三水平三因素正交试验设计
正交实验的设计(四因素三水平)
表10-2 上一张 下一张 主 页 退 出
常用的正交表已由数学工作者制定出来,供进行 正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215) 等 ; 3 水 平 正 交 表 有 L9(34) 、 L27(213)…… 等 (详见附表14及有关参考书)。 1.3.2 正交表的基本性质 1.3.2.1 正交性 (1)任一列中,各水平都出现,且出现的次数相等
正交设计就是从选优区全面试验点(水平 组合)中挑选出有代表性的部分试验点(水平 组合)来进行试验。图10-1中标有试验号的九 个“(·)”,就是利用正交表L9(34)从27个试验点 中挑选出来的9个试验点。即:
(1)A1B1C1 (4)A1B2C2 (7)A1B3C3
(2)A2B1C2 (5)A2B2C3 (8)A2B3C1
上一张 下一张 主 页 退 出
1.3.2.2 代表性
一方面: (1)任一列的各水平都出现,使得部 分试验中包括了所有因素的所有水平;
(2)任两列的所有水平组合都出现, 使任意两因素间的试验组合为全面试验。
另一方面:由于正交表的正交性,正交试验的试 验点必然均衡地分布在全面试验点中,具有很强 的代表性。因此,部分试验寻找的最优条件与全 面试验所找的最优条件,应有一致的趋势。
上一张 下一张 主 页 退 出
1 正交试验设计的概念及原理
1.1 正交试验设计的基本概念
正交试验设计是利用正交表来安排与分
析多因素试验的一种设计方法。它是由试
验因素的全部水平组合中,挑选部分有代
表性的水平组合进行试验的,通过对这部
分试验结果的分析了解全面试验的情况,
找出最优的水平组合。
上一张 下一张 主 页 退 出
常用三水平三因素正交试验设计
正交表
正交表是一整套规则的设计表格,Ln(tc)用 L为正 交表的代号,n为试验的次数,t为水平数,c为列数, 也就是可能安排最多的因素个数。
例如正交表L9(34),它表示需作9次实验,最多可 观察4个因素,每个因素均为3水平。一个正交表中 也可以各列的水平数不相等,我们称它为混合型正交 表,如L8(4×24),此表的5列中,有1列为4水平,4 列为2水平。
9
3 3(17.5) 2(12) 1(1.5) 6.668 5.909 11.38
脱水率X(%) 脱水率X(%)
12.5 12
11.5 11
10.5 10 9.5 9 8.5 8 1.5 2 2.5 3 3.5 4 4.5 5 水土比L/S(ml•g-1)
12.5
12
11.5
11
10.5
10 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 Cao用量(g)
正交试验设计 Orthogonal experimental design
例如作一个三因素三水平的实验,按全面实验要求,须 进行3 × 3 = 27种组合的实验,且尚未考虑每一组合的重 复数。若按L9(34)正交表安排实验,只需作9次,按L16(45) 正交表进行16次实验,显然大大减少了工作量。
水土比L/S对脱水材料脱水率影响
CaO与活性白土配比对脱水材料脱水率影响
正交表数据分析
K1 11.17 11.01 11.10
K2 11.15 11.46 11.57
K3 11.83 11.04 10.83
Rபைடு நூலகம்
0.68 0.45 0.74
三水平三因素正交试验设计
5.872 7.747 7.861 7.270 7.880 6.662 8.053 6.405 6.668
5.232 6.834 7.022 6.456 7.011 5.896 7.134 5.725 5.909
10.90 11.79 10.67 11.20 11.03 11.50 11.41 10.62 11.38 LOGO
K2
11.15
11.46
11.57
K3
11.83
11.04
10.83
R
0.68
0.45
0.74
LOGO
LOGO
Example2正交试验设计优化碱性钙基膨润土
的改性条件
设置三水平三因素正交试验
因素 水平 1 2 3
A水土比 ( ml· g-1) 1.5:1 2:1 2.5:1
B 反应时 间(h) 10 12 14
C CaO/活性白土质量比 (g· g-1) 0.3:1 0.4:1 0.5:1
LOGO
LOGO
kI,k2,k3为其平均值, R为极差
LOGO
结果分析: 直接比较表2可知在这9个实验结果中,以实验5产生的银镜效果最好, 其水平组合为A2,B2,C3,分别是各因素中影响最大的水平。 由图可以看出本实验各因素组合中的最优组合为A2,B2,C3, 而通过R值的大小可以看出本实验因素存在显著性顺序,其主 次关系为C>A>B. 即影响银镜反应的因素最主要的是乙醛的浓度, 其次是温度、硝酸银的浓度。 结果与讨论 通过利用正交试验法得出的用乙醛作为还原剂做银镜反应时, 对实验影响最大的因素是乙醛的浓度。实验的最佳条件是 用水浴加热到80℃ ,2%的硝酸银溶液,使用40%的乙醛溶液。
三因素三水平正交表L9
三因素三水平正交表L9
正交表L9,是一种经常被科学家用于对某种复制影响的研究方法。
它有三个因素和三个
水平,可以被用来研究包括环境因素,生物因素甚至化学因素在内的各种因素之间的影响。
正交表L9应用于实验学中的可靠性,把实验设计分解为不同的可能的操作,以清楚地表
示一个因果关系。
该表由九个单元格组成,每个单元格代表一个操作组合。
它的一个特点是,不同的操作有着相同的数量的样本,并且把可能的影响效应减少到最低。
实验室研究已经表明,正交表L9能够实现精确和可靠的结果。
由于它确定了所有因素在
实验中影响结果的范围,它是实验设计方面的一种重要工具。
它可以精确地控制因素对结果的影响,也可以有效地减少或排除无关信息,以提高实验结果的准确性。
因此,正交表L9在实验设计中起着至关重要的作用,它能够解决各种复制影响的问题,
并且它的精确性和可靠性也为科学家研究复杂实验问题提供了很多帮助。
田间正交试验案例
田间正交试验案例
田间正交试验是一种农业试验设计方法,主要用于评估不同因素对作物生长和产量的影响。
以下是一个田间正交试验的案例:
假设我们想要研究三个因素(A、B和C)对某种作物产量的影响。
这三个因素可以是不同的肥料类型、灌溉方式或种植密度。
1. 确定试验目的:评估不同因素对作物产量的影响,并找出最优的组合。
2. 选取因素和水平:选择三个因素A、B和C,并为每个因素设定三个水平(例如,A1、A2、A3;B1、B2、B3;C1、C2、C3)。
3. 制定正交表:根据因素和水平数量,选择合适的正交表。
在本例中,我们可以使用一个3行3列的正交表。
4. 分配试验小区:根据正交表,将每个因素的每个水平分配到一个试验小区中。
例如,第1行第1列的试验小区为A1B1C1,第2行第2列的试验小区为A2B2C2,以此类推。
5. 进行试验:在每个试验小区中种植相同数量的作物,并按照预定的因素和水平进行管理。
6. 收获和测量:在作物成熟后,收获每个小区的作物,并测量其产量。
7. 数据分析和结论:使用统计分析方法(如方差分析)来分析数据,并确定每个因素对产量的影响程度。
通过比较不同组合的产量,可以找出最优的组合。
8. 总结和建议:根据试验结果,总结出各个因素对产量的影响规律,并为农民提供优化种植管理的建议。
需要注意的是,田间正交试验需要合理地安排试验小区的位置和顺序,以确保结果的准确性和可靠性。
同时,试验过程中需要严格遵守随机化和重复原则,以减少误差和偶然因素的影响。
三因子三水平正交设计
三因子三水平正交设计
三因子三水平正交设计是一种实验设计方法,用于研究三个因素对实验结果的
影响。
该设计方法可以有效地减少试验次数,同时保证各个因素之间的相互独立性。
在三因子三水平正交设计中,首先确定三个因素,每个因素有三个水平。
然后,根据正交表的原理,设计出一组实验方案,确保每个水平的因素在各个试验中均匀分布,并且每个因素的水平组合都出现了一次。
这样可以减小因素之间的交叉影响,使得分析结果更加可信。
正交设计的一个重要特点是可以通过较少的实验次数得到充分的信息。
因为正
交设计利用了正交表的性质,可以同时估计各个主效应、交互效应和误差的效应。
而且由于正交设计保证了因素间的独立性,可以更准确地估计因素的主效应和交互效应,从而更好地理解各个因素对实验结果的影响。
在实际应用中,三因子三水平正交设计可以用于各种科学研究和工程领域。
例如,在药物研发中,可以使用该设计方法来确定不同因素对药效的影响;在工业生产中,可以利用该设计方法优化生产过程,提高产品质量和产量。
总之,三因子三水平正交设计是一种实验设计方法,通过合理选取因素和水平,并利用正交表的原理,可以减少实验次数,降低误差,从而更准确地了解各个因素对实验结果的影响。
这种设计方法在科学研究和工程实践中具有广泛的应用前景。
三因素三水平正交表
三因素三水平正交表
三因素三水平正交表(Three-Factors Three-Levels Orthogonal Table)是实验设计中一种重要的工具,用于系统地研究多个因素对研究对象的影响。
这种设计方法基于对实验因素进行有效地设计和布局,以便从有限成本和时间内获得最大信息。
在三因素三水平正交表中,三个因素分别取三个不同的水平,每个因素的水平间都存在相等间隔。
因此,该实验设计方案中共有27个试验条件。
三因素三水平正交表是正交设计方法的一种,具有许多优点。
首先,它可以帮助研究人员确定各因素对研究对象的相对重要性,并识别任何交互作用等非线性关系。
其次,该方法可以更有效地检查因素之间的相互作用,尤其是在研究对象中存在较强的非线性作用时。
最后,三因素三水平正交表的设计允许研究人员对实验结果进行多因素统计分析,从而更全面地了解因素对结果的影响。
实际上,三因素三水平正交表在各种经济学、管理学、生物学和医学等领域中得到了广泛使用。
例如,在产业工程研究中,该方法被用于
研究决策和优化生产流程,以提高生产效率和降低成本。
在营销研究中,该方法可用于确定各种市场策略对顾客购买行为的影响。
在医学
研究中,该方法可用于研究疾病治疗方案的有效性。
总之,三因素三水平正交表是一种简便实用的多因素实验设计方法,
可以帮助研究人员更全面、系统地了解多种因素对研究对象的影响。
它已被应用于各种领域,成为现代实验设计方法中不可或缺的一部分。
三因素三水平正交试验结果分析
正交试验
正交试验设计是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
例如作一个三因素三水平的实验,按全面实验要求,须进行3^3=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3^4)正交表安排实验,只需作9次。
正交表简化了试验数据的计算分析。
在通过L9(3^4)的9次试验后可以得两类收获。
第一类收获是拿到手的结果。
第二类收获是认识和展望。
利用正交表的计算分折,分辨出主次因素,预测更好的水平组合,为进一步的试验提供有份量的依据。
三因素三水平正交多项式回归求解案例
三因素三水平正交多项式回归求解案例正文:1. 引言三因素三水平正交多项式回归是一种用于建立多变量回归模型的常用方法,其可以同时考虑多个因素对于结果的影响,且不易发生多重共线性问题。
在工业实践中,该方法被广泛应用于产品设计、工艺优化等方面。
本文将介绍一个通过三因素三水平正交多项式回归求解的案例,并对其建模过程进行详细说明。
2. 数据收集与处理本案例中,我们需要建立一种能够预测铸造件硬度的模型,因此我们选取了铜合金铸件的硬度作为响应变量。
同时,我们认为此响应变量可能会受到铸模温度、铸造压力和冷却时间三个因素的影响。
为了获得足够的数据,我们设计了一组三因素三水平的实验,并随机选取了9个样本进行测试。
接着,我们将实验数据导入到SPSS统计软件中进行处理。
经过数据清洗和筛选后,得到了一个包含9个样本和4个变量的数据表格。
其中,响应变量为硬度,自变量为温度、压力和时间。
3. 建立正交多项式回归模型在进行回归分析之前,我们需要将自变量进行正交化。
通过正交化处理,可以消除不同自变量之间的相关性,避免多重共线性问题的出现。
在本案例中,我们选择使用斯皮尔曼正交法对自变量进行正交化处理。
接着,我们选取正交自变量进行正交多项式回归分析。
在本案例中,我们选择了二次多项式模型来进行建模。
模型的公式如下:硬度= β0 + β1*T + β2*P + β3*H + β4*T^2 + β5*P^2 + β6*H^2 + β7*T*P + β8*T*H + β9*P*H其中,T表示温度,P表示压力,H表示冷却时间,β0~β9为回归系数。
4. 回归分析结果解释通过SPSS软件进行回归分析后,我们得出了以下结果:R2 = 0.985Adj R2 = 0.973F = 81.961Sig = 0.001根据上述结果,我们可以得出以下结论:(1)R2指标表明我们建立的模型解释了响应变量变异的98.5%。
说明模型的拟合程度很高。
(2)Adj R2指标比R2更为严格,它考虑的是自变量的数量和样本容量的影响,因此比R2更能反映出模型的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交试验设计优化等离子 喷涂纳米Al2O3-13%TiO2
涂层工艺参数
Example1正交试验设计法探究银镜反应 的反应条件
设置三水平三因素正交试验
L9(34) 正交试验
kI,k2,k3为其平均值 ,R为极差
结果分析:
直接比较表2可知在这9个实验结果中,以实验5产生的银镜效果最好 ,其水平组合为A2,B2,C3,分别是各因素中影响最大的水平。
9.5
9
8.5
8
4
6
8
10
12
14
16
18
20
Time(h)
反应时间对脱水材料脱水率影响
正交表数据分析
K1
11.17
11.01
11.10
K2
11.15
11.46
11.57
K3
11.83
11.04
10.83
R
0.68
0.45
0.74
从正交表数据处理中可以看出因素C的极 差R最大,其次是因素A,因素B的极差最 小。故可知CaO用量对脱水材料脱水率影 响最显著。
Example2正交试验设计优化碱性钙基膨润土 的改性条件
设置三水平三因素正交试验
因素 水平
1
2
3
A水土比 ( ml·g-1)
1.5:1
2:1
2.5:1
B 反应时 间(h) 10
12
14
C CaO/活性白土质量比 (g·g-1) 0.3:1
0.4:1
0.5:1
L9(34) 正交试验
因素
试验
A
B
号
常用的三个水平三个因素与三水平四因素的正交表一样 都是L9(34)正交表。
正交表
简 正介交:表的正代交号表是,一n为整试套验规的则次的数设,计t表为格水,平L数n(,tcc)为用列L数为, 也 表就示是需可作能9次安实排验最,多最的多因可素观个察数4。个例因如素正,交每表个L因9(素34均),为它3 水平。一个正交表中也可以各列的水平数不相等,我们 称 列它为为4水混平合,型4正列交为表2水,平如。L8(4× 24),此表的5列中,有1
由图可以看出本实验各因素组合中的最优组合为A2,B2,C3,
而通过R值的大小可以看出本实验因素存在显著性顺序,其主 次关系为C>A>B. 即影响银镜反应的因素最主要的是乙醛的浓度, 其次是温度、硝酸银的浓度。
结果与讨论 通过利用正交试验法得出的用乙醛作为还原剂做银镜反应时, 对实验影响最大的因素是乙醛的浓度。实验的最佳条件是 用水浴加热到80℃ ,2%的硝酸银溶液,使用40%的乙醛溶液。33.5来自44.55
水土比L/S(ml•g-1)
水土比L/S对脱水材料脱水率影响
12.5
12
11.5
11
10.5
10 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 Cao用量(g)
CaO与活性白土配比对脱水材料脱水率影 响
脱水率X(%)
12.5
12
11.5
11
10.5
10
3
1(10.5)
3(14)
2(2.0)
8.053
7.134
11.41
8
3
2(14)
1(10)
3(2.5)
6.405
5.725
10.62
9
3
3(17.5)
2(12)
1(1.5)
6.668
5.909
11.38
脱水率X(%) 脱水率X(%)
12.5
12
11.5
11
10.5
10
9.5
9
8.5
8
1.5
2
2.5
从因素A列中均值K3较大,因素B列中K2 较大,因素C列中K2较大,故可知 A3,B2,C2是各因素中影响最大的水平。 即水土比为2.5:1 ml•g-1;反应时间为12h; CaO/活性白土质量比为0.4:1g• g-1这三个 影响较显著。
6.834
11.79
3
1
3(17.5)
3(14)
3(2.5)
7.861
7.022
10.67
4
2
1(10.5)
2(12)
3(2.5)
7.270
6.456
11.20
5
2
2(14)
3(14) 1(1.5)
7.880
7.011
11.03
6
2
3(17.5)
1(10)
2(2.0)
6.662
5.896
11.50
7
正交表每一列中,不同的数字出现的次数相等。 例如在两水平正交表中,任何一列都有数字“1”与“2”, 且任何一列中它们出现的次数是相等的; 如在三水平正交表中,任何一列都有“1”、“2”、“3”,且 在任一列的出现次数均相等。
Three Applications
正交试验设计法探究银镜 反应的反应条件
正交试验设计 Orthogonal experimental design
简介:日本著名的统计学家田口玄一将正交试验选择的 水平组合列成表格,称为正交表。例如作一个三因素三 水平的实验,按全面实验要求,须进行3^3 = 27种组合 的 表 显实安然验排大实大,验减且,少尚只了未需工考作作虑9量每次一。,组按合L1的6(重45复)正数交。表若进按行L91(63次4)实正验交,
1
蒸馏水用量 反应时间
(ml)
(h)
C CaO用量(g)
(60℃) Bent-Ca-OH 恒重质量
(g)
(200℃) Bent-Ca-OH 恒重质量(g)
Bent-Ca-OH 脱水率X (%)
1
1
1(10.5)
1(10)
1(1.5)
5.872
5.232
10.90
2
1
2(14)
2(12)
2(2.0)
7.747