第6章第7节定积分的几何应用
第六章 定积分的应用
第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。
教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等. 教学难点:1、 截面面积为已知的立体体积.2、引力。
§6. 1 定积分的元素法回忆曲边梯形的面积:设y =f (x )≥0 (x ∈[a ,b ]).如果说积分,⎰=ba dxx f A )(是以[a ,b ]为底的曲边梯形的面积,则积分上限函数⎰=xa dtt f x A )()(就是以[a ,x ]为底的曲边梯形的面积.而微分dA (x )=f (x )dx 表示点x 处以dx 为宽的小曲边梯形面积的近似值∆A ≈f (x )dx , f (x )dx 称为曲边梯形的面积元素.以[a ,b ]为底的曲边梯形的面积A 就是以面积元素f (x )dx 为被积表达式,以 [a ,b ]为积分区间的定积分:⎰=ba dxx f A )(.一般情况下,为求某一量U ,先将此量分布在某一区间[a ,b ]上,分布在[a ,x ]上的量用函数U (x )表示,再求这一量的元素dU (x ),设dU (x )=u (x )dx ,然后以u (x )dx 为被积表达式,以[a ,b ]为积分区间求定积分即得⎰=ba dxx f U )(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积 1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成,则面积元素为[f 上(x ) f 下(x )]dx ,于是平面图形的面积为dxx f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=dc dyy y S )]()([左右ϕϕ。
高等数学第六章《定积分的应用》
第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
定积分在几何学上的应用
成的图形的面积.
解 两曲线的交点
y2 2x y x4
(2 , 2 )(,8 ,4 ).
yx4
y2 2x
选 y为积分变量 y[2,4]
dAy4y2dy
4
A dA18.
2
2
整理ppt
6
如果曲边梯形的曲边为参数方程
x y
(t) (t)
曲边梯形的面积 A t2(t)(t)d.t t1
( 其 中 t 1 和 t 2 对 应 曲 线 起 点 与 终 点 的 参 数 值 )
就得半径为a
的球体的体积
4 3
a3
.
整理ppt
21
2
2
2
例 9 求星形线 x 3 y 3 a 3 (a 0)绕 x轴旋转
构成旋转体的体积.
y
2
2
2
解 y3 a3 x3,
y2
a32
2
x3
3
a
x[a,a]
o
ax
旋 转 体 的 体 积
V
aaa32
2
x3
3
dx
32 a3 105
.
整理ppt
22
25
绕 y 轴 旋 转 的 旋 转 体 体 积 2ayC B xx2(y)
可看作平面图OABC与OBC o xx1(y)
A
2a x
分别绕y轴旋转构成旋转体的体积之差.
Vy
2ax22(y)dt
0
2ax12(y)dt
0
a2(tsit)n 2asitn dt 2 a2(tsit)n 2asitn dt 0
0
整理ppt
28
例 求曲线 y3x21 与 x 轴围成的封闭图形
第6章定积分 - 精品课程网
2、 直径为 20cm,高为 80cm 的圆柱体内充满压强为 10N/ cm2 的蒸气,设温度保持不变,要
使蒸气体积缩小一半,问需要作多少功?
3、 有一等腰梯形闸门,它的两条底边各长 10m 和 6m,高为 20m,较长的底边与水面相齐,计 算闸门的一侧所受的水压力。
⎩x,
当x ∈[0,1)时,求 Φ(x) =
x
f (t)dt 在[0,2]上的表达式,并讨论
当x ∈[1,2]时.
0
Φ(x) 在(0,2)内的连续性。
∫ ∫ 8、 设 f(x) 在 [a,b] 上 连 续 且 f(x)>0,F(x)=
x
f (t)dt +
x
dt
, x ∈[a,b]. 证 明 :
a
b f (t)
∫b) π sin 2 kxdx = π . −π
∫ 5、设 k 及 l 为正整数,且 k ≠ l,证明 π cos kx sin lxdx = 0. −π
∫ 6、设 f(x)在[a,b]上连续,在(a,b)内可导且 f ′(x) ≤ 0, F (x) = 1
x
f (t)dt. 证明在(a,b)
x−a a
4、 设有一长度为 L,线密度为 ρ 的均匀细直棒,在与棒的一端垂直距离为 a 单位处有一质
量为 m 的质点 M,试求这 的物体从地球表面升高到 h 处所作的功是W = k mMh 其中 k R(R + h).
是引力常数,M 是地球的质量,R 是地球的半径;
积。
2、 证明:由平面图形 0 ≤ a ≤ x ≤ b,0 ≤ y ≤ f (x) 绕 y 轴旋转所成的旋转体的体积为:
∫ V = 2π
第六章 定积分的概念及应用
解: 画图,求得交点(-1,1)及(3,9) 3 32 2 由公式 A ( 2 x 3 x )dx 1 3
1 2 A ( y 4 y )dy 18 2 2 问:若选x为积分变量如何?
4
mathsoft
二.参数方程情况 例3. 求椭圆 x a cos t , y b sin t 所围成的面积。 第 解: 由对称性 二
若干个分点
a x 0 x1 x 2 x n 1 x n b
n 个小区间,各小区间的长度依次为 把区间[a, b]分成
x i x i x i 1 ,( i 1,2,) , 在各小区间上任取
作乘积 f ( i )x i 一点 i ( i x i ),
解: 1 选取变量 [ , ];
。
[ , d ]; 2 取微区间
3 面积A
。
。
1 2 d 2
mathsoft
例5.
计算心形线(或心脏线 )r a (1 cos ) (a 0)所围图形面积. 第 二 节 解: 0,2 2 1 2 平 A a 1 cos d 面 2 0 图 2 2 对称性 ( 1 2 cos cos )d 形 a 0 的 sin 2 3 2 2 面 a 2 sin a 积 2 4 0 2
错误!为什么?
mathsoft
三、存在定理
第 一 节 定 积 分 的 概 念
定理1 当函数 f ( x ) 在区间[a , b] 上连续时,
则 f ( x ) 在区间[a , b] 上可积.
定理2 设函数 f ( x ) 在区间 [a , b] 上有界, 且只有有限个间断点 (第一类间断点),
第六章 定积分及其应用
称为定积分的换元公式. 称为定积分的换元公式
定理2.4 设u(x),v(x)在区间 在区间[a,b]上有连续导数,则 上有连续导数, 定理 在区间 上有连续导数
∫ u( x) v′( x) dx = u( x)v( x)
a
b
b a
− ∫ u ′( x ) v ( x ) dx.
a
b
称为定积分的分部积分公式. 称为定积分的分部积分公式 例2 计算下列定积分
注: (1)定积分仅与被积函数及积分区间有关 , 而与积分变量 定积分仅与被积函数及积分区间有关 用什么字母表示无关.即 用什么字母表示无关 即
∫
b
a
f ( x ) d x = ∫ f (t ) d t = ∫ f (u ) d u.
a a
b
b
(2)定积分的几何意义 定积分的几何意义: 定积分的几何意义
A=∫
b
1
1 1 dx = − 2 x x
1
1 = 1− . b
b
性质2 被积函数中的常数因子可以提到积分号的前面,即 性质 被积函数中的常数因子可以提到积分号的前面,
∫
b
a
k f ( x ) dx = k ∫ f ( x ) dx
a
b
性质3 如果积分区间[a,b]被分点 分成区间 被分点c分成区间 性质 如果积分区间 被分点 分成区间[a,c]和[c,b],则 和 则
s ≈ ∑ v(ξ i ) ∆ t , (λ = max ∆ t i ).
i =1 1≤ i ≤ n n
(2)近似求和: )近似求和: (3)取极限: )取极限:
s = lim ∑ v (ξ i ) ∆ t i
微积分第2版-朱文莉第6章 定积分及其应用习题详解
第六章 定积分及其应用习题 6.1 (A)1、 利用定积分的定义计算积分baxdx ⎰;解 将区间[]b a ,n 等分, 则每个小区间的长度均为nab x i -=∆,取每个小区间的左端点为i ξ,则)1,...,2,1,0(,-=-+=n i i nab a i ξ, 所以⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-++++-+-=--+=∆=∑∑-=-=)1...210(1)()()(110n n a b na n a b n a b i n a b a x f S n i n i i i n ξ ⎥⎦⎤⎢⎣⎡-⋅-+-=⎥⎦⎤⎢⎣⎡-⋅-+-=)11(2)(2)1()(2n a b a a b n n n a b a a b 两边取极限,得)(21)2)(()11(2)(lim lim 22a b a b a a b n a b a a b S n n n -=-+-=⎥⎦⎤⎢⎣⎡-⋅-+-=∞→∞→ 所以221()2baxdx b a =-⎰.2、利用定积分的几何意义,证明下列等式。
(1)4π=⎰; (2)322cos 0xdx ππ-=⎰;(3)22sin 0xdx ππ-=⎰;(4)12π-=⎰。
证明 (1) 因为圆122=+y x 在第一象限的方程为21x y -=,所以根据定积分的几何意义知0⎰为圆在第一象限的面积,故4π=⎰.(2) 因为当ππ232≤≤-x 时,曲线x y cos =在x 轴的上方和下方的曲边梯形的面积相等,所以根据定积分的几何意义知322cos 0xdx ππ-=⎰.(3) 因为当22ππ≤≤-x 时,曲线x y sin =在x 轴上方和下方的曲边梯形的面积相等,所以根据定积分的几何意义知22sin 0xdx ππ-=⎰.(4) 因为圆122=+y x 在x 轴上方的方程为21x y -=,所以根据定积分的几何意义知1-⎰为圆在第一二象限的面积,故12π-=⎰.(B)1、利用定积分定义计算由抛物线21y x =+,两直线()x a x b b a ==>,及横轴所围成的图形的面积。
高等数学 第六章 第7节 定积分的几何应用(中央财经大学)
一、微分元素法)( 或称为积分元素法法数学建模中的微分元素 ,当把非均匀变化的问题实际中在物理、几何以及工程 , ,则通积达形式能表示为某两个量的乘看作是均匀变化时. 分问题来处理常可将问题归结为定积 . 具有对区间的可加性要求量运用定积分处理问题时A取极限”—求和—近似“分划—,局利用整体上变化的量在局部问题的步骤将整体问题化成 , ,替“变”在局部上以“不变”代关系部上近似于不变的辩证,采用按照定积分的概念]. ,[ )( 111i i i ni i i ni i x x x f A A −==∈∆≈∆=∑∑ξξ便有关系式, ,个将具有代表性的第略去下标为简便和醒目起见i i, , ]d ,[ ] ,[ 1且取称之为典型小区间表示为小区间x x x x x i i +−, 则有为区间的左端点x i ξ. d )(x x f A ≈∆, )( d )( 记为或积分元素的微分元素为量通常称A x x f. d )(d x x f A =( 0d , 相当于取极限过程对区间的可加性由量→x A ] ,[ d , 0)||||上“无限累加”起来在区间将微分元素b a A x →∆] ,[ )(上的值:在区间就得到量即作定积分b a A. d )(d ∫∫==babax x f A A. ,加解为微分元素的无限累我们在这里将定积分理简言之一、平面图形的面积1解解解解y2解3解二、旋转体的体积一轴旋转一周所生成的将平面图形绕平面上某 . ,该轴称为旋转轴几何体称为旋转体 . , 间的可加性旋转体的体积具有对区上在区间I:旋转体的特点 ,截旋转体所得的的平面任何一个垂直于旋转轴. 图形均为圆截口1 y1 y2解Oaa b解解2πy三、平行截面面积为已知的几何体的体积解解。
第六章 定积分的应用(教学笔记)
2 .选择积分变量并定区间:选取 x 为积分变量,则 0 ≤ 3 .给出面积元素在 0 ≤ x ≤ 2 上, 在 2 ≤ x ≤ 8 上, 4 .列定积分表达式
4
−4
事实上, 也可以选择 x 为积分变量, 积 分 区 间 为 [0, 如图, 当小区间 8] . 面积微元为 [ x, x + dx] 取 在 [0, 2] 中 时 ,
dA = [ 2 x − (− 2 x )]dx , 而当小区间取
在 [2, 8] 中 时 , 面 积 微 元 为
4
y
y = 2x
(8,4)
dA = [ 2 x − ( x − 4)]dx , 因此, 积分区间
须分成 [0, 即所给图形由 2] 和 [2, 8] 两部分,
o
x=4 -y
y = − 2x
x
直线 x = 2 分成两部分, 分别计算两部分的面积再相加, 得所求面积, 即
A = ∫ [ 2 x − (− 2 x )]dx + ∫ [ 2 x − ( x − 4)]dx
解:
a 0 x = a cos t , (0 ≤ t ≤ 2π ) , S = 4 ∫ ydx = 4∫π b sin td (a cos t ) = π ab 0 2 y = b sin t ,
或S = 4
∫
b
0
xdy = 4 ∫ 2 a cos td (b sin t ) = π ab
n
i
的极限
方才是精确值 A 。关键是确定 ∆ Ai ≈ f (ξ i ) ∆ x i ( ∆ Ai − f (ξ i ) ∆ xi = o ( ∆ xi ) )
定积分的应用教案
定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分是求曲线下的面积的方法强调定积分是极限的概念1.2 定积分的几何意义利用图形解释定积分表示曲线下的面积探讨定积分与区间的关系1.3 定积分的性质介绍定积分的四则运算讲解定积分的奇偶性第二章:定积分的计算方法2.1 定积分的标准公式介绍定积分的标准公式强调积分常数的存在2.2 定积分的换元法讲解定积分的换元法步骤举例说明换元法的应用2.3 定积分的分部积分法介绍定积分的分部积分法探讨分部积分法的应用第三章:定积分在几何中的应用3.1 求曲线的弧长利用定积分求曲线的弧长强调弧长公式的应用3.2 求曲面的面积引入曲面的面积概念利用定积分求曲面的面积3.3 求旋转体的体积介绍旋转体的体积公式利用定积分求旋转体的体积第四章:定积分在物理中的应用4.1 定积分在力学中的应用利用定积分求物体的质心利用定积分求物体的转动惯量4.2 定积分在电磁学中的应用利用定积分求电场强度利用定积分求磁场强度第五章:定积分在经济学中的应用5.1 定积分在优化问题中的应用利用定积分求最大值和最小值问题强调优化问题的实际意义5.2 定积分在概率论中的应用利用定积分求概率密度函数的积分5.3 定积分在评价问题中的应用利用定积分求函数的最大值和最小值问题强调定积分在评价问题中的作用第六章:定积分在生物学中的应用6.1 定积分在生长模型中的应用引入生长模型,如细胞的分裂利用定积分描述生物体的生长过程6.2 定积分在药物动力学中的应用介绍药物在体内的浓度变化利用定积分求药物的动力学参数第七章:定积分在工程学中的应用7.1 定积分在力学工程中的应用利用定积分计算结构的受力情况探讨定积分在材料力学中的应用7.2 定积分在热力学中的应用利用定积分求解热传导方程强调定积分在热力学中的重要性第八章:定积分在计算机科学中的应用8.1 定积分在图像处理中的应用介绍图像处理中的边缘检测利用定积分计算图像的边缘利用定积分计算曲线的长度强调定积分在图形学中的作用第九章:定积分的数值计算9.1 梯形法则介绍梯形法则及其原理利用梯形法则进行定积分的数值计算9.2 辛普森法则介绍辛普森法则及其适用条件利用辛普森法则进行定积分的数值计算9.3 数值计算方法的比较比较梯形法则和辛普森法则的优缺点强调选择合适的数值计算方法的重要性第十章:定积分在实际问题中的应用10.1 定积分在资源管理中的应用利用定积分计算资源的总量探讨定积分在资源管理中的分配问题10.2 定积分在环境保护中的应用利用定积分计算污染物的浓度强调定积分在环境保护中的作用10.3 定积分在其他领域的应用探讨定积分在人口学、社会学等领域的应用强调定积分在解决实际问题中的重要性重点和难点解析重点一:定积分的概念与几何意义定积分是微积分中的一个重要概念,它表示的是曲线下的面积。
南理工高等数学上第6章定积分应用
电场强度与电势
公式
电场强度 $E = k int rho(x) frac{x-x'}{|x-x'|^2} dx$,电势 $V = -k int frac{1}{|x-x'|} dx$。
解释
电场强度和电势的定积分计算方式与引力场类似,分别得 到电荷分布产生的电场和电势的分布情况。
例子
若电荷分布为 $rho(x) = q delta(x)$,则某点 $x'$ 处的电场强度为 $E = k q frac{x'}{|x'|^2}$,电势为 $V = -k q ln|x'|$。
平面图形面积的计算是定积分 应用的一个重要方面,可以用 于解决实际问题中的各种面积 计算问题。
体积
体积可以通过定积分计算,首先需要确定立体图形的边界曲面,然后选取 微元并计算每个微元的体积。
在计算过程中,需要考虑到立体图形的形状和大小,以及微元的选取和计 算方法。
体积的计算是定积分应用的一个重要方面,可以用于解决实际问题中的各 种体积计算问题。
应力与变定义
应力是指物体受到的力与面积的比值,而应变则表示 物体形状的改变程度。
应力与应变的关系
通过定积分,可以计算出物体在受力作用下的应力分 布和应变情况,为结构分析和设计提供依据。
应力与应变的应用
在机械工程、土木工程和材料科学等领域,应力与应 变的分析是确保结构安全和稳定的关键环节。
THANK YOU
南理工高等数学上第6章定积 分应用
目
CONTENCT
录
• 定积分的概念与性质 • 定积分的应用 • 定积分在经济学中的应用 • 定积分在物理中的应用 • 定积分在工程中的应用
01
定积分的概念与性质
高数例题 第六章 定积分的应用
s
t t dt
例17. 计算摆线
x a sin y a 1 cos
的
一拱
(0 2 ) 的长度。
2、直角坐标情形 设曲线弧由直角坐标方程
y f x a x b 给出 f x 在a, b
球体体积的一半,试求该圆孔的直径.
(二)平行截面面积为已知的立体的体积
已知立体在过点 x a, x b且垂直于x 轴的两个平面之间,且垂直于轴的截面 面积为 A x , A x 为连续函数, 则
V A x dx
a
b
例14.一平面经过半径为R的圆柱体 的底圆中心,并与底面交成角
,计
算这平面截圆柱体所得立体的体积.
例15.求以半径为R的圆为底,平行 且等于底圆直径的线段为顶,高为h
的正劈锥体的体积。
例16. 证明由平面图形
0 a x b 0 y f ( x)
绕
y
轴旋转所成的旋转体的体积
b
为
V 2 xf x dx
a
三、平面曲线的弧长 (一)平面曲线弧长的概念 1、定义:设A,B是曲线弧上的两个端 点,在弧 AB 上依次任取分点
把区间 a, b 分成许多部分区间,则所求 量相应地分成许多部分量 ui ,而所求 量等于所有部分量之和,这一性质称为 所求量对于区间 a, b 具有可加性。
三.用定积分来表达的量 u 应具备的条件 1. 是与一个变量 x 的变化区间 a, b 有关的量。 2.量 对于区间 a, b 具有数量的可 加性。 3.部分量 ui 的近似值可表示为
在 , 上 , 围成,
定积分在几何上的应用
2
a
y x2 y 2 2 1 2 b a b
4ab sin tdt ab.
2 0
2019/4/7 第六章 定积分的应用
2
o
图6-2-5
a x
8
2.极坐标情形
设由曲线 ( ) 及射线
d
()
d 、 围成一曲边扇 ( ) 形,求其面积.这里, 在[ , ]上连续,且 ( ) 0 . 1 o 面积元素 dA [ ( )]2 d x 2 图6-2-6
3
a
o
a x
旋转体的体积
V a x a
2 3
图6-2-12
2019/4/7
第六章 定积分的应用
32 3 dx a . 105
16
类似地,如果旋转体是由连续曲线
x ( y ) 、直线 y c 、 y d 及y 轴所围 成的曲边梯形绕y 轴旋转一周而成的立体,
第六章 定积分的应用
1
b
例 1 计算由两条抛物线y 2 x 和 y x 2 所围成的 图形的面积.
解
两曲线的交点
(0,0) (1,1)
选 x 为积分变量 x [0,1]
面积元素 dA ( x x 2 )dx
2 3 x 1 2 A 0 ( x x )dx x . 3 0 3 3
R 2 2
1 2 R x dx R h. 2
23
第六章 定积分的应用
三、平面曲线的弧长
设 A、 B 是曲线弧上的两 个端点,在弧上插入分点
y
M2
M1
A M0
M n1
定积分的几何意义
单调地变到 b.则
b
a
f
xdx
f
[
(
t
)]
t
dt
几点说明:
“换元必换限”,(原)上(下)限对(新)上(下)限.
从右到左应用上公式,相当于不定积分的第一 换元法(凑微分法).一般不设出新的积分变量, 这时,原积分的上、下限不变.只要求出被积函 数的一个原函数,就可直接应用牛顿-莱布尼 兹公式求出定积分的值.
例5. 证明
2 f (sin x)dx 2 f (cos x)dx
0
b
a
f
(
x
)dx
ba
f
(
x
)dx
初等函数在定义区间内部都是可积的
7.1.3 定积分的几何意义
1. 如果f(x) >0,图形在x轴的 上方(如右图)
由前面的曲边梯形面积的讨 论可知积分值为正,且
b
a
f
( x)dx
A
2. 同理,如果f(x)<0,图形在x 轴的下方,积分值为负,且
b
a
f
(
x)
dx
A
3.如果f(x)在[a,b]上有正 有负时(如右图所示)
例4 设函数f ( x )在区间[ a,a ]上连续,则
(1)当f ( x )为偶函数时,aa f ( x )dx 20a f ( x )dx; ( 2 )当f ( x )为奇函数时,aa f ( x )dx 0.
a
a
a
a
证: (1)
a
0
a
f (x)dx f (x)dx f (x)dx
a
a
0
在第一个积分中
0
a
f (t)d(t) f (x)dx
数三不考内容总结
同济五版
不考的如下:
第三章微分中值定理与导数的应用
第7节曲率
第四章不定积分
第4节有理函数的积分
第五章定积分
第5节反常积分的审敛法
第六章定积分的应用
第2节定积分在几何上的应用中三平面曲线的弧长
第3节定积分在物理学上的应用
第七章空间解析几何与向量代数(全部)
第八章多元函数微分法及其应用
第6节多元函数微分学的几何应用
第7节方向导数与梯度
第9节二元函数的泰勒公式
第10节最小二乘法
第九章重积分
第3节三重积分
第4节重积分的应用第五节含参变量的积分
第十章曲线积分与曲面积分(全部)
第十一章无穷级数
第5节函数的幂级数展开式的应用
第6节函数项级数的一致收敛性及一致收敛级数的基本性质
第7节傅里叶级数
第8节一般周期函数的傅里叶级数
第十二章微分方程
第4节一阶线性微分方程中二伯努利方程
第5节全微分方程第六节可降阶的高阶微分方程
第10节欧拉方程第十一节微分方程的幂级数解法
第12节常系数线性微分方程组解法举例
可以参照大纲,对比数一与数三的考试内容,会对考察的内容还有要求掌握的程度有更清
晰的把握。
我也是照大纲自己捋出来的。
相比数一与数三,考察的深度相近,只是数三就要少很多内容了,还是省了很大力气的。
希望复习愉快,方向是对的,要把课本及课后题过一遍。
时间充裕,前途明朗。
(转)。
高等数学第二册教材答案
高等数学第二册教材答案解答:第一章:函数与极限1.1 函数的基本概念和性质1.2 极限的定义和性质1.3 极限的运算法则1.4 函数的连续性第二章:导数与微分2.1 导数的定义2.2 函数的导数与可导性2.3 常用函数的导数2.4 高阶导数与高阶微分2.5 隐函数的导数与高阶导数第三章:微分中值定理与导数的应用3.1 罗尔中值定理3.2 拉格朗日中值定理3.3 柯西中值定理3.4 导数的应用:函数的单调性与极值第四章:不定积分4.1 不定积分的定义4.2 基本积分公式与换元积分法4.3 分部积分法4.4 有理函数的积分4.5 特殊函数的积分第五章:定积分5.1 定积分的概念与性质5.2 反常积分5.3 微积分基本定理5.4 定积分的换元法5.5 定积分的分部积分法5.6 定积分的应用:几何应用与物理应用第六章:定积分的几何应用6.1 曲线的弧长与曲面的面积6.2 平面区域的面积第七章:多元函数微分学7.1 多元函数的定义与极限7.2 偏导数与全微分7.3 隐函数的偏导数与全微分7.4 多元函数的极值与条件极值第八章:多元函数积分学8.1 重积分的概念与性质8.2 二重积分的计算8.3 三重积分的计算8.4 曲线积分和曲面积分第九章:无穷级数9.1 数项级数的概念与性质9.2 收敛级数的性质9.3 幂级数与函数展开9.4 函数的傅里叶级数展开第十章:常微分方程10.1 微分方程的基本概念与解的存在唯一性10.2 一阶线性微分方程10.3 可降阶的高阶微分方程10.4 齐次线性微分方程与常系数齐次线性微分方程10.5 非齐次线性微分方程与常系数非齐次线性微分方程以上是高等数学第二册教材各章节的答案。
希望能帮助你更好地理解和应用数学知识。
高等数学 第六章定积分的应用习题课
A1
1 2d
02
2a2(2 cos )2d
0
a2 (4 4cos cos2 )d 9 a2 0
则所求的几何面积为 A 2 A1 18 a2
【例5】设由曲线
y
sin x (0
x
),y
2
1
及x
0围成
平面图形A绕x 轴,y 轴旋转而成的旋转体的体积。
则绕直线 y
1 2
旋转而成
的旋转体的体积微元dV
就是矩形S1
分别绕直线 y
1 2
旋转而成的旋转体的体积。
解: (1) 确定积分变量和积分区间:
绕直线 y 1 旋转如图 ,
y
2
1
取 x为积分变量,则 x [0, ].
2
(2) 求微元:对 x [0, ],
2
[x, x dx] [0, ],
0
1 dy]
1 y2
[(arcsin1)2 2
1
(arcsin y)d(
1 y2 )]
0
3 [2
4
1 y2 arcsin y 2 y]10
3 2
4
通过例5,同样可求出绕平行于x 轴和平行于 y 轴的直线
旋转而成的旋转体的体积,见例6。
【例6】设由曲线 y sin x (0 x ), x 及 y 0围成
(2)求微元:因为过点 x 的截面为等边三角形(如图),
其边长为 2 4 x2 ,高为 2 4 x2 3 .
2
所以截面积为
A( x) 1 2 4 x2 2 4 x2 3
第六章 定积分的应用
方便.在区域 D 中取一小区域 d ,其面积记为 d , x, y为区
域 d 中的任意一点,则该小区域绕直线 L旋转一周所得环
形体(可以近似看成为横截面为 d ,长度为 2 r(x, y)的柱
体)的体积的近似值为 dV 2 r(x, y)d
其中r(x, y)为点 x, y到直线 L : ax by c 0 的距离,即
水的压强 P gh ,水的压力F =水的压强 P接触面积 S.
二、常考题型及解题方法
1.几何应用
【例1】设 D是由曲线 xy 1 0与直线 y x 0 及 y 2
围成的有界区域,求 D 的面积.
解:把区域 D看成Y-型区域,则 D的面积
2 1
y2 2 3
S
1
y
y
dy
ln
两条直线yd与yc所围成设平面图形的面积为
S
d
c
[右(
y)
左(
y)]dy
(2)极坐标情形
由曲线()及射线 , 围成的图形称为曲边 扇形. 曲边扇形的面积元素为
dS 1 [( )]2 d.
2
曲边扇形的面积为 S 1 [( )]2 d. 2 2.用定积分计算旋转体的体积
旋转体的体积的一般问题是平面区域 D 绕直线 L : ax by c 0 (该直线不穿过区域 D)旋转所得旋转体的体积,记该体积
【答案: 4 ;8 】
33
【例3】设星形线 (1) 它的周长;
x y
a a
cos3 sin3
t t
,
求:
(2)它绕 x 轴旋转而成旋转体的体积和侧面积.
解:(1)周长:L 4 2 x2 y2 dt 4 2 3a sin t costdt 6a sin2 t 2 6a.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o a
b x
上页 下页 返回
观察下列图形,选择合适的积分变量求其面积: 观察下列图形,选择合适的积分变量求其面积:
y
d
y
d
x = 1 ( y)
x = ( y)
c c
x = 2 ( y)
o
x
o
x
上页 下页
考虑选择x为积分变量,如何分析面积表达式? 考虑选择 为积分变量,如何分析面积表达式? 为积分变量
上页 下页 返回
(1) )
三,旋转体的体积(volume of body)
(2) )
圆 锥
(3) )
圆 上页 台 下页
返回
一般地, 一般地,如果旋转体是由连续曲线 y = f ( x ) , 直线 x = a , x = b 及 x 轴所围成的曲边梯形绕 x 轴旋转一周而成的立体,体积为多少? 轴旋转一周而成的立体,体积为多少?
+∞
1
16 16 dy = π = 16π. π 2 y y 1
+∞
上页 下页 返回
填空题: 一, 填空题: x 1.由曲线 1.由曲线 y = e , y = e 及 y 轴所围成平面区域的面 是______________ . 2.由曲线 2.由曲线 y = 3 x 2 及直线 y = 2 x 所围成平面区域 面积是_____ 面积是_____ . 3.连续曲线 3.连续曲线 y = f ( x ) , 直线 x = a , x = b 图 形 绕x轴 旋 转 一 周 而 成 的 立 体 的 体 v = __________ , 绕 y 轴 旋 转 一 周 而 成 的 立 体 的 ____________; 积 v = ____________;
1
3
1
2
下页 返回
例 3
计算由曲线 y 2 = 2 x 和直线 y = x 4 所围
成的图形的面积. 成的图形的面积
解 两曲线的交点
y = x4
y2 = 2x y = x4
( 2,2), (8,4).
y2 = 2 x
选 y 为积分变量
y ∈ [2, 4]
A = ∫ dA = 18.
2 4
2
2
A = 4 ∫0 ydx = 4 ∫ b sin td ( a cos t )
π 2
上页 下页 返回
a
0
= 4ab ∫ sin 2 tdt = πab.
0
π 2
三,旋转体的体积(volume of body)
旋转体就是由一个平面图形饶这平面内 旋转体就是由一个平面图形饶这平面内 一条直线旋转一周而成的立体. 一条直线旋转一周而成的立体.这直线叫做 旋转轴. 旋转轴. 圆 柱
上页 下页 返回
练习题
求由下列各曲线所围成的图形的面积: 二, 求由下列各曲线所围成的图形的面积: 1 1. y = 与直线 y = x 及 x = 2 ; x 2. y = x 2 与直线 y = x 及 y = 2 x ;
,
上页 下页 返回
1; 一,1. 1; 32/3; 2. 32/3; 3. π
返回
观察下列图形,选择合适的积分变量: 观察下列图形,选择合适的积分变量:
y
d
y + y y
y
d
x = 1 ( y)
x = ( y)
y + y y
x = 2 ( y)
c
c
o
x
d
odx上页 源自页A = ∫ ( y )dy
c
A = ∫ [ 2 ( y ) 1 ( y )]dy
c
考虑选择y为积分变量,如何分析面积表达式? 考虑选择 为积分变量,如何分析面积表达式? 为积分变量
a
返回
b
思考题3 思考题
求曲线 xy = 4 , y ≥ 1, x > 0 所围成 轴旋转构成旋转体的体积. 的图形绕 y 轴旋转构成旋转体的体积
上页 下页 返回
思考题3解答 思考题 解答
xy = 4 y =1
立体体积
y
y =1
交点 (4,1),
o
Vy = π∫
+∞ 1
x
x 2 dy
= π∫
返回
例 1 计算由两条抛物线 y 2 = x 和 y = x 2 所围成的 图形的面积. 图形的面积
解 两曲线的交点
x = y2
(0,0) (1,1)
选 x 为积分变量 x ∈ [0,1] 面积元素 dA = ( x x 2 )dx
y = x2
上页
2 3 x 1 A = ∫0 ( x x )dx = x 2 = . 3 0 3 3
9 e 4 2
练习题答案
∫a f
b
2
( x )dx , 2π ∫ xf ( x )dx ;
a
b
二,1. 3/2-ln2; 2. 7/6; 3/2-ln2; 2. 7/6;
上页 下页 返回
�
a
b
四,小结
定积分的元素法 U = ∫ f ( x)dx 定积分的元素法 a 平面图形的面积 A = [ f2 ( x) f1( x)]dx 平面图形的面积 ∫a 旋转体的体积 V = 旋转体的体积
b
b
∫a π[ f ( x)] dx
2
b
V =∫
d
c
[( y)]2 dy π
上页
平行截面面积已知的立体的体积 V = ∫ A( x)dx 平行截面面积已知的立体的体积 下页
上页 下页 返回
y2 dA = y + 4 dy 2
x y 的面积. 例 4 求椭圆 2 + 2 = 1的面积 a b x = a cos t 解 椭圆的参数方程 y = b sin t
由对称性知总面积等于4倍第一象限部分面积. 由对称性知总面积等于 倍第一象限部分面积. 倍第一象限部分面积
取积分变量为 x ,
y
y = f ( x)
x ∈ [a , b ] 在[a , b]上任取小区 间[ x , x + dx ],
o
x x + dx
x
取以dx 为底的窄边梯形绕 x 轴旋转而成的薄 片的体积为体积元素, 片的体积为体积元素, dV = π[ f ( x )]2 dx
上页 下页 返回
旋转体的体积为 V = π[ f ( x )]2 dx ∫
第七节 定积分的几何应用
一,问题的提出 二,平面图形的面积 三,旋转体的体积 四,平行截面面积已知的 立体的体积
一,定积分的元素法
回顾 曲边梯形求面积的问题
曲边梯形由连续曲线
y
y = f ( x ) ( f ( x ) ≥ 0) ,
x 轴与两条直线 x = a ,
y = f ( x)
x = b 所围成. 所围成. b A = ∫a f ( x)dx