《事件的相互独立性》学案答案
高考数学(学案)事件的相互独立性
事件的相互独立性二、合作探究1.相互独立事件的判断一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩}.对下述两种情形,讨论A与B的独立性:(1)家庭中有两个小孩;(2)家庭中有三个小孩.【解】(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},它有4个基本事件,由等可能性知概率都为1 4.这时A={(男,女),(女,男)},B={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P(A)=12,P(B)=34,P(AB)=12.由此可知P(AB)≠P(A)P(B),所以事件A,B不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}.由等可能性知这8个基本事件的概率均为18,这时A中含有6个基本事件,B中含有4个基本事件,AB中含有3个基本事件.于是P(A)=68=34,P(B)=48=12,P(AB)=38,显然有P(AB)=38=P(A)P(B)成立.从而事件A与B是相互独立的.王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.【解】用A ,B ,C 分别表示这三列火车正点到达的事件.则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A -)=0.2,P (B -)=0.3,P (C -)=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A -BC )+P (A B -C )+P (AB C -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P 2=1-P (A -B -C -)=1-P (A -)P (B -)P (C -)=1-0.2×0.3×0.1=0.994.(1)[变问法]在本例条件下,求恰有一列火车正点到达的概率.解:恰有一列火车正点到达的概率为P 3=P (A B -C -)+P (A -B C -)+P (A -B -C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P(C )=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(2)[变条件]若一列火车正点到达记10分,用ξ表示三列火车的总得分,求P (ξ≤20). 解:事件“ξ≤20”表示“至多两列火车正点到达”,其对立事件为“三列火车都正点到达”,所以P (ξ≤20)=1-P (ABC )=1-P (A )P (B )P (C )=1-0.8×0.7×0.9=0.496.3.相互独立事件的综合应用本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租用时间不超过两小时免费,超过两小时的部分每小时收费2元(不足一小时的部分按一小时计算).有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,超过两小时但不超过三小时还车的概率分别为12,14,两人租车时间都不会超过四小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设ξ为甲、乙两人所付的租车费用之和,求P (ξ=4)和P (ξ=6)的值.【解】(1)由题意可得甲、乙两人超过三小时但不超过四小时还车的概率分别为14,14.记甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付租车费用相同的概率为516.(2)P (ξ=4)=14×14+12×14+12×14=516,P (ξ=6)=14×14+12×14=316.【学习小结】1.相互独立的概念设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.2.相互独立的性质若事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立.【精炼反馈】1.如图,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29C .23D .13解析:选A .左边圆盘指针落在奇数区域的概率为46=23,右边圆盘指针落在奇数区域的概率也为23,所以两个指针同时落在奇数区域的概率为23×23=49.2.已知A ,B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B -)=________;P (A - B -)=________.解析:因为P (A )=12,P (B )=23.所以P (A -)=12,P (B -)=13.所以P (A B -)=P (A )P (B -)=12×13=16,P (A - B -)=P (A -)P (B -)=12×13=16.答案:16 163.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.解:设A i ={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为A 1-A 2- A 3,于是所求概率为P (A 1-A 2-A 3)=910×89×18=110.(2)拨号不超过3次而接通电话可表示为A 1+A 1- A 2+A 1-A 2-A 3,于是所求概率为P (A 1+A 1-A 2+A 1-A 2-A 3)=P (A 1)+P (A 1-A 2)+P (A 1-A 2-A 3)=110+910×19+910×89×18=310.。
事件的相互独立性试题及答案
事件的互相独立性1.若A 与B 相互独立,则下面不相互独立事件有( )A.A 与AB.A 与BC.A 与B D A 与B2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.423.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( )A.P 1P 2B.P 1(1-P 2)+P 2(1-P 1)C.1-P 1P 2D.1-(1-P 1)(1-P 2) 4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.901 C.54 D. 95 5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________.6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 7.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三人该课程考核都合格的概率(结果保留三位小数).8.外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一球;若第一次取得标有字母B的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.9.如图,用A、B、C、D四类不同的元件连接成两个系统N1、N2.当元件A、B、C、D都正常工作时,系统N1正常工作;当元件A、B至少有一个正常工作,且C、D至少有一个正常工作时,系统N2正常工作.已知元件A、B、C、D正常工作的概率依次为0.80、0.90、0.90、0.70,分别求系统N1、N2正常工作的概率P1、P2.10.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为P ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.11.从甲袋中摸出一个红球的概率是31,从乙袋内摸出1个红球的概率是21,从两袋内各摸出1个球,则32等于( )A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰好有1个红球的概率12.某人有一串8把外形相同的钥匙,其中只有一把能打开家门,一次该人醉酒回家每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则该人第三次打开家门的概率是____________.13.下列各对事件(1)运动员甲射击一次,“射中9环”与“射中8环”;(2)甲、乙二运动员各射击一次,“甲射中10环”与“乙射中9环”;(3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”.(4)甲、乙二运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”. 是互斥事件的有____________;是相互独立事件的有____________.14.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?16.设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.事件的互相独立性1.若A 与B 相互独立,则下面不相互独立事件有( )A.A 与AB.A 与BC.A 与B D A 与B解析:由定义知,易选A. 答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42 解析:P=(1-0.3)(1-0.4)=0.42. 答案:D3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( )A.P 1P 2B.P 1(1-P 2)+P 2(1-P 1)C.1-P 1P 2D.1-(1-P 1)(1-P 2)解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p 1(1-p 2)+p 2(1-p 1). 答案:B4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为31,视力合格的概率为61,其他几项标准合格的概率为51,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.901 C.54 D. 95 解析:P=901516131=⨯⨯.答案:B.5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________.解析:P=2411413221433121433221=⨯⨯+⨯⨯+⨯⨯. 答案:2411.6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是31,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 解析:因为这位司机在第一,二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=(1-31)(1-31)×31=274. 答案:2747.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三人该课程考核都合格的概率(结果保留三位小数).解析:记“甲理论考核合格”为事件A 1;“乙理论考核合格”为事件A 2;“丙理论考核合格”为事件A 3;记i A 为A i 的对立事件,i=1,2,3;记“甲实验考核合格”为事件B 1;“乙实验考核合格”为事件B 2;“丙实验考核合格”为事件B 3.(1)记“理论考核中至少有两人合格”为事件C ,记C 为C 的对立事件 P (C )=P (A 1A 23A +A 12A A 3+1A A 2A 3+A 1A 2A 3) =P(A 1A 23A )+P(A 12A A 3)+P(1A A 2A 3)+P(A 1A 2A 3)=0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7+0.9×0.8×0.7=0.902 (2)记“三人该课程考核都合格”为事件D P (D )=P[(A 1·B 1)·(A 2·B 2)·(A 3·B 3)] =P (A 1·B 1)·P (A 2·B 2)·P (A 3·B 3) =P (A 1)·P (B 1)·P (A 2)·P (B 2)·P (A 3)·P (B 3) =0.9×0.8×0.7×0.8×0.7×0.9 0.254 016≈0.254所以,这三人该课程考核都合格的概率为0.254 8.外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解析:设事件A :从第一个盒子中取得一个标有字母A 的球;事件B :从第一个盒子中取得一个标有字母B 的球,则A 、B 互斥,且P (A )=107,P (B )=103;事件C :从第二号盒子中取一个红球,事件D :从第三号盒子中取一个红球,则C 、D 互斥,且P (C )=21,P (D )=54108 .显然,事件A·C 与事件B·D 互斥,且事件A 与C 是相互独立的,B 与D 也是相互独立的.所以试验成功的概率为P=P(A·C+B·D)=P(A·C)+P(B·D)=P(A)·P(C)+P(B)·P(D)=10059. ∴本次试验成功的概率为10059. 9.如图,用A 、B 、C 、D 四类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 、D 都正常工作时,系统N 1正常工作;当元件A 、B 至少有一个正常工作,且C 、D 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 、D 正常工作的概率依次为0.80、0.90、0.90、0.70,分别求系统N 1、N 2正常工作的概率P 1、P 2.解析:N 1正常工作等价于A 、B 、C 、D 都正常工作,N 2正常工作等价于A 、B 中至少一个正常工作,且C 、D 中至少有一个正常工作.且A 、B 、C 、D 正常工作的事件相互独立.分别记元件A 、B 、C 、D 正常工作为事件A 、B 、C 、D ,由已知P (A )=0.80,P (B )=0.90,P (C )=0.90,P (D )=0.70. (1)P 1=P(A·B·C·D) =P(A)P(B)P(C)·P(D)=0.80×0.90×0.90×0.70=0.453 6.(2)P 2=P(1-A ·B )·P(1-C ·D ) =[1-P(A )·P(B )][1-P(C )·P(D )]=(1-0.2×0.1)×(1-0.1×0.3)=0.98×0.97=0.950 6. 拓展探究10.一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为P ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率; (2)能进行通讯的概率.解析:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B. 由题意知P (A )=p 3,P(B)=p 3, P(A )=1-p 3,P(B )=1-p 3.(1)恰有一套设备能正常工作的概率为P(A·B +A ·B)=P(A·B )+P(A ·B) =p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为 P(A·B)=P(A)·P(B)=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为 P(A·B +A ·B)+P(A·B)=2p 3-2p 6+p 6=2p 3-p 6. 方法二:两套设备都不能正常工作的概率为 P(A ·B )=P(A )·P(B )=(1-p 3)2. 至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P(A ·B )=1-P(A )·P(B )=1-(1-p 3)2=2p 3-p 6. 答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6. 11.从甲袋中摸出一个红球的概率是31,从乙袋内摸出1个红球的概率是21,从两袋内各摸出1个球,则32等于( )A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰好有1个红球的概率 答案:C12.某人有一串8把外形相同的钥匙,其中只有一把能打开家门,一次该人醉酒回家每次从8把钥匙中随便拿一把开门,试用后又不加记号放回,则该人第三次打开家门的概率是____________.解析:(87)2×81=51249. 答案:5124913.下列各对事件(1)运动员甲射击一次,“射中9环”与“射中8环”;(2)甲、乙二运动员各射击一次,“甲射中10环”与“乙射中9环”;(3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”.(4)甲、乙二运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标”. 是互斥事件的有____________; 是相互独立事件的有____________. 解析:(1)甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件.(2)甲、乙各射击一次,“甲射中10环”发生与否,对“乙射中9环”的概率没有影响,二者是相互独立事件. (3)甲、乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件.(4)甲、乙各射击一次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”可能会同时发生,二者构不成互斥事件,也不可能是相互独立事件. 答案:(1),(3);(2)14.现有四个整流二极管可串联或并联组成一个电路系统,已知每个二极管的可靠度为0.8(即正常工作的概率),请你设计一种四个二极管之间的串并联形式的电路系统,使得其可靠度大于0.85.画出你的设计图并说明理由. 解析:(1)P=1-(1-0.8)4=0.998 4>0.85; (2)P=1-(1-0.82)2=0.870 4>0.85; (3)P=[1-(1-0.8)2]2=0.921 6>0.85; (4)P=1-(1-0.8)(1-0.83)=0.902 4>0.85; (5)P=1-(1-0.8)2(1-0.82)=0.985 6>0.85. 以上五种之一均可.15.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张. (1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解析:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B .于是P (A )=53106 ,P (A )=52; P(B)=104=52,P(B )=53.由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=53·25652=. 答:两人都抽到足球票的概率是256. (2)甲、乙两人均未抽到足球票(事件B A •发生)的概率为 P (B A •)=P (A )·P (B )=2565352=•. ∴两人中至少有1人抽到足球票的概率为 P=1-P(B A •)=1-256=2519. 答:两人中至少有1人抽到足球票的概率是2519. 16.(2005全国高考卷3,文18)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率. DBBCA ,CCBCD ,BA18. 解析:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C , 则A 、B 、C 相互独立. 由题意得P(AB)=P(A)·P(B)=0.05 P(AC)=P(A)·P(C)=0.1,P(BC)=P(B)·P(C)= 0.125 解得P(A)=0.2;P(B)=0.25;P(C)=0.5所以,甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5 (Ⅱ)∵A 、B 、C 相互独立,∴A 、B 、C 相互独立∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为 P(A ·B ·C )=P(A )P(B )P(C )=0.8×0.75×0.5=0.3 ∴这个小时内至少有一台需要照顾的概率为p=1-P(A ·B ·C )=1-0.3=0.7。
高中数学必修二 10 2 事件的相互独立性(精讲)(含答案)
10.2 事件的相互独立性(精讲)考法一 相互独立事件的判断【例1】(多选)(2021·全国专题练习)下列各对事件中,不是相互独立事件的有( ) A .运动员甲射击一次,“射中9环”与“射中8环”B .甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C .甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”D .甲、乙两运动员各射击一次,“至少有1人射中目标”与“甲射中目标但乙未射中目标” 【答案】ACD【解析】在A 中,甲射击一次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件,不独立;在B 中,甲、乙各射击一次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者是相互独立事件;在C 中,甲,乙各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标“不可能同时发生,二者是互斥事件,不独立;在D 中,设“至少有1人射中目标”为事件A ,“甲射中目标但乙未射中目标”为事件B ,则AB B =,因此当()1P A ≠时,()()()P AB P A P B ≠⋅,故A 、B 不独立,故选:ACD 【一隅三反】1.(多选)(2020·全国高一单元测试)下列各对事件中,为相互独立事件的是( ) A .掷一枚骰子一次,事件M “出现偶数点”;事件N “出现3点或6点”B .袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到白球”C .袋中有3白、2黑共5个大小相同的小球,依次不放同地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到黑球”D .甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生” 【答案】ABD【解析】在A 中,样本空间{}1,2,3,4,5,6Ω=,事件{}2,4,6M =,事件{}3,6N =,事件{6}MN =, ∴31()62P M ==,21()63P N ==,111()236P MN =⨯=, 即()()()P MN P M P N =,故事件M 与N 相互独立,A 正确.在B 中,根据事件的特点易知,事件M 是否发生对事件发生的概率没有影响,故M 与N 是相互独立事件,B 正确;在C 中,由于第1次摸到球不放回,因此会对第2次摸到球的概率产生影响,因此不是相互独立事件,C 错误;在D 中,从甲组中选出1名男生与从乙组中选出1名女生这两个事件的发生没有影响,所以它们是相互独立事件,D 正确. 故选:ABD .2.(2021·河南)从1,2,3,4,5中任取两个数,下列事件中是互斥事件但不是对立事件的是( ) A .至少有一个是奇数和两个都是奇数 B .至少有一个是奇数和两个都是偶数 C .至少有一个奇数和至少一个偶数 D .恰有一个偶数和没有偶数【答案】D【解析】从1,2,3,4,5中任取两个数对于A,至少有一个是奇数和两个都是奇数,两个事件有重复,所以不是互斥事件,所以A 错误; 对于B,至少有一个是奇数和两个都是偶数,两个事件互斥,且为对立事件,所以B 错误; 对于C,至少有一个奇数和至少一个偶数,两个事件有重复,所以不是互斥事件,所以C 错误.对于D,恰有一个偶数和没有偶数,为互斥事件.且还有一种可能为两个都是偶数,所以两个事件互斥且不对立,所以D 正确.综上可知,D 为正确选项 故选:D考法二 利用概率判断互斥对立事件【例2】(2021·山东泰安市)在一个随机试验中,彼此互斥的事件A ,B ,C ,D 发生的概率分别为0.1,0.1,0.4,0.4,则下列说法正确的是( ) A .A 与B C +是互斥事件,也是对立事件 B .B C +与D 是互斥事件,也是对立事件 C .A B +与C D +是互斥事件,但不是对立事件 D .A C +与B D +是互斥事件,也是对立事件 【答案】D【解析】因为彼此互斥的事件A ,B ,C ,D 发生的概率分别为0.1,0.1,0.4,0.4,所以A 与B C +是互斥事件,但()()()()()0.61P A P B C P A P B P C ++=++=≠,所以A 与B C +不是对立事件,故A 错;B C +与D 是互斥事件,但()()()()()0.91P D P B C P D P B P C ++=++=≠,所以B C +与D 不是对立事件,故B 错;A B +与C D +是互斥事件,且()()()()()()1P A B P C D P A P B P C P D +++=+++=,所以也是对立事件,故C 错;A C +与B D +是互斥事件,且()()()()()()1P AC P BD P A P B P C P D +++=+++=,所以也是对立事件,故D 正确. 故选:D. 【一隅三反】1.(2020·陕西省商丹高新学校)在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为()0.2P A =,()0.2P B =,()0.3P C =,()0.3P D =,则下列说法正确的是( )A .AB +与C 是互斥事件,也是对立事件 B .B C +与D 是互斥事件,也是对立事件 C .A C +与B D +是互斥事件,但不是对立事件 D .A 与B C D ++是互斥事件,也是对立事件 【答案】D【解析】因为彼此互斥的事件A ,B ,C ,D 发生的概率分别为0.2,0.2,0.3,0.3,所以A B +与C 是互斥事件,但()()()()()0.71P A B P C P A P B P C ++=++=≠,所以A B +与C 不是对立事件,故A 错;B C +与D 是互斥事件,但()()()()()0.81P D P B C P D P B P C ++=++=≠,所以B C +与D 不是对立事件,故B 错;A C +与B D +是互斥事件,且()()()()()()1P AC P BD P A P B P C P D +++=+++=,所以A C +与B D +也是对立事件,故C错;A 与BCD ++是互斥事件,且()()()()()()1P A P B C D P A P B P C P D +++=+++=,所以A 与B C D ++也是对立事件,故D 正确. 故选:D.2.(2020·江苏淮安市·马坝高中高一期中)已知随机事件A 和B 互斥,且()0.7P A B ⋃=,()0.2P B =,则()P A =( ) A .0.5 B .0.1C .0.7D .0.8【答案】A【解析】因为事件A 和B 互斥,所以()()()+0.7P A B P B P A ⋃==, 则()=0.7-0.2=0.5P A ,故()()1-0.5P A P A ==.故答案为A.考法三 相互独立事件概率计算【例3】(2021·山东菏泽市)甲、乙、丙三人独立地去译一个密码,译出的概率分别15,13,14,则此密码能被译出的概率是( ) A .160B .25C .35D .5960【答案】C【解析】用事件A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则1()5P A =,1()3P B =,1()4P C =,且4232()()()()5345P ABC P A P B P C =⋅=⨯⨯=.∴此密码能被译出的概率为23155-=.故选:C 【一隅三反】1.(2021·辽宁营口市·高一期末)甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A :甲破译密码,事件B :乙破译密码. (1)求甲、乙二人都破译密码的概率; (2)求恰有一人破译密码的概率. 【答案】(1)0.42;(2)0.46.【解析】(1)事件“甲、乙二人都破译密码”可表示为AB ,事件A ,B 相互独立, 由题意可知()()0.7,0.6P A P B ==,所以()()()0.70.60.42P AB P A P B =⋅=⨯=;(2)事件“恰有一人破译密码”可表示为AB +AB ,且AB ,AB 互斥 所以()()()()()()()P AB AB P AB P AB P A P B P A P B +=+=+()()10.70.60.710.60.46=-⨯+⨯-=.2.(2021·山东威海市·高一期末)习近平总书记指出:“要健全社会心理服务体系和疏导机制、危机干预机制,塑造自尊自信、理性平和、亲善友爱的社会心态.”在2020年新冠肺炎疫情防控阻击战中,心理医生的相关心理疏导起到了重要作用.某心理调查机构为了解市民在疫情期的心理健康状况,随机抽取n 位市民进行心理健康问卷调查,按所得评分(满分100分)从低到高将心理健康状况分为四个等级:并绘制如图所示的频率分布直方图.已知调查评分在[70,80)的市民为400人.(1)求n 的值及频率分布直方图中t 的值;(2)在抽取的心理等级为“有隐患”的市民中,按照调查评分分层抽取3人,进行心理疏导.据以往数据统计,经过心理疏导后,调查评分在[)40,50的市民心理等级转为 “良好”的概率为14,调查评分在[)50,60的市民心理等级转为“良好”的概率为13,若经过心理疏导后的恢复情况相互独立,试问在抽取的3人中,经过心理疏导后,至少有一人心理等级转为“良好”的概率为多少?(3)心理调查机构与该市管理部门设定的预案是:以抽取的样本作为参考,若市民心理健康指数平均值不低于0.8,则只需发放心理指导资料,否则需要举办心理健康大讲堂.根据你所学的统计知识,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组数据以区间的中点值代替,心理健康指数=(问卷调查评分/100) 【答案】(1)2000,0.002t =;(2)23;(3)只需发放心理指导材料,不需要举办心理健康大讲堂活动,理由见解析.【解析】(1)由已知条件可得40020000.0210n ==⨯,每组的纵坐标的和乘以组距为1,所以0.84801t +=,解得0.002t =. (2)由(1)知0.002t =,所以调查评分在[40,50)的人数占调查评分在[)50,60人数的12, 若按分层抽样抽取3人,则调查评分在[40,50)有1人,[)50,60有2人, 因为经过心理疏导后的恢复情况相互独立, 所以选出的3人经过心理疏导后, 心理等级均达不到良好的概率为32214333⨯⨯=, 所以经过心理疏导后,至少有一人心理等级转为良好的概率为322214333P =-⨯⨯=. (3)由频率分布直方图可得,450.02550.04650.14750.2850.35950.2580.7⨯+⨯+⨯+⨯+⨯+⨯=,估计市民心理健康问卷调查的平均评分为80.7, 所以市民心理健康指数平均值为80.70.8070.8100=>, 所以只需发放心理指导材料,不需要举办心理健康大讲堂活动.3.(2020·天津市滨海新区大港太平村中学高一期末)甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率: (∴)两人都投中;(∴)恰好有一人投中; (∴)至少有一人投中.【答案】(∴)0.72;(∴)0.26;(∴)0.98.【解析】设A =“甲投中”,B =“乙投中”,则A =“甲没投中”,B =“乙没投中”, 由于两个人投篮的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立, 由己知可得()0.8P A =,()0.9P B =,则()0.2P A =,()0.1P B =; (∴)AB =“两人都投中”,则()()()0.80.90.72P AB P A P B ==⨯=; (∴)ABAB =“恰好有一人投中”,且AB 与AB 互斥,则()()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.80.10.20.90.26=⨯+⨯=;(∴)AB ABAB =“至少有一人投中”,且AB 、AB 、AB 两两互斥,所以(()()())P ABABAB P AB P AB P AB =++ )0.720.260.9()(8P AB P ABAB =+==+.。
高二数学《事件的相互独立性》课后作业
事件的相互独立性1、甲乙丙射击命中目标的概率分别为12、14、112,现在三人射击一个目标各一次,目标被设计中的概率是( )A. 196B. 4796C. 2132D. 56 2、三个同学同时作一电学实验,成功的概率分别为1P ,2P ,3P ,则此实验在三人中恰有两个人成功的概率是3、甲、乙射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,则2人中至少有一人射中的概率是4、甲.乙、丙三位同学完成六道数学自测题,他们及格的概率依次为45、35、710,求:(1) 三人中有且只有两人及格的概率;(2) 三人中至少有一人不及格的概率。
5、设A 、B 为两个事件,若P(A)=0.4, ()()0.7,p A B P B x ==,试求满足下列条件的X 的值:(1) A 与B 为互斥事件(2) A 与B 为独立事件参考答案:1、C 2、()()()123132231111PP P PP P P P P -+-+- 3、 0.984、解:设甲.乙、丙答题及格分别为事件A 、B 、C ,则A 、B 、C 相互独立。
(1) 三人中有且只有2人及格的概率为()()()()()()1P P AB C P A B C P A BC P A P B P C P A P B P C P A P B P C ------------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++=⋅++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭437437437113111551055105510250⎛⎫⎛⎫⎛⎫⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2). 三人中至少有一人不及格的概率为()()()()2437831115510125P P ABC P A P B P C =-=-=-⨯⨯= 5、解:(1)因为A 与B 为互斥事件,所以A B =∅.故()P A B = ()p A B --()P A -- ()P B =0.7--0.4—X,所以X=0.3(2).因为 A 与B 为独立事件,所以()P A B = ()P A ⋅ ()P B ,由此可得,()p A B = ()P A + ()P B -- ()P A B = ()P A + ()P B --()P A ⋅ ()P B ,即0.7=0.4+X-0.4X 解得X=0.5。
新教材高中数学第10章概率10 2事件的相互独立性学案含解析新人教A版必修第二册
10.2 事件的相互独立性学 习 任 务核 心 素 养1.结合有限样本空间,了解两个随机事件独立性的含义.(重点、易混点)2.结合古典概型,利用独立性计算概率.(重点、难点)1.通过学习两个随机事件独立性的含义,培养数学抽象素养.2.通过利用随机事件的独立性计算概率,培养数学运算素养.3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”.问题:上述问题中事件A 的发生是否会影响B 发生的概率?事件A 和事件B 相互独立吗? 知识点 事件的相互独立性 1.相互独立事件的定义对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.2.相互独立事件的性质当事件A ,B 相互独立时,则事件A 与事件B -相互独立,事件A -与事件B 相互独立,事件A -与事件B -相互独立.(1)事件A 与B 相互独立可以推广到n 个事件的一般情形吗?(2)公式P (AB )=P (A )P (B )可以推广到一般情形吗?〖提示〗 (1)对于n 个事件A 1,A 2,…,A n ,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称事件A 1,A 2,…,A n 相互独立.(2)公式P (AB )=P (A )P (B )可以推广到一般情形:如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).1.思考辨析(正确的画“√”,错误的画“×”)(1)不可能事件与任何一个事件相互独立.()(2)必然事件与任何一个事件相互独立.()(3)若两个事件互斥,则这两个事件相互独立.()〖答案〗(1)√(2)√(3)×2.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸到白球”,如果“第二次摸到白球”记为B,否则记为C,那么事件A与B,A与C的关系是() A.A与B,A与C均相互独立B.A与B相互独立,A与C互斥C.A与B,A与C均互斥D.A与B互斥,A与C相互独立A〖由于摸球过程是有放回的,所以第一次摸球的结果对第二次摸球的结果没有影响,故事件A与B,A与C均相互独立,且A与B,A与C均有可能同时发生,说明A与B,A与C均不互斥,故选A.〗3.某同学做对某套试卷中每一个选择题的概率都为0.9,则他连续做对第1题和第2题的概率是()A.0.64B.0.56C.0.81D.0.99C〖设A i表示“第i题做对”,i=1,2,则P(A1A2)=P(A1)P(A2)=0.9×0.9=0.81.〗4.甲袋中有8个白球、4个红球,乙袋中有6个白球、6个红球,从每袋中任取一球,则取到相同颜色的球的概率是________.1 2〖由题意知P=88+4×66+6+48+4×66+6=12.〗类型1独立性的判断〖例1〗一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A={一个家庭中既有男孩又有女孩},B={一个家庭中最多有一个女孩}.对下述两种情形,讨论A与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.〖解〗 (1)有两个小孩的家庭,男孩、女孩的所有可能情形为Ω1={(男,男),(男,女),(女,男),(女,女)},共有4个样本点,由等可能性知概率均为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ), 所以事件A ,B 不相互独立.(2)有三个小孩的家庭,男孩、女孩的所有可能情形为Ω2={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},共有8个样本点,由等可能性知概率均为18.这时A ={(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男)},B ={(男,男,男),(男,男,女),(男,女,男),(女,男,男)},AB ={(男,男,女),(男,女,男),(女,男,男)},于是P (A )=68=34,P (B )=48=12,P (AB )=38.显然有P (AB )=38=P (A )P (B )成立.所以事件A 与B 是相互独立的.判断两个事件是否相互独立的方法有哪些?〖提示〗 (1)定量法:利用P (AB )=P (A )P (B )是否成立可以准确地判断两个事件是否相互独立.(2)定性法:直观地判断一个事件发生与否对另一个事件的发生的概率是否有影响,若没有影响就是相互独立事件.[跟进训练]1.判断下列各对事件是不是相互独立事件.(1)甲组有3名男生,2名女生,乙组有2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的水果放回筐内,再从筐内任意取出1个,取出的是梨”;(3)一个布袋里有大小完全相同的3个白球,2个红球,“从中任意取1个球是白球”与“取出的球不放回,再从中任意取1个球是红球”.〖解〗 (1)“从甲组中选出1名男生”这一事件是否发生对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以二者是相互独立事件.(2)由于把取出的水果又放回筐内,故“从中任意取出1个,取出的是苹果”这一事件是否发生对“再从筐内任意取出1个,取出的是梨”这一事件发生的概率没有影响,所以二者是相互独立事件.(3)不放回地取球,前者的发生影响后者发生的概率,所以二者不是相互独立事件. 类型2 相互独立事件概率的计算〖例2〗 (对接教材P 248例2)甲、乙、丙3位大学生同时应聘某个用人单位的职位,3人能被选中的概率分别为25,34,13,且各自能否被选中互不影响.求:(1)3人同时被选中的概率; (2)3人中恰有1人被选中的概率.〖解〗 记甲、乙、丙能被选中的事件分别为A ,B ,C , 则P (A )=25,P (B )=34,P (C )=13.(1)3人同时被选中的概率P 1=P (ABC )=P (A )P (B )P (C )=25×34×13=110.(2)3人中恰有1人被选中的概率P 2=P (A B C ∪A B C ∪A B C )=25×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-13+⎝⎛⎭⎫1-25×34×⎝⎛⎭⎫1-13+⎝⎛⎭⎫1-25×⎝⎛⎭⎫1-34×13=512.1.本例条件不变,求3人中至少有1人被选中的概率.〖解〗 法一:3人中有2人被选中的概率P 3=P (AB C ∪A B C ∪A BC )=25×34×⎝⎛⎭⎫1-13+25×⎝⎛⎭⎫1-34×13+⎝⎛⎭⎫1-25×34×13=2360. 由本例第(1)(2)问可知,3人中至少有1个被选中的概率为P =P 1+P 2+P 3=110+512+2360=910. 法二:3人均未被选中的概率P =P (A B C )=⎝⎛⎭⎫1-25×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-13=110. 因为“3人中至少有1人被选中”与“3人均未被选中”是相互对立事件,所以“3人中至少有1人被选中”的概率为1-110=910.2.若本例条件“3人能被选中的概率分别为25,34,13”变为“甲、乙两人恰有一人被选中的概率为1120,两人都被选中的概率为310,丙被选中的概率为13”,求恰好有2人被选中的概率.〖解〗 设甲、乙两人恰有一人被选中为事件A ,甲、乙都被选中为事件B ,丙被选中为事件C ,则恰好有2人被选中的概率P =P (A )P (C )+P (B )P (C )=1120×13+310×⎝⎛⎭⎫1-13=2360.用相互独立事件的乘法公式解题的步骤(1)用恰当的字母表示题中有关事件. (2)根据题设条件,分析事件间的关系.(3)将需要计算概率的事件表示为所设事件的乘积或若干个事件的乘积之和(相互乘积的事件之间必须满足相互独立).(4)利用乘法公式计算概率.[跟进训练]2.在某校运动会中,甲、乙、丙三支足球队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为13,甲胜丙的概率为14,乙胜丙的概率为13.(1)求甲队获第一名且丙队获第二名的概率; (2)求在该次比赛中甲队至少得3分的概率.〖解〗 (1)设甲队获第一名且丙队获第二名为事件A ,则P (A )=13×14×⎝⎛⎭⎫1-13=118. (2)甲队至少得3分有两种情况:两场只胜一场;两场都胜.设事件B 为“甲两场只胜一场”,设事件C 为“甲两场都胜”,则事件“甲队至少得3分”为B ∪C ,则P (B ∪C )=P (B )+P (C )=13×⎝⎛⎭⎫1-14+14×⎝⎛⎭⎫1-13+13×14=12. 类型3 相互独立事件的概率的综合应用〖例3〗 三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将它们中某两个元件并联后再和第三个元件串联接入电路.(1)在如图所示的电路中,电路不发生故障的概率是多少? (2)三个元件连成怎样的电路,才能使电路不发生故障的概率最大?如果事件A ,B 相互独立,事件AB 的对立事件是A B 吗?〖提示〗 如果事件A ,B 相互独立,事件AB 的对立事件是A B ∪A B ∪A B .〖解〗 (1)电路不发生故障包括三种情况, 一是三个元件都正常工作,二是T 1正常工作,T 2正常工作,T 3不能正常工作, 三是T 1正常工作,T 2不能正常工作,T 3正常工作,这三种情况是互斥的,每一种情况里三个元件是否正常工作是相互独立的, ∴电路不发生故障的概率P =12×34×34+12×34×14+12×14×34=1532.(2)把T 2或T 3与T 1的位置互换,所得电路不发生故障的概率P ′=34×12×34+34×12×34+34×12×14=2132. ∵2132>1532,∴把T 2或T 3与T 1的位置互换,即T 1与T 2(T 3)并联后再与T 3(T 2)串联,这样的电路能使电路不发生故障的概率最大.事件间的独立性关系已知两个事件A ,B 相互独立,它们的概率分别为P (A ),P (B ),则有事件 表示 概率 A ,B 同时发生 AB P (A )P (B ) A ,B 都不发生 A BP (A )P (B )A ,B 恰有一个发生(A B )∪(A B )P (A )P (B )+P (A )P (B ) A ,B 中至少有一个发生 (A B )∪(A B ) ∪(AB )P (A )P (B )+P (A )P (B )+P (A )P (B )A ,B 中至多有一个发生(A B )∪(A B ) ∪(AB )P (A )P (B )+P (A )P (B )+P (A )P (B )[跟进训练]3.如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是P ,电流能通过T 4的概率是0.9,电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(1)求P ;(2)求电流能在M 与N 之间通过的概率.〖解〗 记事件A i 表示“电流能通过T i ”,i =1,2,3,4, 事件A 表示“T 1,T 2,T 3中至少有一个能通过电流”, 事件B 表示“电流能在M 与N 之间通过”. (1)A =A 1 A 2 A 3,A 1,A 2,A 3相互独立,所以P (A -)=P (A 1 A 2 A 3)=P (A 1)P (A 2)P (A 3)=(1-P )3. 又P (A )=1-P (A )=1-0.999=0.001, 所以(1-P )3=0.001,解得P =0.9. (2)因为B =A 4+A 4A 1A 3+A 4 A 1A 2A 3, 所以P (B )=P (A 4)+P (A 4A 1A 3)+P (A 4 A 1A 2A 3)=P (A 4)+P (A 4)P (A 1)P (A 3)+P (A 4)P (A 1)P (A 2)P (A 3) =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.989 1.1.甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥A 〖对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B 相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B 可能同时发生,所以事件A 与B 不是互斥事件.〗2.甲、乙两班各有36名同学,甲班有9名三好学生,乙班有6名三好学生,两班各派1名同学参加演讲活动,派出的恰好都是三好学生的概率是( )A .524B .512C .124D .38C 〖两班各自派出代表是相互独立事件,设事件A ,B 分别为甲班、乙班派出的是三好学生,则事件AB 为两班派出的都是三好学生,则P (AB )=P (A )P (B )=936×636=124.〗3.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.0.98 〖至少有一个准时响的概率为1-(1-0.90)×(1-0.80)=1-0.10×0.20=0.98.〗 4.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为45和34.在同一时间内,求:(1)甲、乙两个气象台同时预报天气准确的概率为________; (2)至少有一个气象台预报准确的概率为________.(1)35 (2)1920 〖记“甲气象台预报天气准确”为事件A ,“乙气象台预报天气准确”为事件B .(1)P (AB )=P (A )P (B )=45×34=35.(2)至少有一个气象台预报准确的概率为P =1-P (A - B -)=1-P (A )P (B )=1-15×14=1920.〗回顾本节知识,自我完成以下问题:(1)相互独立事件的定义是什么?具有哪些性质? (2)相互独立事件与互斥事件有什么区别?。
95.高一数学导学案事件的相互独立性(解析版)
10.2事件的相互独立性导学案【学习目标】1.理解相互独立事件的定义及意义2.理解概率的乘法公式【自主学习】知识点1 事件的相互独立性1.定义对于任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则事件A与事件B相互独立,简称为独立.2.性质当事件A,B相互独立时,A与B,A与B,A与B也相互独立.3.n个事件相互独立对于n个事件A1,A2,…,A n,如果其中任一个事件发生的概率不受其他事件是否发生的影响,则称n个事件A1,A2,…,A n相互独立.4.n个相互独立事件的概率公式如果事件A1,A2,…,A n相互独立,那么这n个事件都发生的概率,等于每个事件发生的概率的积,即P(A1∩A2∩…∩A n)=P(A1)×P(A2)×…×P(A n),并且上式中任意多个事件A i换成其对立事件后等式仍成立.【合作探究】探究一 相互独立事件的判断【例1】判断下列各对事件是否是相互独立事件.(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”; (3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[分析] (1)利用独立性概念的直观解释进行判断.(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断.(3)利用事件的独立性定义式判断.[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.(3)记A =“出现偶数点”,B =“出现3点或6点”,则A ={2,4,6},B ={3,6},AB ={6}, ∴P (A )=36=12,P (B )=26=13,P (A ∩B )=16.∴P (A ∩B )=P (A )P (B ),∴事件A 与B 相互独立.归纳总结:判断事件是否相互独立的方法1.定义法:事件A ,B 相互独立⇔P (A ∩B )=P (A )·P (B ).2.由事件本身的性质直接判定两个事件发生是否相互影响.【练习1】(1)一袋中装有100只球,其中有20只白球,在有放回地摸球中,记A 1=“第一次摸得白球”,A 2=“第二次摸得白球”,则事件A 1与2A 是( )A .相互独立事件B .对立事件C .互斥事件D .无法判断(2)甲、乙两名射手同时向一目标射击,设事件A =“甲击中目标”,事件B =“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥【答案】(1)A (2)A解析:(1)由于采用有放回地摸球,所以每次是否摸到白球,对下次摸球结果没有影响,故事件A 1,2A 是相互独立事件.(2)对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B 相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B 可能同时发生,所以事件A 与B 不是互斥事件.故选A.探究二 相互独立事件发生的概率【例2】在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是34,甲、乙两人都回答错误的概率是112,乙、丙两人都回答正确的概率是14.设每人回答问题正确与否相互独立的.(1)求乙答对这道题的概率;(2)求甲、乙、丙三人中,至少有一人答对这道题的概率.[分析] (1)设乙答对这道题的概率为x ,由对立事件概率关系和相互独立事件概率乘法公式,求出乙答对这道题的概率;(2)设丙答对这道题的概率y ,由相互独立事件概率乘法公式,求出丙答对这道题的概率和甲、乙、丙三人都回答错误的概率,再由对立事件的概率公式,求得答案.[解] (1)记甲、乙、丙3人独自答对这道题分别为事件A ,B ,C ,设乙答对这道题的概率P (B )=x ,由于每人回答问题正确与否是相互独立的,因此A ,B ,C 是相互独立事件. 由题意,并根据相互独立事件同时发生的概率公式, 得P (A B )=P (A )P (B )=⎝⎛⎭⎫1-34×(1-x )=112,解得x =23, 所以,乙对这道题的概率为P (B )=23.(2)设“甲、乙、丙、三人中,至少有一人答对这道题”为事件M ,丙答对这道题的概率P (C )=y .由(1),并根据相互独立事件同时发生的概率公式, 得P (BC )=P (B )P (C )=23×y =14,解得y =38.甲、乙、丙三人都回答错误的概率为P (A B C )=P (A )P (B )P (B )=⎝⎛⎭⎫1-34⎝⎛⎭⎫1-23⎝⎛⎭⎫1-38=596.因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙三人中,至少有一人答对这道题”是对立事件,所以,所求事件概率为P (M )=1-596=9196.归纳总结:1.求相互独立事件同时发生的概率的步骤 (1)首先确定各事件之间是相互独立的; (2)确定这些事件可以同时发生; (3)求出每个事件的概率,再求积.2.使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们能同时发生.【练习2】(1)一个电路如图所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率为12,且是相互独立的,则灯亮的概率是( )A.164 B.5564 C.18D.116(2)明天上午李明要参加“青年文明号”活动,为了准时起床,他用甲乙两个闹钟叫醒自己,假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率为0.90,则两个闹钟至少有一个准时响的概率是 . 【答案】(1)B (2)0.98解析:(1)设T =“A 与B 中至少有一个不闭合”,R =“E 与F 至少有一个不闭合”,则P (T )=P (R )=1-12×12=34,所以灯亮的概率为P =1-P (T )P (R )P (C )P (D )=1-34×34×12×12=5564,故选B.(2)设A =“两个闹钟至少有一个准时响”,则P (A )=1-(1-0.80)(1-0.90)=1-0.20×0.10=0.98.课后作业A 组 基础题一、选择题1.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为( )A .0.42B .0.12C .0.18D .0.28 【答案】B解析:所求概率为(1-0.6)×(1-0.7)=0.12,故选B.2.某同学从家到学校要经过两个十字路口.设各路口信号灯工作相互独立,且在第一个路口遇到红灯的概率为23,两个路口都遇到红灯的概率为25,则他在第二个路口遇到红灯的概率为( )A.110B.25C.35D.910 【答案】C解析:记事件A 为“在第一个路口遇到红灯”,事件B 为“在第二个路口遇到红灯”,由于两个事件相互独立,所以P (A )P (B )=P (AB ),所以P (B )=P ABP A =2523=35.3.下列事件中,A ,B 是相互独立事件的是( )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2白,2黑的小球,不放回地摸两球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“人能活到20岁”,B =“人能活到50岁”【答案】A [把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C ,A ,B 应为互斥事件,不相互独立;D 是条件概率,事件B 受事件A 的影响.故选A .] 4.甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的.今从甲、乙两盒中各任取一个,则恰好可配成A 型螺栓的概率为( )A .120B .1516C .35D .1920【答案】C [设“从甲盒中取一螺杆为A 型螺杆”为事件A ,“从乙盒中取一螺母为A 型螺母”为事件B ,则A 与B 相互独立,P (A )=160200=45,P (B )=180240=34,则从甲、乙两盒中各任取一个,恰好可配成A 型螺栓的概率为P =P (A )P (B )=45×34=35.]5.两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,目标被击中的概率是( )A .0.56B .0.92C .0.94D .0.96【答案】C [∴两人都没有击中的概率为0.2×0.3=0.06,∴目标被击中的概率为1-0.06=0.94.]6.在某道路的A ,B ,C 三处设有交通灯,这三盏灯在1分钟内开放绿灯的时间分别为25秒,35秒,45秒,某辆车在这段道路上匀速行驶,则在这三处都不停车的概率为( )A .764B .25192C .35192D .35576【答案】C [由题意可知汽车在这三处都不停车的概率为2560×3560×4560=35192.]7.如图所示,A ,B ,C 表示3个开关,若在某段时间内,它们正常工作的概率分别为0.9,0.8,0.7,则该系统的可靠性(3个开关只要一个开关正常工作即可靠)为( )A .0.504B .0.994C .0.496D .0.064【答案】B [由题意知,所求概率为1-(1-0.9)(1-0.8)(1-0.7)=1-0.006=0.994.]8.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如下表所示,表中的数字表示所在行选手击败其所在列选手的概率.A .0.15B .0.105C .0.045D .0.21 【答案】C解析:甲、乙比赛甲获胜的概率是0.3,丙、丁比赛丙获胜的概率是0.5,甲、丙决赛甲获胜的概率是0.3,根据独立事件的概率等于概率之积,所以,甲得冠军且丙得亚军的概率:0.3×0.5×0.3=0.045.故选C. 二、填空题9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.【答案】35 [设此队员每次罚球的命中率为p ,则1-p 2=1625,所以p =35.]10.已知A ,B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B -)=________;P (A - B -)=________.【答案】16 16 [∴P (A )=12,P (B )=23,∴P (A )=12,P (B )=13.∴P (A B )=P (A )P (B )=12×13=16, P (A - B -)=P (A )P (B )=12×13=16.]11.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率是________,三人中至少有一人达标的概率是________.【答案】0.240.96[由题意可知三人都达标的概率为P=0.8×0.6×0.5=0.24;三人中至少有一人达标的概率为P′=1-(1-0.8)×(1-0.6)×(1-0.5)=0.96.]三、解答题12.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.求:(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;(2)进入商场的1位顾客购买甲、乙两种商品中的一种的概率.【答案】记A表示事件“进入商场的1位顾客购买甲种商品”,则P(A)=0.5;记B表示事件“进入商场的1位顾客购买乙种商品”,则P(B)=0.6;记C表示事件“进入商场的1位顾客,甲、乙两种商品都购买”;记D表示事件“进入商场的1位顾客购买甲、乙两种商品中的一种”.(1)易知C=AB,则P(C)=P(AB)=P(A)P(B)=0.5×0.6=0.3.(2)易知D=(A B)∴(A B),则P(D)=P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.5×0.4+0.5×0.6=0.5.13.甲、乙两名跳高运动员在一次2米跳高中成功的概率分别为0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(1)甲试跳三次,第三次才成功的概率;(2)甲、乙两人在第一次试跳中至少有一人成功的概率.【答案】记“甲第i次试跳成功”为事件A i,“乙第i次试跳成功”为事件B i(i=1,2,3),依题意得P(A i)=0.7,P(B i)=0.6,且A i,B i相互独立.(1)“甲试跳三次,第三次才成功”为事件A1A2A3,且这三次试跳相互独立.∴P(A1A2A3)=P(A1)P(A2)P(A3)=0.3×0.3×0.7=0.063.(2)记“甲、乙两人在第一次试跳中至少有一人成功”为事件C.P(C)=1-P(A1)P(B1)=1-0.3×0.4=0.88.B 组 能力提升一、选择题1.甲、乙两人参加知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A .34B .23C .57D .512【答案】D [根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是23×⎝⎛⎭⎫1-34+34×⎝⎛⎭⎫1-23=512.] 2.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )等于( )A .29B .118C .13D .23【答案】D [由题意,P (A )·P (B )=19,P (A )·P (B )=P (A )·P (B ). 设P (A )=x ,P (B )=y ,则⎩⎪⎨⎪⎧ (1-x )(1-y )=19,(1-x )y =x (1-y ),即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y .∴x 2-2x +1=19, ∴x -1=-13,或x -1=13(舍去),∴x =23.] 3.设同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次.记事件A =“第一个四面体向下的一面出现偶数”;事件B =“第二个四面体向下的一面出现奇数”;C =“两个四面体向下的一面或者同时出现奇数或者同时出现偶数”.给出下列说法:①P (A )=P (B )=P (C );②P (AB )=P (AC )=P (BC );③P (ABC )=18;④P (A )P (B )P (C )=18. 其中正确的有( )A .0个B .1个C .2个D .3个【答案】D解析:P (A )=12,P (B )=12,P (C )=12,故∴∴对. P (AB )=12×12=14,P (AC )=12×12=14,P (BC )=12×12=14,故∴对. 事件A ,B ,C 不可能同时发生,P (ABC )=0,故∴错.故选D.4.设M ,N 为两个随机事件,给出以下命题:(1)若M ,N 为互斥事件,且P (M )=15,P (N )=14,则P (M ∪N )=920; (2)若P (M )=12,P (N )=13,P (MN )=16,则M ,N 为相互独立事件; (3)若P (M )=12,P (N )=13,P (MN )=16,则M ,N 为相互独立事件; (4)若P (M )=12,P (N )=13,P (MN )=16,则M ,N 为相互独立事件; (5)若P (M )=12,P (N )=13,P (M N )=56,则M ,N 为相互独立事件. 其中正确命题的个数为( )A .1B .2C .3D .4【答案】C解析:若M ,N 为互斥事件,且P (M )=15,P (N )=14, 则P (M ∴N )=15+14=920,故(1)正确; 若P (M )=12,P (N )=13,P (MN )=16. 则由相互独立事件乘法公式知M ,N 为相互独立事件,故(2)正确;若P (M )=12,P (N )=13,P (MN )=16, 则P (M )=1-P (M )=12,P (MN )=P (M )·P (N ). 由对立事件概率计算公式和相互独立事件乘法公式知M ,N 为相互独立事件,故(3)正确;若P (M )=12,P (N )=13,P (MN )=16, 当M ,N 为相互独立事件时,P (N )=1-P (N )=23,P (MN )=12×23=13,故(4)错误; 若P (M )=12,P (N )=13,P (M N )=56, 则P (M )=12,P (N )=23,P (M N )≠P (M )·P (N ). 由对立事件概率计算公式和相互独立事件乘法公式知M ,N 为相互独立事件,故(5)错误.故选C.二、填空题5.一个人有n 把钥匙,其中只有一把可以打开房门,他随意地进行试开,若试开过的钥匙放在一旁,则他第k 次恰好打开房门的概率等于________.【答案】1n[由 “第k 次恰好打开,前k -1次没有打开”, ∴第k 次恰好打开房门的概率为n -1n ×n -2n -1×…×n -(k -1) n -(k -2)×1n -(k -1)=1n.] 三、解答题6.某中学篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”与“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才有机会进行“三步上篮”测试,为了节约时间,每项只需且必须投中一次即为合格.小明同学“立定投篮”的命中率为12,“三步上篮”的命中率为34,假设小明不放弃任何一次投篮机会且每次投篮是否命中互不影响,求小明同学一次测试合格的概率.【答案】设小明第i 次“立定投篮”命中为事件A i ,第i 次“三步上篮”命中为事件B i (i =1,2),依题意有P (A i )=12,P (B i )=34(i =1,2),“小明同学一次测试合格”为事件C . P (C -)=P (A 1A 2)+P (A 1A 2B 1B 2)+P (A 1B 1B 2)=P (A 1)P (A 2)+P (A 1)P (A 2)P (B 1)P (B 2)+P (A 1)·P (B 1)P (B 2)=⎝⎛⎭⎫122+⎝⎛⎭⎫1-12×12×⎝⎛⎭⎫1-342+12×⎝⎛⎭⎫1-342=1964. ∴P (C )=1-1964=4564. 7.甲、乙二人进行一次围棋比赛,一共赛5局,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【答案】 记A i 表示事件“第i 局甲获胜”,i =3,4,5,B j 表示事件“第j 局乙获胜”,j =3,4,5.(1)记A 表示事件“再赛2局结束比赛”.A =(A 3A 4)∴(B 3B 4).由于各局比赛结果相互独立,故P (A )=P ((A 3A 4)∴(B 3B 4))=P (A 3A 4)+P (B 3B 4)=P (A 3)P (A 4)+P (B 3)P (B 4)=0.6×0.6+0.4×0.4=0.52.(2)记事件B 表示“甲获得这次比赛的胜利”.因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B =(A 3A 4)∴(B 3A 4A 5)∴(A 3B 4A 5),由于各局比赛结果相互独立,故P (B )=P (A 3A 4)+P (B 3A 4A 5)+P (A 3B 4A 5)=P (A 3)P (A 4)+P (B 3)P (A 4)P (A 5)+P (A 3)P (B 4)·P (A 5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.。
高中数学选修人教A学案04事件的相互独立性
2. 2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:4课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++ =12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ .3.对于事件A 与B 及它们的和事件与积事件有下面的关系: ()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025. (2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=, ∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”, 故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.72P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦)变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅ 0.847=方法二:分析要使这段时间内线路正常工作只要排除CJ 开且A J 与B J 至少有1个开的情况 []21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率; (2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54(∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得113lg 2n ≥≈- ∵+∈N n ,∴n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习:1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响的,而相互独立事件是以它们能够同时发生为前提的个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3第60页习题2. 2A组4. B组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
习题事件的相互独立性
事件的相互独立性一、选择题1.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是().(1-p2)+p2(1-p1)(1-p1)(1-p2)答案:B解析:甲解决问题而乙没有解决问题的概率是p1(1-p2),乙解决问题而甲没有解决问题的概率是p2(1-p1).故恰有1人解决问题的概率是p1(1-p2)+p2(1-p1).2.从甲袋中摸出1个红球的概率为,从乙袋中摸出1个红球的概率为,从两袋中各摸出1个球,则等于().个球不都是红球的概率个球都是红球的概率C.至少有1个红球的概率个球中恰有1个红球的概率答案:C解析:从甲、乙两袋中摸出红球分别记为事件A,B,则P(A)=,P(B)=,至少有1个红球的概率P=1-P()=1-.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是().A. B. C. D.答案:C解析:依题意得P(A)=,P(B)=,事件A,B中至少有一件发生的概率为1-P()=1-P()P()=1-=1-.4.同时抛两枚硬币,则一枚朝上一枚朝下的事件发生的概率是()A. B. C. D.答案:A解析:分两种情况:可能第一枚朝上第二枚朝下,也可能第一枚朝下第二枚朝上.朝上时概率为,朝下时概率为1-.故所求概率为P=.5.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是().A. B. C. D.答案:A解析:左边转盘指针落在奇数区域的概率为,右边转盘指针落在奇数区域的概率为,故两个指针同时落在奇数区域的概率为.6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为().A. B. C. D.答案:D解析:由甲、乙两队每局获胜的概率相同,知甲每局获胜的概率为,甲要获得冠军有两种情况:第一种情况是再打一局甲赢,甲获胜概率为;第二种情况是再打两局,第一局甲输,第二局甲赢.则其概率为.故甲获得冠军的概率为.7.甲、乙两人各射击一次,如果两人击中目标的概率都是,则其中恰有1人击中目标的概率是().答案:A解析:设A表示:“甲击中目标”,B表示:“乙击中目标”,则A,B相互独立.从而“两人中恰有1人击中目标”可以表示为AB.因为AB互斥,所以P(AB)=P(A)+P(B)=P(A)P()+P()P(B)=×+×=.二、填空题8.两个实习生每人加工一个零件,加工为一等品的概率分别为,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为.答案:解析:记两个零件中恰有一个一等品的事件为A,则P(A)=.9.有2个人从一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,则这2个人在不同层离开的概率为.答案:解析:因为每个人自第二层开始在每一层离开电梯都是等可能的,所以每个人自第二层开始在每一层离开电梯的概率都是,根据相互独立事件的概率乘法公式可得这2个人在不同层离开的概率为.10.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为,则本次比赛中甲获胜的概率是.答案:解析:“每局比赛中甲获胜”记为事件A,则P(A)=,P()=,“本次比赛中甲获胜”为事件AA+AA+AA,所以“本次比赛中甲获胜”的概率为P=×+×××2=.三、解答题11.某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.(1)求恰有一名同学当选的概率;(2)求至多两人当选的概率.解:设甲、乙、丙当选的事件分别为A,B和C,则有P(A)=,P(B)=,P(C)=.(1)因为事件A,B,C相互独立,恰有一名同学当选的概率为P(A)+P()+P(C)=P(A)·P()P()+P()P(B)P()+P()P()P(C)=.(2)至多有两人当选的概率为1-P(ABC)=1-P(A)P(B)P(C)=1-.12.甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一次,根据以往资料知,甲击中8环、9环、10环的概率分别为,,,乙击中8环、9环、10环的概率分别为,,.设甲、乙的射击相互独立.求在一轮比赛中甲击中的环数多于乙击中的环数的概率.解:记A1,A2分别表示甲击中9环,10环,B1,B2分别表示乙击中8环,9环,A表示在一轮比赛中甲击中的环数多于乙击中的环数,A=A1B1+A2B1+A2B2,P(A)=P(A1B1+A2B1+A2B2)=P(A1B1)+P(A2B1)+P(A2B2)=P(A1)P(B1)+P(A2)P(B1)+P(A2)P(B2)=×+×+×=13.已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果.(1)求能听到立体声效果的概率;(2)求听不到声音的概率.(结果精确到解:(1)因为A与B中都不工作的概率为,所以能听到立体声效果的概率为[1-]×××≈.(2)当A,B都不工作,或C不工作,或D,E都不工作时,就听不到音响设备的声音.其否定是:A,B至少有1个工作,且C工作,且D,E中至少有一个工作.所以,听不到声音的概率为1-[1-]××[1-]≈.。
课时作业3:10.2 事件的相互独立性
10.2 事件的相互独立性一、选择题1.掷一枚骰子一次,记A 表示事件“出现偶数点”,B 表示事件“出现3点或6点”,则事件A 与B 的关系是( )A .互斥事件B .相互独立事件C .既互斥又相互独立事件D .既不互斥又不相互独立事件2.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.163.甲、乙两颗卫星同时独立地监测台风.在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为( )A .0.95B .0.6C .0.05D .0.44.甲、乙、丙三位学生用计算机学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为45,乙及格的概率为35,丙及格的概率为710,三人各答一次,则三人中只有1人及格的概率为( )A.320B.42135C.47250D .以上都不对 5.如图所示,用K ,A 1,A 2三个不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.576二、填空题6.有一批书共100本,其中文科书有40本,理科书有60本,按装订可分为精装、平装两种,其中精装书有70本.记“某人从这100本书中任取1本,恰是文科书,放回后再任取1本,恰是精装书”为事件M ,则事件M 发生的概率是________.7.甲、乙两名学生通过某种听力测试的概率分别为12和13,两人同时参加测试,其中有且只有一人能通过的概率是________.8.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是________.三、解答题9.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.10.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考三门课程,至少有两门及格为考试通过.方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:(1)该应聘者用方案一通过考试的概率;(2)该应聘者用方案二通过考试的概率.【参考答案】一、选择题1.【答案】B【解析】因为该试验的样本空间为Ω={1,2,3,4,5,6},A ={2,4,6},B ={3,6},AB ={6},所以P (A )=12,P (B )=13,P (AB )=16=12×13=P (A )P (B ),所以A 与B 是相互独立事件. 2.【答案】B【解析】设事件A :甲实习生加工的零件为一等品,事件B :乙实习生加工的零件为一等品,则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=23×⎝⎛⎭⎫1-34+⎝⎛⎭⎫1-23×34=512. 3.【答案】A【解析】解法一:在同一时刻至少有一颗卫星预报准确可分为:①甲预报准确,乙预报不准确;②甲预报不准确,乙预报准确;③甲预报准确,乙预报准确.这三个事件彼此互斥,故所求事件的概率为0.8×(1-0.75)+(1-0.8)×0.75+0.8×0.75=0.95.解法二:“在同一时刻至少有一颗卫星预报准确”的对立事件是“在同一时刻甲、乙两颗卫星预报都不准确”,故所求事件的概率为1-(1-0.8)×(1-0.75)=0.95.故选A.4.【答案】C【解析】利用相互独立事件同时发生及互斥事件有一个发生的概率公式可得所求概率为45×⎝⎛⎭⎫1-35×⎝⎛⎭⎫1-710+⎝⎛⎭⎫1-45×35×⎝⎛⎭⎫1-710+⎝⎛⎭⎫1-45×⎝⎛⎭⎫1-35×710=47250. 5.【答案】B【解析】解法一:由题意知,K ,A 1,A 2正常工作的概率分别为P (K )=0.9,P (A 1)=0.8,P (A 2)=0.8.因为K ,A 1,A 2相互独立,所以A 1,A 2至少有一个正常工作的概率为P (A -1A 2)+P (A 1A -2)+P (A 1A 2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96,所以系统正常工作的概率为P (K )[P (A -1A 2)+P (A 1A -2)+P (A 1A 2)]=0.9×0.96=0.864.故选B.解法二:A 1,A 2至少有一个正常工作的概率为1-P (A -1A -2)=1-(1-0.8)×(1-0.8)=0.96.所以系统正常工作的概率为P (K )[1-P (A -1A -2)]=0.9×0.96=0.864.故选B.二、填空题6.【答案】725【解析】设“任取1本书是文科书”为事件A ,“任取1本书是精装书”为事件B ,根据题意可知P (A )=40100=25,P (B )=70100=710,所以P (M )=P (A )P (B )=25×710=725. 7.【答案】12【解析】设事件A 表示“甲通过听力测试”,事件B 表示“乙通过听力测试”.依题意知,事件A 和B 相互独立,且P (A )=12,P (B )=13.记“有且只有一人通过听力测试”为事件C , 则C =A B -∪A -B ,且A B -和A -B 互斥.故P (C )=P (A B -∪A -B )=P (A B -)+P (A -B )=P (A )·P (B -)+P (A -)P (B )=12×⎝⎛⎭⎫1-13+⎝⎛⎭⎫1-12×13=12. 8.【答案】0.46【解析】设“同学甲答对第i 个题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.6,P (A 3)=0.5,且A 1,A 2,A 3相互独立,同学甲得分不低于300分对应于事件A 1A 2A 3∪A 1A -2A 3∪A -1A 2A 3发生,故所求概率为P =P (A 1A 2A 3∪A 1A -2A 3∪A -1A 2A 3)=P (A 1A 2A 3)+P (A 1A -2A 3)+P (A -1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A -2)P (A 3)+P (A -1)·P (A 2)P (A 3)=0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5=0.46.三、解答题9.解 记“第i 局甲获胜”为事件A i (i =3,4,5),“第j 局乙获胜”为事件B j (j =3,4,5).(1)设“再赛2局结束这次比赛”为事件A ,则A =A 3A 4∪B 3B 4,由于各局比赛结果相互独立,故P (A )=P (A 3A 4∪B 3B 4)=P (A 3A 4)+P (B 3B 4)=P (A 3)P (A 4)+P (B 3)P (B 4)=0.6×0.6+0.4×0.4=0.52.所以再赛2局结束这次比赛的概率为0.52.(2)记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B =A 3A 4∪B 3A 4A 5∪A 3B 4A 5,由于各局比赛结果相互独立,故P (B )=P (A 3A 4∪B 3A 4A 5∪A 3B 4A 5)=P (A 3A 4)+P (B 3A 4A 5)+P (A 3B 4A 5)=P (A 3)P (A 4)+P (B 3)P (A 4)P (A 5)+P (A 3)P (B 4)P (A 5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.所以甲获得这次比赛胜利的概率为0.648.10.解 记该应聘者对三门指定课程考试及格的事件分别为A ,B ,C , 则P (A )=0.5,P (B )=0.6,P (C )=0.9.(1)应聘者用方案一通过考试的概率为P 1=P (AB C -)+P (A -BC )+P (A B -C )+P (ABC )=P (A )P (B )[1-P (C )]+[1-P (A )]P (B )P (C )+P (A )[1-P (B )]P (C )+P (A )P (B )P (C ) =0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9=0.75.(2)从三门课程中随机选取两门的样本空间为Ω={AB ,AC ,BC },每个样本点发生的概率均为13,因此,应聘者用方案二通过考试的概率为 P 2=13P (AB )+13P (BC )+13P (AC ) =13P (A )P (B )+13P (B )P (C )+13P (A )P (C ) =13×0.5×0.6+13×0.6×0.9+13×0.5×0.9 =0.43.。
2.2.2事件的相互独立性(学生学案)
SCH 南极数学同步教学设计 人教A 版选修2-3 第二章《随机变量及其分布》 班级 姓名 座号2.2.2事件的相互独立性(学生学案)例 1(课本P54例3)某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.例2 小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求: (1)这三列火车恰好有两列正点到达的概率. (2)这三列火车至少有一列正点到达的概率.反思与感悟 明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么:(1)A ,B 中至少有一个发生为事件A +B . (2)A ,B 都发生为事件AB . (3)A ,B 都不发生为事件A B . (4)A ,B 恰有一个发生为事件A B +A B .(5)A ,B 中至多有一个发生为事件A B +A B +A B .跟踪训练2 甲、乙两人独立地破译密码的概率分别为13、14.求: (1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有一人译出密码的概率;(4)至多一人译出密码的概率;(5)至少一人译出密码的概率. 【课时作业】1.坛子里放有3个白球,2个黑球,从中不放回地摸球,用A 1表示第1次摸得白球,A 2表示第2次摸得白球,则A 1与A 2是( )A.互斥事件B.相互独立事件C.对立事件D.不相互独立事件2.一件产品要经过2道独立的加工程序,第一道工序的次品率为a ,第二道工序的次品率为b ,则产品的正品率为( )A.1-a -bB.1-abC.(1-a )(1-b )D.1-(1-a )(1-b )3.若P (AB )=19,P (A )=23,P (B )=13,则事件A 与B 的关系是( )A.事件A 与B 互斥B.事件A 与B 对立C.事件A 与B 独立D.事件A 与B 既互斥又独立4.甲射手击中靶心的概率为13,乙射手击中靶心的概率为12,甲、乙两人各射一次,那么56等于( ) A .甲、乙都击中靶心的概率B .甲、乙恰好有一人击中靶心的概率C .甲、乙至少有一人击中靶心的概率D .甲、乙不全击中靶心的概率5.张老师上数学课时,给班里同学出了两道选择题,他预估做对第一道题的概率是0.80,做对两道题的概率是0.60,则预估计做对第二道题的概率是( ) A.0.80 B.0.75 C.0.60 D.0.486.如图,元件A i (i =1,2,3,4)通过电流的概率是0.9,且各元件是否通过电流相互独立,则电流能在M ,N 之间通过的概率是( )A.0.729B.0.8 829C.0.864D.0.989 17.从甲袋中摸出一个红球的概率是13,从乙袋中摸出1个红球的概率是12,从两袋中各摸出1个球,则至少有一个红球的概率为( ) A.16 B.56 C.23 D.138.在一段时间内,甲去某地的概率为14,乙去此地的概率为15,假定两人的行动相互没有影响,那么在这段时间内至少有1人去此地的概率为________.9.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为13,12,23,则汽车在这三处因遇红灯而停车一次的概率为________.10.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是0.6,计算:(1)两人都投中的概率;(2)其中恰有一人投中的概率; (3)至少有1人投中的概率. 11.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.12.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.。
专题28 事件的相互独立性(解析版)
专题28 事件的相互独立性一、单选题1.2020年1月,教育部出台《关于在部分高校开展基础学科招生改革试点工作的意见》(简称“强基计划”),明确从2020年起强基计划取代原有的高校自主招生方式.如果甲、乙两人通过强基计划的概率分别为43,54,那么两人中恰有一人通过的概率为A.35B.15C.14D.720【试题来源】辽宁省部分重点高中2020-2021学年高二下学期期中考试【答案】D【分析】由题意,甲乙两人通过强基计划是相互独立的事件,可确定甲乙两人中恰有一人通过的事件为甲通过乙不通过和甲不通过乙通过.【解析】由题意,甲乙两人通过强基计划的事件是相互独立的,那么甲乙两人中恰有一人通过的概率为41137545420P=⨯+⨯=.故选D.2.甲、乙两队进行羽毛球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能得到冠军,若甲队每局获胜的概率为13,则甲队获得冠军的概率为A.49B.59C.23D.79【试题来源】江西省赣州市2021届高三二模【答案】B【分析】由题设知甲、乙两队获胜的概率分别为13、23,甲队要获得冠军,则至少在两局内赢一局,利用概率的乘法和加法公式求概率即可.【解析】由题意知每局甲队获胜的概率为13,乙队获胜的概率为23,所以至少在两局内甲队赢一局,甲队才能获得冠军,当第一局甲队获胜,其概率为13;当第一局甲队输,第二局甲队赢,其概率为212339⨯=. 所以甲队获得冠军的概率为125399+=.故选B. 3.五一放假,甲、乙、丙去厦门旅游的概率分别是13、14、15,假定三人的行动相互之间没有影响,那么这段时间内至少有1人去厦门旅游的概率为 A .5960B .35C .12D .160【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷(新教材人教B 版) 【答案】B【分析】由对立事件为A :三人都不去厦门旅游,求()P A ,应用()1()P A P A =-求概率即可.【解析】记事件A 至少有1人去厦门旅游,其对立事件为A :三人都不去厦门旅游, 由独立事件的概率公式可得1112()(1)(1)(1)3455P A =---=, 由对立事件的概率公式可得3()1()5P A P A =-=,故选B. 4.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是 A .0.56 B .0.92 C .0.94D .0.96【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册) 【答案】C【分析】利用独立事件和对立事件的概率求解即可.【解析】设事件A 表示:“甲击中”,事件B 表示:“乙击中”.由题意知A ,B 互相独立. 故目标被击中的概率为P =1-P (AB )=1-P (A )P (B )=1-0.2×0.3=0.94.故选C 5.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为1p 和2p ,则 A .12p p = B .12p p <C .12p p >D .以上三种情况都有可能【试题来源】湖南省2021届高三下学期三模 【答案】B【分析】分别计算1p 和2p ,再比较大小.【解析】方法一:每箱中的黑球被选中的概率为110,所以至少摸出一个黑球的概率2019110p ⎛⎫=- ⎪⎝⎭.方法二:每箱中的黑球被选中的概率为15,所以至少摸出一个黑球的概率102415p ⎛⎫=- ⎪⎝⎭.10201010124948105105100p p ⎛⎫⎛⎫⎛⎫⎛⎫-=-=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则12p p <.故选B.【名师点睛】概率计算的不同类型: (1)古典概型、几何概型直接求概率;(2)根据事件间的关系利用概率加法、乘法公式求概率; (3)利用对立事件求概率;(4)判断出特殊的分布列类型,直接套公式求概率.6.2020年1月,教育部出台《关于在部分高校开展基础学科招生改革试点工作的意见》(简称“强基计划”),明确从2020年起强基计划取代原有的高校自主招生方式.如果甲、乙、丙三人通过强基计划的概率分别为433,,544,那么三人中恰有两人通过的概率为A .2180 B .2780C .3380D .2740【试题来源】2020-2021学年高二下学期数学选择性必修第三册同步单元AB 卷 【答案】C【分析】根据积事件与和事件的概率公式可求解得到结果.【解析】记甲、乙、丙三人通过强基计划分别为事件,,A B C ,显然,,A B C 为相互独立事件, 则“三人中恰有两人通过”相当于事件ABC ABC ABC ++,且,,ABC ABC ABC 互斥,∴所求概率()()()()P ABC ABC ABC P ABC P ABC P ABC ++=++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++1334134313354454454480=⨯⨯+⨯⨯+⨯⨯=.故选C. 7.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13, 那么甲、乙两人至少有一人拿到该技能证书的概率是 A .1315B .1115C .23D .35【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A 基础练 【答案】D【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项.【解析】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=,故选D. 【名师点睛】在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.8.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为 A .0.24 B .0.36 C .0.6D .0.84【试题来源】北京市大兴区2020-2021学年度高二上学期期末检测试卷【答案】D【分析】先求出对立事件:一次都未投中的概率,然后可得结论.【解析】由题意小明每次投篮不中的概率是10.60.4-=,再次投篮都不中的概率是20.40.16=,所以他再次投篮至少投中一次的概率为10.160.84-=.故选D.【名师点睛】本题考查相互独立事件同时发生的概率公式,在出现至少、至多等词语时,可先求其对立事件的概率,然后由对立事件概率公式得出结论.9.某单位举行知识竞赛,给每位参赛选手设计了两道题目,已知某单位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完两道题目后至少答对一题的概率为A.45B.1625C.125D.2425【试题来源】2020-2021高中数学新教材配套提升训练(人教A版必修第二册)【答案】D【分析】根据相互独立事件的概率计算公式,以及对立事件的概率计算公式,由题中条件,可直接得出结果.【解析】因为参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完两道题目后至少答对一题的概率为242411525P⎛⎫=--=⎪⎝⎭.故选D.10.抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上”,事件B=“第二枚硬币反面朝上”,则A与B的关系为A.互斥B.相互对立C.相互独立D.相等【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A基础练【答案】C【分析】根据互斥事件、对立事件和独立事件的定义即可判断.【解析】显然事件A和事件B不相等,故D错误,由于事件A与事件B能同时发生,所以不为互斥事件,也不为对立事件,故AB错误;因为事件A 是否发生与事件B 无关,事件B 是否发生也与事件A 无关,故事件A 和事件B 相互独立,故C 正确.故选C.11.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 A .0.0324 B .0.0434 C .0.0528D .0.0562【试题来源】江西省新余市第一中学2020-2021学年高二年级第六次考试 【答案】B【分析】第4次恰好取完所有红球有三种情形,红白白红,白红白红,白白红红,据此由互斥事件的和及相互独立事件同时发生的概率公式求解.【解析】第4次恰好取完所有红球有三种情形,红白白红,白红白红,白白红红, 所以第4次恰好取完所有红球的概率为222918291821()()0.043410101010101010101010⨯⨯+⨯⨯⨯+⨯⨯=,故选B 12.四个人围坐在一张圆桌旁,每个人面前放一枚质地均匀的硬币,所有人同时抛掷自己面前的硬币一次.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着,那么,事件“相邻的两个人站起来”没有发生....的概率为 A .12 B .716 C .38D .14【试题来源】重庆市第七中学2021届高三上学期期中 【答案】B【分析】先研究相邻两个人站起来的情况,分为2个人站起来,三个人站起来及四个人站起来,3种情况,一一分析,没有发生的概率即用1减去上面站起来的概率即可. 【解析】由题意可知,四个人抛硬币,一共有4216=种不同的情况,其中有相邻两个人同为正面需要站起来有4种情况,三个人需要站起来有4种情况, 四个人都站起来共有1种情况,所以有相邻的两个人站起来的概率44191616P ++==, 故没有相邻的两个人站起来的概率为9711616P =-=.故选B . 13.某校甲、乙、丙三名教师每天使用1号录播教室上课的概率分别是0.6,0.6,0.8,这三名教师是否使用1号录播教室相互独立,则某天这三名教师中至少有一人使用1号录播教室上课的概率是 A .0.296 B .0.288 C .0.968D .0.712【试题来源】2021年全国高中名校名师原创预测卷新高考数学(第九模拟) 【答案】C【分析】设甲、乙、丙三名教师某天使用1号录播教室上课分别为事件,,A B C ,可得()0.6P A =,()0.6P B =,()0.8P C =,由事件,,A B C 相互独立,再根据对立事件的概率公式代入求解.【解析】甲、乙、丙三名教师某天使用1号录播教室上课分别为事件,,A B C ,则()0.6P A =,()0.6P B =,()0.8P C =,这三名教师是否使用1号录播教室相互独立,则所求事件的概率为()()()()111P ABC P A P B C P P -=-⋅⋅==-0.40.40.20.968⨯⨯=,故选C. 14.某地有A ,B ,C ,D 四人先后感染了传染性肺炎,其中只有A 到过疫区,B 确定是受A 感染的.对于C 因为难以判定是受A 还是受B 感染的,于是假定他受A 和B 感染的概率都是12.同样也假定D 受A ,B 和C 感染的概率都是13.在这种假定下,B ,C ,D 中恰有两人直接受A 感染的概率是 A .16B .13 C .12D .23【试题来源】【新教材精创】4.1.3独立性与条件概率的关系B 提高练 【答案】C【分析】根据题意得出:因为直接受A 感染的人至少是B ,而C 、D 二人也有可能是由A 感染的,B ,C ,D 中恰有两人直接受A 感染为事件CD CD +.由此可计算出概率. 【解析】设,,B C D 直接受A 感染为事件B 、C 、D , 则事件B 、C 、D 是相互独立的,()1P B =,1()2P C =,1()3P D =, 表明除了B 外,,C D 二人中恰有一人是由A 感染的, 所以12111()()()23232P CD CD P CD P CD +=+=⨯+⨯=,所以B 、C 、D 中直接受A 传染的人数为2的概率为12,故选C. 15.一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色,则两次摸出的球中至少有一个黑球的概率为A .49 B .59 C .35D .815【试题来源】备战2021年新高考数学一轮复习考点一遍过 【答案】B【分析】由题意利用相互独立事件概率的乘法公式,先求出两次摸到的全是白球的概率,再利用对立事件的概率公式即可求解.【解析】记每次摸出白球为事件A ,每次摸出黑球为事件B ,则()4263P A ==,()2163P B ==, 两次摸出的球中至少有一个黑球包括两次黑球和一次白球一次黑球, 其对立事件为两次摸到的都是白球, 两次摸到的都是白球概率为224339⨯=, 所以两次摸出的球中至少有一个黑球的概率为45199-=,故选B 【名师点睛】本题的关键点是第一次摸出球后又放回去,所以每次摸出白球和黑球的概率都不变,求出这两个概率,每次摸球是相互独立的,所以可以利用概率的乘法公式求出两次摸到的全是白球的概率,即可求出其对立事件至少有一个黑球的概率.16.已知一个古典概型的样本空间Ω和事件A ,B 如图所示. 其中()12,()6,()4,()8n n A n B n AB Ω====,则事件A 与事件BA .是互斥事件,不是独立事件B .不是互斥事件,是独立事件C .既是互斥事件,也是独立事件D .既不是互斥事件,也不是独立事件【试题来源】北京市丰台区2020-2021学年度高二上学期期中考试 【答案】B 【分析】由()4n A B =可判断事件是否为互斥事件,由()()()P AB P A P B =可判断事件是否为独立事件.【解析】因为()12,()6,()4,()8n n A n B n A B Ω====,所以()2n AB =,()4n AB =,()8n B =,所以事件A 与事件B 不是互斥事件, 所以()41123P AB ==,()()68112123P A P B =⨯=, 所以()()()P AB P A P B =,所以事件A 与事件B 是独立事件.故选B.17.甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为 A .0.8 B .0.7 C .0.56D .0.38【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷 【答案】D【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.【解析】因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7, 所以在一次预报中两站恰有一次准确预报的概率为0.8(10.7)(10.8)0.70.38P =⨯-+-⨯=.故选D .18.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为 A .12B .34 C .23D .14【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷 【答案】B【分析】先由相互独立事件的概率乘法公式,求出目标不被击中的概率,再由对立事件概率公式,即可得解.【解析】由于甲、乙、丙射击一次命中目标的概率分别为12,13,14, 三人同时射击目标一次,则目标不被击中的概率为11111112344⎛⎫⎛⎫⎛⎫-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由对立事件的概率公式可得目标被击中的概率为13144-=.故选B. 19.某普通高校招生体育专业测试合格分数线确定为60分,甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为 A .0.015 B .0.005 C .0.985D .0.995【试题来源】2020-2021学年高二数学课时同步练(人教B 版2019选择性必修第二册) 【答案】D【分析】设出每一个每一个考生达标的事件,并求其对立事件的概率,根据相互独立事件的概率的和事件求解出答案.【解析】设 “甲考生达标” 为事件A , “乙考生达标” 为事件B , “丙考生达标” 为事件C ,则()0.9P A =,()0.8P B =,()0.75P C =,()10.90.1P A =-=,()10.80.2P B =-=,()10.750.25P C =-=,设 “三人中至少有一人达标” 为事件D ,则()()110.10.20.2510.0050.995P D P ABC =-=-⨯⨯=-=,故选D.【名师点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.20.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是 A .0.16 B .0.24 C .0.96D .0.04【试题来源】内蒙古通辽市奈曼旗实验中学2018-2019学年高二下学期期末考试 【答案】C【分析】先求三人中至少有一人达标的对立事件的概率,再求其概率.【解析】至少有1人达标的对立事件是一个人也没达标,概率为()()()10.810.610.50.04---=,所以三人中至少有一人达标的概率为10.040.96-=.故选C【名师点睛】本题考查对立事件,属于基础题型.二、多选题1.下列各对事件中,为相互独立事件的是A .掷一枚骰子一次,事件M “出现偶数点”;事件N “出现3点或6点”B .袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到白球”C .袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到黑球”D .甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”【试题来源】2020-2021学年高一数学一隅三反系列(人教A 版2019必修第二册)【答案】ABD【分析】利用相互独立事件的定义一一验证即可.【解析】在A 中,样本空间{}1,2,3,4,5,6Ω=,事件{}2,4,6M =,事件{}3,6N =,事件{6}MN =, 所以31()62P M ==,21()63P N ==,111()236P MN =⨯=, 即()()()P MN P M P N =,故事件M 与N 相互独立,A 正确.在B 中,根据事件的特点易知,事件M 是否发生对事件发生的概率没有影响,故M 与N 是相互独立事件,B 正确;在C 中,由于第1次摸到球不放回,因此会对第2次摸到球的概率产生影响,因此不是相互独立事件,C 错误;在D 中,从甲组中选出1名男生与从乙组中选出1名女生这两个事件的发生没有影响,所以它们是相互独立事件,D 正确.故选ABD.【名师点睛】判断两个事件是否相互独立的方法:(1)直接法:利用生活常识进行判断;(2)定义法:利用()()()P MN P M P N =判断. 2.已知,A B 是随机事件,则下列结论正确的是A .若,AB 是互斥事件,则()()()P AB P A P B =B .若事件,A B 相互独立,则()()()P A B P A P B +=+C .若,A B 是对立事件,则,A B 是互斥事件D .事件,A B 至少有一个发生的概率不小于,A B 恰好有一个发生的概率【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A 基础练【答案】CD【分析】根据互斥事件加法公式、独立事件乘法公式、对立事件的定义即可求解.【解析】对于A , 若,A B 是互斥事件,则()()()P A B P A P B +=+,故A 错误; 对于B , 若事件,A B 相互独立,则()()()P AB P A P B =,故B 错误;对于C ,根据对立事件的定义, 若,A B 是对立事件,则,A B 是互斥事件,故C 正确; 对于D , 所有可能发生的情况有:只有A 发生、只有B 发生、AB 都发生、AB 都不发生四种情况,,A B 至少有一个发生包括:只有A 发生、只有B 发生、AB 同时发生三种情况, 故其概率是75%;而恰有一个发生很明显包括只有A 发生或只有B 发生两种情况,故其概率是50%, 故事件,A B 至少有一个发生的概率不小于,A B 恰好有一个发生的概率,故D 正确.故选CD. 3.分别抛掷两枚质地均匀的硬币,设事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,则A .A 与B 互斥B .A 与B 相互独立C .3()4P A B =D .()()P A P B =【试题来源】2020-2021高中数学新教材配套提升训练(人教A 版必修第二册)【答案】BCD【分析】根据互斥事件、相互独立事件的概念以及事件的概率求法逐一判断即可.【解析】根据题意事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,可知两事件互不影响,即A 与B 相互独立,故B 正确,A 不正确;由()12P A =,()12P B =, 所以()()3()1-4P A B P A P B ==,且()()P A P B =,故D 正确,C 正确.故选BCD 4.分别抛掷两枚质地均匀的骰子(六个面上的点数分别为1,2,3,4,5,6),设事件M =“第一枚骰子的点数为奇数”,事件N =“第二枚骰子的点数为偶数”,则A .M 与N 互斥B .M 与N 不对立C .M 与N 相互独立D .()34P M N = 【试题来源】2020-2021高中数学新教材配套提升训练(人教A 版必修第二册)【答案】BCD【分析】相互独立事件,互斥事件,对立事件,利用定义即可以逐一判断四个选项正误.【解析】对于选项A :事件M 与N 是可能同时发生的,故M 与N 不互斥,选项A 不正确; 对于选项B :事件M 与N 不互斥,不是对立事件,选项B 正确;对于选项C :事件M 发生与否对事件N 发生的概率没有影响,M 与N 相互独立.对于选项D :事件M 发生概率为1()2P M = ,事件N 发生的概率1()2P N =,()1131()()1224P M N P M P N =-=-⨯=,选项D 正确.故选BCD 【名师点睛】本题主要考查了相互独立事件,互斥事件,对立事件,以及随机事件的概率,属于基础题.5.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以1A ,2A 表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是A .23()30PB = B .事件B 与事件1A 相互独立C .事件B 与事件2A 相互独立D .1A ,2A 互斥 【试题来源】2020-2021学年高一数学一隅三反系列(人教A 版2019必修第二册)【答案】AD【分析】先画出树状图,然后求得()1P A , ()2P A ,()P B 的值,得A 正确;利用 ()()11()P A B P A P B ≠判断B 错误,同理C 错误;由1A ,2A 不可能同时发生得D 正确.【解析】根据题意画出树状图,得到有关事件的样本点数:因此()1183305P A ==,()2122305P A ==,15823()3030P B +==,A 正确; 又()11530P A B =,因此()()11()P A B P A P B ≠,B 错误; 同理可以求得()()22()P A B P A P B ≠,C 错误;1A ,2A 不可能同时发生,故彼此互斥,故D 正确,故选AD .【名师点睛】本题主要考查互斥事件、相互独立事件的判断及其概率,意在考查学生的数学抽象的学科素养,属基础题.三、填空题1.在某道路A ,B ,C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这个道路上匀速行驶,则三处都不停车的概率为________.【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册) 【答案】35192【分析】利用相互独立事件的概率乘法公式求解即可. 【解析】由题意可知,每个交通灯开放绿灯的概率分别为512,712,34.在这个道路上匀速行驶,则三处都不停车的概率为512×712×34=35192. 故答案为351922.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时乙得分的概率为0.6,各球的结果相互独立.在某局打成10:10后,甲先发球,乙以13:11获胜的概率为________.【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A 基础练【答案】0.15【分析】依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,根据相互独立事件的概率公式计算可得;【解析】依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,其中发球方分别是甲、乙、甲、乙;所以乙以13:11获胜的概率()()10.50.60.50.610.60.50.50.60.15P =-⨯⨯⨯+-⨯⨯⨯= 故答案为0.153.A ,B ,C ,D 四人之间进行投票,各人投自己以外的人1票的概率都是13(个人不投自己的票),则仅A 一人是最高得票者的概率为________.【试题来源】安徽省六安市舒城中学2021届高三下学期仿真模拟(二) 【答案】527【分析】根据A 的票数为3,2分类讨论,再根据互斥事件的概率加法公式即可求出.【解析】若仅A 一人是最高得票者,则A 的票数为3,2.若A 的票数为3,则1111133327P =⨯⨯=; 若A 的票数为2,则BCD 三人中有两人投给A ,剩下的一人与A 不能投同一个人,213111242333327P C ⎛⎫=⨯⨯⨯⨯⨯= ⎪⎝⎭; 所以仅A 一人是最高得票者的概率为12145272727P P P =+=+=. 故答案为527. 【名师点睛】本题解题关键是根据A 的得票数进行分类讨论,当A 的票数为3时,容易求出1127P =,当A 的票数为2时,要考虑如何体现A 的票数最高,分析出四人投票情况,是解题的难点,不妨先考虑BC 投给A ,则D 投给B (C ),A 就投给C 或D (B 或D ),即可容易解出.4.暑假期间,甲外出旅游的概率是14,乙外出旅游的概率是15,假定甲乙两人的行动相互之间没有影响,则暑假期间两人中至少有一人外出旅游的概率是________.【试题来源】2020-2021学年高一数学一隅三反系列(人教A 版2019必修第二册)【答案】25【分析】设“暑假期间两人中至少有一人外出旅游”为事件A ,则其对立事件A 为“暑假期间两人都未外出旅游”,先求得()P A ,再求解即可.【解析】设“暑假期间两人中至少有一人外出旅游”为事件A ,则其对立事件 A 为“暑假期间两人都未外出旅游”,则()11311455P A ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以()()321155P A P A =-=-=.故答案为25. 5.事件,,A B C 互相独立,若()()()111,688P A B P B C P A B C ⋅=⋅=⋅⋅=,,则()P B =__________.【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷(新教材人教B 版) 【答案】12【分析】根据独立事件的乘法公式和对立事件的概率公式解方程组可得结果.【解析】因为事件,,A B C 互相独立,所以1()()61()()81()()()8P A P B P B P C P A P B P C ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩, 所以()()11()()8111()68P B P C P C ⎧-=⎪⎪⎨⎪-=⎪⎩,所以1()4P C =,1()2P B =.故答案为12 【名师点睛】根据独立事件的乘法公式和对立事件的概率公式求解是解题关键.四、解答题1.已知在某次1500米体能测试中,甲、乙、丙3人各自通过测试的概率分别为25,34,13.求: (1)3人都通过体能测试的概率;(2)只有2人通过体能测试的概率;(3)只有1人通过体能测试的概率.【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册)【答案】(1)110;(2)2360;(3)512.【分析】设事件A=“甲通过体能测试”,事件B=“乙通过体能测试”,事件C=“丙通过体能测试”(1)利用相互独立事件的概率乘法公式即可求解.(2)只有2人通过体能测试为AB C+A B C+A BC,利用相互独立事件的概率乘法公式即可求解.(3)只有1人通过体能测试为A B C+A B C+A B C,利用相互独立事件的概率乘法公式即可求解.【解析】设事件A=“甲通过体能测试”,事件B=“乙通过体能测试”,事件C=“丙通过体能测试”,由题意有:P(A)=25,P(B)=34,P(C)=13.(1)设事件M1=“甲、乙、丙3人都通过体能测试”,即事件M1=ABC,由事件A,B,C相互独立可得P(M1)=P(ABC)=P(A)·P(B)·P(C)=25×34×13=110.(2)设事件M2=“甲、乙、丙3人中只有2人通过体能测试”,则M2=AB C+A B C+A BC,由于事件A,B,C,A,B,C均相互独立,并且事件AB C,A B C,A BC两两互斥,因此P(M2)=P(A)·P(B)·P(C)+P(A)·P(B)·P(C)+P(A)·P(B)·P(C)=25×34×113⎛⎫-⎪⎝⎭+25×314⎛⎫-⎪⎝⎭×13+215⎛⎫-⎪⎝⎭×34×13=2360.(3)设事件M3=“甲、乙、丙3人中只有1人通过体能测试”,则M3=A B C+A B C+A B C,由于事件A,B,C,A,B,C均相互独立,并且事件A B C,A B C,A B C两两互斥,因此P(M3)=P(A)·P(B)·P(C)+P(A)·P(B)·P(C)+P(A)·P(B)·P(C)=25×314⎛⎫-⎪⎝⎭×113⎛⎫-⎪⎝⎭+215⎛⎫-⎪⎝⎭×34×113⎛⎫-⎪⎝⎭+215⎛⎫-⎪⎝⎭×314⎛⎫-⎪⎝⎭×13=512.2.已知A,B,C为三个独立事件,若事件A发生的概率是12,事件B发生的概率是23,事件C发生的概率是34,求下列事件的概率:(1)事件A,B,C只发生两个的概率;(2)事件A,B,C至多发生两个的概率.【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册)【答案】(1)1124;(2)34.【分析】(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况,利用互斥事件概率的加法公式和相互独立事件的概率乘法公式可得答案;(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况,利用互斥事件概率的加法公式计算即可.【解析】(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况:AB C,A B C,A BC,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,得P(A1)=P(AB C)+P(A B C)+P(A BC)=112+18+14=1124,所以事件A,B,C只发生两个的概率为11 24.(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况:事件A,B,C一个也不发生,记为A3,事件A,B,C只发生一个,记为A4,事件A,B,C只发生两个,记为A5,故P(A2)=P(A3)+P(A4)+P(A5)=124+624+1124=34.所以事件A,B,C至多发生两个的概率为34.3.甲、乙两人独立破译一个密码,他们译出的概率分别为13和1.4求:(1)两人都译出的概率;。
《事件的相互独立性》教学设计、导学案、同步练习
《10.2 事件的相互独立性》教学设计【教材分析】本节《普通高中课程标准数学教科书-必修二(人教A版)第十章《10.2 事件的相互独立性》,本节课主要事在已学互斥事件和对立事件基础上进一步了解事件之间的关系,相互独立性是另一种重要的事件关系,注意对概率思想方法的理解。
发展学生的直观想象、逻辑推理、数学建模的核心素养。
【教学目标与核心素养】【教学重点】:理解两个事件相互独立的概念【教学难点】:事件独立有关的概念的计算【教学过程】()A A A B B AB AB ()()()P A P AB P AB []()()()()()1()P AB P A P AB P A P A P B P ∴=-=-=-=,且根据概率的加法公式和事件独立性定义,得)事件“两人都脱靶”,且AB:由于事件“至少有一人中靶”的对立事件是“两人都脱靶”根据对立事件的性质,得事件“至少有一人中靶”的概率为ABAB AB )()ABAB P =)()P B P ⋅+0.10.2+⨯ABABAB )ABABAB (()P P AB =+()P ABAB 0.720.98=甲,乙同时射击,甲击中敌机并不影响乙击中敌机的可能性, A 与B 独立,进而,.A B ()0.6,()0.5P A P B .独立CABAB ()1()P C P C三、达标检测1.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512C.14D.16答案:B解析:恰有一个一等品即有一个是一等品、一个不是一等品,故所求概率为23×1-34+1-23×34=23×14+13×34=212+312=512,故选B . 2.甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( ) A.0.49 B.0.42C.0.7D.0.91解析:记甲击中目标为事件A ,乙击中目标为事件B ,且A ,B 相互独立.则恰有1人击中目标为A B 或A B ,所以只有1人击中目标的概率P=P (A B )+P (A B )=0.7×0.3+0.3×0.7=0.42.答案:B3.一件产品要经过2道独立的加工程序,第一道工序的次品率为a ,第二道工序的次品率为b ,则产品的正品率为( ) A.1-a-b B.1-ab C.(1-a )(1-b ) D.1-(1-a )(1-b )答案:C解析:设A 表示“第一道工序的产品为正品”,B 表示“第二道工序的产品为正品”,且P (AB )=P (A )P (B )=(1-a )(1-b ).4.已知A ,B 相互独立,且P (A )=14,P (B )=23,则P (A B )= .1()()1[1()][1()]P A P B P A P B 1(10.6)(10.5)0.8答案:112解析:根据题意得,P (A B )=P (A )P (B )=P (A )(1-P (B ))=14×1-23=112. 5.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是 . 答案:0.98解析:至少有一个准时响的概率为1-(1-0.90)×(1-0.80)=1-0.10×0.20=0.98.6.已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为所以,合三个臭皮匠之力就解出的概率大过诸葛亮.7.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。
2019学年高中数学第二章2.2.2事件的相互独立性学案含解析新人教A版选修20
2.2.2 事件的相互独立性甲箱里装有3个白球、2个黑球,乙箱里装有2个白球、2个黑球.从这两个箱子里分别摸出1个球,记事件A =“从甲箱里摸出白球”,B =“从乙箱里摸出白球”.问题1:事件A 发生会影响事件B 发生的概率吗? 提示:不影响.问题2:试求P (A ),P (B ),P (AB ). 提示:P (A )=35,P (B )=12,P (AB )=3×25×4=310. 问题3:P (B |A )与P (B )相等吗? 提示:因为P (B |A )=P ABP A =31035=12,所以P (B |A )与P (B )相等. 问题4:P (AB )与P (A )P (B )相等吗? 提示:因为P (B |A )=P ABP A=P (B ),所以P (AB )与P (A )P (B )相等.1.相互独立事件的概念设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2.相互独立事件的性质(1)若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )P (B ). (2)如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立.1.相互独立的两个事件实质上是一个事件发生与否对另一个事件的发生没有影响,也就是若事件A 与B 相互独立,则P (B |A )=P (B ),且P (A |B )=P (A ),因而有P (AB )=P (A )P (B |A )=P (A )P (B ).2.定义的推广:对于n 个事件A 1,A 2,…,A n ,如果其中任何一个事件发生的概率不受其他事件是否发生的影响,则称事件A 1,A 2,…,A n 相互独立.相互独立事件的判断判断下列各对事件哪些是互斥事件,哪些是相互独立事件.(1)掷一枚骰子一次,事件M :“出现的点数为奇数”;事件N :“出现的点数为偶数”. (2)掷一枚骰子一次,事件A :“出现偶数点”;事件B :“出现3点或6点”. (1)∵二者不可能同时发生,∴M 与N 是互斥事件.(2)基本事件空间为Ω={1,2,3,4,5,6},事件A ={2,4,6},事件B ={3,6},事件AB ={6},∴P (A )=36=12,P (B )=26=13,P (AB )=16=12×13,即P (AB )=P (A )P (B ).故事件A 与B 相互独立.当“出现6点”时,事件A ,B 可以同时发生,因此,A ,B 不是互斥事件.判断事件是否相互独立的方法(1)定义法:事件A ,B 相互独立⇔P (AB )=P (A )·P (B ).(2)利用性质:A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (3)有时通过计算P (B |A )=P (B )可以判断两个事件相互独立.下列每对事件中,哪些是互斥事件,哪些是相互独立事件?(1)袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M :“第一次摸到白球”;事件N :“第二次摸到白球”.(2)袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M :“第一次摸到白球”;事件N :“第二次摸到黑球”.解:(1)根据事件的特点易知,事件M 是否发生对事件N 发生的概率没有影响,故M 与N 是相互独立事件.(2)由于第一次摸到球不放回,因此会对第二次摸到球的概率产生影响,但不会造成“再从中任意取1球是黑球”的事件不发生,所以这两个事件既不是互斥事件,又不是相互独立事件.相互独立事件的概率掷三枚骰子,试求:(1)没有一枚骰子出现1点或6点的概率; (2)恰好有一枚骰子出现1点或6点的概率.记“第一、二、三枚骰子出现1点或6点”分别为事件A ,B ,C ,由已知A ,B ,C 是相互独立事件,且P (A )=P (B )=P (C )=13.(1)没有一枚骰子出现1点或6点,也就是事件A ,B ,C 全不发生,即事件A B C , 所以所求概率为P (A B C )=P (A )×P (B )×P (C )=23×23×23=827.(2)恰好有一枚骰子出现1点或6点,即A ,B ,C 恰有一个发生,用符号表示为事件AB C +A B C +A B C ,所求概率为P (A B C +A B C +A B C )=P (A B C )+P (A B C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=13×23×23+23×13×23+23×23×13=49.1.公式P (AB )=P (A )P (B )可以推广到一般情形:如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.用相互独立事件的乘法公式解题的步骤: (1)用恰当的字母表示题中有关事件; (2)根据题设条件,分析事件间的关系;(3)将需要计算概率的事件表示为所设事件的乘积或若干个事件的乘积之和(相互乘积的事件之间必须满足相互独立);(4)利用乘法公式计算概率.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.求:(1)进入商场的1位顾客,甲、乙两种商品都购买的概率; (2)进入商场的1位顾客购买甲、乙两种商品中的一种的概率.解:记A 表示事件“进入商场的1位顾客购买甲种商品”,则P (A )=0.5; 记B 表示事件“进入商场的1位顾客购买乙种商品”,则P (B )=0.6; 记C 表示事件“进入商场的1位顾客,甲、乙两种商品都购买”;记D 表示事件“进入商场的1位顾客购买甲、乙两种商品中的一种”. (1)易知C =AB ,则P (C )=P (AB )=P (A )P (B )=0.5×0.6=0.3.(2)易知D =(A B )∪(A B ),则P (D )=P (A B )+P (A B )=P (A )·P (B )+P (A )P (B )=0.5×0.4+0.5×0.6=0.5.相互独立事件概率的实际应用某班甲、乙、丙三名同学竞选班委,甲当选的概率为5,乙当选的概率为35,丙当选的概率为710.求:(1)恰有一名同学当选的概率; (2)至多两人当选的概率.设甲、乙、丙当选的事件分别为A ,B 和C . ∴P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立,恰有一名同学当选的概率为P (A B C )+P (A B C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =45×25×310+15×35×310+15×25×710=47250. (2)至多有两人当选的概率为1-P (ABC )=1-P (A )P (B )P (C )=1-45×35×710=83125.求相互独立事件同时发生的概率的主要方法 (1)利用相互独立事件的概率乘法公式直接求解.(2)正面计算较繁或难以入手时,可从其对立事件入手计算.在一段线路中并联着3个自动控制的常开开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.解:如图所示,记这段时间内开关K A ,K B ,K C 能够闭合为事件A ,B ,C . 由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率公式,这段时间内3个开关都不能闭合的概率是P (A -·B -·C -)=P (A -)P (B -)P (C -)==(1-0.7)(1-0.7)(1-0.7)=0.027.于是这段时间内至少有1个开关能够闭合,从而使线路能够正常工作的概率是1-P (A -·B -·C -)=1-0.027=0.973. 即这段时间内线路正常工作的概率是0.973.3.“罗列”相互独立事件的几种类型甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求两个人都译出密码的概率.记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A ,B 为相互独立事件,且P (A )=13,P (B )=14.2个人都译出密码的概率为P (AB )=P (A )·P (B )=13×14=112.解此类问题首先要判断事件的相互独立性,然后使用公式P (AB )=P (A )·P (B )求解;若事件A 与B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立,本例条件不变,下面利用它们的相互独立性求下列类型的概率.本例条件不变,两个人都译不出密码的概率. 解:两个人都译不出密码的概率为P (A ·B )=P (A )·P (B )==⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=12. 本例条件不变,恰有1个人译出密码的概率.解:恰有1个人译出密码可以分为两类,即甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为P (A ·B +A ·B )=P (A ·B )+P (A ·B )=P (A )P (B )+P (A )P (B ) =13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-13×14=512. 本例条件不变,至多1个人译出密码的概率.解:“至多1个人译出密码”的对立事件为“两个人都译出密码”,所以至多1个人译出密码的概率为1-P (AB )=1-P (A )P (B )=1-13×14=1112.本例条件不变,至少1个人译出密码的概率.解:“至少有1个人译出密码”的对立事件为“两个人都未译出密码”,所以至少有1个人译出密码的概率为1-P (A ·B )=1-P (A )P (B )=1-23×34=12.已知两个事件A ,B 相互独立,它们的概率分别为P (A ),P (B ),则有事件表示概率A ,B 同时发生 AB P (A )P (B ) A ,B 都不发生A BP (A )P (B ) A ,B 恰有一个发生 (A B )∪(A B )P (A )P (B )+P (A )P (B )A ,B 中至少有一个发生 (A B )∪(A B )∪(AB )P (A )P (B )+P (A )P (B )+P (A )P (B )A ,B 中至多有一个发生(A B )∪(A B )∪(A B )P (A )P (B )+P (A )P (B )+P (A )P (B )1.两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,目标被击中的概率是( )A .0.56B .0.92C .0.94D .0.96解析:选C ∵两人都没有击中的概率为0.2×0.3=0.06,∴ 目标被击中的概率为1-0.06=0.94.2.甲、乙两班各有36名同学,甲班有9名三好学生,乙班有6名三好学生,两班各派1名同学参加演讲活动,派出的恰好都是三好学生的概率是( )A.524B.512C.124D.38解析:选C 两班各自派出代表是相互独立事件,设事件A ,B 分别为甲班、乙班派出的是三好学生,则事件AB 为两班派出的都是三好学生,则P (AB )=P (A )P (B )=936×636=124.3.甲袋中有8个白球、4个红球,乙袋中有6个白球、6个红球,从每袋中任取一球,则取到相同颜色的球的概率是________.解析:由题意知P =88+4×66+6+48+4×66+6=12. 答案:124.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率是________,三人中至少有一人达标的概率是________.解析:由题意可知三人都达标的概率为P =0.8×0.6×0.5=0.24;三人中至少有一人达标的概率为P ′=1-(1-0.8)×(1-0.6)×(1-0.5)=0.96.答案:0.24 0.965.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为45和34.在同一时间内,求:(1)甲、乙两个气象台同时预报天气准确的概率; (2)至少有一个气象台预报准确的概率.解:记“甲气象台预报天气准确”为事件A ,“乙气象台预报天气准确”为事件B . (1)P (AB )=P (A )P (B )=45×34=35.(2)至少有一个气象台预报准确的概率为P =1-P (A B )=1-P (A )P (B )=1-15×14=1920.一、选择题1.袋内有3个白球和2个黑球,从中有放回地摸球,用A 表示“第一次摸到白球”,如果“第二次摸到白球”记为B ,否则记为C ,那么事件A 与B ,A 与C 的关系是( )A .A 与B ,A 与C 均相互独立 B .A 与B 相互独立,A 与C 互斥 C .A 与B ,A 与C 均互斥D .A 与B 互斥,A 与C 相互独立解析:选A 由于摸球过程是有放回的,所以第一次摸球的结果对第二次摸球的结果没有影响,故事件A 与B ,A 与C 均相互独立,且A 与B ,A 与C 均有可能同时发生,说明A 与B ,A 与C 均不互斥,故选A.2.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能得到冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.34解析:选D 设A i (i =1,2)表示继续比赛时,甲在第i 局获胜,B 事件表示甲队获得冠军.法一:B =A 1+A 1A 2,故P (B )=P (A 1)+P (A 1)P (A 2)=12+12×12=34.法二:P (B )=1-P (A 1 A 2)=1-P (A 1)P (A 2)=1-12×12=34.3.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23解析:选D 由P (A B -)=P (B A -),得P (A )P (B -)=P (B )P (A -),即P (A )=P (B ),∴P (A )=P (B ),又P (A - B -)=19,则P (A -)=P (B -)=13.∴P (A )=23.4.荷花池中,有只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )A.13B.29C.49D.827解析:选A 青蛙跳三次要回到A 叶只有两条途径.第一条:按A →B →C →A ,P 1=23×23×23=827;第二条:按A →C →B →A ,P 2=13×13×13=127,所以跳三次之后停在A 叶上的概率为P =P 1+P 2=827+127=13.5.在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( )A.18B.38C.14D.78解析:选B 设开关a ,b ,c 闭合的事件分别为A ,B ,C ,则灯亮这一事件E =ABC ∪ABC ∪A B C ,且A ,B ,C 相互独立,ABC ,AB C ,A B C 互斥,所以P (E )=P (ABC ∪AB C∪A B C )=P (ABC )+P (AB C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =12×12×12+12×12×⎝ ⎛⎭⎪⎫1-12+12×⎝ ⎛⎭⎪⎫1-12×12=38.二、填空题6.已知P (A )=0.3,P (B )=0.5,当事件A ,B 相互独立时,P (A ∪B )=________,P (A |B )=________.解析:因为A ,B 相互独立,所以P (A ∪B )=P (A )+P (B )-P (A )·P (B )=0.3+0.5-0.3×0.5=0.65,P (A |B )=P (A )=0.3.答案:0.65 0.37.甲、乙两人参加环保知识竞赛,在10道备选试题中,甲能答对其中的6道题,乙能答对其中的8道题.现规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题为合格.则甲、乙两人至少有一人考试合格的概率为__________.解析:设甲、乙两人考试合格的事件分别为A ,B ,事件A ,B 相互独立. P (A )=C 26C 14+C 36C 310=23,P (B )=C 28C 12+C 38C 310=1415. 所以甲、乙两人考试均不合格的概率为P (A -B -)=P (A -)(B -)=⎝⎛⎭⎪⎫1-23⎝⎛⎭⎪⎫1-1415=145,故甲、乙两人至少有一人考试合格的概率为P =1-P (A -B -)=1-145=4445.答案:44458.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是________.解析:设“同学甲答对第i 个题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.6,P (A 3)=0.5,且A 1,A 2,A 3相互独立,同学甲得分不低于300分对应于事件A 1A 2A 3∪A 1 A 2A 3∪A 1A 2A 3发生,故所求概率为P =P (A 1A 2A 3∪A 1 A 2A 3∪A 1A 2A 3)=P (A 1A 2A 3)+P (A 1 A 2A 3)+P (A 1A 2A 3) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)=0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5=0.46.答案:0.46 三、解答题9.(山东高考节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率; (2)“星队”两轮得分之和X 的分布列. 解:(1)记事件A :“甲第一轮猜对”, 记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”, 记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )·P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为10),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每一场比赛中,甲胜乙的概率为13,甲胜丙的概率为14,乙胜丙的概率为13.(1)求甲队获第一名且丙队获第二名的概率; (2)求在该次比赛中甲队至少得3分的概率. 解:(1)设甲队获第一且丙队获第二为事件A , 则P (A )=13×14×⎝⎛⎭⎪⎫1-13=118.(2)甲队至少得3分有两种情况:两场只胜一场;两场都胜.设事件B 为“甲两场只胜一场”,设事件C 为“甲两场都胜”,则事件“甲队至少得3分”为B +C ,则P (B +C )=P (B )+P (C )=13×⎝⎛⎭⎪⎫1-14+14×⎝ ⎛⎭⎪⎫1-13+13×14=512+112=12.11.A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.解:(1)设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2.B i表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.据题意有:P (A 0)=13×13=19, P (A 1)=2×13×23=49, P (A 2)=23×23=49, P (B 0)=12×12=14, P (B 1)=2×12×12=12.所求概率为P =P (B 0A 1)+P (B 0A 2)+P (B 1A 2)=14×49+14×49+12×49=49.(2)所求概率P ′=1-e q \b \l c \。
课时作业21:2.2.2 事件的相互独立性
2.2.2 事件的相互独立性A 组 基础巩固1.把标有1,2的两张卡片随机地分给甲、乙;把标有3,4的两张卡片随机地分给丙、丁,每人一张,事件“甲得1号纸片”与“丙得4号纸片”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件D .以上答案都不对2.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512 C.14D.163.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( ) A.29 B.118 C.13D.234.在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( )A.18B.38C.14D.785.甲、乙两名学生通过某种听力测试的概率分别为12和13,两人同时参加测试,其中有且只有一人能通过的概率是( ) A.13 B.23 C.12 D .16.某条道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内平均开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是________. 7.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.8.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是________.9.从一副除去大小王的扑克牌(52张)中任取一张,设事件A 为“抽得K ”,事件B 为“抽得红牌”,事件A 与B 是否相互独立?是否互斥?是否对立?为什么?10.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.B 组 能力提升1.国庆节放假,甲,乙,丙去北京旅游的概率分别为13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12D.1602.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率3.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.4.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05.甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为________,________,________. 5.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列.6.某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率;(2)求该应聘者用方案二通过的概率.参考答案A组基础巩固1.【答案】C【解析】相互独立的两个事件彼此没有影响,可以同时发生,因此它们不可能互斥.故选C.2.【答案】B【解析】设“两个零件中恰有一个一等品”为事件A ,因事件相互独立,所以P (A )=23×14+13×34=512. 3.【答案】D【解析】由P (A B )=P (B A )得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )], ∴P (A )=P (B ).又P (A B )=19,∴P (A )=P (B )=13.∴P (A )=23.4.【答案】B【解析】设开关a ,b ,c 闭合的事件分别为A ,B ,C ,则灯亮这一事件E =ABC ∪AB C ∪A B C ,且A ,B ,C 相互独立,ABC ,AB C ,A B C 互斥,所以 P (E )=P (ABC ∪AB C ∪A B C ) =P (ABC )+P (AB C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =12×12×12+12×12×⎝⎛⎭⎫1-12+12×⎝⎛⎭⎫1-12×12=38. 5.【答案】C【解析】设事件A 表示“甲通过听力测试”,事件B 表示“乙通过听力测试”. 依题意知,事件A 和B 相互独立,且P (A )=12,P (B )=13.记“有且只有一人通过听力测试”为事件C ,则 C =(A B )∪(A B ),且A B 和A B 互斥.故P (C )=P ((A B )∪(A B ))=P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=12×⎝⎛⎭⎫1-13+⎝⎛⎭⎫1-12×13=12.6.【答案】35192【解析】P =2560×3560×4560=35192.7.【答案】0.98【解析】至少有一个准时响的概率为1-(1-0.90)(1-0.80)=1-0.10×0.20=0.98. 8.【答案】49【解析】左边圆盘指针落在奇数区域的概率为46=23,右边圆盘指针落在奇数区域的概率为23,所以两个指针同时落在奇数区域的概率为23×23=49.9.解:由于事件A 为“抽得K ”,事件B 为“抽得红牌”,故抽到的红牌中可能抽到红桃K 或方块K ,故事件A 与B 有可能同时发生,显然它们不是互斥或对立事件.下面判断它们是否相互独立:“抽得K ”的概率为P (A )=452=113,“抽得红牌”的概率为P (B )=2652=12,“既是K 又是红牌”的概率为P (AB )=252=126.因为126=113×12,所以P (AB )=P (A )P (B ).因此A 与B 相互独立.10.解:设甲、乙、丙当选的事件分别为A 、B 、C , 则P (A )=45,P (B )=35,P (C )=710.(1)易知事件A 、B 、C 相互独立, 所以恰有一名同学当选的概率为P (AB -C -)+P (A B C )+P (A -B -C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =45×25×310+15×35×310+15×25×710=47250. (2)至多有两人当选的概率为1-P (ABC )=1-P (A )P (B )P (C )=1-45×35×710=83125.B 组 能力提升1.【答案】B【解析】因甲,乙,丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35.2.【答案】C【解析】分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P (A )=13,P (B )=12,由于A ,B 相互独立,所以1-P (A )P (B )=1-23×12=23.根据互斥事件可知C 正确.3.【答案】12【解析】设从甲袋中任取一个球,事件A 为“取得白球”,则事件A 为“取得红球”,从乙袋中任取一个球,事件B 为“取得白球”,则事件B 为“取得红球”. ∵事件A 与B 相互独立,∴事件A 与B 相互独立. ∴从每袋中任取一个球,取得同色球的概率为P ((A ∩B )∪(A ∩B ))=P (A ∩B )+P (A ∩B )=P (A )P (B )+P (A )P (B )=23×12+13×12=12.4.【答案】0.2 0.25 0.5【解析】记“机器甲需要照顾”为事件A ,“机器乙需要照顾”为事件B ,“机器丙需要照顾”为事件C ,由题意可知A ,B ,C 是相互独立事件. 由题意可知⎩⎪⎨⎪⎧P (AB )=P (A )P (B )=0.05,P (AC )=P (A )P (C )=0.1,P (BC )=P (B )P (C )=0.125,得⎩⎪⎨⎪⎧P (A )=0.2,P (B )=0.25,P (C )=0.5.所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.5.解:设A i (i =0,1,2,3)表示摸到i 个红球,B j (j =0,1)表示摸到j 个蓝球,则A i 与B j 独立. (1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为:0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105;P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上可知,获奖金额X 的分布列为6.解:记“,P (B )=0.6,P (C )=0.9. (1)该应聘者用方案一通过的概率为P 1=P (AB C )+P (A BC )+P (A B C )+P (ABC )=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9 =0.03+0.27+0.18+0.27=0.75. (2)应聘者用方案二通过的概率为 P 2=13P (AB )+13P (BC )+13P (AC )=13(0.5×0.6+0.6×0.9+0.5×0.9) =13×1.29=0.43.。
《事件的相互独立性》导学案
第4课时事件的相互独立性1.理解相互独立事件的概念,掌握相互独立性事件的概率的计算.2.理解相互独立事件是条件概率的特殊情况,其公式也是由条件概率公式得到的.3.关注现实生活中的相互独立事件,注意区分相互独立事件和互斥事件,解题时先判断事件间的相互关系.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.事件A“甲从第一小组的10张票中任抽1张”,事件B“乙从第二小组的10张票中任抽1张”.问题1:由上述创设情境可知,事件A与事件B之间的关系是相互独立的.什么是相互独立事件?事件的相互独立性:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,即P(B|A)= ,这样两个事件叫作相互独立事件.问题2:如何判断事件是相互独立事件?事件A与事件B相互独立,则概率关系为P(AB)=P(A)P(B).若事件A与事件B同时发生的概率等于事件A发生的概率与事件B发生的概率的积,则事件A与B互为相互独立事件.在实际问题中常用相互独立事件的定义来判断.((A(((((B+A(((((问题4:相互独立事件的性质以及事件独立性的推广是怎样的?(1)一般地,当事件A、B相互独立时,A与,与B,与也.(2)两个相互独立事件同时发生的概率等于每个事件发生的概率之积,即.(3)如果事件A1,A2,A3,…,A n是相互独立的,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即P(A1A2A3…A n)= .1.一个口袋内装有大小相等的3个白球和1个黑球,从中连续取两次,每次取一个球后放回,则取出的两个球恰好有1个黑球的概率为().A.B.C.D.2.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,已知两人是否被录取互不影响,则其中至少有一人被录取的概率为().A.0.12B.0.42C.0.46D.0.883.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是.4.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,求灯亮的概率.相互独立事件某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为.相互独立事件与互斥事件甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在1局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前两局中,甲、乙各胜1局.(1)求再赛两局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.连续操作下的相互独立事件某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.其中前面考试不影响后面的考试通过概率.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6、0.7、0.8、0.9.求李明参加第4次考试的概率.甲、乙、丙三位学生独立地解同一道题,甲做对的概率为,乙、丙做对的概率分别为m、n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:(1)求至少有一位学生做对该题的概率;(2)求m,n的值.甲、乙、丙三名同学各自竞选班长、学习委员和文娱委员,甲当选的概率为,乙当选的概率为,丙当选的概率为.求恰有一名同学当选的概率.某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有a、b两个题目,该学生答对a、b两题的概率分别为和,两题全部答对方可进入面试,面试要回答甲、乙两个题目,该学生答对这两个题目的概率均为,至少答对一题即可被聘用(假设每个环节的每个题目回答正确与否是相互独立的).(1)求该学生被公司聘用的概率;(2)设该学生答对题目的个数为ξ,求ξ的分布列.1.某学生在上学路上要经过四个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2 min.则这名学生在上学路上到第三个路口时首次遇到红灯的概率为().A. B.C.D.2.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个是一等品的概率为().A.B.C.D.3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,则恰好有1人解决这个问题的概率为.4.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响.(1)求该选手进入第四轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率.(注:本小题结果可用分数表示)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列.考题变式(我来改编):答案第4课时事件的相互独立性知识体系梳理问题1:P(B)问题4:(1)相互独立(2)P(AB)=P(A)·P(B)(3)P(A1)P(A2)P(A3)…P(A n)基础学习交流1.C取出1个黑球的概率为,取出1个白球的概率为,则取出的两个球恰好有1个黑球的概率为P=××=.2.D由题意知,甲、乙都不被录取的概率为(1-0.6)×(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88.3.0.086P=0.04×0.95+0.96×0.05=0.086.4.解:记A、B、C、D这4个开关闭合分别为事件A,B,C,D,记A与B至少有一个不闭合为事件E,则P(E)=P(A·)+P(·)+P(·B)=.设灯亮的概率为P,则P=1-P(E)P()P()=1-=.重点难点探究探究一:【解析】由题设,分两类情况:(1)第1个正确,第2个错误,第3、4个正确,由乘法公式得P1=0.8×0.2×0.8×0.8=0.1024.(2)第1、2个错误,第3、4个正确,此时概率P2=0.2×0.2×0.8×0.8=0.0256.由互斥事件概率公式得P=P1+P2=0.1024+0.0256=0.128.【答案】0.128【小结】先分类,再分步,用相互独立事件同时发生和互斥事件的概率公式计算.探究二:【解析】记A i表示事件“第i局甲获胜,i=3,4,5”,B j表示事件“第j局乙获胜,j=3,4”.(1)记A表示事件“再赛两局结束比赛”,则A=A3·A4+B3·B4.由于各局比赛结果相互独立,故P(A)=P(A3·A4+B3·B4)=P(A3·A4)+P(B3·B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.(2)记B表示事件“甲获得这次比赛的胜利”.因前两局中,甲、乙各胜1局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3·A4+B3·A4·A5+A3·B4·A5.由于各局比赛结果相互独立,故P(B)=P(A3·A4)+P(B3·A4·A5)+P(A3·B4·A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.【小结】在实际比赛中要注意各场比赛的结果是否相互影响,并把随机事件拆分为若干个相互独立事件的乘积,对于多种情况的互斥事件利用加法计算.探究三:【解析】设“李明通过第i次考试”为A i,则P(A1)=0.6,P(A2)=0.7,P(A3)=0.8,P(A4)=0.9.故李明参加第4次考试的概率为P(A4)=P()·P()·P()·P(A4)=(1-0.6)×(1-0.7)×(1-0.8)×0.9=0.0216.[问题]参加第4次考试一定通过吗?[结论]不一定.正确解法如下:参加第4次考试的概率P=(1-0.6)×(1-0.7)×(1-0.8)×1=0.024.【小结】在求概率中,事件之间有两种最基本的关系,一种是事件之间的互斥(含两个事件之间的对立),一种是事件之间的相互独立.互斥事件至少有一个发生的概率等于各个事件发生的概率之和,相互独立事件同时发生的概率等于各个事件各自发生的概率之积,在概率计算中,正确地运用互斥事件和相互独立事件概率之间的关系是解决问题的根本所在.思维拓展应用应用一:设“甲做对”为事件A,“乙做对”为事件B,“丙做对”为事件C,由题意知,P(A)=,P(B)=m,P(C)=n.(1)由于事件“至少有一位学生做对该题”与事件“ξ=0”是对立的,所以至少有一位学生做对该题的概率是1-P(ξ=0)=1-=.(2)由题意知P(ξ=0)=P()=(1-m)(1-n)=,P(ξ=3)=P(ABC)=mn=,整理得mn=,m+n=,由m>n,解得m=,n=.应用二:记“甲当选”为事件A,“乙当选”为事件B,“丙当选”为事件C,我们把“恰有一名同学当选”分成3个互斥事件.P(恰有一名同学当选)=P(C)+P(A)+P(B)=P()P()P(C)+P(A)P()P()+P()P(B)P()=.应用三:设正确回答a、b、甲、乙各题分别为事件A、B、C、D,则P(A)=,P(B)=,P(C)=P(D)=.(1)该学生被公司聘用的概率为P(AB)·[1-P()]=××(1-×)=.(2)由题意可知ξ的取值为0,1,2,3,4.P(ξ=0)=P()=×=,P(ξ=1)=P(A)+P(B)=×+×=,P(ξ=2)=P(AB)×P()=×××=,P(ξ=3)=P(AB)[P(C)+P(D)]=××(×+×)=,P(ξ=4)=P(AB)P(CD)=×××=.则ξ的分布列为基础智能检测1.D设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A表示“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为P(A)=(1-)×(1-)×=.2.B设事件A为“一个实习生加工为一等品”,事件B为“另一个实习生加工为一等品”,由于A、B相互独立,则恰有一个一等品的概率P=P(A)+P(B)=×+×=.3.p1+p2-2p1p2P=p1(1-p2)+p2(1-p1)=p1+p2-2p1p2.4.解:记“选手进入第i轮”为事件A i(1≤i≤4且i∈N*),则事件A i是相互独立事件.(1)该选手进入第四轮才被淘汰的概率P1=P(A1A2A3)=×××(1-)=.(2)该选手至多进入第三轮考核的对立事件是该选手进入第四轮考核,则P(A4)=××=,则该选手至多进入第三轮考核的概率P2=1-=.全新视角拓展(1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手”,则P(A)==,P(B)==.∵事件A与B相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为P(A)=P(A)·P()=P(A)·[1-P(B)]=×=.(或P(A)==.)(2)设C表示事件“观众丙选中3号歌手”,则P(C)==,∵X可能的取值为0,1,2,3,且取这些值的概率分别为P(X=0)=P()=××=;P(X=1)=P(A)+P(B)+P(C)=××+××+××=;P(X=2)=P(AB)+P(A C)+P(BC)=××+××+××=;P(X=3)=P(ABC)=××=.∴X的分布列为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”, 故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.72P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,.由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是 1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦)变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅0.847=方法二:分析要使这段时间内线路正常工作只要排除CJ 开且A J 与B J 至少有1个开的情况 []21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=)54( ∴敌机未被击中的概率为5)54(. (2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-n )54(∴令41()0.95n -≥,∴41()510n ≤两边取常用对数,得113lg 2n ≥≈- ∵+∈N n ,∴n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂巩固: 1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( ) ()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .答案:1. C 2. C 3. B 4. A 5.(1) 132(2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9362.2.2 事件的相互独立性一、基础过关1.有以下3个问题:(1)掷一枚骰子一次,事件M :“出现的点数为奇数”,事件N :“出现的点数为偶数”;(2)袋中有5红、5黄10个大小相同的小球,依次不放回地摸两球,事件M :“第1次摸到红球”,事件N :“第2次摸到红球”;(3)分别抛掷2枚相同的硬币,事件M :“第1枚为正面”,事件N :“两枚结果相同”. 这3个问题中,M ,N 是相互独立事件的有( ) A .3个 B .2个 C .1个 D .0个2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( ) A.512 B.12 C.712 D.343.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为 ( )A.116B.18C.316D.144.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512 C.14 D.16 5.来成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为35,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为( )A.36125B.44125C.54125D.98125二、能力提升 6.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.8.在感冒流行的季节,设甲、乙患感冒的概率分别为0.6和0.5,则他们中有人患感冒的概率是________.9.在一条马路上的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆汽车在这条马路上行驶,那么在这三处都不停车的概率是______.10.从10位同学(其中6女,4男)中随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学通过测验的概率均为35,求: (1)选出的3位同学中,至少有一位男同学的概率;(2)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.11.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.三、探究与拓展12.在一个选拔项目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响. (1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;(3)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列.答案1.C 2.C 3.C 4.B 5.D 6.D 7.35 8.0.8 9.3519210.解 (1)设选出的3位同学中,至少有一位男同学的事件为A ,则A 为选出的3位同学中没有男同学的事件,而P (A )=C 36C 310=16,所以P (A )=1-16=56. (2)设女同学甲和男同学乙被选中的事件为A ,女同学甲通过测验的事件为B ,男同学乙通过测验的事件为C ,则甲、乙同学被选中且通过测验的事件为A ∩B ∩C ,由条件知A 、B 、C 三个事件为相互独立事件,所以P (A ∩B ∩C )=P (A )×P (B )×P (C ).而P (A )=C 18C 310=115,P (B )=45, P (C )=35, 所以P (A ∩B ∩C )=115×45×35=4125. 11.解 设A i ={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为A 1 A 2A 3,于是所求概率为P (A 1 A 2A 3)=910×89×18=110; (2)拨号不超过3次而接通电话可表示为A 1+A 1A 2+A 1 A 2A 3,于是所求概率为P (A 1+A 1A 2+A 1 A 2A 3)=P (A 1)+P (A 1A 2)+P (A 1 A 2A 3)=110+910×19+910×89×18=310. 12.解 设事件A i (i =1,2,3,4)表示“该选手能正确回答第i 轮问题”,由已知P (A 1)=56,P (A 2)=45,P (A 3)=34,P (A 4)=13. (1)设事件B 表示“该选手进入第三轮才被淘汰”,则P (B )=P (A 1A 2 A 3)=P (A 1)P (A 2)P (A 3)=56×45×⎝⎛⎭⎫1-34=16.(2)设事件C 表示“该选手至多进入第三轮考核”, 则P (C )=P (A 1+A 1 A 2+A 1A 2 A 3)=P (A 1)+P (A 1 A 2)+P (A 1A 2 A 3)=16+56×15+56×45×⎝⎛⎭⎫1-34=12. (3)X 的可能取值为1,2,3,4.P (X =1)=P (A 1)=16, P (X =2)=P (A 1 A 2)=56×⎝⎛⎫1-45=16,P (X =3)=P (A 1A 2 A 3)=56×45×⎝⎛⎭⎫1-34=16,P (X =4)=P (A 1A 2A 3)=56×45×34=12,所以,X 的分布列为。