公差分析
统计公差分析方法概述
统计公差分析方法概述公差分析是设计和制造过程中的重要环节,用于评估产品的尺寸和形状的变化并确定其质量要求。
它帮助确定制造过程中允许的变化范围,以确保产品的功能和性能满足设计要求。
下面是公差分析方法的概述:1.公差概念和术语:公差是表示产品尺寸和形状变异的一种度量,是设计要求和制造能力之间的差异。
了解公差的基本概念和术语对于进行有效的公差分析非常重要。
例如,公差带、公差上限、公差下限、公差等级等。
2.公差链:公差链是将不同部件的公差延伸到整个产品装配中的一种方法。
通过分析公差链,可以确定整个装配的总体公差,并评估其对产品性能的影响。
公差链分析通常采用功能环或冗余环的方法。
3.公差配合:公差配合是指零件之间在装配时的相互作用。
公差配合分析可以确定零件之间的配合方式,并对其作用进行评估。
常见的公差配合包括配合间隙、过盈配合和间隙配合等。
4. 公差分析工具:公差分析通常使用一些专门的工具来辅助。
例如,一维公差分析工具(如Matlab、Excel等)用于分析单个尺寸的公差,根据统计数据计算出尺寸的上下限。
使用二维和三维CAD软件进行公差堆叠分析,可以在装配设计阶段模拟零件堆叠时产生的误差变化。
5.公差分配:公差分配是将总体公差分配给不同的零件以实现装配要求的过程。
公差分配通常基于设计要求、制造能力和装配要求等考虑因素。
公差分配需要根据装配关系和功能要求来确定每个零件的公差。
6.公差检验:公差分析的最后一步是进行公差检验,以确保产品的尺寸和形状在规定的公差范围内。
公差检验可以通过测量和检测工具来进行,例如卡尺、测量仪器、投影仪等。
公差检验是确保产品质量和性能的关键步骤。
7.公差优化:公差优化是指通过优化公差的分配和设计来最小化产品的尺寸和形状变化,以提高产品的质量和性能。
公差优化可以通过使用计算机辅助设计(CAD)软件和专业的公差优化工具来实现。
总之,公差分析是设计和制造中的关键环节,有助于确保产品质量和性能满足要求。
第4部分:公差分析
22
四. 公差分析的计算方法
DFMA
4. 极值法与均方根法的区别
当零件尺寸公差都是±0.1时,利用WC和RSS方法的计算结果区别如下: WC方法的累积公差更大,计算结果更大
23
四. 公差分析的计算方法
DFMA
4. 极值法与均方根法的区别
当产品装配公差要求是±0.5时,利用WC和RSS方法,对零件尺寸公差要 求的区别(假设尺寸链中的每个尺寸分配相同的公差)
减少尺寸链的长度,尺寸允许较大的公差
13
二. 公差分析
DFMA
C.使用定位特征
在零件的装配关系中增加可以定位的特征,例如定位柱等,定位特征能 够使得零件准确的装配在产品之中,产品设计只需要对定位特征相关的 尺寸公差进行制程管控,对其他尺寸就可以允许宽松的公差要求
D.使用点或线或小平面与平面配合代替平面与平面配合
DFMA
第4部分:公差分析 Tolerance Analysis
内容:
一.常见的公差分析做法 二.公差分析 三.公差分析的计算步骤 四.公差分析的计算方法 五.公差分析的三大原则 六.产品开发中的公差分析
DFMA
2
一. 常见的公差分析做法
DFMA
1. 产品详细设计完成后,在design review时,针对O-ring的压缩量进行
使用点或线与平面配合的方式代替平面与平面的配合方式,避免平面的 变形或者平面较高的粗糙度阻碍零件的顺利运动,从而可以对零件的平 面度和粗糙度允许宽松的公差
原始的设计
优化的设计
14
二. 公差分析
DFMA
4.公差分析的概念:
公差分析是指在满足产品功能、性能、外观和可装配性等要求的前提下, 合理定义和分配零件和产品的公差,优化产品设计,以最小的成本和最 高的质量制造产品
公差分析基础课件
根据分析结果,评估现有 公差方案的优劣,提出优 化方案,并进行实施。
在产品生命周期中持续进 行公差分析,不断优化公 差方案,提高产品质量和 降低制造成本。
02
公差分析的数学基础
概率论与数理统计
概率论
概率论是研究随机现象的数学学科,它为公差分析提供了理 论基础。概率论可以帮助我们理解随机变量的分布、期望值 、方差等概念,这些概念在公差分析中非常重要。
公差优化设计的方法与步骤
确定设计目标
明确产品性能要求,确定需要优化的关键公差项。
建立数学模型
根据实际需求,建立公差优化问题的数学模型,包括目标函数、约束条件等。
求解数学模型
采用适当的优化算法,求解数学模型以获得最优解。
分析结果
对优化结果进行分析,评估其对产品性能的影响,并据此进行必要的调整。
公差优化设计实例
VS
实例二
某箱体类零件的孔径为φ10H7,要求其 与轴类零件的配合精度为H8/s7。根据尺 寸公差的计算方法,我们可以计算出该孔 径的尺寸公差,并分析其对配合精度的影 响。
04
形位公差分析
形位公差的基本概念
形位公差
描述零件几何形状、尺寸和相对位置的允许变动范围 的参数。
形位公差包括
形状公差和位置公差。
公差分析的未来发展方向
跨学科融合
将公差分析与其他工程学科、数学、统计学 等学科进行交叉融合,推动公差分析理论和 方法的发展。
云平台与大数据技术
利用云平台和大数据技术,实现公差数据的存储、 处理和分析,提高分析效率和精度。
标准化与规范化
制定和完善公差分析的标准化和规范化体系 ,推动公差分析在工业界的广泛应用。
THANKS
公差分析及实际案例分享
公差分析及实际案例分享公差分析是指在产品设计和生产过程中,通过分析产品各个零件之间的公差,确定合理的公差范围和公差配合,以保证产品能够在正常使用条件下达到设计要求。
公差分析是一项非常重要的工作,它能够有效地提高产品的质量和可靠性,减少成本和浪费。
在进行公差分析时,首先需要明确产品的设计要求和功能需求。
然后根据零件的功能和相互关系,进行公差分布和传递分析。
公差分布是指将设计公差按照一定的规律分配给各个零件,使得各个零件能够在允许误差范围内达到最终装配要求。
公差传递是指将各个零件上的公差通过装配过程传递给最后装配件,从而确定最后装配件的公差要求。
公差分析的目的是确定合理的公差范围和公差配合。
根据产品的功能需求和使用环境,确定合适的公差范围,使得产品能够在正常使用条件下满足性能要求。
同时,通过公差配合,可以有效地控制产品的装配质量,减少配合间的间隙和摩擦,提高产品的可靠性和耐久性。
下面以一个实际案例来分享公差分析的应用。
公司生产的汽车发动机出现了使用寿命变短的问题,经过分析发现是由于气缸套和活塞配合不当导致的。
气缸套和活塞的配合间隙过大,导致燃气泄漏和油耗增加,进而影响了发动机的寿命和性能。
针对这个问题,该公司进行了公差分析,并重新设计了气缸套和活塞的配合。
首先,分析了气缸套和活塞的功能和相互关系,确定了气缸套和活塞之间的公差分布。
然后,通过公差传递分析,确定了最终装配件的公差要求。
最后,根据产品的功能需求和使用环境,确定了合理的公差范围和公差配合。
通过重新设计配合间隙,该公司成功地解决了发动机寿命变短的问题。
经过测试和验证,发动机的性能和可靠性得到了显著的提高,燃气泄漏和油耗问题得到了有效控制,产品的使用寿命大大延长。
这个案例充分说明了公差分析在产品设计和生产中的重要性和应用价值。
通过合理的公差分析和设计,可以有效地控制产品的装配质量,提高产品的性能和可靠性,降低产品的故障率和成本。
公差分析是一项非常细致和繁琐的工作,需要设计师和工程师具备较高的技术水平和经验,但它的应用价值是不可忽视的。
公差分析基本知识
公差分析基本知识公差分析是指对于一组零件或产品的尺寸、形状和位置等特征进行分析,确定其所允许的变动范围,以满足设计要求的一种方法。
公差分析的目的是确定零件间和零件内的公差,以保证产品在装配和使用过程中的质量要求。
公差分析主要包括以下几个方面的内容:1.公差的定义:公差是指零件上特征的允许变动范围。
公差一般分为基本公差和附加公差。
基本公差是指通过规定零件上特征的尺寸范围来控制公差。
附加公差是指为了控制零件间和零件内的相对位置而设置的公差。
2.公差的表示方法:公差可以通过标准公差、限制公差和配合公差等方式来表示。
标准公差是指根据国家标准规定的一组统一的公差数值。
限制公差是指通过上下限值来表示公差范围。
配合公差是指根据安装或运动要求来确定的公差范围。
3.公差的传递:公差的传递是指从一个零件到另一个零件上的公差如何变化的过程。
公差的传递可以通过最大材料条件和最小材料条件来进行分析。
最大材料条件是指零件尺寸取最大限制尺寸时,所有公差作用的总和。
最小材料条件是指零件尺寸取最小限制尺寸时,公差作用的总和。
4.公差链:公差链是指由多个零件组成的装配件中公差传递的路径。
公差链的形成是由于零件之间的相互作用和相互限制引起的。
公差链的存在会导致装配精度的累积误差,因此需要对公差链进行分析和控制。
5.公差的控制:公差分析的最终目的是为了确定合理的公差范围,以保证产品在装配和使用过程中的质量要求。
公差的控制可以通过设计优化、工艺改进和设备调整等方式来实现。
公差分析在产品设计和制造中具有重要的作用,能够帮助设计人员确定合理的公差要求,同时也有助于提高产品的装配精度和使用性能,降低产品开发和生产成本。
在实际应用中,公差分析需要结合制造工艺、设备精度和市场需求等多方面因素进行综合考虑,以获得最佳的公差方案。
公差分析基础理论
公差分析基础理论公差分析是产品设计与制造过程中的重要环节之一,通过对零部件尺寸与形位公差的合理分配和控制,确保产品能够在规定的公差范围内满足设计要求,保证产品质量的稳定性和可靠性。
公差分析的基础理论主要包括公差、公差堆积、公差链等。
1.公差的概念与种类公差是描述零部件尺寸与形位误差的一个重要参数,是指零件尺寸或形状在一定范围内的允许偏差。
根据公差的不同性质,可以分为线性公差、形位公差和配合公差。
(1)线性公差:是指零部件尺寸的允许偏差范围。
一般用尺寸的上限(最大值)和下限(最小值)来表示,如直径10±0.05mm。
(2)形位公差:是指零部件几何形状、位置、方向的允许偏差范围。
形位公差分为位置公差、形状公差和方向公差等。
(3)配合公差:是指零部件之间的配合关系的允许偏差范围。
如传动轴与轴承配合时,要求轴与轴孔的尺寸公差和形位公差都要满足要求,以使轴与轴孔能够达到合适的配合。
2.公差分配原则公差分配是指在零部件与装配件之间合理分配公差,以满足产品性能要求。
公差分配的原则包括最大材料原则、最小材料原则、最大孔最小轴原则和最大间隙最小重合原则等。
(1)最大材料原则:将零件尺寸的上限与装配件尺寸的下限相对应,以保证零件和装配件都能满足设计要求。
(2)最小材料原则:将零件尺寸的下限与装配件尺寸的上限相对应,以保证零件和装配件都能满足设计要求。
(3)最大孔最小轴原则:在配合公差分配时,以确保最大孔与最小轴间隙达到设计要求。
(4)最大间隙最小重合原则:在配合公差分配时,以确保最大间隙与最小重合满足设计要求。
3.公差堆积与公差链公差堆积是指在装配过程中,由于零部件尺寸与形位公差的叠加或堆积所引起的总公差。
公差堆积的结果可能是零部件与装配件的配合间隙大于或小于设计要求,从而影响产品的装配性能。
因此,公差堆积的分析是确保产品装配质量的重要一环。
公差链是指由多个零部件按照一定的装配次序组成的装配关系链。
每个零部件的公差都对最终产品质量产生影响,因此,需要通过公差链的分析,确定各个零部件的公差堆积情况,以确保产品装配尺寸要求的可靠性。
公差分析常用方法
公差分析常用方法
公差分析是一种用于研究产品或系统各种要素之间相互连锁关系的方法。
它可用于确定导致产品或系统性能差异的主要因素,并寻找改进的机会。
下面是一些常用的公差分析方法:
1. 传递函数法:传递函数法是一种将产品或系统的总体公差在各个部件或要素上分配的方法。
通过将总体公差按照一定的比例分配给各个部件,以满足产品或系统性能的需求。
2. 采用最小二乘法(Least Square Method):最小二乘法是一种通过最小化观测值和理论值之间的差异平方和,来确定最接近真实值的方法。
在公差分析中,可以使用最小二乘法来评估产品或系统的总体公差和各个部件之间的关系。
3. 驱动因子公差分析(Driver Factor Analysis):驱动因子公差分析是一种通过识别产品或系统的主要性能驱动因子,来优化公差分配的方法。
通过将更多的公差分配给主要驱动因子,可以显著改善产品或系统的性能。
4. 公差优化:公差优化是一种通过最小化总体公差,以满足产品或系统性能要求的方法。
通过分析各个部件之间的相互关系,可以确定最佳的公差分配方案。
5. 敏感度分析:敏感度分析是一种评估产品或系统对公差变化的敏感程度的方法。
通过分析不同参数的变化对产品或系统性能的影响,可以确定哪些部件或要
素对总体公差的变化最为敏感。
以上是常用的公差分析方法,具体选择哪种方法取决于产品或系统的特点和分析目的。
公差分析
☆.产品设计变更的可行性评估. 产品设计变更的可行性评估.
设计变更后的组装性的检查,看部件的配合性. 设计变更后的组装性的检查,看部件的配合性.
BACK
公差分析--公差分析---做公差分析和方法和步骤 ★. 做公差分析方法和步骤
☆. 原始数据的收集. 原始数据的收集.
(规格,实际量测数据) 规格,实际量测数据)
BACK
公差分析--公差分析---为什么要做公差分析 ★.为什么要做公差分析
☆.组装性的检验
产品在设计阶段互换性的检验, 产品在设计阶段互换性的检验, 产品在设计阶段组装性的验证. 产品在设计阶段组装性的验证. 不同供应商制程的评估,A, 两家供应商分别搭配C家供应商的part. 不同供应商制程的评估,A,B两家供应商分别搭配C家供应商的part.
☆. 从设计上看其公差设计的合理性. 从设计上看其公差设计的合理性.
(剖面上进行上分析) 剖面上进行上分析)
☆. 实际量测数据上看,其进行验证 实际量测数据上看, (供应商实际制程能力的分析,Ca,Cpk.) 供应商实际制程能力的分析,Ca,Cpk.
BACK
公差分析--公差分析---实例说明 ★.公差分析实例说明
☆.Shielding Frame折弯角度从90设计变更性99的评估. Frame折弯角度从90设计变更性99的评估.
此设计变更的可行性评估,折弯角度变更后shielding Frame内空间能否容纳高度增加后的电容,干涉 此设计变更的可行性评估,折弯角度变更后shielding Frame内空间能否容纳高度增加后的电容,干涉 性的检查.
☆.互换性的作用: 互换性的作用:
互换性在机械或仪器制造中的作用是很大的. 从使用方面看,如人们经常使用的自行车和手表的零件,当它们损坏以后,修理人员很快就可以用同样规格的零件换上,恢复自 行车,手表和设备的功能. 从制造方面来看,装配时,不需辅助加工和修配,故能减轻装配工人的劳动强度,缩短装配周期,并且可使装配工人按流水作业 方式进行工作,以致进行自动装配,加工时,由於规定有公差,同一部机器上的各种零可以同时加工.用量大的标准件还可以由专门 车间基工厂单独生产.这样就可以采用高效率的专用设备,这样产量和质量必然会得到提高,成本也会显著降低. 从设计方面看,由於采用互换原则设计和生产标准零碎,部件,可以简化绘图,计算等工作,缩短设计周期.
公差分析专业技术
公差分析专业技术公差分析是制造工程中的一项关键技术,用于评估产品的尺寸和形状特征之间的变化情况,以确定所设计的产品是否能够满足其功能要求。
公差分析也被广泛应用于各个领域,包括汽车工业、航空航天工业、电子工业等。
公差分析的目标是找出产品设计中的关键尺寸,然后确定每个关键尺寸的公差范围,以确保产品能够正常工作。
通过公差分析,可以确定产品的最小和最大尺寸限制,以保证产品的可制造性和可用性。
公差分析还可以评估各个零部件之间的配合性,以确保装配的顺利进行。
公差分析的步骤包括:1.确定关键尺寸:根据产品的功能要求和设计要求,确定产品中的关键尺寸。
这些关键尺寸通常是对产品性能和功能起着重要作用的尺寸。
2.确定公差限制:根据产品的设计要求和制造能力,确定每个关键尺寸的公差限制。
公差限制可以根据设计要求、制造能力和领域标准来确定。
3.进行公差分析:使用公差分析工具,对产品的关键尺寸进行公差分析。
公差分析工具可以包括数学模型、计算机辅助设计软件等。
4.评估公差结果:根据公差分析的结果,评估产品的功能和性能是否能够满足设计要求。
如果公差分析结果不满足设计要求,需要调整设计或制造过程。
公差分析的目标是确保产品的尺寸和形状特征能够在设计要求的范围内变化,以满足产品的功能和性能要求。
通过公差分析,可以减少产品制造过程中的错误和误差,提高产品的质量和可靠性。
公差分析的应用范围非常广泛。
在汽车工业中,公差分析可以用于评估汽车零部件之间的配合性,以确保汽车的性能和安全性。
在航空航天工业中,公差分析可以用于评估航空航天器的结构和零部件之间的配合性,以确保航空航天器的安全和可靠。
在电子工业中,公差分析可以用于评估电子产品中的电子元件之间的配合性,以确保电子产品的性能和可靠性。
总之,公差分析是制造工程中一项重要的技术,可以确保产品的尺寸和形状特征满足设计要求,提高产品的质量和可靠性。
公差分析在各个领域中都有广泛的应用,是现代制造工程不可或缺的一部分。
公差分析
三.统计公差分析法 由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中 100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而 减小制造和生产成本。 在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。
Worst Case Analysis缺陷: 设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; 公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不 良机率为1-0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个 或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。
四.方和根法 计算公式(平方相加开根号)
假设每个尺寸的 Ppk 指标是1.33并且制程 是在中心
比较Worst case与统计公差法 公差合成后所得的公差范围缩小了,对设计者而言,较小的公差范围意味着较准确的组装与配合,累积 下来的误差也会减少。 在公差分配的情况时,每个零件所得到的公差范围变大了,对制造者而言,较大的公差范围意味着较容 易制作及控制生产质量,有利于制造者。
<例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.) =(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A 、 B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7 适合拿来作设计吗?
统计公差分析方法概述
统计公差分析方法概述公差分析方法是一种用于确定产品或系统中各种因素之间的相互关系和限制的工程方法。
它被广泛应用于各种制造和设计领域,包括机械、电子、航空航天、汽车等。
公差分析的目标是确保产品或系统在正常运行条件下能够满足设计要求。
本文将概述几种常见的公差分析方法。
一、基本术语和概念在介绍具体的公差分析方法之前,有必要先了解一些基本术语和概念。
1. 公差(Tolerance):公差是指在设计和制造过程中所允许的误差或偏差范围。
公差可以是线性的,也可以是角度的。
2. 上限(Upper Limit)和下限(Lower Limit):上限是指公差范围的最大值,下限是指公差范围的最小值。
3. 偏差(Deviation):偏差是指产品或系统与其设计要求之间的差异。
4. 平均值(Mean):平均值是指一系列测量值的算术平均数。
5. 标准偏差(Standard Deviation):标准偏差是指一系列测量值与其平均值之间的平均差异。
6. Cp和Cpk指数:Cp指数是指一个过程的上下限规格范围与标准差之比。
Cpk指数是指一个过程的上限或下限与该过程能够达到的最大或最小值之间的差异与三倍的标准差之比。
二、公差分析方法1. 极差法(Range Method)极差法是一种简单直观的公差分析方法。
它通过测量一系列零件或产品的最大值和最小值来确定公差范围。
极差(Range)= 最大值 - 最小值优点:简单易懂,容易理解。
缺点:只考虑了最大值和最小值,没有考虑其他测量值的变化情况。
2. 平均偏差法(Average Deviation Method)平均偏差法是一种计算平均偏差和标准偏差的公差分析方法。
它可以提供关于产品或系统的整体偏差情况的信息。
平均偏差(Average Deviation)= 所有测量值的总和 / 测量值的个数标准偏差(Standard Deviation)= 各个偏差值与平均偏差之差的平方和的平均数的平方根优点:考虑了所有测量值的变化情况,能够提供更准确的分析结果。
公差分析基本知识
公差分析基本知识公差分析是评估产品零件的精度和一致性的过程,通过确定允许的差异范围来确保产品的质量。
在产品制造和工程领域中,公差分析是一个重要的工具,它可以帮助设计师和工程师优化产品设计,确保制造过程控制正确,并满足产品规格和要求。
公差是指在一组相同加工工艺下,零件之间允许的最大和最小尺寸间隔,用于衡量产品制造过程中的误差。
公差通常用+/-表示,其中正号表示上限公差,负号表示下限公差。
例如,如果一个零件的尺寸规格是10+/- 0.1mm,那么实际加工出来的尺寸可以在9.9mm至10.1mm之间变化。
在公差分析中,有一些常见的术语需要了解:1.尺寸公差:用于衡量产品零件尺寸的允差范围。
尺寸公差分为上限公差和下限公差,上限公差是允许的最大尺寸,下限公差是允许的最小尺寸。
2.允差:指在产品制造过程中,零件尺寸允许的变异范围。
允差可以根据产品的功能要求和制造成本进行调整。
3.适配:适配是指两个或多个零件之间的连接或配合。
适配可以是紧配(零件尺寸在公差范围内接合),松配(零件尺寸超出公差范围),或者间隙配合(零件尺寸在公差范围内留有间隙)。
4.组件公差:组件公差是由各个零件的公差堆加计算得出的总体公差。
组件公差的大小和分布对产品的性能和质量有很大影响。
公差分析的主要目标是确定产品设计和制造过程的控制限度,以确保产品可以满足规格要求。
公差分析可以通过以下步骤实现:1.确定产品规格和要求:首先需要确定产品的功能要求、设计目标和可接受的误差范围。
这些规格将成为公差分析的基础。
2.选择适当的公差标准:根据产品规格和要求,选择适当的公差标准。
公差标准通常由国际标准组织制定,例如ISO标准。
3.进行公差堆加计算:在公差堆加计算中,需要确定各个零件的尺寸公差,并将其叠加得到组件公差。
这个过程可以通过数学模型和计算机软件来完成。
4.分析公差堆积效应:通过分析公差堆积效应,可以确定产品在允许误差范围内的装配情况。
这有助于评估产品的可制造性和可装配性。
公差分析
公差分析公差分析是一种在制造工程中广泛应用的质量管理方法,用于评估和控制制造过程中的偏差。
通过对产品尺寸、形状和位置的精确测量和分析,可以确定公差限度,以确保产品符合设计要求,并满足客户的期望。
公差分析的目标是确保产品的质量并提高制造过程的效率。
它通过确定关键尺寸和公差限度来控制制造过程中的变异性。
通过合理地设置公差,可以控制产品的尺寸、形状和功能,以便在设计要求范围内实现一致性和可靠性。
公差分析的基本原理是测量和分析产品的功能和特征,并将其与设计要求进行比较。
通过收集和分析数据,可以确定制造过程中的变异性,并采取适当的控制措施来减少这种变异性。
公差分析不仅关注产品的几何形状,还关注产品的功能特性,如运动性能、耐用性和可靠性。
在公差分析中,常用的工具是公差堆积分析。
公差堆积分析是一种确定不同部件公差对整个装配体的影响的方法。
它通过在CAD软件中建立装配模型,然后进行虚拟装配和公差仿真来模拟装配过程中的公差堆积。
通过分析装配体的公差堆积情况,可以确定适当的公差限度,以确保装配体的功能和性能。
公差堆积分析还可以帮助设计人员优化产品设计,以减少公差堆积对产品功能和性能的影响。
通过合理地设计产品尺寸和公差分配方案,可以最大程度地减少装配过程中的公差堆积效应。
除了公差堆积分析,公差分析还可以使用其他工具和方法来评估制造过程中的公差。
例如,公差链分析是一种用于确定不同生产过程对产品公差的贡献的方法。
通过分析制造过程中不同环节的公差,可以了解每个环节对最终产品质量的影响,并采取相应的改进措施。
公差分析在实际制造中发挥着重要作用。
它可以帮助制造商减少产品缺陷和不合格品的数量,提高产品质量和客户满意度。
公差分析还可以帮助制造商优化生产过程,减少生产成本并提高生产效率。
总之,公差分析是一种基于测量和分析的质量管理方法,用于评估和控制制造过程中的偏差。
通过合理地设置公差限度,可以确保产品符合设计要求,并满足客户的期望。
公差分析
被测要素的标注: 公差框格 指引线 项目符号
形位公差值 基准字母
公差框格:幾何公差在圖上之標註法,係用一個長方框, 由左至右分為若干小格,水平書寫。
3.形位公差
3.2 形位公差的標注
引線:公差方框與圖中機件之連 帶關係,用引線連結之。有下列三種 情形:
1)如箭頭指在一機件之輪廓線或 其延長線上,但不正在一個尺寸線上 時,如圖所示者,則該公差係對輪廓 線或該表面而言。
距离为公差值 t 的一对平 行直线之间的区域,只要被测 直线不超出该区域即为合格。
合格!
t
3.形位公差
3.3 形位公差帶 1. 直線度
2)在任意方向上对实际直 线提出要求,公差带是一个直 径为公差值 t 的圆柱面内的区 域,只要被测直线不超出该区 域即为合格。
合格!
t
50.00±0.02
0.01
3.形位公差
SR
A
公差带是包络一系列直径 为公差值 t 的球的两包络面 之间的区域,诸球心位于具有 理论正确几何形状的曲面上。 被测轮廓面应位于该区域内。
3.形位公差
3.3 形位公差帶 6. 面輪廓度
公差带是包络一系列直径
SR
为公差值 t 的球的两包络面
之间的区域,诸球心位于具有
理论正确几何形状的曲面上。
被测轮廓面应位于该区域内。
行直线之间的区域,只要被测
直线不超出该区域即为合格。
0.01
t
3.形位公差
3.3 形位公差帶
1. 直線度
1)在给定平面内对直线提 出要求的公差带:
距离为公差值 t 的一对平 行直线之间的区域,只要被测 直线不超出该区域即为合格。
3.形位公差
公差分析讲义范文
公差分析讲义范文公差分析是指在产品设计和制造过程中,通过对尺寸、形状、位置等要素进行量化分析,确定产品所能容忍的偏差范围,以保证产品能够满足设计要求和性能需求。
公差分析涉及的知识领域广泛,包括数学、力学、材料学等。
下面将详细介绍公差分析的基本概念、方法和应用。
一、基本概念1.公差:产品在设计和制造过程中,由于各种原因产生的尺寸、形状、位置等偏差。
公差是指在特定的工艺和材料条件下,允许的尺寸偏差范围。
2.基本尺寸:产品设计中指定的标准尺寸。
3.上下限尺寸:基本尺寸所允许的最大和最小尺寸。
4.精度等级:公差能力的一个度量,用来描述产品的制造精度和一致性。
二、公差分析方法1.线性拟合法:适用于直线和平面的公差分析。
通过线性拟合,计算基本尺寸的位置,确定公差的位置和范围。
2.误差传递法:适用于相邻特征尺寸之间有关联关系的公差分析。
根据误差传递的规则,计算特征之间的误差传递情况,确定最终公差。
3.统计公差分析法:通过统计学方法,分析偏差与公差之间的关系,确定产品的公差范围。
适用于复杂的机械零件和系统的公差分析。
4.数值模拟方法:利用计算机模拟和仿真技术,对产品的设计和公差进行分析。
可以通过模拟计算,预测产品的性能和可靠性。
三、公差分析的应用1.产品设计:在产品设计阶段,公差分析可以评估产品的可制造性和性能要求。
通过合理设置公差,提高产品的一致性和可靠性。
2.制造工艺:在产品制造过程中,公差分析可以指导制定合理的工艺参数和制造方法。
通过公差分析,优化工艺流程,提高产品的加工精度和稳定性。
3.品质控制:公差分析可以帮助确定产品的检测方法和检测要求。
通过合理设置公差,控制产品的质量,提高产品的一致性和可靠性。
4.成本控制:公差分析可以帮助评估产品的制造成本和维修成本。
通过合理设置公差,优化产品的设计和制造,降低生产成本。
公差分析是现代制造工程中非常重要的一部分,它能够保证产品的可靠性、一致性和经济性。
通过合理设置公差,可以提高产品的竞争力和市场份额,满足消费者的需求和期望。
公差分析
例子1公差(Tolerancing)1-1概论公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。
公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。
Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。
公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。
进而在合理的费用下进行最容易的组装,并获得最佳的性能。
1-2公差公差值是一个将系统性能量化的估算。
公差分析可让使用者预测其设计在组装后的性能极限。
设罝公差分析的设罝值时,设计者必须熟悉下述要点:●选取合适的性能规格●定义最低的性能容忍极限●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…)●指定每一个制造和组装可允许的公差极限1-3误差来源误差有好几个类型须要被估算制造公差●不正确的曲率半径●组件过厚或过薄●镜片外型不正确●曲率中心偏离机构中心●不正确的Conic值或其它非球面参数材料误差●折射率准确性●折射率同质性●折射率分布●阿贝数(色散)组装公差●组件偏离机构中心(X,Y)●组件在Z.轴上的位置错误●组件与光轴有倾斜●组件定位错误●上述系指整群的组件周围所引起的公差●材料的冷缩热胀(光学或机构)●温度对折射率的影响。
压力和湿度同样也会影响。
●系统遭冲击或振动锁引起的对位问题●机械应力剩下的设计误差1-4设罝公差公差分析有几个步骤须设罝:●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求,使用者自定的绩效函数,瞄准…等●定义允许的系统性能偏离值●规定公差起始值让制造可轻易达到要求。
ZEMAX默认的公差通常是不错的起始点。
●补偿群常被使用在减低公差上。
通常最少会有一组补偿群,而这一般都是在背焦。
●公差设罝可用来预测性能的影响●公差分析有三种分析方法:⏹灵敏度法⏹反灵敏度法⏹蒙地卡罗法●公差分析需要对误差值的来源范围作设罝。
1-5公差操作数公差分析会运用下面的操作数:●TRAD, TCUR, TFRN:所有描述表面焦度的误差●TTHI:描述组件或空间厚度的误差●TCON;描述Conic常数的误差●TSDX, TSDY:表面离轴的误差(镜片长度单位)●TSTX, TSTY:表面倾斜的误差(角度)●TIRX, TIRY:表面倾斜的误差(镜片长度单位)●TIRR:表面不平整度的误差(用球差和像散)●TEXI, TEZI:表面不平整度的误差(用Zernike条纹或标准多项式)●TIND, TABB:折射率,阿贝数的误差●TPAR, TEDV:参数或外加资料值的误差●TEDX, TEDY:组件的机构离轴●TETX, TETY, TETZ:组件的机构倾斜●TUDX, TUDY, TUTX, TUTY, TUTZ:组件的离轴或倾斜由使用者自订的座标定义增加可用于非序列性组件的新参数1-6双透镜的公差分析载入Samples\Tutorial folder中的「Tutorial tolerance.zmx」文件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例子1公差(Tolerancing)1-1概论公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。
公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。
Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。
公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。
进而在合理的费用下进行最容易的组装,并获得最佳的性能。
1-2公差公差值是一个将系统性能量化的估算。
公差分析可让使用者预测其设计在组装后的性能极限。
设罝公差分析的设罝值时,设计者必须熟悉下述要点:●选取合适的性能规格●定义最低的性能容忍极限●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…)●指定每一个制造和组装可允许的公差极限1-3误差来源误差有好几个类型须要被估算制造公差●不正确的曲率半径●组件过厚或过薄●镜片外型不正确●曲率中心偏离机构中心●不正确的Conic值或其它非球面参数材料误差●折射率准确性●折射率同质性●折射率分布●阿贝数(色散)组装公差●组件偏离机构中心(X,Y)●组件在Z.轴上的位置错误●组件与光轴有倾斜●组件定位错误●上述系指整群的组件周围所引起的公差●材料的冷缩热胀(光学或机构)●温度对折射率的影响。
压力和湿度同样也会影响。
●系统遭冲击或振动锁引起的对位问题●机械应力剩下的设计误差1-4设罝公差公差分析有几个步骤须设罝:●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求,使用者自定的绩效函数,瞄准…等●定义允许的系统性能偏离值●规定公差起始值让制造可轻易达到要求。
ZEMAX默认的公差通常是不错的起始点。
●补偿群常被使用在减低公差上。
通常最少会有一组补偿群,而这一般都是在背焦。
●公差设罝可用来预测性能的影响●公差分析有三种分析方法:⏹灵敏度法⏹反灵敏度法⏹蒙地卡罗法●公差分析需要对误差值的来源范围作设罝。
1-5公差操作数公差分析会运用下面的操作数:●TRAD, TCUR, TFRN:所有描述表面焦度的误差●TTHI:描述组件或空间厚度的误差●TCON;描述Conic常数的误差●TSDX, TSDY:表面离轴的误差(镜片长度单位)●TSTX, TSTY:表面倾斜的误差(角度)●TIRX, TIRY:表面倾斜的误差(镜片长度单位)●TIRR:表面不平整度的误差(用球差和像散)●TEXI, TEZI:表面不平整度的误差(用Zernike条纹或标准多项式)●TIND, TABB:折射率,阿贝数的误差●TPAR, TEDV:参数或外加资料值的误差●TEDX, TEDY:组件的机构离轴●TETX, TETY, TETZ:组件的机构倾斜●TUDX, TUDY, TUTX, TUTY, TUTZ:组件的离轴或倾斜由使用者自订的座标定义增加可用于非序列性组件的新参数1-6双透镜的公差分析载入Samples\Tutorial folder中的「Tutorial tolerance.zmx」文件。
这是一个近轴的双透镜设计。
我们将建立本系统的公差分析。
1-7制造与组装公差在开始本设计的公差分析之前,我们需要定义所有可能的误差来源。
首先从ZEMAX 主选单上点击Editors->Tolerance Data,即可开启Tolerance Data Editor(TDE)。
然后在TDE 视窗中的主选单中,点击Tools->Default Tolerance 开启Default Tolerance 对话框。
直接点击「OK」产生默认的公差操作数。
如此即是同意默认的公差容忍度。
此外背焦的距离是默认的补偿部份。
1-8误差描述 Tolerance Data Editor 现在包括有41个项目。
第一个操作数「COMP 」定义表面4的厚度做补偿部份。
而「TW A V 」这个操作数,系指针对任何条纹误差的测试波长。
其它的操作数分别用于定义下列误差:●四个面的曲率半径●四个面的面不平整度●两个组件和一个间隙的厚度误差●两个玻璃的折射率或阿贝数的误差●四个面皆有两个方向的离轴和倾斜。
针对球面,公差分析仅有楔形或离轴●两个组件皆有两个方向的离轴和倾斜如此便包括所有设计上可能的制造和组装的公差1-9灵敏度分析灵敏度分析定义各个缺陷对系统性能的影响。
这些影响经由统计上的总和以估算出系统性能。
藉由给定公差的范围,以了解那些会造成系统性能的改变?一系列独立的公差估计:●半径的改变●厚度的改变●倾斜或离轴的改变每一个操作数,补偿部份会修正标准值至最小。
我们皆认同所有的默认操作数除了一个参数,两个组件间的距离。
虽然设罝两者的间距为「0」,其是以顶点为量测的基准,公差的范围最小为「0」最大为「0.2」。
如此第二面将不会进入第一面。
1-10初步公差分析在默认公差范围完成灵敏度分析后开始公差分析。
在开启的文件中减低RMS光斑的大小将会使缺陷突显。
开始公差分析需点击主选单中的Tools>>Tolerancing(或Ctrl+T),此举将会开启公差分析的对话框。
请务必确认「Comp:Paraxial Focus」已选取,此举利用近轴焦点的修正来重新定义成像面的位置。
使用RMS光斑半径做为公差分析的标准。
公差分析的方式选灵敏度法。
如果有需要的话,请确认「 Show compensators」已勾选。
将「Monte Carlo」的选项设为0。
如此即可点击OK。
1-11公差分析结果运算完成后,「文本阅读器」将会列出公差分析的结果。
第一部份描述所有的公差操作数。
接下来列出使用在分析的公差标准值。
这是依据每个操作数独立公差分析的结果,包括参数的改变量,标准值的结果,标准值改变量与微小值的关系,焦点补偿的改变量。
1-12统计分析下列灵敏度分析是统计上的资讯:微小的RMS 光斑半径:●基本的标准值估计改变量:●每个操作数的基准为●每个操作数利用平方或平均将最大和最小的误差值●取其均方根(应用在最严苛的条件)估算RMS光斑半径:●加总微小值和估算改变量(定义有效的范围在系统性能上)可见默认公差的范围太宽松1-13反灵敏度分析反灵敏度分析常用在限制公差参数的范围以控制系统性能最大的降幅。
允许的误差皆由误差来源分裂出来的。
反灵敏度的方法:●反最大值的模式:旨在单独地修正参数的范围使得最后的标准值所对应的参数近乎极限。
●反增加量的模式:旨在单独地修正参数的范围使得最后的标准值改变量符合参数的范围几乎等于增加量。
在反最大值的模式,有提供使用者自定极限的方法。
●极限定义了每个公差分析参数的最大标准值。
●极限值必须较一般条件严苛。
分析性能可藉由最小参数值来定义。
●比较绩效函数到极限⏹假使低于最大值,移动范围的极限内对组件不会有影响⏹假使超过最大标准,将会缩小公差范围直到符合极限值●运行某些在最大参数的数值●参数的范围一般不会是对称的运行的过程将会不断的重复直到评价系统的绩效函数降至预期的程度。
反增加量的模式也是近似的,除了标准最大增加量是自订的而非求极限。
1-14个别分析视场角/组态假使分离视场角/组态的功能未选取,反灵敏度分析将会平均所有的视场角及组态。
●某些视场角或组态也许对某些扰动有明显的冲击●关于这些资讯在默认的灵敏度分析条件下可能会隐藏在平均值内假使选取分离视场角/组态的功能,在每个视场角每个组态都是独立计算。
每个视场角皆须符合反最大值模式的极限值。
●公差分析的参数范围皆须修正到每个视场角每个组态都在极限值内。
在反增加值模式,每个公差参数范围皆须修正至每个视场角每个组态的值降低至不超过增加量。
最差的视场角的位置即可定义参数的范围。
1-15限制公差范围举个例子来说,假设其需求为 RMS 光斑大小不能较正常的差150%。
求得正常的绩效函数值,请开启Tolerance对话框(Ctrl+T)并点击其中的"?"标签。
而mode则选 Inverse的类型。
正常的绩效函数值为 3.5microns(0.0035 mm)。
这表示我们设罝的绩效函数必须小于5.25microns。
我们需要展开这些误差在所有可能的因素。
假使任何一个参数所造成的误差多于对系统的贡献,则其整体效应就会是明显的不好。
1-16设罝限制条件假设没有参数可以让标准值降低超过0.5microns,或产生一绩效函数超过4.0microns。
响应范围:●假设所有的参数有相同的贡献且平均分配误差由全部的参数●假设某些统计相依且平均分配误差由均方根的参数,真实的结果在中间的部份在对话框中的」?」。
在# Monte Carlo Runs键入20。
这是产生20条由随机数打到镜片上。
在Save Monte Carlo Runs键入20将会在计算后保存。
点击OK开始运行反向公差分析1-17修正公差范围在反灵敏度里,参数的范围将会被修正,假如需要的话,所以就是最大标准值。
检查统计摘要。
计算的标准值超过期望的最大值。
整个焦点的位置需要0.66mm。