四年级数学鸡兔同笼假设法解题技巧

合集下载

小学数学“鸡兔同笼”问题解题技巧

小学数学“鸡兔同笼”问题解题技巧

小学数学“鸡兔同笼”问题解题技巧基本题型已知鸡兔的总只数和总腿数。

求鸡和兔各多少只。

解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。

解题规律:方法1、假设全是鸡,兔的只数=(总腿数-总只数×2)÷(每只兔的脚数-每只鸡的脚数);方法2、假设全是兔,鸡的只数=(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例1:有鸡兔共20只,脚44只,鸡兔各几只?解:方法1、假设全是鸡( 44 — 20 × 2) ÷( 4 - 2 )=2(只)。

兔的只数(总腿数-总只数× 2)÷(每只兔的脚数-每只鸡的脚数)20-2=18(只)。

鸡的只数方法2、假设全是兔( 20 ×4-44) ÷( 4 - 2 )=18(只)。

鸡的只数(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数)例 2. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:方法1、假设都是小船大船:(6×15+22)÷(6+10)=7(只); 小船:15-7=8(只)方法2、假设都是大船小船:(10×15-22)÷(6+10)=8(只) 大船:15-8=7(只) 20-18=2 (只)。

兔的只数常见题型1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,方法1:(每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数方法2:(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

方法3:列方程解答根据鸡兔脚数的差数,找出鸡与兔的只数关系例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?解法1:兔数:(2×30+60)÷(2+4)=20(只); 鸡数:30-20=10(只)解法2:鸡数:(4×30+60)÷(2+4)=10(只)兔数:30-10=20(只)解法3:根据“兔脚比鸡脚多60只也就是“鸡脚比兔脚少60只,那么鸡的只数比兔的2倍少(60÷2=)30(只)解:设兔有X只,那么鸡有2X-60÷2(只)即:2X-30(只)2X-60÷2+X=303X-30=303X=60X=20 30-20=10(只)(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。

鸡兔同笼题目及技巧全解析

鸡兔同笼题目及技巧全解析

鸡兔同笼题目及技巧全解析“鸡兔同笼”是中国古代著名的数学趣题之一,也是小学数学中经常会遇到的一类经典问题。

它不仅能锻炼我们的逻辑思维能力,还能让我们学会运用不同的方法来解决问题。

今天,咱们就来好好探讨一下鸡兔同笼的题目以及解题技巧。

先来看一道常见的鸡兔同笼题目:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?遇到这类问题,咱们可以使用多种方法来求解。

第一种方法是假设法。

假设笼子里全是鸡,那么 35 只鸡应该有35×2 = 70 只脚。

但实际有 94 只脚,多出来的 94 70 = 24 只脚,是因为把兔当成鸡来算少算了的。

每只兔有 4 只脚,每只鸡有 2 只脚,所以每把一只兔当成鸡就少算 4 2 = 2 只脚。

那么多出来的 24 只脚就是因为把 24÷2 = 12 只兔当成了鸡。

所以兔有 12 只,鸡就有 35 12 = 23 只。

假设全是兔也可以,假设 35 只全是兔,那么应该有 35×4 = 140 只脚,实际只有 94 只脚,多算了 140 94 = 46 只脚。

每把一只鸡当成兔就多算 4 2 = 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

第二种方法是方程法。

咱们可以设鸡的数量为 x 只,兔的数量就是35 x 只。

因为每只鸡有 2 只脚,每只兔有 4 只脚,所以可以列出方程2x + 4×(35 x) = 94 。

解这个方程:2x + 140 4x = 94140 2x = 942x = 140 942x = 46x = 23所以鸡有 23 只,兔有 35 23 = 12 只。

再来看一道稍微变化一点的题目:一个笼子里鸡兔共有 50 只,鸡脚比兔脚多 20 只,问鸡兔各有多少只?这道题我们可以先把多出来的鸡脚减去,20÷2 = 10 只鸡,那么剩下的鸡和兔一共有 50 10 = 40 只。

鸡兔同笼的数学问题

鸡兔同笼的数学问题

鸡兔同笼的数学问题
答:这是古典的算术问题。

已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:
假设全都是鸡,则有
兔数=(实际脚数-2×鸡兔总数)÷(4-2)
假设全都是兔,则有
鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
假设全都是鸡,则有
兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
假设全都是兔,则有
鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

鸡兔同笼问题的解题技巧

鸡兔同笼问题的解题技巧
例 5.大 、小 猴 子 共 35 只 , 它们一起去采摘水蜜桃。猴王 不在的时候, 一只大猴子一小 时可采摘 15 千克, 一只小猴子 一小时可采摘 11 千克。猴王在 场监督的时候, 每只猴子不论 大 小 每 小 时 可 以 多 采 摘 12 千 克。一天, 采摘了 8 小时, 其中 只有第一小时和最后一小时有 猴王在场监督, 结果共采摘 4400 千克水蜜桃。在这个猴群 中, 共有小猴子多少只?
练 习 : 1.鸡 兔 同 笼 , 共 有 腿 248 条 , 兔 比 鸡 少 52 只 , 那 么 鸡、兔各有多少只?
2.学校有象棋和跳棋共 32 副。组织四年级同学进行活动, 2 人下一副象棋, 6 人下一副跳 棋, 已知下象棋的比下跳棋的 少 112 名同学。四年级共有多 少名同学下跳棋?
例 4. 鸡 兔 共 有 腿 88 条 , 如果鸡和兔的只数调换, 则鸡 兔共有腿 68 条。鸡兔各有多少 只?
【 分析与解】这个题是由基 本的鸡兔同笼问题转变而来 的。由于“ 猴王在场监督的时 候, 每只猴子不论大小每小时 可以多采摘 12 千克”, 所以在 解答这个题目时也要用转化的 方法。第一个转化是把猴王在
思维训练
s i wei xun lian
场转化为猴王不在场。因为“ 只 有第一小时和最后一小时有猴 王在场监督”, 如果没有猴王在 场监督, 每只猴子都要少采摘 水 蜜 桃 12×2 千 克 , 这 样 , 大 、 小 猴 子 35 只 共 少 采 摘 水 蜜 桃 12×2×35=840(千 克 )。 用 总 数 4400 千 克 减 去 少 采 摘 的 840 千 克 , 即 : 4400- 840=3560 千 克, 就把猴王在场转化为猴王 不在场的采摘总数。第二个转 化是把 8 小时转化成 1 小时。 因 为 3560 千 克 是 大 、 小 猴 子 35 只 8 小时采摘的水蜜 桃 , 再 用 3560÷8 就求出大、小猴子 35 只 1 小 时 共 采 摘 水 蜜 桃 : 3560÷8=445(千 克 )。 通 过 两 次 转化就把本题转化成了基本的 鸡兔同笼问题“: 大、小猴子共 35 只 , 它 们 一 起 去 采 摘 水 蜜 桃。一只大猴子一小时可采摘 15 千克, 一只小猴子一 小 时 可 采 摘 11 千 克 , 每 小 时 大 、小 猴 子共采摘水蜜桃 445 千克。在 这个猴群中, 共有小猴子多少 只? ”(解答过程略。)

鸡兔同笼题目技巧总结

鸡兔同笼题目技巧总结

鸡兔同笼题目技巧总结“鸡兔同笼”是一类经典的数学问题,常常让同学们感到困惑。

但其实只要掌握了一些技巧和方法,就能轻松应对。

接下来,咱们就一起详细探讨一下解决鸡兔同笼问题的各种技巧。

首先,咱们得弄清楚鸡兔同笼问题的基本概念。

它通常是说在一个笼子里关着鸡和兔若干只,知道它们头的总数和脚的总数,然后让我们求出鸡和兔分别有多少只。

解决鸡兔同笼问题,最常用的方法就是假设法。

咱们假设笼子里全是鸡或者全是兔,然后根据实际脚的数量与假设情况下脚的数量之差,来推算出鸡和兔的数量。

比如说,有一个笼子里鸡和兔共有 35 个头,94 只脚。

咱们先假设笼子里全是鸡,因为每只鸡有 2 只脚,那么 35 只鸡就应该有 35×2 =70 只脚。

但实际有 94 只脚,多出来的 94 70 = 24 只脚,这是因为把兔当成鸡来算了。

每只兔有 4 只脚,而我们当成鸡算了就少算了 4 2= 2 只脚。

所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 =23 只。

再比如,假设笼子里全是兔。

同样以上面的例子来说,35 只兔就应该有 35×4 = 140 只脚,实际只有 94 只脚,少了 140 94 = 46 只脚。

这是因为把鸡当成兔来算,每只鸡多算了 2 只脚,所以鸡的数量就是46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

除了假设法,方程法也是解决鸡兔同笼问题的好办法。

我们可以设鸡有 x 只,兔有 y 只。

根据头的总数,可以列出方程 x + y =总头数;再根据脚的总数,可以列出方程 2x + 4y =总脚数。

然后联立这两个方程,就能求解出 x 和 y 的值,也就是鸡和兔的数量。

例如,还是那个有 35 个头和 94 只脚的例子。

设鸡有 x 只,兔有 y 只,就可以列出方程组:x + y = 352x + 4y = 94由第一个方程可得 x = 35 y,把它代入第二个方程,得到 2×(35 y) + 4y = 94 ,解得 y = 12 ,再把 y = 12 代入 x = 35 y ,得到 x =23 。

鸡兔同笼解题方法公式

鸡兔同笼解题方法公式

鸡兔同笼解题方法公式1,假设法设全是鸡,则兔的只数为:(总头数×2-总脚数)÷2设立全系列就是兔,则鸡的只数为:(总头数x4-总脚数)÷2总只数-鸡只数=兔只数基本原理:总头数x2如果=总脚数,表明全系列就是鸡,如果<总脚数,表明其中存有兔,每少2只脚就存有1只兔。

总头数×4=总脚数,说明全是兔,如果>总脚数,说明其中有鸡,每多2只就有1只鸡。

2,公式法:总脚数÷2-总头数=兔只数总只数-兔只数=鸡只数基本原理:原来的头总量是鸡头和兔头的总量,脚总量也是鸡脚和兔脚的总量。

用脚总数÷2就是按全系列就是鸡去排序的,如果商=总头数,表明全系列就是鸡,如果商>总头数,表明其中存有兔。

每多1个头就是1只兔。

因为1只兔存有4只脚,前面÷的就是2,1只兔就变为2个头,也就多了1个头,所以总脚数÷2-总头数的高就是多少就存有多少只兔。

3,排除法:(脚总量-总头数x2)÷2=兔只数:总只数-兔只数=鸡只数基本原理:先让每只鸡兔各抬起2只脚,这时鸡无剩下的脚,排除鸡后剩下的脚都是兔的。

前面抬起2只脚,现在每只兔还剩下2只脚。

所以用总脚数-总头数×2的差再÷2就是兔的只数。

1.最万能的方程法2.最酷的金鸡独立法分析:使每只鸡都一只脚俯卧着,每只兔都用两只后脚俯卧着,那么地上的总脚数只是原来的一半,即19只脚。

鸡的脚数与头数相同,而兔的脚数就是兔的头数的2倍,因此从19里乘以头数14,剩去的就是兔的头数19-14=5只,鸡存有14-5=9只。

3.最逗的吹哨法4.最常用的假设法5.最牛的特异功能法假设孙悟空变为兔子,说道“变小”,每只兔子又短出来一个头去,然后对妖精说道“将它打碎”,变为“一头两脚”的`两只“半兔”,半兔与鸡都就是两只脚,因而共计28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就存有14-5=9只。

“鸡兔同笼”问题必备的13种讲解方法

“鸡兔同笼”问题必备的13种讲解方法

“鸡兔同笼”例题13种讲解方法题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!9 ... 鸡0 3 5 7兔14 11 9 7 5 ...腿56 50 46 42 38 ...根据上面的表格,我们可以看出,鸡为9只,兔子为5只。

我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。

14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。

『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。

『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。

这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。

(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。

小学四年级 数学广角:鸡兔同笼

小学四年级 数学广角:鸡兔同笼

数学广角-鸡兔同笼鸡兔同笼【知识梳理】一、“鸡兔同笼”问题的解题方法1、猜测、列表的方法先从鸡是8只,兔是0只开始猜测,鸡的只数每次减少1只,兔的只数就相应地增加1只,保证鸡兔的只数和是8只,一直猜到鸡兔的脚数和是26只为止。

数据量较大时,解题过程就很繁琐。

2、假设的方法①假设笼子里全是鸡兔的只数=(实际脚数-2⨯鸡兔的总只数)÷(4-2)鸡的只数=鸡兔的总只数-兔的只数②假设笼子里全是兔鸡的只数=(4⨯鸡兔的总只数-实际脚数)÷(4-2)兔的只数=鸡兔的总只数-鸡的只数3、方程法鸡的只数⨯2+兔的只数⨯4=鸡兔的总脚数二、“鸡兔同笼”问题解法的应用当题中所给数据较大时,不易采用猜测、列表方法,用假设的方法或方程法解决问题较简便。

【诊断自测】一.填空题1.笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡有只,兔有只.2.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有个,5分有个.3.鸡、兔同笼,一共有94只脚,兔比鸡少11只,鸡有只,兔有只.4.买1个篮球要40元,买1个排球30元.250元买8个球,其中有个篮球和个排球;300元钱买8个球,其中有个篮球和个排球.5.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得分.【考点突破】类型一:鸡兔同笼问题(假设法)例1、在进行智力竞赛时,规定每人底分先给50分,每人必须回答10个问题,且规定答对一题得10分,答错或不答反扣5分.某人得分90分,问这个人答对几道题?答案:6解析:某人得分90分,其实他答题实际得了90﹣50=40(分);假设10个问题他全答对了,应得100分,但实际得了40分,也就是被扣掉了100﹣40=60(分);答错或不答不但不得分,反而反扣5分,也就是答错或不答一题要扣掉15分;所以这60分就是因为答错或不答扣掉的,因此答错或不答的题有[100﹣(90﹣50)]÷15=4(道),答对了10﹣4=6(道).解:10﹣[100﹣(90﹣50)]÷15,=10﹣60÷15,=10﹣4,=6(道).答:这个人答对了6道题.例2、一名篮球运动员在一场比赛中一共投中11个球,有2分球,也有3分球,已知这名运动员一共得了26分,他投中的2分球和3分球各得多少分?答案:7个2分球,4个3分球解析:假设投中的全部是3分球,可得:3×11=33(分),比实际得的26分多:33﹣26=7(分),是因为我们把每个2分球当作了3分球,每个球多算了3﹣2=1分,所以可以求出2分球的个数:7÷1=7(个),那么3分球的个数是:11﹣7=4(个).解:假设投中的全部是3分球,2分球的个数:(3×11﹣26)÷(3﹣2)=7÷1=7(个)3分球的个数是:11﹣7=4(个);答:他投中了7个2分球,4个3分球.例3、实验小学六年级二班48人到公园去划船,一共租了7条船.售票处规定每条大船坐8人,每条小船坐6人,要保证每位同学都能坐上船,而且大小船都有,那么需要大小船各多少条?答案:大船有3条,小船有4条解析:此题采用假设法分析:如果全部用的是大船,则可坐7×8=56人,那就比实际多坐56﹣48=8人,因为其中有一部分小船,每条大船比小船多坐8﹣6=2人,所以,小船有:8÷2=4条,则大船有:7﹣4=3(条).解:假设7条船全部是大船,则可以坐7×8=56(人),所以小船有:(56﹣48)÷(8﹣6),=8÷2=4(条)则大船有:7﹣4=3(条)答:大船有3条,小船有4条.例4、鸡和兔一共有30只,腿一共有100只.鸡、兔各有多少只?答案:鸡有10只,兔子有20只解析:假设全是鸡,共有脚2×30=60只,比实际脚的只数少了100﹣60=40(只),数量出现矛盾,因为我们把4只脚的兔子看做了2只脚的鸡,每只少算了:4﹣2=2只脚;因此根据这个矛盾可以求出兔子的只数,列式为:40÷2=20(只);那么鸡的只数是:30﹣20=10(只);问题得解.解:假设全是鸡,兔子的只数为:(100﹣2×30)÷(4﹣2),=40÷2,=20(只);那么鸡的只数是:30﹣20=10(只);答:鸡有10只,兔子有20只.例5、盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?答案:盒中大钢珠有14个,小钢珠16个解析:假设全部都是大钢珠,则共重:11×30=330(克),比原来的克数重:330﹣266=64(克),因为一个大钢珠比一个小钢珠重11﹣7=4克,小钢珠的个数是:64÷(11﹣7)=16(个),进而得出大钢珠的个数;解:解法一:假设全是大钢珠.小钢珠:(30×11﹣266)÷(11﹣7)=16(个);大钢珠:30﹣16=14(个);解法二:假设全是小钢珠.大钢珠:(266﹣30×7)÷(11﹣7)=14(个);小钢珠:30﹣14=16(个);答:盒中大钢珠有14个,小钢珠16个.例6、新星小学“环保卫士”小分队12人参加植树活动.男同学每人栽了4棵树,女同学每人栽了2棵树,一共栽了34棵树.男女同学各有多少人?答案:男同学有5人,女同学有7人解析:假设12人全部是男同学,则一共植树12×4=48棵,这比已知的34棵多了48﹣34=14棵,又因为1个男同学比一个女同学多植树4﹣2=2棵,由此可得参加植树的女同学有14÷2=7人,则男同学有12﹣7=5人.解:假设12人全部是男同学,则女同学有:(12×4﹣34)÷(4﹣2),=14÷2,=7(人),男同学有12﹣7=5(人),答:男同学有5人,女同学有7人.例7、小明家有鸡、兔共15只,它们的总腿数有40条.鸡、兔各有多少只?答案:鸡有10只,兔有5只解析:此题可以利用假设法,假设全是鸡,那么就有15×2=30条腿,这比已知40条腿少了40﹣30=10条腿,1只兔比1只鸡多4﹣2=2条腿,由此即可得出兔有:10÷2=5只,则鸡有:15﹣5=10只,由此即可解答.解:假设全是鸡,那么兔有:(40﹣15×2)÷(4﹣2)=10÷2=5(只)则鸡有:15﹣5=10(只)答:鸡有10只,兔有5只.例8、某慈善机构为福利院募捐组织了一场义演,学生票和成人票共售出1500张,筹款19500元.学生票每张10元,成人票每张15元,学生票和成人票各售出多少张?答案:学生票600张,成人票900张解析:假设全是成人票,则需要筹款1500×15=22500元,这比已知的19500元多了22500﹣19500=3000元,因为一张成人票比一张学生票多15﹣10=5元,据此可得学生票是3000÷5=600张,则成人票是1500﹣600=900张.解:(1500×15﹣19500)÷(15﹣10),=3000÷5,=600(张),则成人票是:1500﹣600=900(张),答:学生票600张,成人票900张.类型二:鸡兔同笼问题(方程法)例9、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?答案:鸡有62只,兔有38只解析:设兔有x只,则鸡有100﹣x只,那么兔的腿一共有4x条,鸡的腿一共有(100﹣x)×2,再根据“鸡的腿的条数比兔的腿的条数少28条,”即兔的腿的条数﹣鸡的腿的条数=28,由此列出方程解答.解:设兔有x只,则鸡有(100﹣x)只,4x﹣(100﹣x)×2=28,4x﹣200+2x=28,6x=228,x=38,100﹣38=62(只),答:鸡有62只,兔有38只.例10、有龟和鹤共40只,龟的腿和鹤的腿共有112条.龟鹤各有几只?答案:龟有16只,鹤有24只解析:设龟有x只,则鹤有(40﹣x)只,由题意得:龟的只数×4+鹤的只数×2=112,从而列方程求解.解:设龟有x只,则鹤有(40﹣x)只,由题意得:4x+(40﹣x)×2=112,4x+80﹣2x=112,2x=32,x=16,40﹣x=40﹣16=24,答:龟有16只,鹤有24只.【易错精选】一.选择题1.数学竞赛共10题,做对一题得8分,做错一题(或不做),倒扣5分,小军得41分,他做错了()A.3题B.4题C.5题D.2题2.小兔子采蘑菇,晴天每天能采36只,雨天每天只能采24只,它一连几天共采了288只蘑菇,平均每天采32只,这些天中有()天是晴天.A.2B.6C.4D.53.太和镇某小学植树小分队10人参加植树活动.男生每人栽了5棵树,女生每人栽了3棵树,一共栽了42棵树.男生有()人.A.8B.6C.44.全国足球甲A联赛每胜一场得3分,平一场得1分,负一场得0分,某支球队共得了30分,赛了14场,其中平了3场,那么负了.()A.4场B.3 场C.2 场D.1场二.填空题5.一次数学竞赛有10道题,做对一题得10分,做错一题倒扣2分,小明得了76分,小明做对了题.6.鸡、兔同笼,一共有94只脚,兔比鸡少11只,鸡有只,兔有只.7.海边的沙滩上,海龟和仙鹤共有12只,有30条腿.仙鹤有只.8.鸡兔同笼,从上面数有19个头,从下面数有56只脚,鸡有只,兔有只.9.自行车和三轮车共20辆,总共有52个轮子,自行车辆,三轮车辆.【精华提炼】1、假设的方法①假设笼子里全是鸡兔的只数=(实际脚数-2⨯鸡兔的总只数)÷(4-2)鸡的只数=鸡兔的总只数-兔的只数②假设笼子里全是兔鸡的只数=(4⨯鸡兔的总只数-实际脚数)÷(4-2)兔的只数=鸡兔的总只数-鸡的只数【本节训练】训练【1】刘军向某市运送2000只玻璃杯,每只运费0.1元,若损坏1只,不但得不到运费,还要赔偿0.4元.刘军最后共得到运费198元.你知道损坏了几只玻璃杯吗?训练【2】一个笼子里关了一些鸡和兔,从上面数头有100个,从下面数脚共有220只,笼子中有鸡,兔各多少只?训练【3】一个停车场:停着汽车和摩托车(两个轮)共24辆,这些车子共有86个轮子,求摩托车和汽车各有多少辆?训练【4】小明的爸爸在旅行社工作,本月为顾客订制了2种门票共30张,一共用去2400元.其中瘦西湖门票为150元,个园门票为45元.两种票各买了多少张?基础巩固一.选择题1.停车场里有三轮车和自行车共20辆,共有42个轮子,自行车共有()辆.A.2B.12C.182.在学校一次环境保护知识抢答比赛中,共有20道题,每答对一道题得10分,答错一道倒扣5分,蓝天队最后得分是155分,那么该队共答对()题.A.10B.12C.15D.173.学校举行智力竞赛,答对一题加10分,答错一题扣6分,李龙共抢答16题,最后得分16分,他答错了()题.A.9B.15C.7D.104.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.35.组装车间要装配两轮摩托车和三轮车共21辆,需要51个轮胎,两轮摩托车和三轮摩托车的辆数分别是()A.12和9B.8和13C.10和11二.填空题6.班里组织知识竞赛,选手进行抢答.答对一题加10分,答错一题倒扣6分.小明共抢答12道题,最后得分72分.小明共答对题.7.鸡兔共有20个头,70只腿.鸡有只,兔有只.8.有2分和5分的硬币共18枚,一共6角钱,5分的硬币有枚.9.学校有象棋、跳棋共26副,2人下l副象棋,6人下一副跳棋,恰好可供120个学生进行课外活动.象棋有副,跳棋有副.10.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么汽车有辆.三.应用题11.鸡兔同笼,有12个头,30只脚,鸡、兔各有多少只?(用你喜欢的方法解答)12.80名学生分别住进了12间宿舍,每间大宿舍住8人,每间小宿舍住6人,12间宿舍刚好都住满,大、小宿舍各有几间?13.六年级同学分组参加课外兴趣小组.科技类每5人一组,艺术类每3人一组,共有37名同学参加报名,正好分成9组.参加科技类和艺术类的学生各有多少人?巅峰突破一.选择题1.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.152.“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡23只兔12只B.鸡12只兔23只C.鸡14只兔21只3.一位工人搬运1000只玻璃杯,每只杯子的运费是3分,破损一只要赔5分,最后这位工人得到运费26元,搬运中他打碎杯子()只.A.30B.50C.60D.804.一队猎手一队狗,二队并作一队走,数头一共三十三,数脚一共九十整,问有多少猎手多少狗?()A.18,15B.21,12C.12,215.一次数学竞赛,共有20道题.每一题,做对者得6分,做错或者未做者,扣一分.小毕参加竞赛得了78分,那么他做对了()道题.A.17B.16C.15D.14二.解答题6.车棚里停着三轮车和自行车一共10辆,一共有24个轮子.三轮车和自行车各有多少辆?(调整假设,列表解答)假设三轮车的辆数相应的自行车的辆数轮子总个数5 57.某市高中一年级学生进行野外军训.晴天每天行20千米,雨天行10千米.在8天内行程为140千米.这期间有多少天晴天?有多少天雨天?8.仓库有1440个苹果准备装箱,现有两种规格的箱子共27个,已知每个大箱子可装苹果70个,每个小箱子可装苹果40个.问大、小箱子各需多少个?参考答案【诊断自测】1、答案:3,52、答案:17、133、答案:鸡有23只,兔有12只4、答案:1,7,6,25、答案:80【易错精选】1、A2、B3、B4、C5、答案:8解析:根据题意,假设全做对得10×10=100(分),小明得了76分,少得100﹣76=24(分),一求出做错的道数,就可以求出作对的道数.解:根据题意,假设小明全做对可得:10×10=100(分);现在小明得了76分,比总分少:100﹣76=24(分);因为每做错一道少得:10+2=12(分),所以小明做错的道数是:24÷12=2(道),那么他做对的道数是:10﹣2=8(道).6.答案:23,12.解析:根据“兔比鸡少11只,”知道鸡的只数=兔的只数+11,再根据“鸡兔共有脚94只,”知道鸡的只数×2+兔的只数×4=94,由此列方程即可解答.解:设兔有X只,则鸡有(X+11)只,4X+2×(X+11)=94,4X+2X+22=94,6x+22=94,6X=72,X=12;鸡:X+11=12+11=23;7.答案:9解析:假设12只全是仙鹤,则腿的总条数是:12×2=24条,比实际少了:30﹣24=6条,因为我们把海龟当作了仙鹤,每只少算了4﹣2=2条腿,一共少算了6条腿,则一共有海龟:6÷2=3只,进而即可求出仙鹤的只数.8.答案:10,9解析:设兔有x只,则鸡有(19﹣x)只,由鸡的只数×2+兔的只数×4=鸡兔共有脚数,据此等量关系列方程求解.解:设兔有x只,则鸡有(19﹣x)只,由题意得(19﹣x)×2+4x=56,38﹣2x+4x=56,2x=18,x=9;19﹣x=19﹣9=10;9.答案:8,12解析:此类问题可以利用假设法,假设全是自行车,那么就有20×2=40个轮子,已知的52个轮子比40就多了52﹣40=12个轮子,1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可得出三轮车有:12÷1=12辆,则自行车有:20﹣12=8辆.解:假设全是自行车,那么三轮车有:(52﹣20×2)÷(3﹣2)=12÷1=12(辆)则自行车有:20﹣12=8(辆);【本节训练】训练【1】答案:4解析:解答此题先假设2000只玻璃杯全都安全运到,应得运费2000×0.1=200(元),现在共得运费198元,说明途中有损坏的玻璃杯;现在比假设少得运费200﹣198=2(元),损坏一只玻璃杯比安全运到少得0.1+0.4=0.5(元),用2÷0.5=4(只),就是损坏的玻璃杯数量.解:(2000×0.1﹣198)÷(0.1+0.4)=(200﹣198)÷0.5=2÷0.5=4(只);答:损坏了4只玻璃杯.训练【2】答案:鸡有90只,兔子有10只解析:假设全是兔,共有4×100=400只脚,这比已知220只脚多出了400﹣220=180只,因为1只兔比1只鸡多4﹣2=2只脚,所以鸡有:180÷2=90只,进而求得兔的只数,由此即可解决问题.解:(4×100﹣220)÷(4﹣2)=180÷2=90(只)100﹣90=10(只)答:鸡有90只,兔子有10只.训练【3】答案:汽车有19辆,摩托车有5辆解析:假设全是两轮摩托车,则轮子有24×2=48个,这比已知的86个轮子少了86﹣48=38个,因为一辆四轮汽车比一辆摩托车多4﹣2=2个轮子,所以四轮汽车有38÷2=19辆,则摩托车有24﹣19=5辆,由此即可解决问题.解:假设全是两轮摩托车,则四轮汽车有:(86﹣24×2)÷(4﹣2)=38÷2=19(辆)摩托车有:24﹣19=5(辆)答:汽车有19辆,摩托车有5辆.训练【4】答案:150元的买了10张,45元的买了20张解析:根据题干,设买了x张150元的,则买了(30﹣x)张45元的,根据等量关系:买每张150元花掉的钱数+买每张45元花掉的钱数=总钱数2400,列出方程即可解决问题.解:买了x张150元的,则买了(30﹣x)张45元的,根据题意可得方程:150x+45×(30﹣x)=2400150x+1350﹣45x=2400105x=1050x=1030﹣10=20(张)答:150元的买了10张,45元的买了20张.基础巩固1、C2、D3、A4、B5、A6、答案:97、答案:5,158、答案:8解析:假设都是2分的硬币,则一共2×18=36=3角6分,而实际一共有6角,原因是硬币中有5分的,1个5分硬币比1个2分硬币多3分,现在多出60﹣36=24分需要多少个5分硬币呢?用24除以3,即可得解.解:(60﹣18×2)÷(5﹣2),=(60﹣36)÷3,=24÷3,=8(枚);9、答案:9;1710、答案:14解析:假设24辆全是4个轮子的汽车,则一共有轮子24×4=96个,这比已知的86个轮子多出了96﹣86=10个,因为1辆汽车比1辆三轮车多4﹣3=1个轮子,据此可得三轮车有10辆,再求汽车即可.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3)=10÷1=10(辆)24﹣10=14(辆)巅峰突破一.选择题1.答案:A.2.答案:A.3.答案:B.4.答案:B.5.答案:D.二.解答题6.答案:自行车有6辆,三轮车有4辆.解析:此类问题可以利用假设法,假设全是自行车,那么就有10×2=20个轮子,已知的24个轮子比20就多了24﹣20=4个轮子,1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可得出三轮车有:4÷1=4辆,则自行车有:10﹣4=6辆.解:三轮车有:(24﹣10×2)÷(3﹣2),=4÷1=4(辆)则自行车有:10﹣4=6(辆);答:自行车有6辆,三轮车有4辆.7.答案:6天晴天,2天雨天解析:属于鸡兔同笼问题,采用假设法即可解答解:假设全是晴天,则雨天有:(8×20﹣140)÷(20﹣10),=(160﹣140)÷10,=20÷10,=2(天),所以晴天有:8﹣2=6(天);答:这期间有6天晴天,2天雨天.8.答案:大箱子需12个、小箱子需15个解析:假设27个箱子全是大箱子,则一共可装27×70=1890个,这比已知的1440个苹果多出了1890﹣1440=450个,因为1个大箱子比1个小箱子多装70﹣40=30个苹果,据此可得小箱子15个,则大箱子就需27﹣15=12个,据此即可解答.解:假设27个箱子全是大箱子,则小箱子需:(27×70﹣1440)÷(70﹣40)=450÷30=15(个)所以大箱子有:27﹣15=12(个),答:大箱子需12个、小箱子需15个.。

鸡兔同笼问题解题策略

鸡兔同笼问题解题策略

鸡兔同笼问题解题策略“鸡兔同笼”是一个古老而有趣的数学问题,经常出现在小学数学教材中,也让不少同学感到头疼。

但其实,只要掌握了合适的解题策略,它并没有那么难。

接下来,咱们就一起来探讨一下鸡兔同笼问题的几种解题方法。

咱们先来看一个经典的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有 35 个头;从下面数,有 94 只脚。

问鸡和兔各有多少只?第一种解题策略是“假设法”。

咱们可以先假设笼子里全是鸡,那么35 只鸡应该有 35×2 = 70 只脚。

但实际上有 94 只脚,多出来的 94 70 = 24 只脚是因为把兔当成鸡来算了。

每只兔比每只鸡多 4 2 = 2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。

咱们再假设笼子里全是兔,那么 35 只兔应该有 35×4 = 140 只脚。

实际有 94 只脚,少的 140 94 = 46 只脚是因为把鸡当成兔来算了。

每只鸡比每只兔少 4 2 = 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

第二种解题策略是“方程法”。

设鸡的数量为 x 只,兔的数量为 y 只。

因为鸡和兔一共有 35 个头,所以 x + y = 35。

又因为鸡有 2 只脚,兔有 4 只脚,一共有 94 只脚,所以 2x + 4y = 94。

联立这两个方程,先由第一个方程得出 x = 35 y,将其代入第二个方程,得到 2×(35 y)+ 4y = 94,化简得到 70 2y + 4y = 94,2y = 24,y = 12。

再把 y= 12 代入 x = 35 y,得出 x = 23。

除了这两种常见的方法,还有一些有趣的思路。

比如“抬腿法”。

咱们让鸡和兔都抬起两只脚,那么一共抬起了 35×2 = 70 只脚。

此时地上剩下的脚都是兔的,而且每只兔还剩下 4 2 = 2 只脚,所以兔的数量就是(94 70)÷2 = 12 只,鸡就是 35 12 = 23 只。

四年级奥数鸡兔同笼问题

四年级奥数鸡兔同笼问题

鸡兔同笼问题学会鸡兔同笼问题的解决方法,并尝试用不同方法解决鸡兔同笼问题。

这句话表达什么意思,你能帮帮图中的小朋友回答老师给出的问题吗?鸡兔同笼”问题的解题方法1、假设法总结:鸡兔同笼问题的基本公式:(1)如果假设全是兔,那么则有鸡数=(每只兔的腿数×鸡兔总数—实际腿数)÷(每只兔子腿数—每只鸡的腿数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么则有兔数=(实际腿数—每只鸡的腿数×鸡兔总数)÷(每只兔子腿数—每只鸡的腿数)鸡数=鸡兔总数-兔数2、方程法设鸡的只数为X,则另一只的只数为(总数-X),再分别乘以它们的腿数,就是总的腿数。

一、鸡兔同笼应用题例题1、已知总头数和总脚数,求鸡兔各多少只;笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡和兔各有几只?牛刀小试1:清华小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。

如果这些宿舍一共可以住168人,那么有几间大宿舍?牛刀小试2:有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?牛刀小试3:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?例题2.鸡兔互换问题;有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔各是多少只?牛刀小试小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?3.拓展题型鸡兔同笼,兔子比鸡多10只,兔子和鸡的腿数总和为100,鸡和兔子各有几只?牛刀小试1:灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?牛刀小试2:货运公司运送50箱玻璃仪器,合同规定每箱运费20元,但如果有损坏,被损坏的那一箱不仅不给运费,还要赔偿60元,货运公司最后只得到了760元,请求出损坏了多少箱?1.三轮车和小汽车共5辆,18个轮子.小汽车有()辆.A.3B.4C.52.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.153.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.34.有面值为5角和8角的邮票共35张,总价值是25元,两种邮票各有多少张?5.盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?6.实验小学“环保卫士”小分队12人参加植树活动.男同学每人栽了3棵,女同学每人栽了2棵,一共栽了32棵.男、女同学各有多少人?7.鸡和兔放在一只笼子里,上有12个头,下有40只脚.笼中有鸡兔各多少只?8.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得______分.9.12张乒乓球桌上一共有34个同学在比赛,你知道正在单打和双打的乒乓球各有几张?10.笼中共有鸡兔10只,鸡和兔的腿共有32条.求笼中鸡和兔各有几只?方法1:按照顺序列表计算.方法2:假设10只全是鸡,就有腿______条,比32条少______条;要使腿达到32条,就要给其中______只各添上2条腿.这说明兔有______只,鸡有______只.方法3:假设10只全是兔,就有腿______条,比32条多______条;要使腿减少到32条,就要将其中______只各减去2条腿.这说明鸡有______只,兔有______只.两种方法解题:假设法和方程法1、李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。

四上第八讲 运用假设法解题——鸡兔同笼

四上第八讲  运用假设法解题——鸡兔同笼

第八讲运用假设法解应用问题——鸡兔同笼一、知识要点中国古代有一道有名的算术题:鸡兔同笼不知数,三十六头笼中露,数清脚共50双,各有多少鸡和兔?这就是鸡兔同笼问题。

解决这类问题我们一般采用假设法解题。

运用“假设法”的思路是:先假设笼子里全部都是鸡,就可以算出该假设下共有几只脚,把这样得到的脚数与题中给出的脚数做比较,看看相差多少,每差两只脚就说明有1只兔,将所差的脚数除以2就可以算出兔子的只数了。

反之也能先假设全部都是兔子,先算出鸡的只数。

基本数量关系式:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔脚数-每只鸡脚数)鸡数=鸡兔总数-兔数或:鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔脚数-每只鸡脚数)兔数=鸡兔总数-鸡数二、自我探究【例1】笼子里有鸡和兔共30只,总共有70条腿,问鸡和兔各有几只?【例2】停车场共有汽车和摩托车60辆,一共有190个轮子。

其中每辆汽车4个轮子,每辆摩托车2个轮子。

求汽车和摩托车各有几辆?【例3】某小学进行一次数学竞赛共15题,每做对一题得8分,每做错一题倒扣4分,小明共得72分,问他做对了几题?【例4】有蜘蛛、蜻蜓、蝉三种动物共18只,腿有118条,翅膀20对,问蜻蜓、蜘蛛、蝉各有多少只?(蜘蛛8条腿,蜻蜓6条腿,两对翅膀,蝉6条腿,一对翅膀。

)三、自我挑战第一关:1.鸡和兔共有100只,腿有280条,鸡兔各有几只?2.10元和5元的人民币共有40张,合计共325元,问两种人民币各有几张?3.强盗与狗的问题:“一堆强盗一对狗。

二队拼成一队走,头数一共三百六,脚数一共八百九,问有多少强盗多少狗?”4.一张卷子有25道题,答对一题得4分,答错一题扣1分,某同学得了60分问他答对几题?答错几题?第二关:1.搬运1000只玻璃瓶,规定:安全运到1只可得搬运费3角,但打碎1只要赔5角,如果运完后共得运费260元,那么搬运中打碎了几只玻璃瓶?2.一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一连运了112次,平均每天运14次,问这几天当中雨天有几天?晴天有几天?3.小红为美术组买来80枝画笔,有2元一枝的,5元一枝的,10元一枝的,共付490元,已知5元一枝和10元一枝的数量一样多,求三种画笔各有多少枝?第三关:1.某食堂买来的面粉是大米的5倍,如果每天吃30千克的大米,75千克的面粉,几天后大米全部吃完而面粉还剩下225千克。

娟娟老师鸡兔同笼问题解题思路解法及公式

娟娟老师鸡兔同笼问题解题思路解法及公式

鸡兔同笼例题1.笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有多少只?解题方法:①假设法:如果笼子里都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚;一只兔子比一只鸡多2只脚,也就是有10÷2=5只兔。

所以笼子里有3只鸡,5只兔。

(总脚数-总头数×2)÷2=兔子数总头数-兔子数=鸡数②假设法:如果笼子里都是兔,那么就有8×4=32只脚,这样就少了32-26=6只脚;一只鸡比一只兔子少2只脚,也就是有6÷2=3只鸡。

所以笼子里有3只鸡,5只兔。

(总头数×4-总脚数)÷2=鸡数总头数-鸡数=兔子数③抬腿法:假如让鸡抬起一只脚,兔子抬起两只脚,还有26÷2=13只脚;这时每只鸡一只脚,每只兔子两只脚。

笼子里只要有一只兔子,则脚的总数就比头的总数多1;这时脚的总数与头的总数之差13-8=5,就是兔子的只数。

总脚数÷2-总头数=兔子数.总头数-兔子数=鸡数④解方程法:解:设有χ只兔子,那么就有(8-χ)只鸡。

鸡兔总共26只脚,就是:4χ+2(8-χ)=26则χ=58-5=3只例题2.?买一些4分和8分的邮票,共花6元8角。

已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下的邮票中,8分和4分的各有30张。

因此8分邮票有40+30=70(张).答:买了8分的邮票70张,4分的邮票30张。

也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分。

以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票。

小学数学“鸡兔同笼”问题解题技巧

小学数学“鸡兔同笼”问题解题技巧

⼩学数学“鸡兔同笼”问题解题技巧 鸡兔同笼问题是⼩学数学当中的⼀个重难点,解决这个问题有很多种⽅法。

基本题型 已知鸡兔的总只数和总腿数。

求鸡和兔各多少只。

解题关键:采⽤假设法,假设全是⼀种动物(如全是鸡或全是兔),然后根 据腿的差数可以推断出⼀种动物的头数。

解题规律: ⽅法1、 假设全是鸡,兔的只数=(总腿数-总只数×2)÷(每只兔的脚数-每只鸡的脚数); ⽅法2、 假设全是兔,鸡的只数=(总只数×4-总腿数)÷(每只兔的脚数-每只鸡的脚数) 例1:有鸡兔共20只,脚44只,鸡兔各⼏只? 解:⽅法1、假设全是鸡 ( 44 — 20 × 2) ÷( 4 - 2 )=2(只)。

兔的只数 (总腿数- 总只数× 2)÷(每只兔的脚数-每只鸡的脚数) 20-2=18(只)。

鸡的只数 ⽅法2、假设全是兔 ( 20 ×4-44) ÷( 4 - 2 )=18(只)。

鸡的只数 (总只数×4-总腿数)÷(每只兔的脚数- 每只鸡的脚数) 例2. ⼩朋友们去划船,⼤船可以坐10⼈,⼩船坐6⼈,⼩朋友们共租了15只船,已知乘⼤船的⼈⽐乘⼩船的⼈多22⼈,问⼤船⼏只,⼩船⼏只? 解:⽅法1、假设都是⼩船 ⼤船:(6×15+22)÷(6+10)=7(只); ⼩船:15-7=8(只) ⽅法2、假设都是⼤船 ⼩船:(10×15-22)÷(6+10)=8(只) ⼤船:15-8=7(只) 20-18=2 (只)。

兔的只数 常见题型 1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只 (1)已知总头数和鸡兔脚数的差数,当鸡的总脚数⽐兔的总脚数多时, ⽅法1: (每只鸡脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 ⽅法2: (每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

鸡兔同笼问题【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1:长毛兔子芦花鸡,鸡兔圈在一笼里。

数数头有三十五,脚数共有九十四。

请你仔细算一算,多少兔子多少鸡?解:假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。

例2:2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解:此题实际上是改头换面的“鸡兔同笼”问题。

“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。

鸡兔同笼解题假设法

鸡兔同笼解题假设法

鸡兔同笼解题假设法
《鸡兔同笼解题假设法》
一.鸡兔同笼解题假设法
1.定义
鸡兔同笼解题假设法,又称鸡兔算法,是一种求解数学问题的手段,按照一定的羽数,建立一个假设,把问题分解为一系列子问题来解决,然后再根据验证结果,求出最终的结果。

2.原理
鸡兔同笼解题假设法的原理是,把一个问题分解为子问题,每个子问题都有一个给定的条件,根据这些给定条件,判断子问题的正确答案,再利用给定的规律把子问题的答案求出最终的结果。

3.步骤
(1)理解问题:用图表、表格或文字的方式把问题表达出来;
(2)编写假设:建立一个假设,把问题分解为一系列子问题;
(3)检验假设:逐个检验每个子问题的答案是否正确;
(4)求解问题:根据给定的规律,求出子问题的答案;
(5)验证结果:确定最终答案是否正确。

4.应用
鸡兔同笼解题假设法可以用来解决一些比较复杂的问题,并且能够有效地帮助我们节省时间、减少答错的概率。

例如:在数学考试中,有一道题目求解特殊图形的面积,可以使用鸡兔同笼解题假设法把图形分解为几个子问题,再根据给定的参数求解各子问题,最后求得最
终的答案。

鸡兔同笼的题型和解题技巧

鸡兔同笼的题型和解题技巧

鸡兔同笼的题型和解题技巧1. 哎呀,鸡兔同笼问题里经常会有告诉你头和脚的总数这种题型呢。

比如说,有 30 个头,100 只脚,那这里面到底有几只鸡几只兔呀?这种时候就可以用假设法啦!假设全是鸡,那么脚的数量就会少很多,一对比不就知道兔子有多少只了嘛!哈哈!2. 还有一种题型是告诉你鸡兔数量的关系,然后让你求具体数量。

就像说兔子比鸡少 5 只,它们共有 70 条腿,这可得好好想想怎么解呀!这时可以根据关系设未知数,再根据腿数来列方程呀,懂了没?3. 咦,有时候会出现一些变化的鸡兔同笼哦!比如笼子里有鸡、兔,还有其他动物。

像有 20 个头,80 只脚,其中还有羊,每只羊 4 只脚,这下可复杂了,但咱不怕呀!还是要认真分析来解题呢。

4. 嘿,你们遇到过那种特别有趣的鸡兔同笼情境题吗?比如说一个农场里,鸡飞兔跳的,然后告诉你一些条件让你算。

这就像玩游戏一样刺激呢!5. 哇塞,有时候鸡兔同笼还能和图形结合起来呢!画个图,把鸡和兔摆一摆,是不是感觉很直观呀?就像是给你打开了一扇新大门呢!比如有 15 个头,50 条腿,通过画图说不定一下就找到答案啦!6. 你们想想,鸡兔同笼问题是不是就像一个小迷宫呀?得找到正确的路才能走出来。

就像有 12 只动物,38 条腿,这可得仔细琢磨琢磨怎么找到那出口哟!7. 哈哈,鸡兔同笼也可以和故事联系起来呢。

比如说小鸡和小兔在森林里玩游戏,然后怎样怎样,是不是很有意思呀?然后让你根据故事里的信息来解题呢。

8. 哎呀呀,鸡兔同笼问题有时候看似简单,实际暗藏玄机呢!就跟那小小的脑筋急转弯一样,稍有不慎就答错啦!像有 8 个头,28 条腿,可得小心解题哟!9. 总之,鸡兔同笼问题千变万化,但只要掌握了方法,什么难题都能迎刃而解呀!大家加油哦!。

鸡兔同笼解题方法假设法讲解

鸡兔同笼解题方法假设法讲解

鸡兔同笼解题方法假设法讲解
鸡兔同笼问题是一个著名的数学谜题,源于古代中国。

题目描述如下:在一个笼子里关着鸡和兔,我们已知笼子里的总头数和总脚数,要求求出鸡和兔的数量。

我们可以使用假设法来解决这个问题。

假设法步骤如下:
1. 列出已知条件:已知总头数为 x,总脚数为 y。

2. 假设鸡的数量为 a,兔的数量为 b。

3. 根据鸡兔的头数和脚数特点,我们可以得到以下两个方程:
方程1:a + b = x(头数方程)
方程2:2a + 4b = y(脚数方程)
4. 解方程组:将方程1转换为 a = x - b,代入方程2得:
2(x - b) + 4b = y
2x - 2b + 4b = y
2x + 2b = y
x + b = y/2
5. 求出兔子的数量:从第4步得到的方程中,我们可以得到 b = y/2 - x。

6. 求出鸡的数量:将第5步得到的兔子数量代入 a = x - b,求出鸡的数量 a = x - (y/2 - x)。

7. 检验结果:将求出的鸡和兔的数量代入头数与脚数方程,确保结果满足题目已知条件。

通过以上步骤,我们可以求解鸡兔同笼问题。

需要注意的是,在
进行计算时,一定要确保结果为整数,否则说明题目中给出的条件不符合实际情况。

鸡兔同笼类似题解题方法

鸡兔同笼类似题解题方法

鸡兔同笼类似题解题方法方法一、假设法常用的假设有:假设笼子里都是兔或者都是鸡,比如:笼子里有30只头,68只脚,兔多少?鸡多少?解题方法是假设笼子里都是兔子,这样就可以得到鸡的只数(4×30-68)÷(4-2)=26(只),那么兔子就是30-26=4(只)方法二、砍腿法把多余的腿给去掉,即把兔子的腿变为两条,那么笼子里还剩下的腿的数量应该是:30×2=60,而原来应该是有68只脚,那么这里应该减少了68-60=8(只)脚,当兔子去掉了2条腿,笼子里腿的数量就会减2,那么就是有8÷2=4(只)兔子,得出兔子的只数,鸡的数量也就可以得到了。

方法三、抬腿法让鸡抬起一只腿,兔子抬起两只腿,这样的话,笼子里腿的数量就会变成原来数量的一半,即68÷2=34。

然后让鸡和兔子抬起的腿落地,这样兔子的脚就会比兔子的数多1,而鸡的脚就是鸡的只数。

因此就可以推出,兔子的只数就是腿的数减去头的数,即34-30=4(只),而鸡的数量也就是30-4=26只。

方法四、添加法添加法即是将鸡的腿添加为4,与兔子一样。

这样笼子里面就会有4×30=120(只)但实际上笼子里只有68条腿,所以,可以将鸡的腿去掉,这样就可以得到120-68=52,因此鸡就有52÷2=26只,而兔子就有4只。

方法五、列方程列方程则是找到数量关系后,设置合理的未知数,列出方程,再去求解。

(1)找数量关系:根据题目已知,笼子里脚的总数=鸡脚的数量+兔子脚的数量。

(2)设未知数:设兔子的只数为X,就可以得出鸡的只数是(30-X)(3)列出方程:4X+2(30-X)=68(4)求解:式子可以化为4X+60-2X=68,得出X=4;即鸡就有30-4=26(只)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级数学鸡兔同笼假设法解题技巧
假设法就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找出正确答案。

假设法是解鸡兔同笼、倒扣、逻辑推理、幻方、数阵等问题的常用方法。

运用假设法的思路解应用题,先要根据题意假设位置的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并做出适当的调整。

若问题中出现多个量时,需要考虑把其中的一些量进行分组再假设。

例题1
解鸡兔同笼问题时,一般先假设全部是鸡或者兔,再求出假设后腿的总数量,然后与实际脚的数量比较,从而求出兔或者积的数量。

需要注意的是当我们假设全部是鸡的话,对比腿数求出的是兔的数量,因为假设后得出的腿的数量与实际数量的差异是由于兔腿的数量不同引起的。

练一练:小兔妈妈采蘑菇,晴天每天可以采32个,
雨天每天只能采22个,它一共采了390个,平均每天采26个,这些天中有几天下雨?(参考答案:9天下雨)
例题3
解决此类问题,先假设全部都对,计算出全部都对的分数与实际的分数的差,用这个差除以答对一道题和答错一道题的得分差就等于答错的题目数。

例题4
练一练:某物流公司运800个花瓶,每个花瓶100元,按合同每个运费5元,每损坏一个除不给运费外,还要赔偿花
瓶价格的一半,实收运费3780元。

问:损坏了几个花瓶?(参
考答案:损坏了4个花瓶)
例题5
分组假设法解决鸡兔同笼问题关键是把三个量分成两组,一般将有关系的量分为一组,然后在两组之间假设,再用总的差除以每组的差。

练一练:公园出售5元、8元、10元的门票共100张,收入748元,其中5元和8元的张数相等,请问:每种门票各出售多少张?(参考答案:5元和8元各36张,10元有28张) ;。

相关文档
最新文档