2013年乐清育英学校七年级下普通班期中数学试卷

合集下载

2012-2013第二学期期中试七年级数学试题答案

2012-2013第二学期期中试七年级数学试题答案

(3
分)
=2 3 2
(5
分)
19. ∠ 3;两直线平行,同位角相等; DG;内错角相等,两直线平行;两直线平行,同旁内角互补。
1 空得 1 分) 四、解答题(二) (本大题 3 小题,每小题 8 分,共 24 分)
20. 解: x 2 3 27
(3
分)
x23
(6
x5
(8
21. 解:如图所示:
( 1)画出如图直线 PQ
(8 分 )(每答对( 2)画出如图直线 PR
( 3)∠ PQC=60° 理由是: 因为 PQ∥ CD
分) 分)
(2 分) (4 分) (5 分)
D
C A
R
P
Q
B
所以∠ DCB+ ∠ PQC=180°
(6 分 )
又因为∠ DCB=120°
所以 ∠ PQC=180°-∠ DCB =180 °-120 °=60 °
(注:用其它解法正确的均给予相应的分值)
11. 如果两个角是对顶角,那么这两个角相等;
12.3 排 4 号;
14.1.0404 ;
15.(0 ,- 4) ;
16.52 °, 128°
三、解答题(一) (本大题 3 小题,每小题 5 分,共 15 分)
13.
1

2
17. 解:原方程化为: x2 16
(1
分)
x 16
(3
分)
x4
(5
分)
18. 解:原式= 3 3 3 2
2012—2013 学年第二学期第二次段考 (期中试 )试题
七年级数学参考答案及评分意见
一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把 答题填在括号内.

浙江省乐清市育英寄宿学校2013-2014学年七年级9月月考数学(普通班)试题

浙江省乐清市育英寄宿学校2013-2014学年七年级9月月考数学(普通班)试题

(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1、-3的相反数是 ( )A .3B .-3C .31D .-31 2、 中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于( )A .计数B .测量C .标号或排序D .以上都不是3、一个数的相反数是最大的负整数,则这个数是( )A .—1 B.1 C.0 D.±14、下列说法正确的是( )A. 0既不是整数也不是分数.B. 整数和分数统称为有理数.C. 一个数的绝对值一定是正数.D.绝对值等于本身的数是0和1. 5、算式(61-21-31)×24的值为( ) A.-16 B.16 C.24 D.-246、若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( )A. 10B. -10C. 6D.-67、绝对值等于6的数是 ( )A .6B .-6C .土6D .以上都不对8、大于-2.2的最小整数是( )A .-2B .-3C .-1D .09、数轴上到数—2所表示的点的距离为4的点所表示的数是( )A. —6B. 6C. 2D. —6或210、实数a 、b 在数轴上的位置如图所示,则下列结论中: ①0<ab ;②0<+b a ; ③0<-b a ;④a b < ;⑤b a ->-.正确的有( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11、水位上升2m 记作+2m ,那么下降1m 记作b 0a(第10题)12、举出一个既是负数又是整数的数 。

13、 -32的倒数是 ;-32的相反数是 ;-32的绝对值是 ; 14、绝对值不大于3的整数是15、计算 :)3(4--= 。

16、若|m -2|+|n -5|=0,求 mn m n --= 。

17、李明与王伟在玩一种计算的游戏,计算的规则是:|d c b a|=ad -bc:,轮到李明计算|1523|,根据规则|1523|=3×1-2×5=3-10=-7,,现在轮到王伟计算|5632|,请你帮忙算一算,得 。

温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷.docx

温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷.docx

浙江省温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷一、选择题(每小题4分,共40分)1.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,112.已知关于x的方程(2a+b)x﹣1=0无解,那么ab的值是()A.负数 B.正数 C.非负数D.非正数3.育英“红五月”晚会上有一首三人合唱歌曲,这首歌由三个长度相等的声部组成,A同学进入第二声部时,B同学开始唱,A同学进入第三声部时,C同学开始唱,每个人不间断地将整首歌唱四遍,然后结束,整首歌三个人同时唱歌的时间是整个时间的()A.B.C.D.4.若a=()﹣2,b=﹣|﹣|,c=(﹣2)3,则a,b,c的大小关系是()A.b<c<a B.b<a<c C.c<b<a D.a<c<b5.如图,∠MAN=16°,A1点在AM上,在AN上取一点A2,使A2A1=AA1,再在AM上取一点A3使A3A2=A2A1,如此一直作下去,到不能再作为止.那么作出的最后一点是()A.A5B.A6C.A7D.A86.已知:a,b,c满足a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17,则a+b+c的值等于()A.2 B.3 C.4 D.57.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40° B.50° C.60° D.70°8.若代数式x3+ax2+bx+8其中有两个因式分别为x+1和x+2,则a+b的值为()A.8 B.7 C.15 D.219.如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④10.古希腊的毕达哥拉斯学派把1,3,6,10,…称为三角形数;把1,4,9,16,…称为数正方形数.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式符合以上规律的是()A.6+15=21 B.36+45=81 C.9+16=25 D.30+34=64二、填空题(每小题4分,共32分)11.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.12.分解因式:x3﹣9x= .13.如果a,b是任意两个不等于零的数,定义运算⊕如下(其余符号意义如常):a⊕b=,那么[(1⊕2)⊕3]﹣[1⊕(2⊕3)]的值是.14.若与的小数部分分别为a和b,则(a+3)(b﹣4)的值.15.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.16.已知方程(c是常数,c≠0)的解是c或,那么方程=(a是常数,且a≠0)的解是或.17.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=18.如图,在Rt△ABC中,∠B=90°,AP、CQ分别平分∠BAC、∠BCA,AP交CQ于I,连PQ,则S△IAC:S = .四边形ACPQ三、解答题(本题共48分)19.(1)计算:|﹣4|+(+1)0﹣(2)先化简,再选择一个你喜欢的整数代入求值:.20.如图,某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图.其中由于在三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入万元,二月份销售收入万元,三月份销售收入万元:(2)三月份男、女皮鞋的销售收入各是多少万元?21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:ME⊥BC.22.有一数列的首项既不是0,也不是1,而是由下列规则决定:位于首项后的每一项都等于1减去前一项的倒数,以此类推.(1)写出首项是3的数列的前6项;(2)写出首项是x的数列的前6项;(3)求出首项是x的数列的前2015项的乘积.23.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC的度数.2015-2016学年浙江省温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.2.已知关于x的方程(2a+b)x﹣1=0无解,那么ab的值是()A.负数 B.正数 C.非负数D.非正数【分析】根据一元一次方程ax=b无解,则a=0,b≠0,依此可以得出关于x的方程(2a+b)x﹣1=0中2a+b=0,从而得出ab的取值范围.【解答】解:关于x的方程(2a+b)x﹣1=0无解,则2a+b=0.∴有a=b=0或者a、b异号.∴ab的值为非正数.故选D.3.育英“红五月”晚会上有一首三人合唱歌曲,这首歌由三个长度相等的声部组成,A同学进入第二声部时,B同学开始唱,A同学进入第三声部时,C同学开始唱,每个人不间断地将整首歌唱四遍,然后结束,整首歌三个人同时唱歌的时间是整个时间的()A.B.C.D.【分析】设这首歌唱一遍的时间为3a分钟,分别求出合唱总时间,三个人同时唱歌的时间即可解决问题.【解答】解:设这首歌唱一遍的时间为3a分钟,由题意合唱总时间为4×3a+2a=14a,整首歌三个人同时唱歌的时间是a+3a×3=10a,故整首歌三个人同时唱歌的时间是整个时间的=.故选C.4.若a=()﹣2,b=﹣|﹣|,c=(﹣2)3,则a,b,c的大小关系是()A.b<c<a B.b<a<c C.c<b<a D.a<c<b【分析】利用负指数幂及绝对值的定义求解即可.【解答】解:∵a=()﹣2=4,b=﹣|﹣|=﹣,c=(﹣2)3=﹣8,∴c<b<a.故选:C.5.如图,∠MAN=16°,A1点在AM上,在AN上取一点A2,使A2A1=AA1,再在AM上取一点A3使A3A2=A2A1,如此一直作下去,到不能再作为止.那么作出的最后一点是()A.A5B.A6C.A7D.A8【分析】根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可分别求角另一等腰三角形中的底角与∠A的关系,最后根据三角形内角和定理进行验证不难求解.【解答】解:∵AA1=A1A2,∴∠AA2A1=∠A,∵∠A2A1A3=2∠A,∠A=16°,∴∠A2A1A3=32°,∵A1A2=A2A3,∴∠A2A3A=∠A2A1A3=2∠A,∴∠NA2A3=3∠A=48°,同理:∠A4A3M=4∠A=64°,∠NA4A5=5∠A=80°,∠NA6A5=6∠A=96°,∵如果存在A7点,则△A5A6A7为等腰三角形且∠NA6A5是△A5A6A7的一个底角,而∠NA6A5>90°,∴此假设不成立,即A7点不存在,∴作出的最后一点为A6,故选B.6.已知:a,b,c满足a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17,则a+b+c的值等于()A.2 B.3 C.4 D.5【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.【解答】解:由a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17得a2+2b+b2﹣2c+c2﹣6a+11=0,∴(a﹣3)2+(b+1)2+(c﹣1)2=0,∴a=3,b=﹣1,c=1,a+b+c=3.故选B.7.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40° B.50° C.60° D.70°【分析】根据等腰三角形的性质得到∠B=∠C,由角平分线的定义得到∠BDN=∠MDE,∠DEN=∠CEN,根据外角的性质得到∠B=∠DMN﹣∠BDM=∠DMN﹣∠MDE,∠C=∠MNE﹣∠NEC=∠MNE﹣∠NED,于是推出∠DMN﹣∠MDE=∠MNE﹣∠NED,即∠DMN+∠NED=∠ME+∠MDE,由于∠DMN+∠NED=∠MNE+∠MDE,∠DMN+∠NED=∠MNE+∠MDE=180°,得到∠NED=70°于是得到结论.【解答】解:∵AB=AC,∴∠B=∠C,∵DM平分∠BDE,EN平分∠DEC,∴∠BDN=∠MDE,∠DEN=∠CEN,∵∠B=∠DMN﹣∠BDM=∠DMN﹣∠MDE,∠C=∠MNE﹣∠NEC=∠MNE﹣∠NED,∴∠DMN﹣∠MDE=∠MNE﹣∠NED,即∠DMN+∠NED=∠ME+∠MDE,∵∠DMN+∠NED=∠MNE+∠MDE,∵∠DMN+∠NED=∠MNE+∠MDE=180°,∴∠NED=70°,∴∠DEA=180°﹣2∠NED=40°.故选A.8.若代数式x3+ax2+bx+8其中有两个因式分别为x+1和x+2,则a+b的值为()A.8 B.7 C.15 D.21【分析】由x3+ax2+bx+8其中有两个因式分别为x+1和x+2得到x=﹣1、x=﹣2肯定是关于x的方程x3+ax2+bx+8=0的两个根,所以将其分别代入该方程列出关于a、b的方程组,通过解方程组来求a、b的值,再代入计算即可求解.【解答】解:∵代数式x3+ax2+bx+8其中有两个因式分别为x+1和x+2,∴x=﹣1、x=﹣2肯定是关于x的方程x3+ax2+bx+8=0的两个根,则,即,解得,a+b=7+14=21.故选:D.9.如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,证明结论正确;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,∴∠F=(∠BAC﹣∠C);③正确;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,故选D.10.古希腊的毕达哥拉斯学派把1,3,6,10,…称为三角形数;把1,4,9,16,…称为数正方形数.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式符合以上规律的是()A.6+15=21 B.36+45=81 C.9+16=25 D.30+34=64【分析】符合条件的两个三角形数要满足二个条件:两个三角形数之和等于正方形数,两个三角形数之差等于正方形数的平方根.B、36+45=81,45﹣36=9=,所以B是正确的;C、9+16=25,16﹣9=7≠,所以C是错误的;D、30+34=64,34﹣30=4≠,所以D是错误的.故选B.二、填空题(每小题4分,共32分)11.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= 57 °.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.12.分解因式:x3﹣9x= x(x+3)(x﹣3).【分析】根据提取公因式、平方差公式,可分解因式.【解答】解:原式=x(x2﹣9)=x(x+3)(x﹣3),故答案为:x(x+3)(x﹣3).13.如果a,b是任意两个不等于零的数,定义运算⊕如下(其余符号意义如常):a⊕b=,那么[(1⊕2)⊕3]﹣[1⊕(2⊕3)]的值是.【分析】按照新规定的规律代入求值即可.【解答】解:[(1⊕2)⊕3]﹣[1⊕(2⊕3)]=⊕3﹣1⊕=÷3﹣=﹣.14.若与的小数部分分别为a和b,则(a+3)(b﹣4)的值﹣13 .【分析】先估算出的范围,再求出9+和9﹣的范围,求出a、b的值,即可求出答案.【解答】解:∵3<<4,∴12<9+<13,﹣4<﹣<﹣3,∴a=9+﹣12=﹣3,5<9﹣<6,∴b=9﹣﹣5=4﹣,故答案为:﹣13.15.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于 4 .【分析】已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.【解答】解:∵m﹣n2=1,即n2=m﹣1≥0,m≥1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12,则代数式m2+2n2+4m﹣1的最小值等于(1+3)2﹣12=4.故答案为:4.16.已知方程(c是常数,c≠0)的解是c或,那么方程=(a是常数,且a≠0)的解是或.【分析】观察方程(c是常数,c≠0)的特点,发现此方程的左边是未知数与其倒数的和,方程右边的形式与左边的形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接求解.本题需要将方程=变形,使等号左边未知数的系数变得相同,又等号右边的代数式可变为++.为此,方程的两边同乘2,整理后,即可写成方程的形式,从而求出原方程的解.【解答】解:原方程变形为=++,方程的两边同乘2,得2x+=a+3+,两边同时减去3,得2x﹣3+=a+,∴2x﹣3=a或2x﹣3=,∴x=或x=.故答案为,.17.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+= 2或﹣3【分析】首先把等式移项a3+a2﹣3a+2﹣++=0,然后分组,分别利用立方和公式、完全平方公式、分解因式得到(a+)(a++3)(a+﹣2)=0,由此即可求出结果.【解答】解:∵实数a满足a3+a2﹣3a+2=﹣﹣,∴a3+a2﹣3a+2﹣++=0,∴a3++a2++2﹣3(a+)=0,(a+)(a2﹣1+)+(a+)2﹣3(a+)=0,(a+)(a2﹣1++a+﹣3)=0,∴(a+)[(a+)2+(a+)﹣6]=0,∴(a+)(a++3)(a+﹣2)=0,而a+≠0,∴a++3=0,或a+﹣2=0,∴a+=﹣3或2.故答案为:﹣3或2.18.如图,在Rt△ABC中,∠B=90°,AP、CQ分别平分∠BAC、∠BCA,AP交CQ于I,连PQ,则S△IAC:S = 1:2 .四边形ACPQ【分析】在AC上截取CE=CP,AF=AQ,连接IE、IF,作FN⊥IE于N,QM⊥AI于M,只要证明△CIP≌△CIE,△IAF≌△IAQ,以及S△IMQ=S△INF即可解决问题.【解答】解:在AC上截取CE=CP,AF=AQ,连接IE、IF,作FN⊥IE于N,QM⊥AI于M.在△CIP和△CIE中,,∴△CIP≌△CIE,同理△IAF≌△IAQ,∴S△CIP=S△CIE,S△AIF=S△AIQ,PI=PE,IQ=IF,∠CIP=∠CIE,∠AIQ=∠F,∵∠B=90°,IC平分∠ACB,IA平分∠BAC,∴∠AIC=90°+∠B=135°,∴∠CIP=∠CIE=∠AIQ=∠EIF=45°,在△IMQ和△INF中,,∴△INF≌△IMQ,∴FN=QM,∵S△IMQ=•PI•QM,S△INF=•IE•NF,∴S△INF=S△IMQ,∴S△AIC=S△CIE+S△EIF+S△IAF=S四边形ACPQ.故S△IAC:S四边形ACPQ=1:2.故答案为1:2.三、解答题(本题共48分)19.(1)计算:|﹣4|+(+1)0﹣(2)先化简,再选择一个你喜欢的整数代入求值:.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=4+1﹣2=5﹣2;(2)原式=•=,当x=2时,原式=2.20.如图,某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图.其中由于在三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入50 万元,二月份销售收入60 万元,三月份销售收入90 万元:(2)三月份男、女皮鞋的销售收入各是多少万元?【分析】(1)根据所占百分比计算;(2)设二月份男、女皮鞋的销售收入分别为x万元、y万元,表示出三月份男、女皮鞋的销售收入.根据两个月的销售收入分别列方程求解.【解答】解:(1)一月份销售收入为200×25%=50万元,二月份销售收入为200×30%=60 万元,三月份销售收入为200×45%=90 万元.故答案为 50,60,90;(2)设二月份男、女皮鞋的销售收入分别为x万元、y万元,根据题意得解之得.1.4x=42,1.6y=48答:三月份男、女皮鞋的销售收入分别为42万元、48万元.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:ME⊥BC.【分析】(1)首先根据∠BAC=90°,AF⊥AE可得∠1=∠2,然后根据FC⊥BC,得出∠B=∠FCA=45°,根据条件利用ASA证明△ABE≌△ACF,继而可得BE=CF;(2)过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.【解答】证明:(1)∵∠BAC=90°,AF⊥AE,∴∠1+∠EAC=90°∠2+∠EAC=90°∴∠1=∠2,又∵AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠FCA=90°﹣∠ACB=90°﹣45°=45°,∴∠B=∠FCA,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.22.有一数列的首项既不是0,也不是1,而是由下列规则决定:位于首项后的每一项都等于1减去前一项的倒数,以此类推.(1)写出首项是3的数列的前6项;(2)写出首项是x的数列的前6项;(3)求出首项是x的数列的前2015项的乘积.【分析】(1)按照运算规则,逐个找出数列的前六项;(2)按照运算规则,逐个找出数列的前六项;(3)结合(1)(2)发现该规则下的数列以3为周期,按照a1、a2、a3循环的,再结合2015÷3=671…2,即可得出结论.【解答】解:数列中第n项用a n来代替.(1)按照规则:a1=3,a2=1﹣=,a3=1﹣=﹣,a4=1﹣=3,a5=1﹣=,a6=1﹣=﹣.故首项是3的数列的前6项为:3,,﹣,3,,﹣.(2)按照规则:a1=x,a2=1﹣=,a3=1﹣=﹣,a4=1﹣=x,a5=1﹣=,a6=1﹣=﹣.故首项是x的数列的前6项为:x,,﹣,x,,﹣.(3)结合(1)(2)发现数列是以3为周期,按照前三个数一直循环的.∵2015÷3=671…2,而a1×a2×a3=x••=﹣1,∴a1×a2×a3×…×a2015=(﹣1)671×a1×a2=1﹣x.故首项是x的数列的前2015项的乘积为1﹣x.23.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC的度数.【分析】作辅助线,在AC的延长线上截取AF=AB,连BF,PF,延长AP交BC于D,交BF于E,则可证得△APB≌△APF,则AP为BF的垂直平分线,结合∠PBA=8°可得∠CBF=30°=∠CBP,∠BFP=60°=∠BPF,可得BC平分PF,进一步可求出∠APC的度数.【解答】解:在AC的延长线上截取AF=AB,连BF,PF延长AP交BC于D,交BF于E∠BPE=∠BAP+∠ABP=30°=∠PBC则△APB≌△APF∴AP垂直平分BF,∠AFP=8°∴∠FPE=∠BPE=30°∠CBF=30°=∠CBP,∠BFP=60°=∠BPF∴BC垂直平分PF∴∠CPF=∠CFP=8°∴∠DPC=38°∴∠APC=142°初中数学试卷桑水出品。

育英学校七(下)数学期中考试

育英学校七(下)数学期中考试

2x y x y -=⎧⎨+=⎩乐清市育英学校七(下)期中数学考试试题得分:温馨提示:本卷总分100分,请仔细审题,细心答题,相信你一定会有出色的表现!一.选择题(每小题3分,共30分)1.下列长度的三根木棒能制作成三角形的是 ( ) A 、 2,4,2 B 、 2,3,6 C 、3,6,6 D 、7,13,5 2.下列生活中的现象,属于平移的是…………………………………………( ) A 、抽屉的拉开 B 、汽车刮雨器的运动C 、坐在秋千上人的运动D 、投影片的文字经投影变换到屏幕3.某超市举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率应该是( )A 、100001B 、1000050C 、10000100D 、100001514.方程组 的解为分别表示数( )A、1,2 B、1,3 C、2,3 D、2,45.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD , 使其不变形,这种做法的根据是( ).A 、两点之间线段最短B 、长方形的四个角都是直角C 、三角形的稳定性D 、长方形的对称性6.如图,OA OB =,OC OD =,50O ∠=,35D ∠=, 则AEC ∠等于( ) A 、60B 、50C 、45D 、307.某校课外小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人.若设课外小组的人数x 和应分成的组数y,依题意可列方程组得 ( )A 、 ;B 、 ;C 、 ;D 、 8.如图,在△ABC 中,BC 的中垂线交AC 于点D , 交BC 于E ,已知AB=3、AC=5、BC=7 那么△ABD 的周长为 ( )⎩⎨⎧==y x FED A7385y x y xì=+ïïíï+=ïî7385x y x y ì+=ïïíï-=ïî7385y x y x ì=+ïïíï=+ïî7385y x y x ì=-ïïíï=+ïîOEA B DC(第6题)A 、12B 、10C 、11D 、89.如图,点A 、B 、C 、D 、E 、F 是平面上的6个点,则∠A +∠B +∠C +∠D +∠E +∠F 的度数是( )A 、180°B 、360°C 、540°D 、720°10.如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有 ( )个A、3个 B、4个 C、 5个 D、6个二、填空题(每题3分,共30分)11.请写出一个二元一次方程组......., 使它的解是 ,答: .12.三角形的两边长是2cm 和7cm,若第三边的数值是偶数,则这个三角形的周长是________cm. 13.如果21x y =-⎧⎨=⎩是方程2x-3y =a 的一组解,则a = 。

浙江省乐清市七年级数学下学期期中试题(普通班)

浙江省乐清市七年级数学下学期期中试题(普通班)

浙江省乐清市2017-2018学年七年级数学下学期期中试题(普通班)温馨提示:本卷满分100分,考试时间90分钟. 请细心答题,相信你一定会有出色的表现!一、精心选一选(每题3分,共30分)1、据悉,世界上最小的开花结果的植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000007克,用科学记数法表示此数是()A、 B、 C、 D、2、下列各式由左边到右边的变形中,属于因式分解的是()A、 B、C、 D、3、下列代数式中属于分式的是()A、 B、 C、 D、4、若是关于x,y的方程2x-y+2a=0的一个解,则常数a为()A、1B、2C、3D、45、下列运算正确的是()A、 B、C、 D、6、若,则的是()A、9B、13C、11D、87、如图,下列条件中,不能判断的是()A、∠2=∠4B、∠3=∠5C、∠2+∠3=180°D、∠3=∠18、若要使的值为0,则x的值是()A、 B、 C、 D、9、若,那么的值分别为()A、2,-8B、-2,-8C、-2, 8D、2,810、如图,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个长方形的边长(x>y),观察图案,则下列关系式错误的是()A、 B、C、 D、二、耐心填一填(每题3分,共24分)11、若使分式有意义,则x的取值范围是 .12、因式分解: .13、计算: .14、已知一幅三角板按如图方式摆放,其中AB∥DE,那么∠CDF= 度.15、若m=1008,n=1007,那么代数式的值是 .16、如图,面积为16的正方形ABCD,沿BD方向平移至正方形DEFG的位置,则图中梯形ABFG的面积为 .17、如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入射到а上,经两次反射后的反射光线平行于а,则∠θ= 度.18、某班级购买多肉布置教室,已知A、B、C三种多肉每盆销售价格为2元、4元、10元,每种多肉至少购买一盆,共买16盆,恰好用了50元,则购买A种多肉的盆数是 .三、用心答一答(共46分)19、计算(6分)(1)(2)20、解方程组(4分)21、(6分)先化简,再求值:,其中a=1,b=.22、(8分)阅读理解并填空:(1)为了求代数式x2+2x+4的值,我们必须知道x的值,若x=1,则这个代数式的值为;若x=2,则这个代数式的值为,……可见,这个代数式的值因x的取值不同而变化,尽管如此,我们还是有办法来考虑这个代数式的值的范围.(2)把一个多项式进行部分因式分解可以来解决代数式值的最大(或最小)值问题,例如:x2+2x+4=x2+2x+1+3=(x+1)2+3,因为(x+1)2是非负数,所以,这个代数式x2+2x+4的最小值为_______. 尝试探究并解答:(3)求代数式x2﹣10x+30的最小值,并写出相应x的值.23、(10分)联华超市为促销,对A、B两种商品实行打折销售(折扣相同)。

2013年初一下册期中数学试卷(带答案)

2013年初一下册期中数学试卷(带答案)

2013年初一下册期中数学试卷(带答案)山东省乐陵市化楼中学2012~2013学年度第二学期期中测试七年级数学一、选择题(本大题共10小题,每小题3分,共30分)1.如图所示,∠1和∠2是对顶角的是()2.计算的结果是()A.2B.±2C.-2D.43.实数-2,0.3,,,-π中,无理数的个数有()A.1个B.2个C.3个D.4个4.我们常用如图所示的方法过直线外一点画已知直线的平行线,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等5.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间6.方程组的解为,则被遮盖的两个数分别为()A.5,2B.1,3C.2,3D.4,27.把点(2,一3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是()A.(5,-1)B.(-1,-5)C.(5,-5)D.(-1,-1)8.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)9.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.10.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC 的中点,则点C所表示的数为()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.如果用(7,1)表示七年级一班,那么八年级五班可表示成▲.12.计算:=▲.13.把命题“等角的补角相等”写成“如果……,那么……”形式为:▲.14.已知是方程的解,则的值为▲.15.一个正数的两个平方根分别为a+3和2a+3,则a=▲.16.已知2a+3b+4=0,则▲.17.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为▲.18.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是▲.三、解答题(本大题共8小题,共58分)19.(本题满分8分)(1)解方程:(2)解方程组:20.(本题满分6分)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.21.(本题满分6分)在y=中,当时,y=;时,y=;时,y=,求的值.22.(本题满分6分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,铺设管道向两个小区输气.有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短.om(1)在图中标出点P、M、N的位置,保留画图痕迹;(2)设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1与L2的大小关系为:L1▲L2(填“>”、“<”或“=”).23.(本题满分6分)已知:如图AB⊥BC,BC⊥CD且∠1=∠2,试说明:BE∥CF.解:∵AB⊥BC,BC⊥CD(已知)∴▲=▲=90°(▲)∵∠1=∠2(已知)∴▲=▲(等式性质)∴BE∥CF(▲)24.(本题满分8分)与在平面直角坐标系中的位置如图.⑴分别写出下列各点的坐标:▲;▲;▲;⑵说明由经过怎样的平移得到?▲.⑶若点(,)是内部一点,则平移后内的对应点的坐标为▲;⑷求的面积.25.(本题满分8分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.26.(本题满分10分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于72000元,则B种商品是打几折销售的?2012~2013学年度第二学期期中测试20130418七年级数学答题纸(总分100分,时间100分钟)特别提醒:请同学们把答案按要求写在答题纸上规定的黑色矩形区域内,超出答题纸区域的答案无效!请在各题的规定区域内答题,超出该区域的答案无效!2012~2013学年度第二学期期中测试试题20130418七年级数学参考答案一、选择题题号12345678910答案CABACDCCBD二、填空题11、(8,5)12、13、如果两个角相等,那么这两个角的补角相等.或(如果两个角是相等的两个角的补角,那么这两个角相等.)14、315、-216、1317、(4,6)或(4,0)18、三、解答题19、(1)解:x-1=±2…………………………………………………………(2分)∴x=3或-1…………………………………………………………(4分)(2)解:①+②得:x=-1………………………………………(2分)把x=-1代入①得:y=2………………………………………(3分)∴原方程组的解为………………………………………(4分)(用代入法解参照给分)20、解:∵AB∥CD∴∠C+∠ABC=180°…………………………………………………(2分)∵∠C=140°∴∠ABC=40°……………………………………………(3分)又∵BE平分∠ABC∴∠ABD=∠ECB=20°………………………………………………(4分)又∵AB∥CDh∴∠BDC=∠ABD=20°……………………………………………(5分)∴∠EDC=180°-∠BDC=160°………………………………………(6分)21、解:由题意得:…………………………(3分)把c=0代入②、③得:……………………………(4分)解得:a=1,b=-3.………………………………(5分)∴a=1,b=-3,c=-7.…………………………(6分)22、解:(1)图略.画垂线段各2分,少直角标志扣1分,连接CD1分………(5分)(2)L1>L2………………………………(6分)23、解:∵AB⊥BC,BC⊥CD(已知)………………………………(每空1分,共6分)∴∠ABC=∠DCB=90°(垂直的定义)∵∠1=∠2(已知)∴∠EBC=∠FCB(等式性质)∴BE∥CF(内错角相等,两直线平行)24、解:(1)(-3,1);(-2,-2);(-1,-1);………(3分)(2)先向左平移4个单位,再向下平移2个单位或先向下平移2个单位,再向左平移4个单位………(4分)(3)(a-4,b-2)……………………………………………(5分)(4)将补成长方形,减去3个直角三角形的面积得:6-1.5-0.5-2=2………………………………………(8分)(补成其他图形均可,酌情给分)25、解:∠AGF=∠ABC.………………………………………(1分)理由如下:∵DE⊥AC,BF⊥AC∴∠AFB=∠AED=90°………………………………………(2分)∴BF∥DE………………………………………(3分)∴∠2+∠3=180°………………………………………(4分)又∵∠1+∠2=180°∴∠1=∠3………………………………………(5分)∴GF∥BC………………………………………(6分)∴∠AGF=∠ABC.………………………………………(7分)26、解:(1)设第1次购进A商品x件,B商品y件.由题意得:(2)设B商品打m折出售.由题意得:……………(8分)解得:m=9……………………………(9分) 答:B商品打9折销售的.。

温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷

温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷

浙江省温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷一、选择题(每小题4分,共40分)1.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,112.已知关于x的方程(2a+b)x﹣1=0无解,那么ab的值是()A.负数 B.正数 C.非负数D.非正数3.育英“红五月”晚会上有一首三人合唱歌曲,这首歌由三个长度相等的声部组成,A同学进入第二声部时,B同学开始唱,A同学进入第三声部时,C同学开始唱,每个人不间断地将整首歌唱四遍,然后结束,整首歌三个人同时唱歌的时间是整个时间的()A.B.C.D.4.若a=()﹣2,b=﹣|﹣|,c=(﹣2)3,则a,b,c的大小关系是()A.b<c<a B.b<a<c C.c<b<a D.a<c<b5.如图,∠MAN=16°,A1点在AM上,在AN上取一点A2,使A2A1=AA1,再在AM上取一点A3使A3A2=A2A1,如此一直作下去,到不能再作为止.那么作出的最后一点是()A.A5B.A6C.A7D.A86.已知:a,b,c满足a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17,则a+b+c的值等于()A.2 B.3 C.4 D.57.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°8.若代数式x3+ax2+bx+8其中有两个因式分别为x+1和x+2,则a+b的值为()A.8 B.7 C.15 D.219.如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④10.古希腊的毕达哥拉斯学派把1,3,6,10,…称为三角形数;把1,4,9,16,…称为数正方形数.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式符合以上规律的是()A.6+15=21 B.36+45=81 C.9+16=25 D.30+34=64二、填空题(每小题4分,共32分)11.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.12.分解因式:x3﹣9x=.13.如果a,b是任意两个不等于零的数,定义运算⊕如下(其余符号意义如常):a⊕b=,那么[(1⊕2)⊕3]﹣[1⊕(2⊕3)]的值是.14.若与的小数部分分别为a和b,则(a+3)(b﹣4)的值.15.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.16.已知方程(c是常数,c≠0)的解是c或,那么方程=(a是常数,且a≠0)的解是或.17.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=18.如图,在Rt△ABC中,∠B=90°,AP、CQ分别平分∠BAC、∠BCA,AP交CQ于I,连PQ,则S△IAC:S四边形ACPQ=.三、解答题(本题共48分)19.(1)计算:|﹣4|+(+1)0﹣(2)先化简,再选择一个你喜欢的整数代入求值:.20.如图,某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图.其中由于在三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入万元,二月份销售收入万元,三月份销售收入万元:(2)三月份男、女皮鞋的销售收入各是多少万元?21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:ME⊥BC.22.有一数列的首项既不是0,也不是1,而是由下列规则决定:位于首项后的每一项都等于1减去前一项的倒数,以此类推.(1)写出首项是3的数列的前6项;(2)写出首项是x的数列的前6项;(3)求出首项是x的数列的前2015项的乘积.23.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC 的度数.2015-2016学年浙江省温州市乐清市育英寄宿学校五校联考七年级(下)月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.2.已知关于x的方程(2a+b)x﹣1=0无解,那么ab的值是()A.负数 B.正数 C.非负数D.非正数【分析】根据一元一次方程ax=b无解,则a=0,b≠0,依此可以得出关于x的方程(2a+b)x﹣1=0中2a+b=0,从而得出ab的取值范围.【解答】解:关于x的方程(2a+b)x﹣1=0无解,则2a+b=0.∴有a=b=0或者a、b异号.∴ab的值为非正数.故选D.3.育英“红五月”晚会上有一首三人合唱歌曲,这首歌由三个长度相等的声部组成,A同学进入第二声部时,B同学开始唱,A同学进入第三声部时,C同学开始唱,每个人不间断地将整首歌唱四遍,然后结束,整首歌三个人同时唱歌的时间是整个时间的()A.B.C.D.【分析】设这首歌唱一遍的时间为3a分钟,分别求出合唱总时间,三个人同时唱歌的时间即可解决问题.【解答】解:设这首歌唱一遍的时间为3a分钟,由题意合唱总时间为4×3a+2a=14a,整首歌三个人同时唱歌的时间是a+3a×3=10a,故整首歌三个人同时唱歌的时间是整个时间的=.故选C.4.若a=()﹣2,b=﹣|﹣|,c=(﹣2)3,则a,b,c的大小关系是()A.b<c<a B.b<a<c C.c<b<a D.a<c<b【分析】利用负指数幂及绝对值的定义求解即可.【解答】解:∵a=()﹣2=4,b=﹣|﹣|=﹣,c=(﹣2)3=﹣8,∴c<b<a.故选:C.5.如图,∠MAN=16°,A1点在AM上,在AN上取一点A2,使A2A1=AA1,再在AM上取一点A3使A3A2=A2A1,如此一直作下去,到不能再作为止.那么作出的最后一点是()A.A5B.A6C.A7D.A8【分析】根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可分别求角另一等腰三角形中的底角与∠A的关系,最后根据三角形内角和定理进行验证不难求解.【解答】解:∵AA1=A1A2,∴∠AA2A1=∠A,∵∠A2A1A3=2∠A,∠A=16°,∴∠A2A1A3=32°,∵A1A2=A2A3,∴∠A2A3A=∠A2A1A3=2∠A,∴∠NA2A3=3∠A=48°,同理:∠A4A3M=4∠A=64°,∠NA4A5=5∠A=80°,∠NA6A5=6∠A=96°,∵如果存在A7点,则△A5A6A7为等腰三角形且∠NA6A5是△A5A6A7的一个底角,而∠NA6A5>90°,∴此假设不成立,即A7点不存在,∴作出的最后一点为A6,故选B.6.已知:a,b,c满足a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17,则a+b+c的值等于()A.2 B.3 C.4 D.5【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.【解答】解:由a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17得a2+2b+b2﹣2c+c2﹣6a+11=0,∴(a﹣3)2+(b+1)2+(c﹣1)2=0,∴a=3,b=﹣1,c=1,a+b+c=3.故选B.7.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质得到∠B=∠C,由角平分线的定义得到∠BDN=∠MDE,∠DEN=∠CEN,根据外角的性质得到∠B=∠DMN﹣∠BDM=∠DMN﹣∠MDE,∠C=∠MNE﹣∠NEC=∠MNE﹣∠NED,于是推出∠DMN﹣∠MDE=∠MNE﹣∠NED,即∠DMN+∠NED=∠ME+∠MDE,由于∠DMN+∠NED=∠MNE+∠MDE,∠DMN+∠NED=∠MNE+∠MDE=180°,得到∠NED=70°于是得到结论.【解答】解:∵AB=AC,∴∠B=∠C,∵DM平分∠BDE,EN平分∠DEC,∴∠BDN=∠MDE,∠DEN=∠CEN,∵∠B=∠DMN﹣∠BDM=∠DMN﹣∠MDE,∠C=∠MNE﹣∠NEC=∠MNE﹣∠NED,∴∠DMN﹣∠MDE=∠MNE﹣∠NED,即∠DMN+∠NED=∠ME+∠MDE,∵∠DMN+∠NED=∠MNE+∠MDE,∵∠DMN+∠NED=∠MNE+∠MDE=180°,∴∠NED=70°,∴∠DEA=180°﹣2∠NED=40°.故选A.8.若代数式x3+ax2+bx+8其中有两个因式分别为x+1和x+2,则a+b的值为()A.8 B.7 C.15 D.21【分析】由x3+ax2+bx+8其中有两个因式分别为x+1和x+2得到x=﹣1、x=﹣2肯定是关于x的方程x3+ax2+bx+8=0的两个根,所以将其分别代入该方程列出关于a、b的方程组,通过解方程组来求a、b的值,再代入计算即可求解.【解答】解:∵代数式x3+ax2+bx+8其中有两个因式分别为x+1和x+2,∴x=﹣1、x=﹣2肯定是关于x的方程x3+ax2+bx+8=0的两个根,则,即,解得,a+b=7+14=21.故选:D.9.如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,证明结论正确;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,∴∠F=(∠BAC﹣∠C);③正确;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,故选D.10.古希腊的毕达哥拉斯学派把1,3,6,10,…称为三角形数;把1,4,9,16,…称为数正方形数.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式符合以上规律的是()A.6+15=21 B.36+45=81 C.9+16=25 D.30+34=64【分析】符合条件的两个三角形数要满足二个条件:两个三角形数之和等于正方形数,两个三角形数之差等于正方形数的平方根.【解答】解:A、6+15=21,15﹣6=9≠,所以A是错误的;B、36+45=81,45﹣36=9=,所以B是正确的;C、9+16=25,16﹣9=7≠,所以C是错误的;D、30+34=64,34﹣30=4≠,所以D是错误的.故选B.二、填空题(每小题4分,共32分)11.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=57°.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.12.分解因式:x3﹣9x=x(x+3)(x﹣3).【分析】根据提取公因式、平方差公式,可分解因式.【解答】解:原式=x(x2﹣9)=x(x+3)(x﹣3),故答案为:x(x+3)(x﹣3).13.如果a,b是任意两个不等于零的数,定义运算⊕如下(其余符号意义如常):a⊕b=,那么[(1⊕2)⊕3]﹣[1⊕(2⊕3)]的值是.【分析】按照新规定的规律代入求值即可.【解答】解:[(1⊕2)⊕3]﹣[1⊕(2⊕3)]=⊕3﹣1⊕=÷3﹣=﹣.14.若与的小数部分分别为a和b,则(a+3)(b﹣4)的值﹣13.【分析】先估算出的范围,再求出9+和9﹣的范围,求出a、b的值,即可求出答案.【解答】解:∵3<<4,∴12<9+<13,﹣4<﹣<﹣3,∴a=9+﹣12=﹣3,5<9﹣<6,∴b=9﹣﹣5=4﹣,∴(a+3)(b﹣4)=(﹣3+3)×(4﹣﹣4)=﹣13,故答案为:﹣13.15.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于4.【分析】已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.【解答】解:∵m﹣n2=1,即n2=m﹣1≥0,m≥1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12,则代数式m2+2n2+4m﹣1的最小值等于(1+3)2﹣12=4.故答案为:4.16.已知方程(c是常数,c≠0)的解是c或,那么方程=(a是常数,且a≠0)的解是或.【分析】观察方程(c是常数,c≠0)的特点,发现此方程的左边是未知数与其倒数的和,方程右边的形式与左边的形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接求解.本题需要将方程=变形,使等号左边未知数的系数变得相同,又等号右边的代数式可变为++.为此,方程的两边同乘2,整理后,即可写成方程的形式,从而求出原方程的解.【解答】解:原方程变形为=++,方程的两边同乘2,得2x+=a+3+,两边同时减去3,得2x﹣3+=a+,∴2x﹣3=a或2x﹣3=,∴x=或x=.故答案为,.17.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=2或﹣3【分析】首先把等式移项a3+a2﹣3a+2﹣++=0,然后分组,分别利用立方和公式、完全平方公式、分解因式得到(a+)(a++3)(a+﹣2)=0,由此即可求出结果.【解答】解:∵实数a满足a3+a2﹣3a+2=﹣﹣,∴a3+a2﹣3a+2﹣++=0,∴a3++a2++2﹣3(a+)=0,(a+)(a2﹣1+)+(a+)2﹣3(a+)=0,(a+)(a2﹣1++a+﹣3)=0,∴(a+)[(a+)2+(a+)﹣6]=0,∴(a+)(a++3)(a+﹣2)=0,而a+≠0,∴a++3=0,或a+﹣2=0,∴a+=﹣3或2.故答案为:﹣3或2.18.如图,在Rt△ABC中,∠B=90°,AP、CQ分别平分∠BAC、∠BCA,AP交CQ于I,连PQ,则S△IAC:S四边形ACPQ=1:2.【分析】在AC上截取CE=CP,AF=AQ,连接IE、IF,作FN⊥IE于N,QM⊥AI于M,只要证明△CIP≌△CIE,△IAF≌△IAQ,以及S△IMQ=S△INF即可解决问题.【解答】解:在AC上截取CE=CP,AF=AQ,连接IE、IF,作FN⊥IE于N,QM⊥AI于M.在△CIP和△CIE中,,∴△CIP≌△CIE,同理△IAF≌△IAQ,∴S△CIP=S△CIE,S△AIF=S△AIQ,PI=PE,IQ=IF,∠CIP=∠CIE,∠AIQ=∠F,∵∠B=90°,IC平分∠ACB,IA平分∠BAC,∴∠AIC=90°+∠B=135°,∴∠CIP=∠CIE=∠AIQ=∠EIF=45°,在△IMQ和△INF中,,∴△INF≌△IMQ,∴FN=QM,∵S△IMQ=•PI•QM,S△INF=•IE•NF,∴S△INF=S△IMQ,∴S△AIC=S△CIE+S△EIF+S△IAF=S四边形ACPQ.故S△IAC:S四边形ACPQ=1:2.故答案为1:2.三、解答题(本题共48分)19.(1)计算:|﹣4|+(+1)0﹣(2)先化简,再选择一个你喜欢的整数代入求值:.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=4+1﹣2=5﹣2;(2)原式=•=,当x=2时,原式=2.20.如图,某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图.其中由于在三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入50万元,二月份销售收入60万元,三月份销售收入90万元:(2)三月份男、女皮鞋的销售收入各是多少万元?【分析】(1)根据所占百分比计算;(2)设二月份男、女皮鞋的销售收入分别为x万元、y万元,表示出三月份男、女皮鞋的销售收入.根据两个月的销售收入分别列方程求解.【解答】解:(1)一月份销售收入为200×25%=50万元,二月份销售收入为200×30%=60 万元,三月份销售收入为200×45%=90 万元.故答案为50,60,90;(2)设二月份男、女皮鞋的销售收入分别为x万元、y万元,根据题意得解之得.1.4x=42,1.6y=48答:三月份男、女皮鞋的销售收入分别为42万元、48万元.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:ME⊥BC.【分析】(1)首先根据∠BAC=90°,AF⊥AE可得∠1=∠2,然后根据FC⊥BC,得出∠B=∠FCA=45°,根据条件利用ASA证明△ABE≌△ACF,继而可得BE=CF;(2)过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.【解答】证明:(1)∵∠BAC=90°,AF⊥AE,∴∠1+∠EAC=90°∠2+∠EAC=90°∴∠1=∠2,又∵AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠FCA=90°﹣∠ACB=90°﹣45°=45°,∴∠B=∠FCA,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.22.有一数列的首项既不是0,也不是1,而是由下列规则决定:位于首项后的每一项都等于1减去前一项的倒数,以此类推.(1)写出首项是3的数列的前6项;(2)写出首项是x的数列的前6项;(3)求出首项是x的数列的前2015项的乘积.【分析】(1)按照运算规则,逐个找出数列的前六项;(2)按照运算规则,逐个找出数列的前六项;(3)结合(1)(2)发现该规则下的数列以3为周期,按照a1、a2、a3循环的,再结合2015÷3=671…2,即可得出结论.【解答】解:数列中第n项用a n来代替.(1)按照规则:a1=3,a2=1﹣=,a3=1﹣=﹣,a4=1﹣=3,a5=1﹣=,a6=1﹣=﹣.故首项是3的数列的前6项为:3,,﹣,3,,﹣.(2)按照规则:a1=x,a2=1﹣=,a3=1﹣=﹣,a4=1﹣=x,a5=1﹣=,a6=1﹣=﹣.故首项是x的数列的前6项为:x,,﹣,x,,﹣.(3)结合(1)(2)发现数列是以3为周期,按照前三个数一直循环的.∵2015÷3=671…2,而a1×a2×a3=x••=﹣1,∴a1×a2×a3×…×a2015=(﹣1)671×a1×a2=1﹣x.故首项是x的数列的前2015项的乘积为1﹣x.23.如图,点P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,求∠APC 的度数.【分析】作辅助线,在AC的延长线上截取AF=AB,连BF,PF,延长AP交BC于D,交BF于E,则可证得△APB≌△APF,则AP为BF的垂直平分线,结合∠PBA=8°可得∠CBF=30°=∠CBP,∠BFP=60°=∠BPF,可得BC平分PF,进一步可求出∠APC的度数.【解答】解:在AC的延长线上截取AF=AB,连BF,PF延长AP交BC于D,交BF于E∠BPE=∠BAP+∠ABP=30°=∠PBC则△APB≌△APF∴AP垂直平分BF,∠AFP=8°∴∠FPE=∠BPE=30°∠CBF=30°=∠CBP,∠BFP=60°=∠BPF∴BC垂直平分PF∴∠CPF=∠CFP=8°∴∠DPC=38°∴∠APC=142°初中数学试卷金戈铁骑制作。

2013年下期七年级期中考试数学试卷.doc

2013年下期七年级期中考试数学试卷.doc

2013年下期七年级期中考试数学试卷满分 100分 时间 90分钟一、选择题(共24分,每小题3分)1. -2的相反数是( )A .2B .-2C .21 D . 21- 2. 一个数和它的倒数相等,则这个数是( )A .1B .1-C .±1D .±1和0 3. 零是( )A 正有理数B 正数C 非正数D 有理数 4. 下列各组数中,数值相等的是( )A .33)2(2--和 B .22)2(2--和 C .2332--和 D .1010)1(1--和5. 在三个连续的奇数中,最大的一个是1+2n ,那么最小的一个是( ) A 、2n -1 B 、2n -3 C 、2(n -1) D 、2(n -2)6. 下列式子中错误的是( ) A 、x 的21倍与y 的3倍的和是y x 321+ B 、a 的31与b 的和的平方是2)31(b a +C 、两数的平方和加上它们的积的2倍是ab b a 2)(2++ D 、三个数的积减去7是7-abc 7. 买了5千克橘子,花了 m 元,则这种橘子的单价是( ). A .m 5元 B .5m元 C .5m 元 D .(m -5)元 8. 下列各组中,不是同类项的是( )A 、2235.0ab b a 与 B 、y x y x 2222-与 C 、315与 D 、mm x x 32--与二、填空题(共24分,每小题3分)9. 绝对值等于10的数是 .10. 若0)5b (2a 2=-++,则a b的值是 .11. 用科学记数法表示13 040 000,应记作_______________.班次 考号 姓名12. 在数轴上与-3距离四个单位的点表示的数是__________. 13. 213R π的系数是_____,次数是_____. 14. 比较大小 -87 -76 15. 我校七年级学生在今年植树节中栽了m 棵树,若八年级学生栽树比七年级多n 棵,则两个年级共载树____棵。

2012-2013年七年级第二学期期中考试数学试卷

2012-2013年七年级第二学期期中考试数学试卷

2012---2013年度第二学期期中考试七年级数学试卷一、慎重选一选(每题3分,共24分) 1.下列计算正确的是( ) A. B.C.D.2.我们身处在自然环境中,一年接受的宇宙射线及其他天然辐射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗)用科学记数法表示为 A. 西弗 B. 西弗 C. 西弗 D. 西弗3.下图中,与是同位角的( )A. B. C. D. 4.如图,直线//,交于点,,则等于( )A. B.C. D.5.用两个边长分别为,,的直角三角形和一个两条直角边都是的直角三角形拼成下图,通过用不同的方法计算这个图形的面积,可以得到哪一个等式( ) A. B.第5题_ 第4题 _ B_ A_ E_ F_ D_ C 班级 姓名 考试号……………………………………………… 装…… 订…… 线…………………………………………………C.D.6.有这样一个多边形,它的内角和是它的外角和的2倍,则它是()A. 四边形B. 五边形C. 六边形D. 八边形7.若,,,则、、大小为()A. B. C. D.8. 计算的结果为()A.-2B.C.D.二、细心填一填(每题3分,共30分)9.已知△ABC的面积为3 cm2,AD是此三角形的中线,则△ADB的面积为 cm2。

10.如图,写一个使∥的条件。

11.小明从一个十边形花圃的边上中点点出发,沿着它的边步行一周,仍回到点,小明转过的角度是多少。

12.已知一个三角形的两边长分别为5和2,若第三边长为偶数,此三角形周长为。

13.已知是方程组的解,则。

14.两个正方形的边长和为20,它们的面积的差为40,则这两个正方形的边长差为。

15.在长为30,宽为20的草地上造两条宽均为1互相垂直的小道(如图),则剩余草地面积为。

16. 已知,,则。

17. 如图,将一个长方形折成如图的形状,若已知,则。

18. 个位上数字是。

三、用心解一解(96分)19. 在等式中,当时,;时,,求、的值(6分)20.中,、分别为角平分线和高,若,,求(6分)21. 计算(28分)(1)(2)(3)(为整数)(4)(5)(6)(7)22.因式分解(12分)(1)(2)(3)23.先化简再求值(6分),其中,24.中,、分别平分、,,求度数25.如图两个半圆的半径分别为①用,表示阴影部分面积 ②计算当,时, 阴影部分的面积(10分)26.周六,小明、小军一块做作业,小明画了一个,并度量了,小军把直角三角尺放在上,并使三角尺的两条直角边、恰好经过、,小军变化的位置发现,的值不变,请你帮助他们说明理由。

浙江省乐清市育英寄宿学校七年级数学下学期期中试题(实验班) 浙教版

浙江省乐清市育英寄宿学校七年级数学下学期期中试题(实验班) 浙教版

浙江省乐清市育英寄宿学校2014-2015学年七年级数学下学期期中试题(满分100分 时间:90分钟一、选择题(本题有10小题,每小题3分,共30分) 1、已知a <b ,下列式子不成立的是( )A 、a +1<b +1B 、3a <3bC 、-2a <-2bD 、a <b +1 2、已知等腰三角形两边长分别为4和6,则它的周长是( )A 、14B 、15C 、16D 、14或163、能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的 两个角是( )A .120°,60° B.95.1°,104.9° C.30°,60° D .90°,90° 4、若2x =是不等式x a <的一个解,则a 的取值范围是( ) A .a <2B .a ≤2C .a ≥2D .a >25、如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE =5,AE =8, 则BE 的长度是( )A. 5B. 5.5C. 6D. 6.56. 用角尺平分一个任意角.做法如下:如图所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.做法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL7. 直角三角形纸片的两直角边AC 、BC 的长分别为8、6,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( ) A .2 B.34 C .47D .无法计算 8、.如图,已知每个小方格的边长为1,A 、B 、C 三点都在小方格的顶点上,则点C 到AB 所在直线的距离等于( )A.810 B. 108 C. 104 D. 410CBA9、.某商品的标价比成本价高m %,根据市场需要,该商品需降价n %出售, 为了不亏本,n 应满足( ) A.m n ≤ mm n B +≤100100. m m C +≤100. mmn D -≤100100.10.已知:如图在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 三点在同一条直线上,连结BD ,BE .以下四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°; ④∠ACE =∠DBC 其中结论正确的个数有( ) A . 4B. 3C. 2D. 1二、填空题(本题有8小题,每小题3分,共24分)11、在△ABC 中,AB =AC =10,BC =12,则△ABC 的面积为_________. 12.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=13、已知关于x 的不等式(1﹣a )x >2的解集为x <,则a 的取值范围是 .14.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =4, 则点P 到AB 的距离是 .15.如图,在△ABC 中,AB =20,AC =12,BC =16,把△ABC 折叠, 使AB 落在直线AC 上, 则重叠部分(阴影部分)的面积是16.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C = 度. 17.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点 在相互平行的三条直线1l ,2l ,3l 上,且1l ,2l 之间的距离 为1, 2l ,3l 之间的距离为2,,则AC 的长是 .18.如图,已知OM ⊥ON , 正三角形ABC 的边长为1, 点A 、B 分别在射线OM ,ON 上滑动,在滑动过程中,ll 2 l 3ACB第16题第14题图A BAB连结OC ,则OC 的长的最大值是 . 三、解答题(本大题共6小题,满分46 分) 19.(6分)解不等式(组):(1)(2)⎪⎩⎪⎨⎧>+->x x x x 23123并写出该不等式组的整数解.20.(6分)请在下图方格中任意画出两个以AB 为腰的等腰三角形ABC . (要求:一个为锐角三角形,一个为钝角三角形)21.(6分)如图,已知D 为△ABC 的边BC 延长线上一点,DF ⊥AB 于F 交AC 于E ,∠A =35°,∠D =42°.(1)求∠B 的度数.(2)求∠ACD 的度数.22、(本题8分)如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE ⊥GF 交AB 于点E ,连接EG 。

2013年七年级下期中数学试卷及答案

2013年七年级下期中数学试卷及答案

数学试卷一、选择题:(共10小题,每小题2分,共20分)1.在同一平面内,两条直线的位置关系是()A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在()A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是()4.如图,将左图中的福娃“欢欢”通过平移可得到图为()A.B.C.D.5.若0xy=,则点P(x,y)一定在()A.x轴上.B.y轴上.C.坐标轴上.D.原点.6.二元一次方程21-=x y有无数多组解,下列四组值中不是..该方程的解的是()A.12xy=⎧⎪⎨=-⎪⎩B.11xy=-⎧⎨=-⎩C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩7.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=∠4.B.∠B=∠DCE.C.∠1=∠2.D.∠D+∠DAB=180°.8.下列说法正确的是()A、25的平方根是5B、22-的算术平方根是2C、8.0的立方根是2.0D、65是3625的一个平方根9.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补.C.相等的角是对顶角.D.有且只有一条直线与已知直线垂直.10.已知点P位于y轴右侧、x轴下方,距y轴3个单位长度,距离x轴4个单位长度,则点P坐标是()A、(3,4)B、(3,-4)C、(4,-3)D、(4,3)12B.12A.12C.1 2D.C第7题图七 年 级 数 学 试 题一、精心选择(每小题3分,共30分)1.在平面直角坐标系中,点P (-2,3)在 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2. 如图,右边的图形中,经过平移能得到左边的图形的是( )3. 在-1.414,2,π, 3.14,2+3,3.212212221…,3.14这些数中,无理数的个数为( ). A.5 B.2 C.3 D.4 4.把一块直尺与一块三角板如图放置,若145∠=°, 则2∠的度数为A .115°B .120°C .145°D .135°5、已知⎩⎨⎧=+=+25ny x y mx 的解为⎩⎨⎧-==13y x ,则m mn )2(等于( )www .Xkb1. coMA 、4B 、8C 、16D 、326、实数7- ,-2,-3的大小关系是( )A.237---B. 273---C. 372---D.723---7、在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③ 94的平方根是32;④0.01的算术平方根是0.1;⑤24a a ±=,其中正确的有( )A.1个B.2个C.3个D.4个8. 某正数的平方根为3a 和392-a ,则这个数为( ).A. 1B. 2C. 4D. 99..如图,已知EF ∥BC,EH ∥AC,则图中与∠1互补的角有( )A.3个B.4个C.5个D.6个10. 在平面直角坐标系中,若点P (m ,1)在第二象限,则点Q (-m ,0)在( ). A. x 轴正半轴上 B.y 轴正半轴上 C.x 轴负半轴上 D .y 轴负半轴上_ A_ B_ C_ D二、细心填空(每小题3分,共30分)11.点P (-2,3)关于X 轴对称点的坐标是_____ 。

2012-2013学年七年级下期中检测数学试卷及答案

2012-2013学年七年级下期中检测数学试卷及答案

浙江省2012-2013学年第二学期期中检测七年级数学试卷2013.04一、选择题(每小题3分,共30分)1.在下列各式中,正确的是…………………………………………………… ( )A. x 2²x 3=x 6B. (x 2)3=x 5C. x 2+x 2=2x 2D. x 4²x 3=x12 2.如图,已知∠1=∠2,则有………………………………………………… ( )A .AB ∥CD B. AD ∥BCC. AB ∥CD 且AD ∥BCD. 都不对第2题 第5题 第6题3.一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐…………………………………………( )A .0° B.50° C. 130° D. 150°4.设()()A b a b a +-=+223535,则A=………………………………………( ) A. 30ab B. 60ab C. 15ab D. 12ab5.如图,已知AB∥ CD ,AD∥ BC ,∠ B =60°,∠ EDA =50°,则∠ CDO =( )A .50°B 。

60° C. 70° D. 80°6.如图,将边长为2个单位的等边三角形ABC 沿BC 方向平移1个单位得到三角形DEF ,则四边形ABFD 的周长为………………………………………………………………( )A. 6B. 8C. 10D. 127.用科学记数方法表示0000907.0,得……………………………………………( )A. 41007.9-⨯B. 51007.9-⨯C. 6107.90-⨯D. 7107.90-⨯8. 方程x+y=5的正整数解有A. 1个B. 2个C. 3个D. 4个9.已知,5,3==ba x x 则=-b a x 23…………………………………………………( ) A. 2527 B. 109 C. 53 D. 52 10.计算20132012)2()2(-+-所得结果是………………………………………………( ) A. 20122 B. 20122- C. 1 D. 2二、填空题(每小题4分,共24分)B F4321D C B A E D C B A11.计算(x-2)(-x-2)= .12.若x a+1+y b-2=8是关于x 、y 的二元一次方程,则a= ,b= .13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C ,D 分别落在C ′,D′的位置上, EC′交AD 于点G ,已知∠EFG=58°,那么∠BE G =_______度.14.设12142++mx x 是一个完全平方式,则m =_______。

浙江育英学校2013-2014学年七年级实验班数学期中考试试卷(附答案)

浙江育英学校2013-2014学年七年级实验班数学期中考试试卷(附答案)

HGF ECBA2013-2014学年七年级实验班数学期中考试试卷温馨提示:1.本试卷共有23道小题,满分为100分,考试时间90分钟。

2.所有解答要求写在答题卷.....上,否则不给分。

一、选择题(共10小题,每小题3分,满分30分)1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ▲ )A .两点确定一条直线B .两点之间直线最短C .两点之间线段最短D .直线比曲线短2.尽管受到国际金融危机的影响,但我市经济依然保持了平稳增长。

据统计,截止到今年4月底,我市金融机构存款余额约为1193亿元,用科学计数法应记为( ▲ ) A .101.19310⨯元 B. 111.19310⨯元 C .121.19310⨯元 D. 131.19310⨯元 3.16的平方根是( ▲ )A .4B .±4C .2D .±24. 已知35ab x,x ,==则32a b x -=( ▲ )A.2B.910 C.35 D.27255.钟表上2时25分时,时针与分针所成的角是 ( ▲ )A. 77.5 °B. 77 °5′C. 75°D. 76°6. 若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ▲ )A.43-B.43C.34D.34- 7.方程110132011755331=⨯+⋯+⨯+⨯+⨯xx x x 的解是 =x ( ▲ ) A .20132012 B.20122013 C.10062013 D.201310068.如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B , 若∠ABE =45°,∠GBH =30°,那么∠FBC 的度数为( ▲ ) A .12° B .15° C .25° D .30°9.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲ECD的速度的4倍,则它们第2000次相遇在边( ▲ ) A .AB 上 B .BC 上 C .CD 上 D .DA 上10. 如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP= 50°,则∠GHM 的大小是( ▲ )A .30°B .40°C .50°D .60°二、填空题(共8小题,每小题3分,满分24分)11. 若523m x y +与3n x y 的和是单项式,则mn = ▲ .12. 在21,π,311,25,0.575775777…(两个5之间依次多一个7),227-这六个数中,属于无理数的个数有 ▲ 个.13.已知x A 2=-1,B 是多项式,在计算A B +时,小马虎同学把A B +看成了B-A ,结果得x x 212+,则A B += ▲ . 14.如图所示,数轴上表示25,的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是____ ▲______.15.将数84960精确到百位,得到的近似值可以表示为________ ▲___________.16.如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=850, 则∠CGO 的度数为 ▲ °.17.已知α、β都是钝角,甲、乙、丙、丁四人计算)(61βα+的结果依次为26°、50°、72°、90°,其中有正确的结果,那么计算正确的人是 ▲ .18.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1
七年级下册数学期末复习卷(一) 班级__________ 姓名_________
一、选择题(本大题共10个小题,每小题3分,满分30分)
1.观察下图,在下图四幅图案中,能通过图案(1)的平移得到的是 ( )
2.下列计算中正确的是:( ) A 2
3
6
a a a ⨯= B 23
5()a a =
C 623a a a ÷=
D 33
3
23a a a +=
3.二元一次方程组⎩⎨
⎧=+=+4
26
34y x y x 的解是( )
A .
B .
C .
D . 4.若(x+4)(x-2)= q px x ++2
,则p 、q 的值是( )
A . 2,8
B -2,-8
C -2,8
D 2,-8 5.用科学记数法表示0.00000310得( )
A .10×10-5
B 3.1×10-6
C 3.1×10-7
D 3.10×10-6
6. 如图1,梯子的各条横档互相平行,若∠1=70o
,则∠2的度数是( )
A .80o
B .110o
C .120o
D .140o
7.若⎩⎨⎧x =-1y =2
是方程3x +my =1的一个解,则m 的值是 ( )
A. -1
B. 1
C. -2
D. 2 8.为了应用2
2
()()a b a b a b +-=-的公式计算(21)(21)x y x y +--+, 下列变形正确的是( )
A []2
(21)x y -+ B [][](21)(21)x y x y --+- C [][](2)1(2)1x y x y -+-- D []2
(21)x y ++
9.两个角的两边分别平行,其中一个角是60°,则另一个角是 ( )
A. 60°
B. 120°
C. 60°或120°
D. 无法确定 10、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降l 元, 结果只花了48元,那么甲种钢笔可能购买( )
A. 11支
B. 9支
C. 7支
D. 5支 二、填空题(本大题共8个小题,每小题3分,满分24分) 11.已知二元一次方程2x+y=1,则用x 的代数式表示y =
____________________-
(1) A B C D
⎩⎨⎧=-=23
y x ⎩⎨⎧-==1
2y x ⎩⎨⎧-==23y x ⎩⎨⎧=-=1
2
y x
12.()
()2
2011
011 3.142π-⎛⎫
-+-+- ⎪⎝⎭
=___________
2
15.如图,一块三边形绿化园地,三角都做有半径为R 的圆形喷水池,则这三个喷水池占去的绿化园地(阴影部分)的面积为 ____________ (保留 π )
16.若代数式2
9x mx ++是完全平方式,那么m 的值是—————————
17.将一条两边沿互相平行的纸带按如图所示折叠,已知∠1=76°,则∠2 的度数为___- 18.若2,1a b a c -=-=,则(b-c )2
的值为________ 三、解答题(本大题共6个小题,满分46分) 19.解下列方程组 (或,计算.)(6分)
(1)
{
1021
x y x y +=-= (2)()()222223366m m n m n m -÷--
20. 如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向左 平移2
格,再向上平移3格,其中每个格子的边长为
1个单位 长度.(6分)
(1)请在图中画出平移后的△A′B′C′; (2)求△ABC 的面积
21.已知:如图,CD ⊥AB ,GF ⊥AB ,∠B =∠ADE 。

请说明∠1=∠2.的理由。

(8分)
22.先化简,再求值:(8分)
F 2
1
G
E
D
C
B
A
3(m+1)2-5(m+1)(m-1)+2m(m-1),其中m=-1
23.(10分)乐清仙乐旅行社拟在暑假期间面向学生推出“楠溪江一日游”活动,收费标准如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花赞18 000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?
24.(10分)操作探究:图a是一个长为2m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b的形状拼成一个正方形。

(1)你认为图b中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图b中阴影部分的面积。

图a 图b
方法1:
方法2:
(3)观察图b 你能写出下列三个 代数式之间的等量关系吗?
代数式: ()()22
, , .m n m n mn +-
(4)根据(3)题中的等量关系,解决如下问题: 若5,7==+ab b a ,求2
)(b a -的值。

(5)已知:如图,现有的a ×a ,b ×b 正方形和a ×b 的矩形纸片若干块,试选用这些纸片(每种至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,作出的图中必须保留拼图的痕迹),使拼出的矩形面积为2a 2
+5ab+2b 2
,并标出此矩形的长和宽.
育英学校七年级(普)第二学期数学期中答题卷
前言:请看清题目的要求,并细心、认真地解题,相信你会考出理想的成绩.加油吧!
一、选择题(本题共10小题,每小题3分,共30分,选错、多选、不选都给零分)

、填空题(本题共8小题,每小题3分,共24分)
11、______________ 12、________________ 13、________________
14、______________ 15、________________ 16、_______________
17、______________ 18、_________________ 三、解答题(共46分)
19.解下列方程组 (或计算.)(6分)
(1)
{1021
x y x y +=-= (2)(
)()2
2
2223366m m
n m n m -÷--
20. 如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向左平移2格,再向上平移3格,其中每个格子的边长为1个单位长度.(6分) (1)请在图中画出平移后的三角形A′B′C′; (2)求△ABC 的面积 ;
21.已知:如图,CD ⊥AB ,GF ⊥AB ,∠B =∠ADE 。

请说明∠1=∠2.的理由。

(8分)
22.先化简,再求值:(8分)
3(m+1)2
-5(m+1)(m-1)+2m(m-1),其中m=-1
23.(10
分)乐清仙乐旅行社拟在暑假期间面向学生推出“楠溪江一日游”活动,收费标准如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花赞18 000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?
F
2
1
G
E
D
C
B A
24.(10分)操作探究:图a 是一个长为2m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。

(1)你认为图b 中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图b 中阴影部分的面积。

图a 图b
方法1:
方法2:
(3)观察图b 你能写出下列三个 代数式之间的等量关系吗?
代数式: ()()22
, , .m n m n mn +-
(4)根据(3)题中的等量关系,解决如下问题: 若5,7==+ab b a ,求2
)(b a -的值。

(5)已知:如图,现有的a×a,b×b 正方形和a×b 的矩形纸片若干块,试选用这些纸片(每种至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,作出的图中必须保留拼图的痕迹),使拼出的矩形面积为2a 2
+5ab+2b 2
,并标出此矩形的长和宽.。

相关文档
最新文档