周期的图象为半个周期的正弦曲线。
例4.有一交变电流如图7所示,则由此图象可知( )A.它的周期是s B.它的峰值是4 AC.它的有效值是2 2 A D.它的频率是Hzt/s 10 -10 0 i/A 【跟踪练习】1.如右图所示,为一交流电的电流随时间而变化的图像,此交流电流的有效值是 ( ).A .52AB. 53AC. 92/2AD.10A2、一交流电的电流随时间变化而变化的图象,此交变电流的有效值为( )A 、52AB 、5AC 、2D 、3.某电流的图象如图5-2-10所示,此电流的有效值为( )2 B.2 C.3224.如图表示一交变电流随时间变化的图象,此交流电电动势的有效值是5.如图13-4-3所示的正弦交流电,正向和反向都是正弦交流电,但峰值和半周期不等,则此交流电流的有效值为 A 。
6.一个矩形线圈在匀强磁场中绕垂直于磁场的轴匀速转动,周期为T.从中性面开始计时,当t =112T 时,感应电动势的瞬时值为2 V ,则此交变电动势的有效值为( )A .2 2 VB .2 V V VtE/V 6 2T /3 20 0 -1图13—4—3 t /s i /A二.交流电的图像问题对正弦交流电的图像要掌握以下两方面的要点:(一)从图像中可直接得到的量是:瞬时值、最大值和周期(二)通过计算可以得到的量是:有效值、频率和角速度例题1.(2022年广东第二次调研)如图所示,图线a 是线圈在匀强磁场中匀速转动时所产生正弦交流电的图像,当调整线圈转速后,所产生正弦交流电的图像如图线b 所示,以下关于这两个正弦交流电的说法正确的是( )A .在图中t =0时刻穿过线圈的磁通量均为零B .线圈先后两次转速之比为3∶2C .交流电a 的瞬时值为u =10sin 5πt(V)D .交流电b 的最大值为203 V例题2.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动。
交流电的图像
图13-2-4
能力思维方法
【解析】由图像可知其峰值Um=10V,周期T=0.2s. (1)则其电压有效值U=Um/ 2 =5 2V; 角速度ω=2π/T=10πrab/s; (2)u=10sin10πt V; (3)t=1/30s时 u=10sin[10π×(1/30)]=5 3 V;
能力思维方法
课 前 热 身
1.一只矩形线圈匀强磁场中绕垂直于磁场的轴 匀速转动穿,过线圈的磁通量随时间变化的图 像如图13-2-1中甲所示,则下列说法中正确的 是( B )
图13-2-1
课 前 热 身
A.t=0时刻线圈平面与中性面垂直 B.t=0.01s时刻,Φ的变化率达最大 C.t=0.02s时刻,交流电动势达到最大 D.该线圈相应的交流电动势图像如图乙所示
交流电的图像
要点疑点考点 课 前 热 身 能力思维方法
要点疑点考点
1.任何物理规律的表达都可以有表达式 和图像两种方法,交流电的变化除用瞬 时值表达式外,也可以用图像来进行表 述.其主要结构是横轴为时间t或角度θ, 纵轴为感应电动势E、交流电压U或交流 电流I.
要点疑点考点
2.在图像中可由纵轴读出交流电的最 大值,由横轴读出交流电的周期或线圈转 过的角度θ=ωt. 3.由于穿过线圈的磁通量与产生 的感应电动势随时间变化的函数关系是互 余的,因此利用这个关系也可以讨论穿过 线圈的磁通量等问题.
课 前 热 身
2.如图13-2-2所示的长直导线中通有交流电 i=Imcosωt,则由t=0开始的一个周期内,在线框 abcd中产生的感应电流大小变化将是( C ) A.减→增→减→增 B.先减后增 C.增→减→增→减 D.先增后减
《电工基础》第5章 正弦交流电路ppt课件
最新课件
11
三、正弦交流电的变化范围
1. 最大值 :正弦交流电在一个周期所能达到的 最大瞬时值,又称峰值、幅值。
用大写字母加下标m表示,如Em、Um、 Im。
2.有效值 :加在同样阻值的电阻上,在相同的 时间内产生与交流电作用下相等的热量的直 流电的大小。
用大写字母表示,如E、U、I。
最新课件
12
最新课件
14
• 用数字万用表测量正弦交流电压时要选择交流
挡,测量的结果是电压有效值;若不慎错用直 流挡,则显示为零。
用直流挡测量市电显示为零
最新课件
15
• 用数字万用表测量直流电压时要选择直流挡, 测量的结果是电压平均值;若不慎错用交流挡, 则显示为零 。
用交流挡测量最叠新层课电件池显示为零
16
(1)同一相量图中,相同单位的相量应按相 同比例画出。
(2)一般取直角坐标轴的水平正方向为参考 方向,逆时针转动的角度为正,反之为负。
(3)用相量图表示正弦交流电后,它们的加、 减运算可按平行四边形法则或三角形法则进行。
最新课件
27
§5-3 单一参数的交流电路
最新课件
28
一、纯电阻电路
• 只含有电阻元件的交流电路称为纯电 阻交流电路。
QCUCICIC 2XCU XC C 2
最新课件
50
§5-4 LC谐振电路
最新课件
51
一、RLC串联电路
• 1.电压三角形 如图所示为RLC串
联电路,为正弦交流 电压,这三个元件流 过同一电流,电流与 各元件电压参考方向 如图所示。
最新课件
52
• 设电流的解析式为
iImsint
• 电阻、电感和电容两端的电压分别为
(完整版)1交流电的产生及变化规律
(完整版)1交流电的产⽣及变化规律第⼗四章交变电流第⼀单元交流电的产⽣及变化规律基础知识⼀.交流电⼤⼩和⽅向都随时间作周期性变化的电流,叫做交变电流。
其中按正弦规律变化的交变电流叫正弦式电流,正弦式电流产⽣于在匀强电场中,绕垂直于磁场⽅向的轴匀速转动的线圈⾥,线圈每转动⼀周,感应电流的⽅向改变两次。
⼆?正弦交流电的变化规律线框在匀强磁场中匀速转动.1当从图12—2即中性⾯位置开始在匀强磁场中匀速转动时,线圈中产⽣的感应电动势随时间⽽变的函数是正弦函数:即 e= e m sin 3 t , i = I m sin w t3 t 是从该位置经t 时间线框转过的⾓度;3 t 也是线速度V 与磁感应强度B 的夹⾓;。
是线框⾯与中性⾯的夹⾓2. 当从图位置开始计时:贝y : e= e m cos w t , i = I m COS 3 t3 t 是线框在时间t 转过的⾓度;是线框与磁感应强度B 的夹⾓;此时V 、B 间夹⾓为(n /2 ⼀3 t ).3.对于单匝矩形线圈来说E m =2Blv=BS 3;对于n匝⾯积为S 的线圈来说E m =nBS 3。
对于总电阻为 R的闭合电路来说1 = E m im =R三.⼏个物理量1. 中性⾯:如图所⽰的位置为中性⾯,对它进⾏以下说明:(1) 此位置过线框的磁通量最多. (2)此位置磁通量的变化率为零.所以 e= e m sin 3 t=0, i= I m sin 3 t=0(3)此位置是电流⽅向发⽣变化的位置,具体对应图中的t 2,t 4时刻,因⽽交流电完成⼀次全变化中线框两次过中性⾯,电流的⽅向改变两次,频率为 50Hz 的交流电每秒⽅向改变 100次.2. 交流电的最⼤值:e m = B 3 S当为 N 匝时 e m = NB 3 S(1)3是匀速转动的⾓速度,其单位⼀定为弧度/秒,n ad/s(注意rad 是radian 的缩写,round/s 为每秒转数,单词round 是圆,回合).(2) 最⼤值对应的位置与中性⾯垂直,即线框⾯与磁感应强度 (3) 最⼤值对应图中的t 1、t 2时刻,每周中出现两次.3. 瞬时值e= e m sin 3 t , i = I m s in ? t 代⼊时间即可求出. 不过写瞬时值时,不要忘记写单位,如e m =220 .2 V ,3 =100 n,贝y e=220 - 2 si n100 n tV,不可忘记写伏,电流同样如此.4. 有效值:为了度量交流电做功情况⼈们引⼊有效值,它是根据电流的热效应⽽定的.就是分别⽤交流电,直流电通过相同阻值的电阻,在相同时间内产⽣的热量相同,则直流电的值为交流电的有效值. (1) 有效值跟最⼤值的关系& m = 2U 有效,l m = 2 I 有效伏特表与安培表读数为有效值. ⽤电器铭牌上标明的电压、电流值是指有效值.5.周期与频率:交流电完成⼀次全变化的时间为周期; 1/秒为赫兹(Hz ). 规律⽅法⼀、关于交流电的变化规律【例1】如图所⽰,匀强磁场的磁感应强度 (2) (3) 每秒钟完成全变化的次数叫交流电的频率. 单位 B=0 . 5T , 100匝,线圈电阻r = 1Q,线圈绕垂直与磁感线的对称轴/ S ,外电路电阻 R = 4 Q,求:转动过程中感应电动势的最⼤值. 由图⽰位置(线圈平⾯与磁感线平⾏)转过边长L=10cm 的正⽅形线圈 abed 共 OO /匀速转动,⾓速度为3= 2 n rad (1)(2)势. (3)(4) (5) (6) 由图⽰位置转过 600⾓时的过程中产⽣的平均感应电动势. 交流电电表的⽰数. 转动⼀周外⼒做的功. 1周期内通过R 的电量为多少?6 60°时的即时感应电动 O解析:(1)感应电动势的最⼤值,£ m = NB 3 S = 100X 0. 5x 0. 12x 2 n V=3 . 14V 转过600时的瞬时感应电动势:e =£ m cos60°=3. 14x 0. 5 V = 1. 通过600⾓过程中产⽣的平均感应电动势: "=N△①/△ t=2 . 6V —? R=型 4R r 2 (2) (3) (4) 电压表⽰数为外电路电压的有效值:U= x- =1. 5 (5) 转动⼀周所做的功等于电流产⽣的热量 W = Q =(;) 57 V 78 V ⼗ r ) ? T = 0. 99J (6) 1周期内通过电阻 R 的电量Q = I -1 T = - -T = N BSsin60°=6 6 R 6 T R r /6 0. 0866 C 【例2】磁铁在电器中有⼴泛的应⽤,如发电机,如图所⽰。
高中物理新教材同步选择性必修第二册 第3章交变电流1 交变电流
1交变电流[学习目标] 1.通过实验观察交变电流的方向.2.会分析交变电流的产生过程,会推导交变电流电动势的表达式.3.知道什么是正弦式交变电流,知道正弦式交变电流的瞬时值表达式.4.了解交流发电机的构造及工作原理.一、交变电流1.交变电流:大小和方向随时间做周期性变化的电流叫作交变电流,简称交流.2.直流:方向不随时间变化的电流称为直流.二、交变电流的产生交流发电机的线圈在磁场中转动时,转轴与磁场方向垂直,用右手定则判断线圈切割磁感线产生的感应电流方向.三、交变电流的变化规律1.中性面(1)中性面:与磁感线垂直的平面.(2)当线圈平面位于中性面时,线圈中的磁通量最大,线圈中的电流为零.2.从中性面开始计时,线圈中产生的电动势的瞬时值表达式:e=E m sin ωt,E m叫作电动势的峰值,E m=NωBS.3.正弦式交变电流:按正弦规律变化的交变电流叫作正弦式交变电流,简称正弦式电流.4.正弦式交变电流和电压电流表达式i=I m sin_ωt,电压表达式u=U m sin_ωt.其中I m、U m分别是电流和电压的最大值,也叫峰值.四、交流发电机1.主要构造:电枢和磁体.2.分类(1)旋转电枢式发电机:电枢转动,磁极不动.(2)旋转磁极式发电机:磁极转动,电枢不动.判断下列说法的正误.(1)只要线圈在磁场中转动,就可以产生交变电流.(×)(2)线圈在通过中性面时磁通量最大,电流也最大.(×)(3)线圈在通过中性面时电流的方向发生改变.(√)(4)从线圈平面经中性面时开始计时,在线圈转动90°角的时间内,电流一直增大.(√)(5)从线圈平面与中性面垂直开始计时,在线圈转动2圈的过程中电流方向改变4次.(√)(6)线圈转动过程中通过线圈的磁通量最大的位置,也是感应电流最大的位置.(×)一、交变电流与直流1.交变电流大小和方向随时间做周期性变化的电流叫作交变电流,简称交流.2.常见的交变电流的波形图实际应用中,交变电流有着不同的变化规律,常见的有以下几种,如图1所示.图13.直流方向不随时间变化的电流叫作直流,大小和方向都不随时间变化的电流叫作恒定电流.如图所示,属于交流电的是()答案 C解析电流大小、方向随时间做周期性变化是交变电流最重要的特征.A、B、D三项所示的电流大小随时间做周期性变化,但其方向不变,不是交变电流,它们是直流电,故A 、B 、D 错误;C 选项中电流符合交变电流的特征,故C 正确.二、交变电流的产生导学探究 假定线圈绕OO ′轴沿逆时针方向匀速转动,如图2所示,则:图2(1)线圈转动一周的过程中,线圈中的电流方向如何变化?(2)线圈转动过程中,当产生的感应电流有最大值和最小值时线圈分别在什么位置? 答案 (1)转动过程电流方向 甲→乙B →A →D →C 乙→丙B →A →D →C 丙→丁A →B →C →D 丁→甲A →B →C →D(2)线圈转到乙或丁位置时线圈中的感应电流最大.线圈转到甲或丙位置时线圈中感应电流最小,为零,此时线圈所处的平面称为中性面.知识深化 两个特殊位置1.中性面位置(S ⊥B ,如图2中的甲、丙)线圈平面与磁场垂直的位置,此时Φ最大,ΔΦΔt为0,e 为0,i 为0. 线圈经过中性面时,电流方向发生改变,线圈转一圈电流方向改变两次.2.垂直中性面位置(S ∥B ,如图2中的乙、丁)此时Φ为0,ΔΦΔt最大,e 最大,i 最大. (多选)下图中,哪些情况线圈中产生了交变电流( )答案BCD针对训练在水平向右的匀强磁场中,一线框绕垂直于磁感线的轴匀速转动,线框通过电刷、圆环、导线等与定值电阻组成闭合回路.t1、t2时刻线框分别转到如图3甲、乙所示的位置,图甲中线框与磁感线平行,图乙中线框与磁感线垂直,下列说法正确的是()图3A.t1时刻穿过线框的磁通量最大B.t1时刻电阻中的电流最大,方向从右向左C.t2时刻穿过线框的磁通量变化最快D.t2时刻电阻中的电流最大,方向从右向左答案 B解析t1时刻,穿过线框的磁通量为零,线框产生的感应电动势最大,电阻中的电流最大,根据楞次定律判断知通过电阻的电流方向从右向左,A错误,B正确;t2时刻,穿过线框的磁通量最大,磁通量的变化率为零,线框产生的感应电动势为零,电阻中的电流为零,C、D 错误.三、正弦式交变电流的变化规律导学探究如图4所示,线圈平面绕bc边的中点从中性面开始转动,角速度为ω.经过时间t,线圈转过的角度是ωt,ab边的线速度v的方向跟磁感线方向间的夹角也等于ωt.设ab边长为L1,bc边长为L2,线圈面积S=L1L2,磁感应强度为B,则:图4(1)ab边产生的感应电动势为多大?(2)整个线圈中的感应电动势为多大?(3)若线圈有N 匝,则整个线圈的感应电动势为多大?答案 (1)e ab =BL 1v sin ωt =BL 1L 2ω2sin ωt =12BL 1L 2ωsin ωt =12BSωsin ωt . (2)整个线圈中的感应电动势由ab 和cd 两边产生的感应电动势组成,且e ab =e cd ,所以e 总=e ab +e cd =BSωsin ωt .(3)若线圈有N 匝,则相当于N 个完全相同的电源串联,所以e =NBSωsin ωt .知识深化1.正弦交变电流的瞬时值表达式(1)从中性面位置开始计时e =E m sin ωt ,i =I m sin ωt ,u =U m sin ωt(2)从与中性面垂直的位置开始计时e =E m cos ωt ,i =I m cos ωt ,u =U m cos ωt .2.交变电流的峰值E m =NωBS ,I m =NωBS R +r ,U m =NωBSR R +r. 说明 电动势峰值E m =NωBS 由线圈匝数N 、磁感应强度B 、转动角速度ω和线圈面积S 决定,与线圈的形状无关,与转轴的位置无关.如图5所示的几种情况中,如果N 、B 、ω、S 均相同,则感应电动势的峰值均相同.图5如图6所示,匀强磁场的磁感应强度B =2πT ,边长L =10 cm 的正方形线圈abcd 共100匝,线圈总电阻r =1 Ω,线圈绕垂直于磁感线的轴OO ′匀速转动,角速度ω=2π rad/s ,外电路电阻R =4 Ω.求:图6(1)转动过程中线圈中感应电动势的最大值.(2)从图示位置(线圈平面与磁感线平行)开始感应电动势的瞬时值表达式.(3)由图示位置转过30°角时电路中电流的瞬时值.(4)线圈从开始计时经16s 时线圈中的感应电流的瞬时值. (5)外电路R 两端电压的瞬时值表达式.答案 (1)2 2 V (2)e =22cos 2πt (V) (3)65 A (4)25 A (5)u R =825cos 2πt (V) 解析 (1)设转动过程中线圈中感应电动势的最大值为E m ,则E m =nBL 2ω=100×2π×0.12×2π V =2 2 V.(2)从题图所示位置开始计时,感应电动势的瞬时值表达式为e =E m cos ωt =22cos 2πt (V).(3)从题图所示位置转过30°角时感应电动势的瞬时值e ′=22cos 30° V = 6 V ,则电路中电流的瞬时值为i =e ′R +r =65A. (4)t =16 s 时,e ″=E m cos ωt =22cos(2π×16)= 2 V , 对应的电流的瞬时值i ′=e ″R +r =25A (5)由欧姆定律,得u R =e R +rR =825cos 2πt (V).确定正弦式交变电流电动势瞬时值表达式的基本方法1.确定线圈转动从哪个位置开始计时,以确定瞬时值表达式是按正弦规律变化还是按余弦规律变化.2.确定线圈转动的角速度.3.确定感应电动势的峰值E m =NωBS .4.写出瞬时值表达式e =E m sin ωt 或e =E m cos ωt .四、交变电流的图像如图7甲、乙所示,从图像中可以得到以下信息:图7(1)交变电流的峰值E m 、I m .(2)两个特殊值对应的位置:①e =0(或i =0)时:线圈位于中性面上,此时ΔΦΔt=0,Φ最大. ②e 最大(或i 最大)时:线圈平行于磁感线,此时ΔΦΔt最大,Φ=0. (3)e 、i 大小和方向随时间的变化规律.一个矩形线圈在匀强磁场中绕垂直于磁感线的轴匀速转动,穿过线圈的磁通量随时间变化的图像如图8甲所示,则下列说法中正确的是( )图8A .t =0时刻,线圈平面与中性面垂直B .t =0.01 s 时刻,Φ的变化率达到最大C .t =0.02 s 时刻,电动势的瞬时值达到最大D .该线圈产生的相应感应电动势的图像如图乙所示答案 B解析 由题图甲知,当t =0时,Φ最大,说明线圈平面与中性面重合,故选项A 错误;当t=0.01 s 时,Φ最小,为零,Φ-t 图像的斜率最大,即Φ的变化率ΔΦΔt最大,故选项B 正确;当t =0.02 s 时,Φ最大,此时电动势的瞬时值为零,故选项C 错误;由以上分析可知,选项D 错误.1.(交变电流的产生)(2020·山西实验中学高二月考)如图所示,各图中面积均为S 的线圈绕其对称轴或中心轴在磁感应强度为B 的匀强磁场中以角速度ω匀速转动,从图示时刻开始计时,能产生正弦交变电动势e =BSωsin ωt 的是( )答案 A解析由题图可知,只有A、C两图线圈转动时穿过线圈的磁通量发生变化,产生交变电流,但C图产生的感应电动势按余弦规律变化,即e=BSωcos ωt,A图产生的感应电动势按正弦规律变化,即e=BSωsin ωt;B、D两图线圈转动时均没有导致磁通量变化,不能产生感应电动势.选项A正确,B、C、D错误.2.(交变电流的图像)(多选)一矩形线圈绕垂直于匀强磁场并位于线圈平面内的固定轴匀速转动,线圈中的感应电动势e随时间t变化的规律如图9所示,则下列说法正确的是()图9A.图中曲线是从线圈平面与磁场方向平行时开始计时的B.t1和t3时刻穿过线圈的磁通量为零C.t1和t3时刻穿过线圈的磁通量的变化率为零D.感应电动势e的方向变化时,穿过线圈的磁通量最大答案ACD解析由题图可知,当t=0时,感应电动势最大,说明穿过线圈的磁通量的变化率最大,磁通量为零,即题图中曲线是从线圈平面与磁场方向平行时开始计时的,选项A正确;t1、t3时刻感应电动势为零,穿过线圈的磁通量的变化率为零,磁通量最大,选项B错误,C正确;感应电动势e的方向变化时,线圈通过中性面,此时穿过线圈的磁通量最大,选项D正确.3.(交变电流的图像)如图10所示,一矩形线圈abcd放置在匀强磁场中,并绕过ab、cd中点的轴OO′以角速度ω逆时针匀速转动.若以线圈平面与磁场夹角θ=45°时为计时起点,并规定当电流自a流向b时电流方向为正,则下列四幅图像中可能正确的是()图10答案 C解析以线圈平面与磁场夹角θ=45°时为计时起点,由楞次定律可判断,初始时刻电流方向为b到a,为负值,且线圈远离中性面,Φ减小,电流增大,故选项C正确.4.(交变电流的变化规律)有一匝数为10匝的正方形线圈,边长为20 cm,线圈总电阻为1 Ω,线圈绕OO′轴以10π rad/s的角速度匀速转动,如图11所示,垂直于线圈平面向里的匀强磁场的磁感应强度为0.5 T.(线圈转动从中性面开始计时)图11(1)求该线圈产生的交变电流的电动势最大值、电流最大值分别为多少?(2)线圈从图示位置转过60°时,感应电动势的瞬时值是多大?(3)写出感应电动势随时间变化的表达式.答案(1)6.28 V 6.28 A(2)5.44 V(3)e=6.28sin 10πt (V)解析(1)线圈产生的交变电流电动势最大值为E m=NBSω=10×0.5×0.22×10π V=6.28 V,电流的最大值为I m=E mR=6.281A=6.28 A.(2)线圈从题图所示位置转过60°时,感应电动势的瞬时值E=E m sin 60°≈5.44 V.(3)由于线圈转动是从中性面开始计时的,所以感应电动势瞬时值表达式为e=E m sin ωt=6.28sin 10πt (V).考点一交变电流的理解与产生1.(多选)下列图像中属于交变电流的有()答案ABC解析选项D中,电流大小随时间变化,但因其方向不变,所以是直流.选项A、B、C中i的大小和方向均做周期性变化,故它们属于交变电流.2.如图1所示,一矩形线圈绕与匀强磁场垂直的中心轴OO′沿顺时针方向转动,引出线的两端分别与相互绝缘的两个半圆形铜环M和N相连.M和N又通过固定的电刷P和Q与电阻R相连.在线圈转动过程中,通过电阻R的电流()图1A.大小和方向都随时间做周期性变化B.大小和方向都不随时间做周期性变化C.大小不断变化,方向总是P→R→QD.大小不断变化,方向总是Q→R→P答案 C解析半圆环交替接触电刷,从而使输出电流方向不变,这是一个直流发电机模型,由右手定则知,外电路中电流方向是P→R→Q,故C正确.3.(2020·安徽阜阳三中高二月考)交流发电机发电示意图如图2所示,线圈转动过程中,下列说法正确的是()图2A.转到图甲位置时,通过线圈的磁通量变化率最大B.转到图乙位置时,线圈中产生的感应电动势为零C.转到图丙位置时,线圈中产生的感应电流最大D.转到图丁位置时,AB边中感应电流方向为A→B答案 D解析 转到题图甲位置时,线圈平面与磁感线垂直,磁通量最大,但磁通量变化率最小,为零,选项A 错误;转到题图乙位置时,线圈平面与磁感线平行,线圈中产生的感应电动势最大,选项B 错误;转到题图丙位置时,线圈位于中性面位置,此时线圈中产生的感应电流最小,且感应电流方向改变,选项C 错误;转到题图丁位置时,线圈平面与磁感线平行,切割速度与磁感线垂直,根据右手定则可知,AB 边中感应电流方向为A →B ,选项D 正确. 考点二 正弦式交变电流的变化规律4.交流发电机工作时电动势为e =E m sin ωt ,若将发电机的转速提高一倍,同时将电枢所围面积减小一半,其他条件不变,则其电动势e ′变为( )A .E m sin ωt 2B .2E m sin ωt 2C .E m sin 2ωtD.E m 2sin 2ωt 答案 C 解析 感应电动势的瞬时值表达式e =E m sin ωt ,而E m =NBωS ,ω=2πn ,当n 提高一倍时,ω加倍;当ω加倍而S 减半时,E m 不变,故C 正确.5.(多选)如图3所示,矩形线圈abcd 放在匀强磁场中,ad =bc =l 1,ab =cd =l 2.从图示位置起该线圈以角速度ω绕不同转轴匀速转动,则( )图3A .以OO ′为转轴时,感应电动势e =Bl 1l 2ωsin ωtB .以O 1O 1′为转轴时,感应电动势e =Bl 1l 2ωsin ωtC .以OO ′为转轴时,感应电动势e =Bl 1l 2ωcos ωtD .以OO ′为转轴跟以ab 为转轴一样,感应电动势e =Bl 1l 2ωcos ωt答案 CD解析 以O 1O 1′为轴转动时,磁通量不变,不产生交变电流.无论以OO ′为轴还是以ab 为轴转动,感应电动势的最大值都是Bl 1l 2ω,由于是从与磁场平行的面开始计时,产生的是余弦式交变电流,故C 、D 正确,A 、B 错误.6.(多选)如图4所示,一单匝闭合线框在匀强磁场中绕垂直于磁场方向的轴匀速转动,转动过程线框中产生的感应电动势的瞬时值表达式为e =0.5sin (20t ) V ,由该表达式可推知以下哪些物理量( )图4A.匀强磁场的磁感应强度B.线框的面积C.穿过线框的磁通量的最大值D.线框转动的角速度答案CD解析根据正弦式交变电流的感应电动势的瞬时值表达式e=BSωsin ωt可得ω=20 rad/s,而穿过线框的磁通量的最大值为Φm=BS,根据BSω=0.5 V可知磁通量的最大值Φm=0.025 Wb,无法求出匀强磁场的磁感应强度和线框的面积,故C、D正确.考点三交变电流的图像7.一个闭合矩形线圈在匀强磁场中绕垂直于磁场的轴匀速转动,产生的感应电动势如图5所示.下列判断正确的是()图5A.t=0.01 s时刻,线圈平面处于中性面位置B.t=0.02 s时刻,线圈平面与磁感线平行C.t=0.01 s时刻,通过线圈平面的磁通量为零D.1 s内电流的方向变化50次答案 A解析由题图可知t=0.01 s和t=0.02 s时,感应电流为零,则感应电动势为零,磁通量最大,线圈平面处于中性面位置,A正确,B、C错误;由于正弦式交变电流在一个周期内电流方向变化两次,而该交变电流的周期为0.02 s,则1 s内电流的方向变化100次,D错误.8.(多选)如图6甲所示,一个矩形线圈abcd在匀强磁场中绕垂直于磁场方向且与线圈共面的轴OO′匀速转动,从某个时刻开始计时,穿过线圈的磁通量Φ随时间t的变化如图乙所示,则下列说法中正确的是()图6A .t =0时刻线圈处于中性面位置B .t 1、t 3时刻线圈中的感应电流最大且方向相同C .t 2、t 4时刻穿过矩形线圈的磁通量最大,但感应电流却为零D .t 5时刻穿过线圈的磁通量为零,磁通量的变化率也为零答案 AC解析 t =0时刻穿过线圈的磁通量最大,所以线圈处在中性面位置,故A 正确;t 1、t 3时刻穿过线圈的磁通量为零,线圈平面与磁场平行,磁通量的变化率最大,感应电流最大,但方向相反,故B 错误;t 2、t 4时刻穿过矩形线圈的磁通量最大,磁通量的变化率为零,所以感应电流为零,故C 正确;t 5时刻穿过线圈的磁通量为零,磁通量的变化率最大,故D 错误.9.(2020·安徽合肥一六八中学高二下测试)一个矩形线圈在匀强磁场中匀速转动,产生的交变电动势瞬时值表达式为e =102sin (4πt ) V ,则( )A .该线圈转动的角速度为4 rad/sB .t =0时刻线圈平面与磁场垂直C .t =0.25 s 时,e 达到最大值D .在1 s 时间内,线圈中电流方向改变10次答案 B解析 由交变电动势的瞬时值表达式e =102sin (4πt ) V ,可知感应电动势的最大值E m =10 2 V ,线圈转动的角速度ω=4π rad/s ,选项A 错误;将t =0代入交变电动势的瞬时值表达式,可得感应电动势为0,则此时线圈处于中性面,线圈平面与磁场垂直,选项B 正确;将t =0.25 s 代入交变电动势的瞬时值表达式e =102sin (4πt ) V ,可得e =102sin π V =0,e达到最小值,选项C 错误;线圈转动的周期T =2πω=0.5 s ,则在1 s 时间内线圈转过2周,转1周电流方向改变2次,则在1 s 时间内线圈中电流方向改变4次,选项D 错误.10.一矩形线圈有100匝,面积为50 cm 2,线圈内阻r =2 Ω,在匀强磁场中绕垂直于磁场方向的轴匀速转动,从线圈平面与磁场平行时开始计时,已知磁感应强度B =0.5 T ,线圈的转速n =1 200 r/min ,外接一纯电阻用电器,电阻为R =18 Ω,试写出R 两端电压的瞬时值表达式.答案u=9πcos (40πt) V解析n=1 200 r/min=20 r/s,角速度ω=2πn=40π rad/s,线圈产生的感应电动势的最大值E m=NBSω=100×0.5×50×10-4×40π V=10π V,从线圈平面与磁场平行时开始计时,线圈中感应电动势的瞬时值表达式e=E m cos ωt=10πcos (40πt) V,由闭合电路欧姆定律i=eR+r,故R两端电压的瞬时值表达式u=Ri=9πcos (40πt) V.11.(2020·泉州市泉港区第一中学月考)如图7所示,矩形线圈匝数N=100,ab=30 cm,ad=20 cm,匀强磁场磁感应强度B=0.8 T,绕垂直磁场的轴OO′从图示位置(线圈平面与磁感线平行)开始匀速转动,角速度ω=100π rad/s,则:图7(1)穿过线圈的磁通量最大值Φm为多大?(2)线圈产生的感应电动势最大值E m为多大?(3)感应电动势e随时间t变化的表达式?(从图示位置开始计时)(4)从图示位置开始匀速转动60°时,线圈中产生的感应电动势为多少?答案(1)0.048 Wb(2)480π V(3)e=480πcos 100πt (V)(4)240π V解析(1)当线圈转至与磁感线垂直时,穿过线圈的磁通量有最大值,Φm=BS=0.8×0.3×0.2 Wb=0.048 Wb(2)线圈平面与磁感线平行时,感应电动势有最大值为E m=NBSω=100×0.8×0.3×0.2×100π V=480π V;(3)从题图所示位置开始计时,感应电动势的瞬时值表达式为e=E m cos ωt=480πcos 100πt (V);(4)从题图所示位置开始匀速转动60°,即ωt=60°,则此时线圈中产生的感应电动势e′=480π×cos 60° V=240π V.。
专题06电磁感应交流电中的图像(原卷版)
专题06 电磁感应、交流电中的图像目录一.电磁感应中的图像问题综述 (1)二.根据Bt图像的规律,选择Et图像、It图像 (1)三.根据线圈穿越磁场的规律,选择E t-图像、U t-图像、I t-图像或E-x图像、 (2)U-x图像和I-x图像 (2)四.根据自感、互感的规律,选择E t-图像、U t-图像、I t-图像 (4)五.借助图像分析电磁感应三定则一定律 (5)六.应用图像分析电磁感应的综合问题 (6)七.交流电的变化规律图像的应用 (8)A.B.C.D.【典例分析2】(2023·北京西城·统考二模)如图1所示,一闭合金属圆环处在垂直圆环平面的匀强磁场中.若磁感应强度B随时间t按如图2所示的规律变化,设图中磁感应强度垂直纸面向里的方向为正方向,环中感应电流沿顺时针方向为正方向,则环中电流随时间变化的图象是()A.B.C.D.三.根据线圈穿越磁场的规律,选择E t-图像、U t-图像、I t-图像或E-x图像、U-x图像和I-x图像【分析要点】线框匀速穿过方向不同的磁场,在刚进入或刚出磁场时,线框的感应电流大小相等,方向相同.当线框从一种磁场进入另一种磁场时,此时有两边分别切割磁感线,产生的感应电动势正好是两者之和,根据E=BLv,求出每条边产生的感应电动势,得到总的感应电动势.由闭合电路欧姆定律求出线框中的感应电流,此类电磁感应中图象的问题,近几年高考中出现的较为频繁,解答的关键是要掌握法拉第电磁感应定律、欧姆定律、楞次定律、安培力公式等等知识,要知道当线框左右两边都切割磁感线时,两个感应电动势方向相同,是串联关系.【典例分析1】(2024上·四川攀枝花·高三统考期末)如图所示,在边长为2l的正三角形ABC区域内有垂直直面向外的匀强磁场,一边长为l的菱形单匝金属线框abcd的底边与BC在同一直线上,菱形线框的∠=。
使线框保持恒定的速度沿平行于BC方向匀速穿过磁场区域。
高三物理交流电图象试题答案及解析
高三物理交流电图象试题答案及解析1.如图甲所示,理想变压器原副线圈的匝数比为10:1,b是原线圈的中心抽头,图中电表均为理想的交流电表,定值电阻R=10Ω,其余电阻均不计.从某时刻开始在原线圈c、d两端加上如图乙所示的交变电压。
则下列说法中正确的有A.当单刀双掷开关与a连接时,电压表的示数为31.1VB.当单刀双掷开关与b连接且在0.01s时,电流表示数为2.2AC.当单刀双掷开关由a拨向b时,副线圈输出电压的频率变为25HzD.当单刀双掷开关由a拨向b时,原线圈的输入功率变大【答案】D【解析】由图象可知,电压的最大值为311V,交流电的周期为,所以交流电的频率为;当单刀双掷开关由a拨向b时,变压器不会改变电流的频率,所以副线圈输出电压的频率为;当单刀双掷开关由a拨向b时,根据变压比公式,输出电压减小,故输出电流减小,故输入电流也减小;故A错误,C错误;当单刀双掷开关与a连接时,R减小时副线圈电流增加,故原线圈的电流也增加;故B错误;交流电的有效值为220V,根据电压与匝数程正比可知,当单刀双掷开关与a连接时,副线圈电压为44V;故D正确;【考点】考查了交流电图像,理想变压器2.理想变压器原、副线圈的匝数比为10:1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P为滑动变阻器R的滑片.下列说法正确的是 ( )A.副线圈输出电压的频率为100 HzB.理想交流电压表的示数为31.1 VC.P向下移动时,变压器原、副线圈中电流都变大D.P向上移动时,变压器的输出功率增大【答案】 C【解析】由图象可知,交流电的周期为0.02s,所以交流电的频率为50Hz,所以A错误;原线圈的电压的有效值为220V,根据电压与匝数成正比可知,所以副线圈的电压的有效值即电压表的示数为22V,B错误;P下移,R变小,原副线的电流都变大,故C正确;P向上移动时R变大,而电压不变,故功率减小,故D错误。
【考点】变压器的构造和原理3.如图甲所示,理想变压器原、副线圈的匝数比为4:1,交流电压表、电流表均为理想电表,原线圈接入图乙所示的正弦交流电,图中Rt为热敏电阻(温度升高时其电阻减小),R定值电阻。
专题26 交变电流的图像问题(解析版)
专题二十六 交变电流的图像问题基本知识点1.交变电流的图象物理意义:描述交变电流(电动势e 、电流i 、电压u )随时间t (或角度t )变化的规律。
2.正弦式交变电流的图像3.几种不同类型的交变电流4.重要知识点(1)物理学中,正弦交变电流与余弦交变电流统称为正弦式交变电流,简称正弦式电流。
(2)因e ∝ΔΦΔt,故Φ -t 图象与e -t 图象互余。
(3)确定正弦式交变电流的瞬时值表达式需要解决三个问题:①交变电流的最大值;②产生交变电流的线圈转动的角速度;③线圈的计时位置。
(4)线圈转动一周两次经过中性面,因此一个周期内交变电流方向改变两次。
例题分析一、正弦式交变电流的判断例1 下列方法中能够产生正弦式交变电流的是( )(对应训练)如图所示的图象中表示交变电流的是( )二、交变电流图像的物理量例2 一矩形线圈在匀强磁场中匀速转动时,产生的交变电动势的图像如图所示,则( )A .交流电的频率是4π HzB .当t =0时,线圈平面与磁感线垂直,磁通量最大C .当t =π s 时,e 有最大值D .t =32π s 时,e =-10 V 最小,磁通量变化率最小 (对应训练)一矩形线圈绕垂直于匀强磁场并位于线圈平面内的固定轴匀速转动,线圈中的感应电动势e 随时间t 变化的规律如图所示,则下列说法正确的是( )A.图像是从线圈平面位于中性面开始计时的B.t2时刻穿过线圈的磁通量为零C.t2时刻穿过线圈的磁通量的变化率为零D.感应电动势e的方向变化时,穿过线圈的磁通量的方向也变化三、交变电流的图像求法例3如图所示,虚线OO′的左边存在着方向垂直于纸面向里的匀强磁场,右边没有磁场.单匝矩形线圈abcd的对称轴恰与磁场右边界重合,线圈平面与磁场垂直.线圈沿图示方向绕OO′轴以角速度ω匀速转动(即ab边先向纸外、cd边先向纸里转动),规定沿a→b →c→d→a方向为感应电流的正方向.若从图示位置开始计时,图中四个图象能正确表示线圈内感应电流i随时间t变化规律的是()(对应训练一)为了研究交流电的产生过程,小张同学设计了如下实验构思方案:第一次将单匝矩形线圈放在匀强磁场中,线圈绕转轴OO′按图甲所示方向匀速转动(ab向纸外,cd向纸内),并从图示位置开始计时,此时产生的交流电如图乙所示。
我们所用的电有两种类型(交流电和直流电)
交流电和直流电我们所用的电有两种类型,即交流电和直流电。
一、下面用通俗性语言来讲述一下。
1、从字面上理解其方向:交流: 想一想我们人是怎么交流的呢?一个人说话,众人听那不叫交流,那是演讲,两人或两人以上相互间有问有答,有来有往才叫作交流。
交流电就是如此,流出去再流回来有来有往,所以交流电有两个方向,且没有正负之分(其实是无法分辩,也只能在瞬时说出其极性来)直流: 一直,径直的流,永不回头。
直流电只从正极流向负极,所以直流电只有一个方向。
2、从比喻中理解其幅度初学电子知识,会感到电过于抽象,所以我们可以把电与熟知的东西进行比喻,因为电流与水流极其相似,因此我们可以把“电”当做“水”,“电路”就等于“水路”。
当然我们也可以用其它东西来比喻。
(详见下文)回想一下渠水在流动的时候,我们站在渠的某处,水流过这里时水量的多少是不是随时间不断变化呀?一会儿多,一会儿少,其实电在流动过程中也是这样。
交流电的大小(幅度)在不断的变化,而直流电(比如干电池)的大小基本不变。
电子技术专业里一般把幅度变化的电称为交流电,我们常提到的信号(比如声音信号、图像信号、温度信号等等)就是交流电,。
而把幅度和方向不变化的电称为直流电,它的用途是为电路提供能源(即供电)。
3、从思考中理解交流电的频率既然交流电方向在不断的变化(流出去又流回来),那么你知道它一秒钟要流回来几次呢?每秒(单位时间)多少次就是频率(天下人都知道),电学中用Hz(赫兹)来表示,比如我国照明用电规定为50Hz,它的意思是导线中的交流电每秒要流出再流回50次。
4、从故事中理解交流电的相位张三和李四都是发电厂的职工,某天张三于7:40:35启动A发电机开始发电,而李四于7:40:36启动B发电机开始发电,这两组发电机都是220V交流发电机,且频率均为50Hz,请你思考一下,如果我们在7:41:00时分别测两组发电机的电压,大小一样吗?哪个大哪个小。
说明:我国发电厂输出的交流电变化规律如下,前0.005s之间电压从0V开始升高到220V,第二个0.005s又从220V降为0V,且这段时间(0.01s)电流向外流出,第三个0.005s仍然是从0V开始升高到220V,第四个0.005s又从220V降为0V,不过在这段时间(0.01s)内电流是流回,电学中把这流回的电记为负值,下一个0.005又向外流出……如此循环往复,这种规律在数学上称作正弦,所以这种交流电也就美名其曰:正弦交流电)根据正弦规律和A、B发电机发电时间先后,我们不难推算出,B发电机在7:41:00时与A发电机输出电压不相等。
交流电
例 一只氖管的起辉电压与交流电 u=50sin314t (V)的有效值相等,若将此交流 电接到上述氖管的两极,求氖管两次发光持 续的时间t 及1s内发光的次数。 解:在一个周期内,起辉时刻t=t1时, 则 314t1=p/4 及314t1=3p/4 , 得 t1=1/400 (s) 及 t1=3/400 (s) 发光时间 t=t2 -t1= 1/200 (s) 一周内发光2次,1s内有1/T个周期,1s内发 光次数n=2· 1/T=100次/s
二、电磁场与电磁波
1.电磁场 (1)(英)麦克斯韦(1865)建立了完整的 电磁场理论,预言了电磁波的存在。 后来赫兹(1887)通过实验验证电磁 波的存在。同时测定电磁波的波长、 频率、证实电磁波的波速等于光速 c=3.00×108m/s。
(2)、电磁场理论: 变化的磁场在其周围空间产生的电场 变化的电场在其周围空间产生的磁场
3.电容器C 实验现象: 接直流时,灯不亮,接交流时,灯泡亮了。 表明:直流电不能通过电容器,而交变电流 能“通过”电容器,“隔直流,通交流” *电容器对交变电流有阻碍作用:容抗
1 1 XC (Ω) 2p fC w C
直流电 f = 0,容抗Xc=∞,交流f 越大Xc越小 原因:电容大,一次充电量大;频率高单位时间内充电 次数多,所以电流大,容抗小。
4.常见的变压器
(1)自耦变压器
(2)互感器 电压互感器 (降压) 电流互感器 (升压)
5.远距离输电
为减少输电线上电能的损失,需高压输电. U线 I1 I4 I2 I3
U1
U2
r U 3
U用
关系:P1=P2 P2=P线+P3 P3=P4 I1U1= I2U2 I2= I3 I3U3= I4U4 U1 n1 U 3 n3 U2=U线+U3 U n
2 交流电的图象、感抗与容抗
第二单元交流电的图象、感抗与容抗基础知识一、.正弦交流电的图像1.任何物理规律的表达都可以有表达式和图像两种方法,交流电的变化除用瞬时值表达式外,也可以用图像来进行表述.其主要结构是横轴为时间t或角度θ,纵轴为感应电动势E、交流电压U或交流电流I.正弦交流电的电动势、电流、电压图像都是正弦(或余弦)曲线。
交变电流的变化在图象上能很直观地表示出来,例如右图所示可以判断出产生这交变电流的线圈是垂直于中性面位置时开始计时的,表达式应为 e =E m cosωt,图象中A、B、C时刻线圈的位置A、B为中性面,C为线圈平面平行于磁场方向。
2.在图像中可由纵轴读出交流电的最大值,由横轴读出交流电的周期或线圈转过的角度θ=ωt.3.由于穿过线圈的磁通量与产生的感应电动势随时间变化的函数关系是互余的,因此利用这个关系也可以讨论穿过线圈的磁通量等问题.二、电感和电容对交流电的作用电阻对交流电流和直流电流一样有阻碍作用,电流通过电阻时做功而产生热效应;电感对交流电流有阻碍作用,大小用感抗来表示,感抗的大小与电感线圈及交变电流的频率有关;电容对交流电流有阻碍作用,大小用容抗来表示,容抗的大小与电容及交变电流的频率有关。
1.电感对交变电流的阻碍作用在交流电路中,电感线圈除本身的电阻对电流有阻碍作用以外,由于自感现象,对电流起着阻碍作用。
如果线圈电阻很小,可忽略不计,那么此时电感对交变电流阻碍作用的大小,用感抗(X L)来表示。
由于交变电流大小和方向都在发生周期性变化,因而在通过电感线圈时,线圈上匀产生自感电动势,自感电动势总是阻碍交流电的变化。
又因为自感电动势的大小与自感系数(L)和电流的变化率有关,所以自感系数的大小和交变电流频率的高低决定了感抗的大小。
关系式为:X L=2πf L此式表明线圈的自感系数越大,交变电流的频率越高,电感对交变电流的作用就越大,感抗也就越大。
自感系数很大的线圈有通直流、阻交流的作用,自感系数较小的线圈有通低频、阻高频的作用.电感线圈又叫扼流圈,扼流圈有两种:一种是通直流、阻交流的低频扼流圈;另一种是通低频、阻高频的高频扼流圈。
交流电电磁场和电磁波
第十一章 交变电流 电磁场和电磁波一、流电的变化规律:1.交流电:大小和方向都随时间作周期性变化的电流。
2.交流电产生的原因及变化规律:① 产生原因:线圈在磁场中旋转产生感应电动势。
② 变化规律:3.交流电的图像:线圈转动一周(每经过中性面电流方向和电动势的方向改变一次)感应电动势和电流方向改变两次。
4.表征交流电的物理量:①最大值: ωεNBS m =rR NBS rR I mm +=+=ωε rR RNBS R I U m m +==ω ②即时值:t e m ωεsin =t I i m ωsin = t U u m ωsin =③有效值:交变电流的有效值是根据电流的热效应规定的:让交流和直流通过B O 1 BO 2a b c d相同阻值的电阻,如果它们在相同的时间内产生的热量相等,就把这一直流的数值叫做这一交流的有效值。
④最大值和有效值的关系:2mεε=2m I I =2m U U =注意:[1]只有正弦交变电流的有效值才一定是最大值的22倍。
[2]通常所说的交变电流的电流、电压;交流电表的读数;交流电器的额定电压、额定电流;保险丝的熔断电流等都指有效值。
(电容器的耐压值是交流的最大值。
) [3]生活中用的市电电压为220V ,其最大值为2202V=311V (有时写为310V ),频率为50H Z ,所以其电压即时值的表达式为u =311sin314t V 。
例2. 通过某电阻的周期性交变电流的图象如右。
求该交流电的有效值I 。
解:该交流周期为T =0.3s ,前t 1=0.2s 为恒定电流I 1=3A ,后t 2=0.1s 为恒定电流I 2= -6A ,因此这一个周期内电流做的功可以求出来,根据有效值的定义,设有效值为I ,根据定义有: I 2RT =I 12Rt 1+ I 22Rt 2 带入数据计算得:I =32A二、变压器的工作原理:电能→磁场能→电能2.若是对多个线圈:3.输入功率与输出功关系:变压器的输入功率由输出功率决定!出入=P P → 负出R U P 22= (2U 由1U 及变压比决定)入入入U I P = ( 入U 发电机的端电压由发电机决定)1. 变压比即变流比:1:121=∆∆Φ=∆∆Φtt 2121n n U U = 由于理想变压器出入=P P 2211U I U I =121221n n U U I I == n 3 n 2 U 1n 1 U 2U 3根据由于理想变压器出入=P P 321P P P +=222211U I U I U I += 1321221U U I U U I I += 1321221n n I n n I I += 232211I n I n I n +=①当变压器空载时 (即∞→负R ) 0=出P 0=入I②当变压器副线圈短路 (即0→负R ) ∞→出P ∞→入I 三、远距离输电:2121::n n U U = 4343::n n U U = 1221::n n I I = 4343::n n I I = 21P P = 43P P =32U U U +=线I I I ==3232P P P +线=R U P R U P R I P ⋅=⋅=23322222)()(=线D 1附:一、正弦交变电流1. 正弦交变电流的产生 当闭合线圈由中性面位置(图中O 1O 2位置)开始在匀强磁场中匀速转动时,线圈中产生的感应电动势随时间而变的函数是正弦函数:e =E m sin ωt ,其中E m =nBS ω。
交流电的产生及变化规律
交流电的产生、描述交流电的物理量学习目的:(1)了解交流电的产生原理(2)掌握正弦交流电的变化规律(3)理解瞬时值、最大值、有效值、周期、频率等概念一、几个概念1、交变电流:大小和方向随时间变化的电流叫交变电流,常见的交流电如下本章所涉及的将是最简单的交变电流,即正弦交流电—随时间按正弦规律变化的电流。
从微观上讲 i=nesv其中v为电荷的平均定向移动速率,可设想若v都随时间整齐地按正弦规律变化,即一起做简谐振动时,电路中将有正弦交变电流。
2、特点易于产生、输送、变压、整流,在生活中有广泛的应用,交流电路理论是电工和电子技术的理论基础。
∴交流电在电力工程、无线电技术和电磁测量中有极广泛的应用,在工程技术中所使用的交流电也是各式各样的。
它具有三大优点:变换容易、输送经济、控制方便,所以已经做为现代国民经济的主要动力。
在稳恒电流中,I—电流、U(ε)—电压(电动势),都是恒定值。
但在本章,i—电流、e—电动势、u—电压,都是瞬时值,因为它随时间而变,所以实际上是i(t)、e(t)、u(t)。
二、交流电的产生法拉第发现电磁感应定律的最重要的应用就是制成发电机1、发电机的组成磁极、线圈(电枢)旋转电枢:通过滑环、电刷通入外电路,一般产生的电压小于500V旋转磁极:比较常用,几千~几万V原理:利用线圈在磁场中绕某一固定轴转动,切割磁感线产生感应电动势,继而在闭合回路产生电流机械能→电能2、交流电的产生矩形线圈在匀强磁场中匀速转动,角速度ω一定。
其中ab、cd边切割磁感线,且ab、cd始终与速度v垂直,从切割效果看总是两个电源串联,其俯视图为:第一象限:方向—abcda(磁通量Φ减少)大小:e=2NB vsinθ=2NB ω sinωt=NBωSsinωt第二象限:方向—abcda(磁通量Φ增加)大小:e=2NB vsinθ=2NB ω sin(π-ωt)=NBωSsinωt依次类推:可得其它象限的情况总之,e=NBωSsinωt=εm sinωt 与轴的位置无关①大小为NBωSsinωt②方向取决于角度ωt0<ωt<π e>0π<ωt<2π e<0线圈每经过中性面一次,电流方向改变一次;线圈旋转一周,电流方向改变两次③εm=NBωS为感应电动势的最大值④当线圈与中性面重合时,磁通量Φ最大,感应电动势最小,磁力矩最小当线圈与中性面垂直时,磁通量Φ最小,感应电动势最大,磁力矩最大三、交流电的变化规律1、几个表达式瞬时值 e i u最大值εm I m U m若外电阻为R,电动机内阻为r,则2、图象四、描述交流电的物理量在稳恒电流里用两个物理量(I、U)就能描述电路的情况,但在交流电路里,由于电流的大小、方向都在随时间做周期性的变化,所以要描述它们的物理量就要多一些。
物理-交流电
2
2
2
令 5.2.4、交流电功率 在交流电中电流、电压队随时间而变,因此电流和电压的乘积所表示的功率也将随 时间而变。 跟交流电功率有关的概念有:瞬时功率、有功功率、视在功率(又叫做总功率)、 无功功率、以及功率因素。 a .瞬时功率 时间而变。
u U m sin t
电流的瞬时值 I 与 U、R 三者关 系仍遵循欧姆定律。
u um sin t R R I U m / R ,它们的有效值同样也满 电流最大值 m i
足
u
i
u
i
T 2
U I R
在纯电阻电路中,u、i 变化步调是一致的,即它们 是同相, 图 5-2-2 甲表示电流、 电压随时间变化的步调一 致特性。 图乙是用旋转矢量法来表示纯电阻电路电流与电 压相位关系。 (2)纯电感电路
Pt 。由瞬时电流和电压的乘积所表示的功率。 Pt
ut U m sint 。
it ut ,它随
在任意电路中, i 与 u 之间存在相位差
Pt iu I m sin t U m sint I eff U eff cos cos2t
表示。如果交流电的频率相同,相差就
10 20 ,
(t 10 ) (t 20 )
这时相差是恒定的,不随时间而改变。 两个频率相同的交流电, 它们变化的步调是否一致要由相差 这两个交流电称做同相位;如果
180
来决定。 0 , 如果
,我
10 20
。
,这两个交流电称为反相位;若
们说交流电 1 比 2 相位超前 ,或说交流电 5.1.3、交流电的旋转矢量表示法
(完整word版)三相交流电教案
教师课时授课计划(教案)课时计划副页第页共页课时计划副页第页共页授课内容时间分配提问:1.在交流电产生的过程中,矩形线圈转到什么位置时线圈中的电流最大?什么位置电流为零?(线圈平面平行磁感线:中性面)2.两个完全相同的交流发电机,其矩形线圈也以相同的转速匀速转动,那么这两个发电机所产生的交变电动势有何异同?(交变电动势的频率、最大值相同;达到最大值的时刻不同)3.如果把三个相同的矩形线圈固定在同一轴上,并使之在匀强磁场中转动,这三个线圈是否都产生电动势?为什么?(产生,穿过每个线圈回路的磁通量都发生变化)二、引入三相交流电三相交流电路的优点:1、三相交流发电机的铁心及电枢磁场较单相发电机利用充分;2、作为三相交流电负载的三相电动机比单相电机性能好,易维护,运转时比单相发电机的振动小;3、理论和实践证明:在输电距离、输送功率、电压相等的条件下,三相输电是单相输电所用导线量的四分之三;4、采用三相四线制输电,用户可得两种不同的电压;5、工农业生产大量使用交流电动机,三相电动机比单相电动机性能平稳可靠。
课时计划副页第页共页课时计划副页第页共页课时计划副页第页共页授课内容时间分配图像直观地表达了三相交变电流各相电动势的异同。
三相电动势随时间按正弦规律变化,它们到达最大值(或零值)的先后顺序,叫做相序。
从图2中可以看出,e U超前达最大值,又超前达最大值,这种U-V-W-U的顺序叫正序,若相序位U-W-V-U叫负序。
二、三相四线制电源在低压供电系统(市电220V)中常采用三相四线制供电,把三相绕组的末端U2、V2、W2连结成一个公共端点,叫做中性点(零点),用N表示,如图3所示。
从中性点引出的导线叫做中性线(零线),用黑色或白色表示。
中性线一般是接地的,又叫做地线。
从线圈的首端U1、V1、W1引出的三根导线叫做相线(俗称火线),分别用黄、绿、红三种颜色表示。
这种供电系统称作三相四线制,用符号“Y0”表示。
人教版高中物理选择性必修第二册 3.1 交变电流
点拨 求交变电流瞬时值和峰值的方法 ①确定线圈转动从哪个位置开始计时; ②确定表达式是正弦函数还是余弦函数; ③确定转动的角速度 ω=2πn(n 的单位为 r/s)、峰值 Em=NBSω; ④写出表达式,代入时间 t 求瞬时值.
练2
在如图所示的交流发电机线圈中,如果 ab 边长为 l1,bc 边长 为 l2,线圈转动的角速度为 ω,线圈匝数为 n,磁感应强度为 B, 从图示位置开始转动,线圈电阻不计.
ab
⇓ 边转动的线速度大小
v=ωR=__ω__L2_ad___
⇓
BSω
ab 边产生的感应电动势 eab=BLabvsin θ=__2___si_n_ω_ t
⇓
BSω
同理 cd 边产生的感应电动势 ecd=__2___si_n__ωt
⇓
整个 N 匝线圈产生的感应电动势 e=_N__B_S_ω_s_i_n ωt 结论:矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动
1.交变电流
知识结构导图
核心素养目标 物理观念:(1)交变电流的产生原理及其变化规律 (2)交变电流的峰值、瞬时值 科学思维:(1)结合发电机示意图,用法拉第电磁感应定律推导 电动势 e 的表达式 (2)能用图像描述正弦交变电流 科学探究:利用交流发电机模型及示意图,分析交变电流的产 生原理 科学态度与责任:交变电流在工农业生产中的应用
(3)线圈从中性面位置开始转过 30°时,感 应电动势的瞬时值是多大?
解 析 : (1) 交 变 电 流 电 动 势 的 峰 值 为 Em = nBSω = 10×0.5×0.22×10π V=6.28 V
电流的峰值为 Im=ERm=6.28 A. (2)从中性面位置开始计时,感应电动势的瞬时值表达式为 e=Emsin ωt=6.28sin 10πt V. (3)线圈从中性面位置开始转过 30°,感应电动势的瞬时值 e= Emsin30°=3.14 V. 答案:(1)6.28 V 6.28 A (2)e=6.28sin 10πt V (3)3.14 V
交流电图象-代数法(函数图像)在物理解题中的应用(原卷版)
专题05交流电图象(解析版) 代数法(函数图像)在物理解题中的应用交流电函数t E e m π100sin =,t U u m π100sin =,t I i m π100sin =,所以e-t 图象,u-t 图象,i-t 图象,都是正弦函数图象或余弦函数图象。
1. t u -图象一电阻接到方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交变电源上,在一个周期内产生的热量为Q 正。
该电阻上电压的峰值为u 0,周期为T ,如图所示。
则Q 方: Q 正等于A .1:2B .2:1C .1:2D .2:12.交流电的电动势与时间关系图象即t -e 图象在匀强磁场中,一矩形金属线框绕与磁感线垂直的转轴匀速转动,如图1所示,产生的交变电动势的图象如图2所示,则 A .t =0.005s 时线框的磁通量变化率为零B .t =0.01s 时线框平面与中性面重合C .线框产生的交变电动势有效值为311VD .线框产生的交变电动势的频率为100Hz3. 交流电的电压与时间关系图象即t -u 图象为保证用户电压稳定在220V ,变电所需适时进行调压,图甲为变压器示意图。
保持输入电压1u 不变,当滑动接头P 上下移动时可改变输出电压。
某此检测得到用户电压2u 随时间t 变化的曲线如图乙所示。
以下正确的是 ( ) A.V t u )50sin(21902π= B.V t u )100sin(21902π=C.为使用户电压稳定在220V,应将P适当下移D.为使用户电压稳定在220V,应将P适当上移4.tu-图象图甲中理想变压器原、副线圈的匝数之比n1∶n2=5∶1,电阻R=20 Ω,L1、L 2为规格相同的两只小灯泡,S1为单刀双掷开关。
原线圈接正弦交变电源,输入电压u随时间t的变化关系如图乙所示。
现将S1接1、S2闭合,此时L2正常发光。
下列说法正确的是A.输入电压u的表达式2sin(50πt)VB.只断开S1后,L1、L2均正常发光C.只断开S2后,原线圈的输入功率增大D.若S1换接到2后,R消耗的电功率为0.8W5. tu-图象图7(a)左侧的调压装置可视为理想变压器,负载电路中R=55Ω,○A、○V为理想电流表和电压表。
第2课 交流电的描述(课件)高二物理(人教版2019选择性必修第二册)
有效值
E = Em /
2
(1)电流热效应相关量(如功、功率、热量)
跟交变电流的热效应等效的
U = Um /
2
(2)交流电表(电压表、电流表)的测量值
恒定电流值、电压值
I = Im /
2
正弦式交变电流
ΔΦ
E=n
Δt
平均值
交变电流图象中图线与时间
轴所围面积与时间比值
E
R+ r
ΔΦ
q= N
R+ r
I=
(3)电气设备铭牌标注额定电压、额定电流
3.最大值(峰值): Em
Um I m
Em NBS
交变电流的峰值是交变电流在一个周期内所能达到的最大数值,可以用来表示交流
电的电流或电压变化幅度。
e=Emsinωt
i=Imsinωt
u=umsinωt
峰值
Em =NωBS
Im
Em NBSw
R总
R总
Um = Im R外
耐压值(最大值)
一、描述交流电的物理量:
A.R两端电压瞬时值的表达式为 uR 2U sin t
B.理想电流表的示数为
C.从
π
2
I
2 NBS
2( R r )
到 3π 的时间内,穿过线圈平面磁通量的变化量为零
2
D.若ω=100π rad/s,通过R的电流每秒钟方向改变50次
牛刀小试
6.如图所示为一电流通过一电子元件后的波形图(曲线部分为正弦交流电的一部分)
怎样求一般交流电的有效值
通过大小相
同电阻R
交流
恒定电流IU
在交流电的
一个周期内
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 交变电流三 交流电的图象知识提要1.正弦交流电的图象:线圈在匀强磁场中绕垂直于磁感线的对称轴匀速转动,线圈交替切割磁感线,穿过线圈的磁通量发生周期性变化,如图13-3-1(从中性面开始计时),于是产生按正弦规律变化的交变电。
电路中的感应电动势、感应电流的变化规律相同,如图13-3-2所示。
2.图象是描述物理过程的一种直观、有效的方法。
正确运用交流电的图象,除理解横坐标和纵坐标所代表的物理量及单位外,应正确把握图象中以下几方面的物理意义: (1)点:图线上的每一个点对应研究对象的一个状态,应特别注意“起点”、“终点 ”、“拐点”、“与坐标交点”等,他们往往对应一个特殊状态。
(2)两种斜率:一是该点与坐标原点的连接直线的斜率,常表示一个物理量的平均值。
二是该点切线的斜率,常表示这个物理量的瞬时值。
(3)面积:图线与坐标轴围成的面积常与某一表示过程的物理量相对应。
交流电平均值是指交流电图象中图线与横轴所围成的面积值跟时间的比值。
i -t 图线与横轴包围的“面积”大小表示通过某一截面的电量大小,t 轴上方的“面积”表示正向通过的电量,t 轴下方的“面积”表示反向通过该截面的电量。
3.对非正弦交流电的图象问题应回归到电磁感应知识分析。
例题分析例1.线圈在匀强磁场中匀速转动,产生交变电流的图象如图所示,从图13-3-3可知: A .当0=t 时,线圈处于中性面位置。
B .当43T t =时,穿过线圈的磁通量为最大,磁通量的变化率为零。
C .若周期为0.02s ,则在1s 内交变电流的方向改变100次。
D .当12T t =时刻,线圈平面与中性面的夹角等于30°。
解析:当线圈处于中性面位置时,穿过线圈的磁通量为最大,磁通量的变化率(该时刻切线的斜率)为零,感应电动势为零;当线圈平面与磁感线方向平行时,反之。
故A 错,B 正确。
线圈每经过中性面位置时,交变电流的方向发生改变,知C 正确。
由图知当0=t 时,线圈平面与磁感线方向平行,经12T ,线圈平面与磁力线夹角α=ωt =6π=30°(或150°),得D 错。
图13-3-2图13-3-1图13-3-3答案:B 、C点评:明确图象中表示线圈处于中性面和处于与磁感线方向平行的点(时刻),明确线圈经过中性面时,线圈中磁通量、磁通量的变化率、感应电流、感应电动势等的特点,是解决该类问题的关键。
例2.如图13-3-4所示,单匝矩形线圈的一半放在具有理想边界的匀强磁场中,线圈轴线OO ˊ与磁场边界重合.线圈按图示方向匀速转动(ab 向纸外,cd 向纸内)。
若从图示位置开始计时,并规定电流方向沿a→b→c→d→a 为正方向,则线圈内感应电流随时间变化的图象是图13-3-5中的哪一个( )。
解析一:从穿过线圈的磁通量变化规律看,发生周期性的变化,在0~4T ,由右手定则或楞次定律不难可得,感应电流方向为a→d →c→b →a ,故线圈内感应电流随时间变化的图象应为A 图。
解析二:抓住几个特殊位置分析,当t =0时,感应电流为零,当t 接近4T 时,感应电流有最大值,且方向为a→d →c→b →a ,4T 后感应电流方向不变,知线圈内感应电流随时间变化的图象应为A 图。
答案:A 。
点评:解析一从整体穿过线圈的磁通量变化规律出发分析,把握感应电流变化的特点。
解析二从抓住几个特殊位置出发分析,对解答类似问题十分有效,像交变电流图象一般只需抓住二个特殊位置,问题便能解决。
例3.频率为50Hz 的交变电流,其电压u =168sin ωt V ,把它加在激发电压,熄灭电压均为84V 的霓虹灯的两端,求在半个周期内霓虹灯点亮的时间?解析一:该交变电压的周期为0.02s ,角速度ω=100π,作交变电压的图象如图13-3-6所示,由于加在霓虹灯管两端电压大于84V 时灯管才发光,由图象可知:61πω=⋅t ,60011=t s62πω=⋅t ,60052=t s150112=-=∆t t t s即霓虹灯在半个周期内,有32的时间被点亮。
图13-3-5dc图13-3-4图13-3-6解析二:交变电压的瞬时表达式为:u =168sin 100πt V ,当u =84V 时,在半个周期内对应的时刻为:60011=t s ,60052=t s ,进一步分析知,在半个周期内霓虹灯点亮的时间为150112=-=∆t t t s 。
答案:1501 s 。
点评:公式表示和图象表示是分析物理量间的函数关系的两种重要方法,交流电的描述可用公式表示,也可以用图象表示。
解析一用图象法,它直观、形象、简洁的展现物理量之间的关系。
解析二用公式表示,需要对的瞬时表达式为有抽象的理解。
例4.在图13-3-7所示区域(图中直角坐标系Oxy 的1、3象限)内有匀强磁场,磁感强度方向垂直于图面向里,大小为B 、半径为l 、圆心角为60°的扇形导线框OPQ 以角速度ω绕O 点在图面内沿逆时针方向匀速转动,导线框回路电阻为R 。
(1)求线框中感应电流的最大值I 0和交变感应电流的频率f 。
(2)在图13-3-8上画出线框转一周的时间内感应电流I (规定O →P →Q →O 为电流正方向)随时间t 变化的图像(规定与图13-3-7中线框的位置相应的时刻为t =0)。
解析:(1)在从图13-3-7中位置开始(t =0)转过60°的过程中,只有OQ 切割磁感线,产生的感应电动势为:ω221Bl E =线框中感应电流的最大值I 0为: I 0=ω221Bl R,方向与规定正方向相同。
转过90°以后,线框中感应电流大小仍为:ω221Bl R,方向与规定正方向相反。
后半圈和前半圈I (t )相同,故感应电流频率等于旋转频率的2倍:πω=f 答案:(1)I 0=ω221Bl R,πω=f 。
(2)图线如图13-3-9所示。
点评:当整个线框都在磁场中作切割运动时,有感应电动势,无感应电流。
只有线框的一部分在磁场中作切割运动时,才有感生电流产生,抓住了这一点,对应的I -t图线就不难画出。
用导线切割磁感线的公式图13-3-7图13-3-9图13-3-8υBl E =,要注意该处的速度为导线切割磁场的平均速度。
因线框匀速转动,计算感生电动势时,也可由法拉第电磁感应定律,=∆∆=∆∆Φ=tB l tE 22θω221Bl 。
习题精练1.如图13-3-10所示,处在匀强磁场中的矩形线圈abcd ,以恒定的角速度绕ab 边转动,磁场方向平行于纸面并与ab 垂直。
在t =0时刻,线圈平面与纸面重合,线圈的cd 边离开纸面向外运动。
若规定由a →b →c →d →a 方向的感应电流为正,则能反映线圈中感应电流I 随时间t 变化的图线是图13-3-11中的( )。
2.如图13-3-12所示,A 是长直密绕通电螺线管,小线圈B 与电流表连接,并沿A 的轴线ox 从如图位置自左向右匀速穿过螺线管A 。
能正确反映通过电流表中电流随x 变化规律的是图13-3-13中的( )。
3.有两个完全相同的电热器,分别通过如图13-3-14中甲和乙所示的峰值相等的方波交变电流和正弦交变电流。
求这两个电热器的电功率之比。
图13-3-11 ad图13-3-10图13-3-12图13-3-13图13-3-144.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动。
线圈匝数n =100。
穿过每匝线圈的磁通量随时间按如图13-3-15所示正弦规律变化。
发电机内阻r =5.0Ω,外电路电阻R =95Ω。
已知感应电动势的最大值E m =nωΦm ,其中Φm 为穿过每匝线圈磁通量的最大值。
求串联在外电路中的交流电流表(内阻不计)的读数。
5.如图13-3-16所示,在长直导线旁放一矩形线框abcd ,线框和导线在同一平面内。
今在长直导线中通以如图13-3-17的交流电,那么在t =0至t =T 的时间内,线框中的感应电流的大小和方向各如何变化?( )A .大小:增大 减小 增大 减小B .大小:减小 增大 减小 增大C .方向:顺时针 逆时针 逆时针 顺时针D .方向:逆时针 顺时针 顺时针 逆时针6.如图13-3-18所示,abcd 为一个闭合矩形金属线框,图中虚线为磁场右边界(磁场左边界很远),它与线圈的ab 边平行,等分bc 边,即线框有一半位于匀强磁场之中,而另一半位于磁场之外,磁感线方向垂直线框平面向里.线框以ab 边为轴匀速转动,t =O 时的位置如图所示,在右面的坐标系上定性画出转动过程中线框内感应电流随时间变化的图像(只要求画出一个周期).7.如图13-3-19所示,金属圆环内部关于圆心O 对称的四个区域内存在与环面垂直的匀强磁场,其中垂直环面向里的磁场磁感应强度为B ,垂直环面向外的磁场磁感应强度为2B ,环的半径为L ,一根长也为L 、电阻为r 的金属棒一端连在O 点,另一端连在环上,绕O 点以角速度ω在环面内作逆时针旋转,若将O 点和环上一点A 接入如图13-3-20的电路中,图中电阻阻值为R ,电压表为理想表,环中电阻不计。
求:⑴在图13-3-21中画出金属棒中的电流随时间变化的图像(以金属棒中从O 流向A 为正方向)-2s图13-3-15图13-3-16 图13-3-17图13-3-18图13-3-19⑵图13-3-20中电压表的读数是多少?习题精练答案:三 交流电的图象1.C 2.C 3.2:1 4.1.4A解析:电流表的读数I =2m I ,又I m =rR E m +, E m =nωΦm , ω=Tπ2,由题中的Φ-t 图线可读出:Φm =1.0×10-2Wb T =3.14×10-2s ,解以上各式,并代入数据得I =1.4A5.B 、C6.解析:分析可知,线圈平面从图中位置转过π/3角度,即T/6内,穿过线圈的磁通量不变化,线圈中无电流。
同理,在一个周期的最后T/6内,穿过线圈的磁通量也不变化,线圈中也无电流。
感应电流随时间变化的图像如图13-3-1’所示。
7.解析:⑴在向里的磁场中运动时,ω2121Bl E =, )(2211r R Bl rR E I +=+=ω,金属棒中电流从A 流向O ;在向外的磁场中运动时,ω22Bl E = )(222r R Bl rR E I +=+=ω,金属棒中电流从O 流向A 。
金属棒中的电流随时间变化的图13-3-20/2ω)图13-3-1’图13-3-2’图像如图13-3-2’所示。
⑵由有效值定义: 21)(1)(22221⨯+=⨯++⨯+rR Ur R I r R I 得:ω2410Bl U =。
故电压表读数:)(4102r R R Bl U rR R U +=+='ω。