数学七年级下
五四制初一数学下册第六章知识点
五四制初一数学下册第六章知识点摘要:一、前言二、知识点概述1.数的开方2.二次根式的性质3.二次根式的运算4.二次根式的化简5.分式6.分式的性质7.分式的运算8.分式的化简9.二次根式与分式的关系三、结论正文:一、前言本章内容主要涉及五四制初一数学下册第六章的知识点,包括数的开方、二次根式的性质、二次根式的运算、二次根式的化简、分式以及分式的性质、分式的运算、分式的化简和二次根式与分式的关系等内容。
二、知识点概述1.数的开方数的开方是指求一个数的平方根和立方根。
平方根是一个数的二次方等于该数的正数根,立方根是一个数的三次方等于该数的正数根。
2.二次根式的性质二次根式的性质主要包括二次根式的加减运算、乘除运算以及二次根式的性质定理等。
3.二次根式的运算二次根式的运算主要包括加减运算、乘除运算以及乘方运算等。
4.二次根式的化简二次根式的化简是将复杂的二次根式通过因式分解、合并同类项等方法化简为最简二次根式。
5.分式分式是指一个数被另一个非零数除的运算,分式的基本性质包括分式的加减运算、乘除运算以及分式的性质定理等。
6.分式的性质分式的性质主要包括分式的加减运算、乘除运算以及分式的性质定理等。
7.分式的运算分式的运算主要包括加减运算、乘除运算以及乘方运算等。
8.分式的化简分式的化简是将复杂分式通过因式分解、合并同类项等方法化简为最简分式。
9.二次根式与分式的关系二次根式与分式有着密切的关系,二次根式可以看作是分式的一种特殊形式,分式也可以通过有理化转化为二次根式。
七年级数学下知识点笔记
七年级数学下知识点笔记一、大数比大小1.万以内数的比较(1)数位法:个十百千数位按从左到右依次比较,有且仅有有一位数不同,就是大的。
(2)绝对值法:将数的大小与它们的绝对值相比较,数值处于正号数靠右边的更大。
二、相反数与绝对值的概念1.相反数如果a+b=0,那么b就是a的相反数,a就是b的相反数2.绝对值-|a|=a|a|=a三、整数的加减法1.同号相加(保留符号)2.异号相减(绝对值相加,结果符号为绝对值较大的符号)3.加数和被加数的互换律和结合律四、一次函数1.函数:自变量和因变量之间的关系(输入和输出之间的关系)2.一次函数: y=kx+b (k表示斜率,b表示截距)3.斜率为正,函数图像右上升;斜率为负,函数图像左上升。
4.平行于坐标轴的直线的斜率为0或不存在。
五、图形的计算1.平移:将一个图形固定在一个点上,将这个图形沿着一个方向进行移动。
2.旋转:将一个图形固定在一个点上,将这个图形绕着这个点进行旋转。
3.对称:点、线、面的对称性概念4.比例尺:尺度所表示的两个单位之比。
六、图形的计算1.图形体积 V=Sh2.立方体 6V=a³3.正方体 S=a²,V=a³4.长方体 L×W×H七、锐角三角函数的概念1.三角函数定义:告诉我们三角形的某些角的度数和与它们所对边之间的比例关系。
2.正弦函数: sinA=BC/AC3.余弦函数: cosA=AB/AC4.正切函数: tanA=BC/AB以上便是七年级数学下知识点的笔记,需要牢记的知识点不在这里一一列举,希望大家平时多做练习,巩固掌握学过的知识点。
七年级下学期数学知识点归纳大全
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
七年级下数学第一章知识点
七年级下数学第一章知识点数学是一门需要认真学习的学科,对于初中生来说,七年级下数学第一章是非常重要的,因此我们需要认真学习掌握。
在本篇文章中,我们将全面介绍七年级下数学第一章的知识点,并给出相关的例子和题目。
一、有理数及其表示法1.有理数的概念:有理数是指可以用两个整数的比表示出来的数,包括整数和分数。
因为它们可以在数轴上表示出来,所以也被称为数轴上的点。
例如,-2,0.5和3/4都是有理数。
2.有理数的表示法:通常表示有理数的方法有三种:分数表示法、小数表示法和百分数表示法。
在这里,我们主要介绍分数表示法和小数表示法。
分数表示法:a/b(a和b都是整数,b不等于0),其中a被称为分子,b被称为分母。
同一个有理数可以有不同的分数表示法,例如2/4和1/2是同一个有理数。
小数表示法:例如,3/4可以表示为0.75,或者0.750000。
在小数表示法中,我们将数字按照一定的方法排列,例如,0.75是3/4的小数表示法,小数点后面的数字表示分数的十分位和百分位。
二、有理数的比较在比较有理数大小时,我们需要将它们转化成同样的形式。
例如,我们可以将分数化简,或者将小数补零。
以下是一些比较有理数大小的示例:1.将小数补零:例如,将0.25和0.2比较大小。
我们将0.25乘以10,得到2.5,将0.2乘以10,得到2。
因此,0.25>0.2。
2.将分数化简:例如,比较1/3和2/5的大小。
我们将1/3化简为5/15,将2/5化简为6/15。
因此,1/3<2/5。
三、有理数的加减法有理数的加减法可以用数轴,或者数表等方式表示出来。
举例来说,如果我们要计算-3+5,我们可以用数轴表示出来:首先,我们在数轴上找到-3的位置,并标记出来。
然后,在它的右侧找到5的位置,并标记出来。
最后,从-3的位置开始,向右移动5个单位,我们可以得到答案2。
四、有理数的乘除法有理数的乘法和除法很容易理解,但需要记住一些规律。
2024年新课标人教版七年级下全册数学教案
2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。
二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。
2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。
三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。
难点:三角形性质的理解,三角形面积公式的推导。
四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。
2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。
(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。
(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。
3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。
4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。
六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。
2. 三角形的性质:内角和等于180°,两边之和大于第三边等。
3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。
4. 三角形周长和面积的计算方法。
七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。
2. 答案:见附页。
七年级数学公式大全(下学期)
七年级数学公式大全(下学期)1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形运算公式 1 正方形C周长 S面积a边长周长=边长×4 C=4a面积=边长×边长S=a×a 2 正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3 长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b) 面积=长×宽 S=ab 4 长方体V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高 6 平行四边形 s面积a底 h高面积=底×高 s=ah 7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形S面积 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏ 9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径 10 圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3 总数÷总份数=平均数和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系以下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-本钱利润率=利润÷本钱×100%=(售出价÷本钱-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算 1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升。
初一下数学知识点
初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。
学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。
2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。
学生需要学会整式的合并同类项和去括号等基本运算。
3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。
4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。
5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。
以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。
七年级下册数学课本目录
七年级下册数学课本目录第一章整式的乘除
1.同底数幂的乘法
2.幂的乘方与积的乘方
3.同底数幂的除法
4.整式的乘法
5.平方差公式
6.完全平方公式
7.整式的除法
第二章相交线与平行线
1.两条直线的位置关系
2.探索直线平行的条件
3.平行线的性质
4.用尺规作角
第三章三角形
1.认识三角形
2.图形的全等
3.探索三角形全等的条件
4.用尺规作三角形
5.利用三角形全等测距离
第四章变量之间的关系
1.用表格表示的变量间关系
2.用关系式表示的变量间关系
3.用图像表示的变量间关系第五章生活中的轴对称
1.轴对称现象
2.探索轴对称的性质
3.简单的轴对称图形
4.利用轴对称进行设计
第六章概率初步
1.感受可能性
2.频率的稳定性
3.等可能事件的概率。
初中数学七年级(下册)第一章第一节 同底数幂的乘法
1.1同底数幂的乘法一、同底数幂的乘法法则:同底数幂相乘,底数不变吧,指数相加。
同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用:a m+n =a m ﹒a n (指加,幂乘,同底)二、要点1、法则:同底数幂相乘,底数不变,指数相加。
2、正确理解:在底数相同的情况下,两个幂相乘,底数不变,其指数相加。
也就意味着如果是两个不同底数的幂相乘,要用法则,就必须转化成同底。
三、注意同底数幂的乘法法则:(m,n 都是正数)课时训练一、选择。
1.设a m =8,a n =16,则a m+n =()A.24B.32C.64D.1282.计算(-a)2·(-a)3的结果是()A.-a 5B.a 5C.-a 6D.a 63.下列各式中,正确的是()A.5532t t t ⋅=B.426t t t +=C.3412t t t ⋅=D.235t t t ⋅=4.计算()23()()m m m ⋅⋅---,正确的是()A.3m -B.5m C.6m D.6m -5.计算24a a ⋅的结果为()A.2a B.4a C.6a D.8a 6.a x =3,a y =4,则a x +y =()A.3B.4C.7D.127.计算:a •a 2的结果是()A.3a B.a 3C.2a 2D.2a 38.化简32()()x x --,结果正确的是()A.6x -B.6x C.5x D.5x -9.下列式子计算结果为22x 的是()A.x x +B.2x x ⋅C.2(2)x D.632x x ÷10.计算()23a a -⋅的结果是()A.5a B.5a -C.6a D.6a -二、填空。
11.若38m a a a a ⋅⋅=,则m =________.12.若3m x =,2n x =-,则2m n x +=______.13.计算:3×9×27×3n =________;22(8)2n n +⋅-⋅=_______.14.如果1216n n a a a +-=,则n =_______.15.计算:(-2)3×(-2)2=_______,(-22)×(-2)3=______.16.一台电子计算机每秒可作1012次运算,它工作5×106秒可作_________次运算.三、解答。
人教版七年级数学下第十章-数据的收集与整理归类总结
第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
七年级下册最值问题。
七年级下册最值问题。
全文共四篇示例,供读者参考第一篇示例:七年级下册最值问题是初中数学中的重要概念,通过这一概念的学习,可以帮助学生更好地理解和应用数学知识。
最值问题指的是在一组数据中找到最大值和最小值,并求出它们的具体数值。
在日常生活中,最值问题也是非常常见的,比如求一组数据中的最高温度和最低温度,或者求一堆数中的最大值和最小值等等。
在七年级下册的数学课程中,最值问题通常是以实际案例为背景展开讨论的。
通过解决这些案例,学生可以更好地理解最值问题的概念,并掌握解题的方法。
最值问题的解决一般分为两步,首先是找出一组数据中的最大值和最小值,然后是求出它们的具体数值。
在实际操作中,学生需要通过比较不同数的大小,从而找到最值。
除了直接比较数值大小外,还可以通过化简、提取公因式等方法来简化问题,更快地找到最值。
最值问题的学习不仅可以提高学生的数学分析和解决问题的能力,还可以培养他们的逻辑思维和数学素养。
在解决最值问题的过程中,学生需要反复比较和分析数据,培养了他们的观察力和思考能力。
通过实际案例的讨论,学生可以更好地理解数学知识与实际生活的联系,增强他们的数学应用能力。
七年级下册最值问题还可以帮助学生培养合作精神和团队意识。
在解决最值问题的过程中,学生可以进行小组讨论和合作,共同探讨问题的解决方法,促进了他们与同学之间的交流与合作。
通过互相学习、互相启发,学生可以更好地理解数学知识,提高解题的效率和准确度。
最值问题的学习还可以促进学生主动学习的能力。
通过解决最值问题,学生需要自主思考、积极探索,培养了他们的自主学习意识。
在解决问题的过程中,学生可以提出自己的见解和想法,不断尝试和总结,从而提高了他们的学习兴趣和学习主动性。
七年级下册最值问题是一个涵盖面广、实用性强的数学概念,通过这一概念的学习,学生可以在数学知识上取得更好的掌握与运用。
最值问题的解决不仅可以提高学生的数学分析和解决问题的能力,还可以培养他们的逻辑思维和团队合作精神。
七年级下册数学教案9篇
七年级下册数学教案9篇七年级数学下册教案篇一一、指导思想:根据学生的实际情况,从生活入手,结合教材内容。
通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。
最终圆满完成七年级下册数学教学任务。
二、情况分析:通过上学期考试情况,发现本班学生的数学成绩不甚理想。
基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。
总体上来看,低分很多,两极分化较为严重。
三、教学目标知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。
过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。
培养学生的观察和思维能力,尤其是自主探索的能力。
情感与态度目标:培养学生学习数学的`兴趣,认识数学源自生活实践,最终回归生活。
四、教材分析第五章、相交线与平行线:本章主要学习有理数的基本性质及运算。
本章重点内容是有理数的概念,性质和运算。
本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
第六章、实数:本章主要是学习单项式和多项式的加减运算。
本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。
本章难点在于理解合并同类项和去括号的法则。
第七章、平面直角坐标系:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。
本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。
本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
第八章、二元一次方程组及不等式组:本章主要学习线段和角有关的性质。
本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。
本章的难点在于线段和角的有关计算。
五、教学措施1、潜心钻研教材,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。
北师大版七年级数学下册数学各章节知识点总结
北师大版七年级数学下册数学各章节知识点总结一、概述北师大版七年级数学下册的教材,按照学科体系与学生认知发展的规律,系统、全面地介绍了初中数学的重要知识点。
这一册教材主要涵盖了实数、代数式与方程、函数及其图象、平面几何等多个方面,为学生打下了坚实的数学基础。
通过本册的学习,学生不仅能够掌握基本的数学概念、公式和运算技巧,还能够逐渐培养起运用数学知识解决实际问题的能力,为其未来的学习与发展奠定基石。
在这一册的开头部分,我们首先学习了实数的相关知识,包括有理数和无理数的概念、运算及其性质。
教材引入了代数式的概念,包括单项式、多项式、整式与分式等,并通过解方程使学生进一步理解代数运算。
函数及其图象是这一册的重点内容之一,学生将学习一次函数、二次函数等基本函数及其图象,并通过函数与图象的关系,理解函数的概念和性质。
平面几何部分则包括线段、角、三角形等基础知识,以及基本的几何变换,如平移、旋转等。
这一册教材的学习,不仅是对数学知识的积累,更是对学生思维能力、逻辑能力、创新能力的培养。
通过系统的学习,学生将逐渐建立起完整的数学知识体系,为其未来的学习和职业发展奠定坚实的基础。
1. 简述七年级数学下册的重要性七年级数学下册作为整个中学数学教育的基础阶段,其重要性不言而喻。
这一学期的内容不仅是对小学数学知识的深化和拓展,更是为后续更高级别的数学学习奠定坚实基础。
七年级数学下册的知识点涵盖了代数、几何、概率统计等多个领域,这些知识点不仅在日常生活中有着广泛的应用,而且在未来的学习和职业发展中也发挥着至关重要的作用。
代数是七年级数学下册的重要组成部分,它帮助学生建立数学思维和解决问题的能力。
通过学习代数,学生可以掌握代数表达式、方程、不等式等基本概念,学会运用这些工具解决实际问题。
几何是七年级数学下册的另一大重点。
几何不仅帮助学生理解空间的概念,还培养学生的逻辑思维和想象力。
通过学习几何,学生可以掌握基本的图形性质和定理,学会运用几何语言描述和证明几何问题。
全国版七年级下册数学
全国版七年级下册数学全国版七年级下册数学是中国中小学普通教育数学课程的重要组成部分。
该教材是根据国家基础教育课程改革的要求编写的,旨在培养学生的数学思维能力和解决问题的能力。
全国版七年级下册数学共分为10个单元,分别是:多位数的认识与应用、平方数与平方根、整数的认识与应用、分数的认识与应用、代数式的认识与应用、几何图形的认识与应用、相交线与平行线、图形的相似与全等、比例与比例应用、数据的收集与整理。
在多位数的认识与应用单元中,学生学习到了多位数的认识与读写,并能够灵活应用数学方法进行运算。
平方数与平方根单元中,学生学习了平方数的概念以及平方根的求解方法,并能够应用这些知识解决实际问题。
整数的认识与应用单元中,学生学习了整数的概念以及整数的加减运算规则,并能够应用这些知识解决实际问题。
在分数的认识与应用单元中,学生学习了分数的概念以及分数的加减乘除运算规则,并能够应用这些知识解决实际问题。
代数式的认识与应用单元中,学生学习了代数式的概念以及代数式的运算规则,并能够应用这些知识解决实际问题。
在几何图形的认识与应用单元中,学生学习了不同几何图形的性质与特点,并能够灵活运用这些知识进行几何问题的解决。
相交线与平行线单元中,学生学习了相交线与平行线的性质及其应用,并能够应用这些知识解决实际问题。
图形的相似与全等单元中,学生学习了图形的相似与全等的概念,以及相似与全等图形的性质,并能够应用这些知识解决实际问题。
在比例与比例应用单元中,学生学习了比例的概念以及比例的求解方法,并能够应用这些知识解决实际问题。
数据的收集与整理单元中,学生学习了数据的收集与整理方法,以及数据的图表表示方式,并能够灵活应用这些知识解决实际问题。
全国版七年级下册数学教材的编写思路独特,注重培养学生的实际应用能力和动手能力。
在整个教材中,重点强调了数学知识与实际问题的联系,通过大量的例题和习题,引导学生运用数学知识分析和解决实际问题。
此外,教材还注重培养学生的数学思维能力和创新能力,通过启发性问题和拓展性问题的设置,鼓励学生发散思维,提高解决问题的能力。
七年级下册数学根号知识点
七年级下册数学根号知识点数学是一个用逻辑思维和推理的学科,其中根号是一种经常出现的数学符号,表示平方根。
在七年级下册的数学学习中,根号知识点具有重要的地位。
下面我们就来一起了解一下七年级下册数学根号知识点。
一、根号的概念根号是一个数学符号,用√表示,表示一个数的平方根。
根号有三个要素:被开方数、根指数、根号符号。
举个例子,√4=2,表示数4的平方根是2。
这里,4是被开方数,2是根号下面的数,代表开根号的指数是2。
二、根号的运算法则1. 基本运算法则:根号相乘等于根号内的数相乘,根号相加或者相减是不能直接计算的。
√a * √b = √(a * b)2. 约分运算法则:对于含有不完全平方数的根式,可以先将其中完全平方数的部分提取出来,等到所有指数都为偶数时再约分。
例如,√20=√(2 * 10)=2√5。
3. 有理化运算法则:含有分数的根式,可以通过有理化来进行简化。
例如,1/√2可以有理化得到√2/2。
三、根式的化简和计算1. 化简根号中的分式:将分式中的分子与分母都乘上同一个数,使得分母化为无理数,便可以将分母中的根式提出来,从而化简。
例如,(1+√2)/(1-√2)=(1+√2)^2/(1-√2)(1+√2)^2/(-1)=(3+2√2)/(-1)=-(2√2-3)。
2. 拆分根号:将根号当做因式,将其中的分式或不完全平方数拆分,可以提取出能够化简的部分。
例如,√24=√(2*2*2*3)=2√6。
四、应用举例1. 如何求根号的值?求一个数字的根号值需要用到口诀“以质乘积分解因数,成对写出每组因数,平方根外边成两因数,根号内写所剩无因数。
”例如,求√720的值,先将720分解因数,得到2*2*2*3*3*5=2^3*3^2*5,将这些因数分成一组一组,每一组互相成对,不多不少,于是可以得到2*2*3=12,根号内剩下5,因此得到答案为12√5。
2. 如何使用根号进行勾股定理?勾股定理是三角形中一种简单的定理,可以用来求解直角三角形中的各个边的长度。
七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)
并,系数化为1。
解:去分母,得 去括号,得 移项,得 合并,得
2(2x+1) ≤6+9(x-1)
4x+2 ≤6+9x49x-9x ≤6-9-2
-5x ≤-5
系数化为1,得 x ≥1
七年级数学第9章不等式与不等式组 将不等式的解集在轴上表示为:
01
x
归纳:
解一元一次不等式的一般步骤: 去分母
去括号 移项 合并
当Y1 > Y2 即100+0.9(X-100) > 50+0.95(X-50) 时,X < 150
议一
故宫博议物院门票是每位10元,20人以上(含20人)的
团体票8折优惠.现有18位同学结伴去博物院,当领队小 华准备好了零钱到售票处买18张票时,李明喊住了他: “买20张吧!”小华困惑了:18人买20张不是浪费吗? 你认为呢?为什么? 此外,不足20人时,多少人买20张的团体票比普通票便宜?
在甲店累计购买100元商品后,再购买的商品按原价的 90%收费;在乙 店累计购买50元商品后,再购买的商品按 原价的95%收费,顾客怎样选择商店购物能获得最大优惠。
(3) 如果累计购物超过100元,那么在甲店花费一定少吗?
解:设累计购物X元(X>100)
在甲店购物花费:Y1 = 100+0.9(X-100) 在乙店购物花费:Y2 = 50+0.95(X-50)
购物花费小;累计购物150元时,在两店购物花费一样; 累计购物超过150元时,在甲店购物花费小.
甲、乙两商店以同样的价格出售同样的商品,并且 又各自推出不同的优惠方案:
在甲店累计购买100元商品后,再购买的商品按原价的90%收费; 在乙 店累计购买50元商品后,再购买的商品按原价的95%收费, 顾客怎样选择商店购物能获得最大优惠。
七年级下册数学所有知识点
七年级下册数学所有知识点
本文将为您总结七年级下册数学的所有知识点,包括数学符号、初中代数、初中几何等各个方面。
让您一篇文章就能掌握七年级
下学期数学的所有内容。
一、数学符号
1. 数字:从0到9,用来表示数量。
2. 常数:用特定的字母表示的数字,如圆周率π、自然底数e 等。
3. 数学运算符:包括加、减、乘、除、等于等符号。
4. 括号:包括小括号、中括号和大括号,用来确定运算的优先级。
5. 分数线:用于分数的表示,表示分子和分母的关系。
二、初中代数
1. 代数基础:代数变量、代数式的定义及运算法则。
2. 一元一次方程:方程的定义,解一元一次方程的方法及其应用。
3. 不等式:不等式的定义,解不等式的方法及其应用。
4. 函数:函数的定义,函数的图像及其性质。
三、初中几何
1. 图形基本概念:点、线、面、角等的定义及其特点。
2. 平面图形:平面图形的分类、特征及其相关性质。
3. 立体图形:常见于七年级的立方体、长方体、球体等图形的表面积和体积的计算方法。
4. 相似形:相似三角形的定义、性质和判定方法。
5. 平移、旋转、对称:平移、旋转、对称的定义及其性质。
以上就是七年级下学期数学的全部知识点,每个知识点都非常重要,完全掌握后可以提高数学成绩,对于高中和大学数学的学习也有很大帮助。
希望大家能够认真学习,沉淀知识,成为数学的佼佼者。
七年级下册数学计算题
七年级下册数学计算题七年级下册数学计算题是学生在七年级下学期学习数学时需要完成的练习题。
这些习题通常涵盖了各个数学领域的基本概念和技能,包括整数、分数、百分数、代数、几何等。
以下是一些可能会在七年级下册数学计算题中出现的内容:1.整数运算:- 加法、减法、乘法和除法的整数运算:例如计算-5 + 9、(-3)× (-4)、15 ÷ (-3)等。
- 整数之间的多项式运算:例如计算-2a + 3a - 5b + 7a - 2b等。
2.分数运算:- 分数的加法、减法、乘法和除法运算:例如计算1/3 + 2/5、2/7 - 1/4、3/4 × 1/2、5/6 ÷ 2/3等。
- 分数化简:例如将2/4化简为1/2、将4/10化简为2/5等。
3.百分数运算:- 百分数的转化和计算:例如将25%转化为分数或小数、计算75%的50等。
4.代数运算:- 变量与常数的运算:例如计算2x + 3y,其中x=2,y=4。
- 多项式的运算:例如计算3x^2 - 4xy + 5y^2,其中x=2,y=3。
5.几何运算:- 长度、面积和体积的计算:例如计算矩形的周长和面积、圆的周长和面积、长方体的体积等。
除了以上几个数学运算领域,七年级下册的数学计算题中还可能涉及到比例、图形的相似和全等、直角三角形的性质等内容。
这些题目旨在培养学生的数学思维能力和解决问题的能力。
对于七年级下册数学计算题的学习,以下是一些建议和注意事项:- 熟练掌握基本的运算法则和计算技巧。
例如加法、减法和乘法的基本原则,分数和百分数的计算规则等。
- 整理好计算的步骤和过程。
对于较复杂的计算题,可以写下每一步的计算过程,以防止出现错误。
- 弄清题目要求。
在计算题中,有些题目要求计算结果,有些题目要求将结果化简或转化为其他形式,理解题目要求对于正确解答很重要。
- 及时纠正错误和解答不会的问题。
如果遇到困难或不理解的题目,可以寻求老师或同学的帮助,及时纠正错误并解答不会的问题。
七下数学证明题技巧
七下数学证明题技巧嘿,小伙伴们!做七年级下册的数学证明题是不是有时候感觉像在走迷宫呀?别担心,今天我就来给大家分享一些超有用的技巧。
首先呢,认真读题是关键!这一步可不能马虎。
把题目里给出的条件都标出来,就像寻宝一样,一个都不能落下。
有时候可能觉得这一步好像很简单,但我跟你说,这可千万不能跳过哦,要是少看了个条件,后面可能就会越做越乱呢。
然后要学会联想相关的定理和定义。
你看到题目中的某个图形或者条件,就得马上在脑袋里搜索对应的知识。
比如说看到平行四边形,那关于平行四边形的各种性质就得像放电影一样在脑海里过一遍。
这一步我通常会花多一点时间,确保想得全面些。
你是不是也经常在这里卡壳呀?接着呢,开始试着构建解题思路。
从已知条件出发,看看能推导出哪些新的结论。
这就像是搭积木,一块一块往上垒。
如果一开始没思路也没关系,多在纸上画画图,写写已知条件可能推导出的东西,说不定灵感就突然冒出来了呢!这一步真的很考验耐心哦。
在写证明过程的时候,要注意逻辑清晰。
每一步都要有依据,可不能乱写一通。
你知道吗,很多同学就是在这栽跟头的。
如果不确定某一步能不能写,那就再回头看看定理和前面推导的结果。
这一点真的很重要,我通常会再检查一次,真的,确认无误是关键!还有哦,如果遇到复杂的图形,可以把它拆分成几个简单的图形来看。
比如说一个组合图形,你可以看成是三角形加上矩形之类的。
这样就会简单很多啦,你有没有试过这种方法呀?最后呢,做完题之后一定要检查。
检查一下自己的推理过程有没有漏洞,用到的定理有没有用错。
这一步虽然是最后一步,但也很重要哦!别以为做完就万事大吉了,有时候一个小错误就会让整个答案都错掉呢。
这一点可不能大意呀!。
北师大版七年级下册数学《用图象表示的变量关系》变量之间的关系说课教学课件复习巩固
课堂检测
探索推广题
如果OA、BA分别表示甲、乙两名学生
运动的路程s和时间t的关系,根据图象
判断快者的速度比慢者的速度每秒快
(C )
A、2.5m
B、2m C、1.5m
D、1m
s (m)
64
A
B
12
0
t(s )
8
解析:由图象可知在8s时间内,学生甲的路程为64m,学生乙
的路程为(64-12)=52m,所以V甲=64/8=8(m/s)
课堂检测
基础巩固题
3.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总
结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔
再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1
表示乌龟所行的路程,y2表示兔子所行的路程).下列说法
错误的是( B )
A.“龟兔再次赛跑”
的路程为1000米
B.兔子和乌龟同时从起点出发
哪队先到达终点?
例3
解:由纵坐标看出,这次龙舟
赛的全程是1000米;由横坐标
看出,乙队先到达终点;
探究新知
(2)求乙与甲相遇时乙的速度.
解:由图象看出,相遇是在乙加速
后,加速后的路程是1000-400=
600(米),加速后用的时间是3.8-
2.2=1.6(分钟),乙与甲相遇时乙
的速度600÷1.6=375(米/分钟).
V乙=52/8=6.5(m/s) 故V甲- V乙=1.5(m/s)
北师大版 数学 七年级 下册
第三章 变量之间的关系
用图象表示的变量关系
课件
学习目标
1、结合具体情境,能理解图象上的点所表示的意义。
2、能从图象中获取变量之间关系的信息,并对未来的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育课程标准实验教科书数学七年级 下册 北京师范大学出版社练习册答案第一章整式的乘除1.1 整式1.(1)C 、D 、F ;(2)A 、B 、G 、H ;(3)A 、B ;(4)G ;(5)E 、I ;2.125r π;3.3343R a π-; 4.四,四,-13ab 2c,-13,25 ;5.1,2;6. 13a 3b 2c ;7.3x 3-2x 2-x ;8.11209,10200a a ;9.D ;10.A ; 11.•B ;12.D ;13.C ;14.12222VV V V +;15.a=27;16.n=32;四.-1.1.2 整式的加减 1.-xy+2x 2y 2; 2.2x 2+2x 2y; 3.3; 4.a 2-a+6; 5.99c-99a; 6.6x 2y+3x 2y 2-14y 3; 7.39π-+;8.3217210n n n n aa a a +++--+-; 9.D; 10.D; 11.D; 12.B; 13.C; 14.C; 15.B;16.D; 17.C ;18.解:原式=126ax +,当a=-2,x=3时, 原式=1. 19. 解:x=5,m=0,y=2,原式=5.20.(8a-5b)-[(3a-b)-32a b -]=13922a b -,当a=10,b=8时,上车乘客是29人.21. 解:由3xyx y=+,得xy=3(x+y),原式=87-.22. 解:(1)1,5,9,即后一个比前一个多4正方形.(2)17,37,1+4(n-1).四.解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c,所以(2)中的用绳最短,(3)中的用绳最长.1.3 同底数幂的乘法1.10m n+,96;2.2x 5,(x+y)7;3.106;4.3;5.7,12,15,3 ;6.10;7.D ;8.•B ; 9.D ;10.D ;11.B ;12.(1)-(x-y)10;(2)-(a-b-c)6;(3)2x 5;(4)-x m13.解:9.6³106³1.3³108≈1.2³1015(kg). 14.(1)①424103333⨯⨯=,②436135555⨯⨯=. (2)①x+3=2x+1,x=2 ②x+6=2x,x=6. 15.-8x 7y 8;16.15x=-9,x=-35-. 四.105.1.4 幂的乘方与积的乘方1.24219a b c ,23n a +;2.2923(),4p q a b + ;3.4 ;4.628a ;5.331n n x y +-; 6.1,-1;7.6,108;8.37;9.A 、D;10.A 、C;11.B;12.D ;13.A ;14.B ;15.A;16.B.17.(1)0;(2)m nb a 4412-;(3)0.18.(1)241 (2)540019.100425753252(2),3(3)==,而4323<, 故1002523<.20.-7;21.原式=19991999499431999(3)(25)32534325⨯+-+=-+=-⨯⨯+, 另知19993的末位数与33的末位数字相同都是7,而199925的末位数字为5,∴原式的末位数字为15-7=8. 四.400.1.5 同底数幂的除法1.-x 3,x ;2.2.04³10-4kg;3.≠2;4.26;5.(m-n)6;6.100 ;7.13;8.2;9.3,2,2; 10.2m=n;11.B; 12.B ;13.C;14.B;15.C;16.A; 17.(1)9;(2)9;(3)1;(4)61()n x y --+ ;18.x=0,y=5;19.0;20.(1)201; (2)41.21.22122()22x x x x m --+=+-=-; 四.0、2、-2.1.6 整式的乘法1.18x 4y 3z 2;2.30(a+b)10;3.-2x 3y+3x 2y 2-4xy 3;4.a 3+3a;5.-36;•6.•a 4-16;7.-3x 3-x+17 ;8.2,3 9.nna b -;10.C;11.C;12.C;13.D;14.D;15.D;16.B ;17.A ; 18.(1)x=218;(2)0; 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩;20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2²0-2²0=0,21.由题意得35a+33b+3c-3=5,∴35a+33b+3c=8,∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11, 22.原式=-9,原式的值与a 的取值无关. 23.∵21222532332n n n n n +++⨯⨯-⋅⋅,=212125321232n n n n ++⨯⨯-⋅⋅,=211332n n +⋅⋅.∴能被13整除. 四.125121710252⨯=⨯=N ,有14位正整数.1.7 平方差公式(1)1.36-x 2,x 2-14; 2.-2a 2+5b;3.x+1;4.b+c,b+c; 5.a-c,b+d,a-c,b+d ;6.3239981,159991;7.D;8.C;9.D;10.16a -1;11.5050 ;12.(1)52020423+--x x x ,-39 ; (2)x=4;13.原式=200101;14.原式=1615112(1)222-+=.15.这两个整数为65和63. 四.略.1.7 平方差公式(2)1.b 2-9a 2;2.-a-1;3.n-m;4.a+b ,1;5.130+2 ,130-2 ,16896;6. 3x-y 2;7.-24 ;8.-15;9.B; 10.D;11.C;12.A;13.C;14.B.15.解:原式=4216194n m -. 16.解:原式=16y 4-81x 4;17.解:原式=10x 2-10y 2. 当x=-2,y=3时,原式=-50. 18.解:6x=-9,∴x=23-. 19.解:这块菜地的面积为:(2a+3)(2a-3)=(2a)2-9=4a 2-9(cm 2),20.解:游泳池的容积是:(4a 2+9b 2)(2a+3b)(2a-3b),=16a 4-81b 4(米3).21.解:原式=-6xy+18y 2,当x=-3,y=-2时, 原式=36. 一变:解:由题得:M=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y)=(-4x)2-(3y)2-(16x 2-18xy+24xy-27y 2)=16x 2-9y 2-16x 2-6xy+27y 2=18y 2-6xy. 四.2n+1.1.8 完全平方公式(1) 1.19x 2+2xy+9y 2,12y-1 ;2.3a-4b,24ab,25,5 ;3.a 2+b 2+c 2+2ab-2ac-2bc;4.4ab,-2,1x;5.±6;6.x 2-y 2+2yz-z 2;7.2cm;8.D; 9.B ; 10.C; 11.B ; 12.B ; 13.A;14.∵x+1x =5 ∴(x+1x )2=25,即x 2+2+21x=25 ∴x 2+21x =23 ∴(x 2+21x )2=232 即4x +2+41x=529,即441x x +=527.15.[(a+1) (a+4)] [(a+2) (a+3)]=(a 2+5a+4) (a 2+5a+6)= (a 2+5a)2+10(a 2+5a)+24=43210355024a a a a ++++. 16.原式=32a 2b 3-ab 4+2b. 当a=2,b=-1时,原式=-10. 17.∵a 2+b 2+c 2-ab-bc-ca=0∴2(a 2+b 2+c 2-ab-bc-ca)=0∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(a 2-2ac+c 2)=0即(a-b)2+(b-c)2+(a-c)2=0 ∴a-b=0,b-c=0,a-c=0 ∴a=b=c.18.左边=[(a+c)2-b 2](a 2-b 2+c 2)=(a 2+b 2+c 2)(a 2-b 2+c 2)=(a 2+c 2)2-b 4=44a c ++2a 2c 2-b 4=444a b c ++. 四.ab+bc+ac=-21.1.8 完全平方公式(2)1.5y;2.500;2;250000+2000+4;252004.3.2;4.3a;6ab;b 2;5.-6;6.4;7.2xy;2xy;8.2641,81x x ,4;9.D ; 10.D ; 11.B ; 12.B; 13.C; 14.B; 15.解:原式 =2a 4-18a 2.16.解:原式 =8x 3-2x 4+32.当x=-21时,原式=8732.17.解:设m=1234568,则1234567=m-1,1234569=m+1,则A=(m-1)(m+1)=m 2-1,B=m 2.显然m 2-1<m 2,所以A<B.18.解:-(x 2-2)2>(2x)2-(x 2)2+4x,-(x 4-4x 2+4)>4x 2-x 4+4x,-x 4+4x 2-4>4x 2-x 4+4x, -4>4x,∴x<-1. 19.解:由①得:x 2+6x+9+y 2-4y+4=49-14y+y 2+x 2-16-12, 6x-4y+14y=49-28-9-4, 6x+10y=8,即3x+5y=4,③由③-②³③得:2y=7,∴y=3.5, 把y=3.5代入②得:x=-3.5-1=-4.5,∴ 4.53.5x y =-⎧⎨=⎩20.解:由b+c=8得c=8-b,代入bc=a 2-12a+52得,b(8-b)=a 2-12a+52,8b-b2=a 2-12a+52,(a-b)2+(b-4)2=0,所以a-6=0且b-4=0,即a=6,b=4, 把b=4代入c=8-b 得c=8-4=4.∴c=b=4,因此△ABC 是等腰三角形.四.(1)20012+(2001³2002)2+20022=(2001³2002+1)2.(2) n 2+[n(n+1)]2+(n+1)2=[n(n+1)]2.1.9 整式的除法 1.33m a b -; 2.4b; 3.273x -2x+1; 4.3213222x y x y --; 5.-10³1010; 6.-2yz,x(答案不惟一); 7.3310258z y x -; 8.3; 9.x 2+2; 10.C; 11.B; 12.D; 13.A; 14.C; 15.D; 16.(1)5xy 2-2x 2y-4x-4y ; (2)1 (3)2x 2y 2-4x 2-6; 17.由5171m m n +-=⎧⎨-=⎩ 解得32m n =⎧⎨=⎩;∴2139nm--==. 18.a=-1,b=5,c=-15, ∴原式=25187111(15)[15()]15555⨯⨯÷-⨯⨯-=÷=.19. 13b a =⎧⎨=⎩;20.设除数为P,余数为r,则依题意有:80=Pa+r ①,94=Pb+r ②,136=Pc+r ③,171=Pd+r ④,其中P 、a 、b 、c 、•d 为正整数,r ≠0②-①得14=P(b-a),④-③得35=P(d-c)而(35,14)=7 故P=7或P=1,当P=7时,有80÷7=11…3 得r=3而当P=1时,80÷1=80余0,与余数不为0矛盾,故P ≠1∴除数为7,余数为3. 四.略.单元综合测试 1.332311,0.1;(),26x y z a a a b x+--+, 2.3,2; 3.1.23³510-,-1.49³710;4.6;4;332222;0.533x y x y y x --++-; 5.-2 6.单项式或五次幂等,字母a 等; 7.25;8.4002;9.-1;10.-1; 11.36;12.a=3,b=6,c=4 ;13.B ; 14.A ; 15.A ;16.A ; 17.C ; 18.D;19.由a+b=0,cd=1,│m │=2 得x=a+b+cd-12│m │=0 原式=27716244x x --, 当x=0时,原式=14-. 20.令111111,1232002232003a b +++=++++= , ∴原式=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1=12003.21.∵222222222222121211221221(5)(5)2555x x y y x y x y x y x y ++=+++=2211221221(5)5()x y x y x y x y ++-∴22221210(5)155(5)350y y +=+⨯-=∴22125y y +=35. 22.1234567162536496481100x x x x x x x ++++++ =(3)3(2)3(1)1⨯-⨯+⨯=123³3-12³3+1=334.第二章 平行线与相交线2.1余角与补角1.³、³、³、³、³、√;2.(1)对顶角(2)余角(3)补角;3.D;4.110°、70°、110°;5.150°;6.60°;7.∠AOE 、∠BOC ,∠AOE 、∠BOC ,1对;8.90°9.30°;10.4对、7对;11.C;12.195°;13.(1)90°;(2)∠MOD=150°,∠AOC=60°;14.(1)∠AOD=121°;(2)∠AOB=31°,∠DOC=31°;(3)∠AOB=∠DOC;(4)成立; 四.405°.2.2探索直线平行的条件(1)1.D;2.D;3.A;4.A;5.D;6.64°;7.AD 、BC ,同位角相等,两直线平行;8、对顶角相等,等量代换,同位角相等,两直线平行;9.BE ∥DF (答案不唯一);10.AB ∥CD ∥EF;11.略;12.FB ∥AC ,证明略.四.a ∥b,m ∥n ∥l.2.2探索直线平行的条件(2)1.CE 、BD ,同位角;BC 、AC ,同旁内角;CE 、AC ,内错角;2.BC ∥DE (答案不唯一);3.平行,内错角相等,两直线平行;4.C;5.C;6.D;7.(1)∠BED ,同位角相等,两直线平行;(2)∠DFC ,内错角相等,两直线平行;(3)∠AFD ,同旁内角互补,两直线平行;(4)∠AED ,同旁内角互补,两直线平行;8.B;9.C;10.B;11.C;12.平行,证明略;13.证明略;14.证明略;15.平行,证明略(提示:延长DC 到H ); 四.平行,提示:过E 作AB 的平行线.2.3平行线的特征1.110°;2.60°;3.55°;4.∠CGF ,同位角相等,两直线平行,∠F ,内错角相等,两直线平行,∠F ,两直线平行,同旁内角互补;5.平行;6.①②⇒④(答案不唯一);7.3个 ;8.D;9.C;10.D;11.D;12.C;13.证明略;14.证明略; 四.平行,提示:过C 作DE 的平行线,110°.2.4用尺规作线段和角(1)1.D;2.C;3.D;4.C;5.C;6.略;7.略;8.略;9.略; 四.(1)略(2)略(3)①A ②61. 4.4用尺规作线段和角(2)1.B;2.D;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略; 四.略.单元综合测试1.143°;2.对顶角相等;3.∠ACD 、∠B ;∠BDC 、∠ACB ;∠ACD;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠AOD 、∠AOC;11.C;12.A;13.C;14.D;15.A;16.D;17.D;18.C;19.D;20.C;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;第三章 生活中的数据 3.1 认识百万分之一 1,1.73³104- ;2,0.000342 ; 3,4³107-; 4,9³103- ; 5,C; 6,D;7,C ; 8,C; 9,C;10,(1)9.1³108-; (2)7³105- ;(3)1.239³103- ;11,6101=106- ;106个. 3.2 近似数和有效数字1.(1)近似数;(2)近似数;(3)准确数;(4)近似数;(5)近似数;(6)近似数;(7)近似数;2.千分位;十分位;百分位;个位;百位;千位;3. 13.0, 0.25 , 3.49³104 , 7.4*104;4.4个, 3个, 4个, 3个, 2个, 3个;5. A;6、C;7. B ;8. D ;9. A ;10. B; 11.有可能,因为近似数1.8³102cm是从范围大于等于1.75³102而小于1.85 ³102中得来的,有可能一个是1.75cm,而另一个是1.84cm,所以有可能相差9cm.12. 13³3.14³0.252³6=0.3925mm3≈4.0³10-10m313.因为考古一般只能测出一个大概的年限,考古学家说的80万年,只不过是一个近似数而已,管理员却把它看成是一个精确的数字,真是大错特错了.四:1,小亮与小明的说法都不正确.3498精确到千位的近似数是3³1033.3 世界新生儿图1,(1)24% ;(2)200m以下 ;(3)8.2%;2,(1)59³2.0=118(万盒);(2)因为50³1.0=50(万盒),59³2.0=118(万盒),80³1.5=120 (万盒),所以该地区盒饭销量最大的年份是2000年,这一年的年销量是120万盒;(3)50 1.059 2.080 1.53⨯+⨯+⨯=96(万盒);答案:这三年中该地区每年平均销售盒饭96万盒.3.(1)王先生 2001年一月到六月每月的收入和支出统计图(2)28:22:27:37:30:29;4.(1)这人的射击比较稳定,心态好,所以成绩越来越好;(2)平均成绩是8(3)5.解:(1)实用型生活消费逐年减少,保健品消费逐年增加,旅游性消费逐年增加:(2)每年的总消费数是增加了(3)6.(1)大约扩大了:6000-500=5500(km)2 6000÷500=12. (2)1960~1980年间,上海市市区及郊县的土地面积没有大的变化,说明城市化进程很慢. (3)说明郊县的部分土地已经划为上海市区,1980年以后,上海市区及郊县的土地总面积和几乎不变,这说明1980年以后上海市区及郊县的土地总面积总和几乎不变,这说明1980年以后上海市在未扩大土地总面积的前提下,城市化进程越来越快,城市土地面各占总土地面积的比例越来越大(如浦东新区的开发等). 7,(1)由统计图知道税收逐年增加,因此2000年的税收在80到130亿元之间 (2)可获得各年税收情况等 (3)只要合理即可.单元综合测试1. 10-9;2. 106 ;3.333³103;3. 0.0000502;4. 170, 6 ;5.百 , 3.3³104;6. 1.4³108, 1.40³108;7.0.36 0.4;8. 1.346³105;9.A,10.B,11.C,12.C,13.A,14.D,15.B,16.C,17.B,18.B 19. 0.24与0.240的数值相等,在近似数问题上有区别,近似数位不同:0.24近似到百分位(0.01);0.240近似到千分位(0.001).有效数字不同:0.24有两个有效数字2、4;0.240有三个有效数字2、4、0. 20. (1)精确到0.0001,有四位有效数字3、0、1、0;(2)精确到千位,有三位有效数字4、2、3;(3)精确到个位,有三位有效数字3、1、4. 21. 82kg=82000 g,∴100000082000=8.2³10-2(g).22. 1000104005⨯=6104=4³10-6(kg).答:1 粒芝麻约重 4³10-6kg. 23. 西部地区的面积为32³960=640万 km 2=6.40³106 km 2,精确到万位. 24. 可用条形统计图:25. 36003301038⨯⨯≈2.53³102(h).答:该飞机需用 2.53³102h 才能飞过光 1 s 所经过的距离. 26. (1)树高表示植树亩数,从图中可看出植树面积逐年增加.(2)2000年植树约 50 万亩; 2001年植树约75 万亩; 2002年植树约110 万亩; 2003年植树约155 万亩; 2004年植树约175 万亩; 2005年将植树约225 万亩. (3)2000年需人数约 5 万; 2001年需人数约 7.5 万; 2002年需人数约 11 万; 2003年需人数约 15.5 万; 2004年需人数约 17.5 万; 2005年需人数约 22.5 万.第四章 概率 4.1 游戏公平吗 1.1或100% , 0; 2.61;3.相同 ;4.不可能,0;5.不确定,0,1 ;6.必然事件,1;7. A →③, B →① ,C →② ; 8. D ; 9. C;10.A; 11.(1)可能性为1 ;(2)发生的可能性为51;(3)发生的可能性为50% ;(4)发生的可能性为103;(5)发生的可能性为0.12四.这个游戏对双方不公平,当第一个转盘转出数字为1时,第二个转盘转出的数字1,2,3,4,5,6六种可能,这样在它们的积中有3奇3偶,当第一个转盘转出数字2时,第二个转盘转出的六种可能结果数中,两数之积必全为偶数,因此可以知道,,在两个转盘转出的所有可能结果数应是36种,其中只有9种可能是奇数,27种可能出现偶数,即出现积为偶数的可能比积为奇数的可能大得多,因而此游戏对对方不公平,为公平起见,可将游戏稍作改动,即将“两个转盘停止后所指向的两个数字之积”中的“积”改为“和”即可.4.2 摸到红球的概率1. 1.11000; 2.131 ; 3. 21; 4. ,3165 ; 5. 81 ; 6.1,0;7.(1)P=17;(2)P=0 ;(3)P=1;(4)P=0 ;(5)P=37;(6)P=47 ;(7)P=37; 8.C ; 9. D; 10. C; 11.B ;12.B; 13.C; 14.C;15.D ;16.D ;17.(1)P=13;(2)P=13;(3)P=23;(4)P=23. 18.∵P(甲获胜)=310,P(乙获胜)=25.∴这项游戏对甲、乙二人不公平, 若要使这项游戏对甲、乙二人公平,则添加编号为“0”的卡片或添加编号为“11”和“12”的卡片等等. 19.(1)k=0 (2)k=220.乙获胜的可能性不可能比甲大,要使游戏公平,小立方体上标有“2 ”的面数为3个,标有“1”“3”的面数共3个 21.P 1P 2; 四.(1)321; (2) 161; (3)摊主至少赚187.5元;4.3 停留在黑砖上的概率1.A ;2.D ; 3.B ; 4.A ;5.B ; 6.C; 7.(1)14; (2)512; (3)23; (4)712; 8.可以在20个扇形区域中,任意将其中6个扇形涂上黄色,而余下14个均为非黄色即可,设计不确定事件发生的概率为103的方法很多,只要合理即可. 9.110; 1100; 10.16 ;11.P (阴影)=416,P (黑球)=416,概率相同,因此同意这个观点. 12.154,227,1354;13.110;四.解:小晶的解法是正确的,解的过程考虑的是以两个盛着写有0,1,2,3,4,•5的六张卡片的袋中“各取一块”,所以此时的基本事件(实验结果)有: (0,0),(0,1),(0,2),(0,3),(0,4),(0,5), (1,0),(1,1),(1,2),(1,3),(1,4),(1,5), …… (5,0),(5,1),(5,2),(5,3),(5,4),(5,5)等36种, 其中和为6的是(1,5),(2,4),(3,3),(4,2),(5,1)5种, 故所求概率P=536.而小华解的是把“和”作为基本事件,•其和的解有0,1,2,…,10等11种,但这11种的概率是不同的.单元综合测试1.不确定, 0,1;2. 41 , 131 , 133;3. 53;4. 红, 白;5. 2 ① ② ③1;6.= ; 7; 32,31 ;8.113;9.C ;10.B;11.B; 12.C; 13.A ; 14.D ;15.B ;16.C;17. 游戏公平;理由:∵2 的倍数为2、4、6,它们的概率和为21; 数字大于3的有4、5、6,它们面朝上的概率和为21.两种情况机会均等,所以游戏公平.18.没道理.因为有95%的可能性要下雨,还有5%不下雨,所以带雨伞有一定预防作用,并不是必定下雨.明天下雨的可能性为10%,并不表示一定不下雨,还有10%的概率要下雨.19. 妈妈对小颖的关心爱护的心情是可以理解的,但总担心被车碰着是多余的.虽然时有车祸发生,但车祸的发生不具有随意性,只要我们人人注意,车祸是可以避免的.20. (1)101,451;(2)101³451=4501. 21.上层抽到数学的概率为31;下层抽到数学练习册的概率为31;同时抽到两者的概率为91. 22. 10 个纸箱中4 个有糖果,抽到有糖果纸箱的概率为52104 . 23.(1)10 个球中有 2 个红球,其他颜色球随意;(2)10 个球中有 4 个红球,4 个白球,另两个为其他颜色.24. (1)没有.(2)打折的面积占圆盘面积的一半,转一次转盘获打折待遇的概率是21;打九折的概率为41;打八折的概率为61;打七折的概率为121. 第五章 三角形5.1 认识三角形(1)1.C ; 2.D ; 3.C ; 4.B; 5.A ;6.C; 7.C; 8.A; 9.4, △ADE ,△ABE ,△ADC ,•△ABC;10.3 , △AEC ,△AEB ,△AED;11.0<BC<10 12.2 , 5cm ,6cm ,8cm ;6cm ,8cm ,13cm ;13.2;14.•15cm 或18cm ;15. 7cm<a<12cm;16.学校建在AB ,CD 的交点处.理由:任取一点H ,利用三角形三边关系.四.AB=6,AC=4,由三边关系定理,BC=4或6或8.5.1 认识三角形(2)1.C; 2.C ; 3.B ; 4.43°48′; 5.5 ; 6.180°; 7.3 ,1 , 1; 8.30°;9.60°;10.A ; 11.C; 12.B ; 13.70°,60°;14.70°,60° 15.不符合,因为三角形内角和应等于180°.16.45°,70°,115°;17.解:因为AB ∥CD ,AD ∥BC ,所以∠BDC=∠2=55°,∠DBC=∠1=65°,所以∠C=•180°-∠BDC-∠DBC=60°;四.探究:此类题只需抓住一个三角形,如图(1)所示,在△MNC 中,∠1+∠2+∠C=180°,而∠1=∠A+∠D ,∠2=∠B+∠E ,所以∠A+∠B+∠C+∠D+∠E=180°.如图(2)所示,在△BCM 中,∠C+∠1+∠2=180°,而∠1=∠A+∠D ,∠2=∠DBE+∠E ,故结论成立.如图(3)所示,在△MNE 中,∠1+∠2+∠E=180°,∠1=∠B+∠D ,∠2=∠A+∠C ,•故结论仍成立.5.1 认识三角形(3)1.(1)AD;AD,BD ;(2)BF ,AC ,ACE ,AE ,ADC ,AD ,DEC ,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略;四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE ,△EOD ,△AOD ,△ABD ,△ACD ,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ;12.略四.5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG 再证△ADG≌△ADC,∴AG=AC,即AC=2AE.14.已知:DE⊥AB,DF⊥AC,垂足分别为E,F,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90º.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF.15.此图中有三对全等三角形,分别是:△ABF≌△DEC,△ABC≌△DEF,△BCF•≌△EFC.证明:∵AB∥DE,∴∠A=∠D.在△ABF 和△DEC 中,,,,AB DE A D AF DC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DEC (SAS ).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°, ∴∠CAD=∠BCE ,∵AC=BC,∴△ADC≌△CEB;② ∵△ADC≌△CEB,∴CE=AD,CD=BE ,∴DE=CE+CD=AD+BE,(2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE,又∵AC=BC ,∴△ACD≌△CBE ,∴CE=AD,CD=BE .∴DE=CE-CD=AD -BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE=BE -AD (或AD=BE -DE ,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE, ∴AD=CE,CD=BE ,∴DE=CD-CE=BE -AD .5.5 ~5.6 作三角形~~利用三角形全等测距离1.C; 2.D ; 3.A ; 4.∠α ,a,b, 所求;5.共6个,如图所示: ....3.55A 2B 22C 1B 1A 136︒53.536.C ;7.略;8.在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长.9.(1)由△APB ≌△DPC ,所以CD=AB .(2)由△ACB ≌△ECD 得DE=AB .目的是使DE ∥AB ,可行.10.因为△A ′OB ′≌△AOB ,所以AB=A ′B ′.11.解:(1)AE=CF (OE=OF ;DE ∥BF 等等)(2)因为四边形ABCD 是长方形,所以AB=CD ,•AB ∥CD ,∠DCF=∠BAF ,又因为AE=CF ,所以AC-AE=AC-CF ,所以AF=CE ,所以△DEC ≌△BFA .12.提示:连接EM ,FM ,需说明∠EMF=∠BMC=180°即可四.(1)FE=FD;(2)(1)中的结论FE=FD 仍然成立.在AC 上截取AG=AE ,连结FG .证△AEF ≌△AGF 得∠AFE=∠AFG ,FE=FG .由∠B=60°,AD 、CE 分别是∠BAC ,∠BCA 的平分线,得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE 及FC 为公共边. 可证△CFG ≌△CFD , 所以FG=FD ,所以FE=FD .5.7 探索直角三角形全等的条件(HL )1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS 或ASA ; (2)AAS ; (3)SAS 或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE .理由是∠ACD=∠AED=90°,∠CAD=•∠EAD ,所以∠ADC=∠ADE (直角三角形两锐角互余).8.C 9.△ADE ≌△CBF ,△DEG ≌△BFG ,△ADG ≌△CBG10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE ≌△ACD ,△ADF ≌△AEF ,•△BDF ≌△CEF ,根据的方法分别为AAS ,HL ,HL 或SAS 或AAS 或ASA 或SSS .13.解:因为△ABD ≌△CBD ,所以∠ADB=∠CDB .又因为PM ⊥AD ,PN ⊥CD ,所以PM=•PN .14.提示:先说明△ADC ≌△BDF ,所以∠DBE=∠DAC ,所以∠ADB=∠AEF=90°,•所以BE ⊥AC .15.△ABF ≌△DEA ,理由略.16.先证Rt △ACE ≌Rt △BDF ,再证△ACF ≌△BDE;17. 需证Rt △ADC ≌Rt △AEC四.(1)由于△ABC 与△DEF 是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC ≌△DEF ,所以∠A =∠D ,在△ANP 和△DNC 中,因为∠ANP =∠DNC ,所以∠APN =∠DCN ,又∠DCN =90°,所以∠APN =90°,故AB ⊥ED .(2)答案不唯一,如△ABC ≌△DBP ;△PEM ≌△FBM ;△ANP ≌△DNC 等等.以△ABC ≌△DBP 为例证明如下:在△ABC 与△DBP 中,因为∠A =∠D ,∠B =∠B ,PB =BC ,所以△ABC ≌△DBP .单元综合测试1.一定,一定不;2.50°;3.40°; 4.HL;5.略(答案不惟一);6.略(答案不惟一); 7.5;8.正确;9.8;10.D; 11.C; 12.D; 13.C; 14.D; 15.A; 16.C; 17.C;.18.略;19.略;20.合理.因为他这样做相当于是利用“SSS ”证明了△BED ≌△CGF ,所以可得∠B =∠C .21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE =BF =CD ,AF =BD =CE ,事实上,因为△ABC 与△DEF 都是等边三角形,所以∠A =∠B =∠C =60°,∠EDF =∠DEF =∠EFD =60°,DE =EF =FD ,又因为∠CED +∠AEF =120°,∠CDE +∠CED =120°,所以∠AEF =∠CDE ,同理,得∠CDE =∠BFD ,所以△AEF ≌△BFD ≌△CDE (AAS ),所以AE =BF =CD ,AF =BD =CE ,(2)线段AE ,BF ,CD 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF ,BD ,CE 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD ≌△EA D ',其中∠EAD=∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠;(2)118022180-2x y ∠=︒-=︒,∠;(3)规律为:∠1+∠2=2∠A .第六章 变量之间的关系6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;11.(1)皮球反弹的高度,下落高度;下落高度是自变量,反弹高度是因变量;(2)40cm;(3)200cm;12.(1)108.6度;(2)3258度;(3)y=54.3x;13.(1)通话时间和通话费用,通话时间是自变量,通话费用是因变量;(2)(3)略14.(1(2)s=3n+1;不能剪成33个,因为当s=33时,n 不是整数.6.2 变化中的三角形1.9,4;2.3532-x ;3.y=20-2x;4.t=20-6h;5.21;6.y=3000+400x-2002x ;7.231;8.C;9.D;10.C;11.(1)V=331+0.6t ;(2)346;12.(1)y=3x+36;(3)当x 每增加1时,y 增加3;(4)y=36,表示三角形;13.(1)28个,45个;(2)y=x+19;(3)当y=52时,x=33,但仅有30排,所以不可能某排的座位数是52个;14.(1)1y =5x+1500;(2)2y =8x ;(3)当x=300时,3000150030051=+⨯=y (元) , 240030082=⨯=y (元),所以12y y <,故选乙公司合算. 6.3 温度的变化1.表格法,图象法,关系式法;2.水平,竖直;3.24,4;4.(1)7,5;(2)0千米/时,从2时到4时萌萌没有行走;(3)40;(4)10千米/时;(5)20;5.B;6.Q=90-8t ,675;7.D;8.D;9.(1)正方形个数,火柴棒根数;火柴棒根数;(2)3x+1;(3)19;10.(1)2510=元;58105.20--=3.5元;(2)因为3.5<5,所以应交水费为3.5³2=7元; 55.31017+-=7吨. 11.(1)由图象我们可以看出农民自带零钱为5元. (2)(元)5.030520=- (3)(千克)。