高考生物知识点光合作用与呼吸作用

合集下载

光合作用与呼吸作用知识点

光合作用与呼吸作用知识点

光合作用与呼吸作用知识点
光合作用和呼吸作用是生物体生存和能量代谢的重要过程。

它们在植物和动物身体中起着至关重要的作用。

本文将就光合作用和呼吸作用的基本概念、过程和功能进行详细阐述。

1. 光合作用的概念与过程
光合作用是指植物通过吸收光能将水和二氧化碳转化为有机物(如葡萄糖)并释放氧气的过程。

它发生在植物细胞的叶绿体中,主要由两个阶段组成:光能捕获和化学反应。

在光能捕获阶段,植物通过叶绿素等光合色素吸收光能,并将其转化为化学能。

光合色素位于叶绿体中的叶绿体膜上,能够吸收不同波长的光谱范围。

在化学反应阶段,光能被用来转化二氧化碳和水为葡萄糖和氧气。

这一过程中,二氧化碳从空气中进入植物叶片的气孔,水通过根系吸收并通过细胞的输送系统传至叶绿体。

在叶绿体中,这些物质与光能一起参与光合作用。

2. 光合作用的功能
光合作用是地球上生命能量的供应源,也是维持生态平衡的重要环节。

它具有以下主要功能:
- 产生有机物:光合作用将植物所吸收的二氧化碳和水转化为葡萄糖等有机物质,为植物提供能量和营养物质。

- 释放氧气:光合作用释放出的氧气是地球上大气中氧气的主要来源,供动物呼吸使用。

- 调节气候:光合作用通过吸收和释放二氧化碳,对地球大气中的气候变化发挥调节作用。

3. 呼吸作用的概念与过程
呼吸作用是生物体利用有机物氧化释放能量的过程。

它分为有氧呼吸和无氧呼吸两种方式。

有氧呼吸是指生物体在氧气存在的情况下,将有机物(如葡萄糖)氧化为二氧化碳和水,释放出大量能量。

这一过程发生在细胞的线粒体内,包括三个阶段:糖解、三羧酸循环和氧化磷酸化。

生物体内的光合作用与呼吸作用

生物体内的光合作用与呼吸作用

生物体内的光合作用与呼吸作用光合作用和呼吸作用是生物体内两个重要的能量转化过程。

光合作用是植物和一些原核生物(如蓝藻)利用阳光能将二氧化碳和水合成有机物质,并释放出氧气的过程。

呼吸作用是生物利用有机物质通过氧化还原反应释放能量,并产生二氧化碳和水的过程。

I. 光合作用光合作用是植物进行能量转化的关键过程。

它主要发生在植物的叶绿体中,需要光能的输入和叶绿素的参与。

光合作用可以分为光反应和暗反应两个阶段。

1. 光反应光反应发生在叶绿体的光合物质系统中,需要光能的输入。

在光照的作用下,叶绿体中的叶绿素吸收光能,激发电子,并将其传递给电子接受体。

通过光系统II和光系统I的相互作用,电子最终转移到酶复合物上,提供能量来将ADP和磷酸转化为ATP,同时还能将NADP+还原为NADPH。

2. 暗反应暗反应发生在叶绿体的基质中,不需要直接的光照。

它利用ATP 和NADPH提供的能量,将二氧化碳还原成有机物质。

暗反应的核心是卡尔文循环,在该循环中,二氧化碳与RuBP(核酮糖1,5-二磷酸)反应生成3-磷酸甘油醛,再经过一系列酶催化反应,最终生成葡萄糖等有机物质。

II. 呼吸作用呼吸作用是生物体释放能量的过程,它可以分为有氧呼吸和无氧呼吸两种形式。

1. 有氧呼吸有氧呼吸是最常见的呼吸方式,它需要氧气的参与。

有氧呼吸可以分为糖酵解、三羧酸循环和氧化磷酸化三个阶段。

- 糖酵解:在胞浆中,葡萄糖分子经过酶的催化,分解成两个三碳的丙酮酸,并释放出少量的能量和二氧化碳。

- 三羧酸循环:在线粒体内,丙酮酸被进一步氧化成辅酶A、NADH和二氧化碳,辅酶A随后进入三羧酸循环,通过一系列反应产生NADH和FADH2。

- 氧化磷酸化:在线粒体内,NADH和FADH2通过电子传递链的作用,逐步释放出能量,并将ADP和磷酸转化为ATP。

同时,氧气作为最终电子受体被还原为水。

2. 无氧呼吸无氧呼吸发生在缺氧的环境下,无需氧气的参与。

它不如有氧呼吸产生的能量多,但在某些情况下仍能提供能量,如酵母菌在发酵过程中。

光合作用与呼吸作用

光合作用与呼吸作用

光合作用与呼吸作用在自然界中,光合作用和呼吸作用是生物体生存和生长所必需的两种关键过程。

光合作用是指植物和某些微生物将光能转化为化学能,并将二氧化碳和水转化为有机物质,同时释放出氧气。

呼吸作用则是指生物体利用有机物质和氧气产生能量,同时产生二氧化碳和水。

这两个过程在能量转化和物质循环中起着重要的作用。

一、光合作用光合作用是通过植物叶绿素和其他色素吸收光能,并将其转化为化学能的过程。

光合作用发生在植物叶绿体的叶绿体内膜系统中。

其主要反应方程式如下:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2光合作用分为光反应和暗反应两个阶段。

光反应发生在叶绿体的基质与内膜系统之间的光栅中,依赖于光能。

在光反应中,植物叶绿体中的光合色素通过光能激发,释放出高能电子,形成ATP(三磷酸腺苷)和NADPH(辅酶NADP的还原形式)等能量载体。

暗反应则是在光反应之后,在叶绿体基质中进行的一系列化学反应。

暗反应中,ATP和NADPH提供能量和氢源,将二氧化碳还原为葡萄糖等有机物。

光合作用是地球上维持生物多样性和能量循环的重要过程之一。

通过光合作用,植物能够将太阳能转化为化学能,并将二氧化碳转化为氧气,释放出大量氧气供其他生物体进行呼吸作用。

二、呼吸作用呼吸作用是生物体通过氧气氧化有机物质,释放出能量并产生二氧化碳和水的过程。

呼吸作用可以在有氧条件下进行,也可以在没有氧气的情况下进行。

主要的呼吸作用方程式如下:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量(ATP)有氧呼吸是在氧气丰富的条件下进行的,其能量产物主要是ATP。

有氧呼吸主要发生在生物体的线粒体内。

通过有氧呼吸,生物体能够高效地将有机物质分解为二氧化碳和水,同时释放出大量能量供生物体的生长和代谢所需。

无氧呼吸发生在没有氧气的条件下,其能量产物主要是乳酸(动物)或乙醇和二氧化碳(酵母、细菌等)。

无氧呼吸是一种维持能量供应的代谢途径,但其能量产率相对较低。

生物光合作用和呼吸作用知识点

生物光合作用和呼吸作用知识点

生物光合作用和呼吸作用知识点生物光合作用和呼吸作用是生命活动中最为重要的两个过程。

光合作用是指植物利用光能将二氧化碳和水转化为有机物质的过程,而呼吸作用则是指生物将有机物质转化为能量的过程。

这两个过程在生命活动中起着至关重要的作用,下面我们来详细了解一下它们的原理和作用。

一、生物光合作用生物光合作用是指植物利用光能将二氧化碳和水转化为有机物质的过程。

这个过程需要光能的参与,因此只能在光照的条件下进行。

光合作用的化学方程式为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2这个方程式表明,在光照的条件下,植物通过光合作用将二氧化碳和水转化为葡萄糖和氧气。

这个过程中,光能被植物吸收,然后通过光合色素将其转化为化学能,最终形成有机物质。

这个过程中,氧气是一个副产物,它被释放到空气中,供其他生物进行呼吸作用。

生物光合作用是生命活动中最为重要的过程之一。

它不仅能够为植物提供能量和营养物质,还能够为整个生态系统提供氧气。

在光合作用的过程中,植物通过吸收二氧化碳和释放氧气,帮助维持了地球上的氧气含量,保持了生态平衡。

二、呼吸作用呼吸作用是指生物将有机物质转化为能量的过程。

这个过程需要氧气的参与,因此只能在有氧的条件下进行。

呼吸作用的化学方程式为:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量这个方程式表明,在有氧的条件下,生物通过呼吸作用将葡萄糖和氧气转化为二氧化碳、水和能量。

这个过程中,葡萄糖被分解为二氧化碳和水,同时释放出能量,这个能量被生物利用来维持生命活动。

呼吸作用是生命活动中不可或缺的过程。

它能够为生物提供能量,维持生命活动的正常进行。

在呼吸作用的过程中,生物通过分解有机物质,将其转化为能量,这个能量被用于维持生命活动的各种过程,如运动、生长、代谢等。

三、生物光合作用和呼吸作用的关系生物光合作用和呼吸作用是生命活动中密不可分的两个过程。

它们之间存在着一种互补关系。

在光合作用的过程中,植物通过吸收二氧化碳和释放氧气,为其他生物进行呼吸作用提供了氧气。

生物体的光合作用与呼吸作用

生物体的光合作用与呼吸作用

生物体的光合作用与呼吸作用生物体的光合作用与呼吸作用是生命活动中最为基本且关键的过程。

通过这两种作用,生物体能够合成能量、维持自身的生理功能以及与环境进行物质交换。

光合作用主要发生在植物体内,而呼吸作用则普遍存在于所有生物体中。

一、光合作用光合作用是指植物或其他光合生物利用阳光能将二氧化碳和水转化成为有机物(如葡萄糖)的过程。

它主要发生在植物叶片的叶绿体中,包含光合色素和酶等关键成分。

1. 光合作用的化学反应光合作用的化学方程式如下:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2在这个过程中,二氧化碳被还原成为有机物,同时水分子被光能分解为氢离子和氧气。

最终,有机物(如葡萄糖)被植物用作能量供应和构建生物体的基础物质。

2. 光合作用的意义光合作用是生态系统中能量的主要来源之一,也是维持地球生态平衡的重要过程。

通过光合作用,植物将太阳能转化为化学能,进而为其他生物提供能量。

同时,光合作用还能释放氧气,维持大气中的氧气含量。

二、呼吸作用呼吸作用是生物体通过氧气和有机物进行反应,将有机物分解为二氧化碳和水,并释放能量的过程。

无论是植物还是动物,呼吸作用都是生命活动中必不可少的过程。

1. 细胞呼吸的过程细胞呼吸是指在细胞内进行的呼吸作用。

它包括三个阶段:糖酵解、三羧酸循环和氧化磷酸化。

首先,糖酵解将葡萄糖分解成为两个分子的丙酮酸,并产生少量ATP。

然后,丙酮酸进入三羧酸循环,进一步分解,生成更多的ATP和电子载体NADH、FADH2。

最后,NADH和FADH2通过氧化磷酸化,将生成的能量转化为ATP,同时产生二氧化碳和水。

2. 呼吸作用的意义呼吸作用是生物体供应能量的重要途径。

通过呼吸作用,生物体将有机物氧化为二氧化碳和水,并释放出大量的能量。

这些能量被用于维持生命活动,如细胞分裂、运动、新陈代谢等。

此外,呼吸作用还能帮助调节生物体的内部环境。

通过呼吸作用,生物体可以调节体内氧气和二氧化碳的浓度,维持酸碱平衡,并参与调控体温等。

光合作用和呼吸作用的区别和联系

光合作用和呼吸作用的区别和联系

光合作用和呼吸作用的区别和联系光合作用和呼吸作用是所有生物体都必经的基本代谢途径。

光合作用是植物通过光能将二氧化碳和水转化成有机物的过程,是生态系统中最基础的能量流动途径。

呼吸作用则是一种有机物在细胞内氧化释放能量的过程,也是维持生命所必需的过程。

本文将探讨光合作用和呼吸作用的异同以及它们的联系。

一、光合作用光合作用是植物唯一能够将太阳能转化为有机物质的途径。

其反应方程式为:6CO2 + 12H2O + 光能→ C6H12O6 + 6O2 + 6H2O光合作用分为两个阶段:光化学反应和暗反应。

在光化学反应中,光能被吸收,水被分解成氧气和电子,电子被传递到光化学链上,最终形成ATP和NADPH,为暗反应提供能量。

暗反应则是利用光化学反应生成的ATP和NADPH,与二氧化碳同化生成有机物质的过程。

光合作用对大气中的二氧化碳进行了固定,这为地球上所有生物提供了生存必需的有机物。

同时,在光化学反应中,氧气被释放出来,呼吸作用得以进行。

光合作用和呼吸作用在反应类型上存在很大的不同。

二、呼吸作用呼吸作用是一种通过有机物的氧化释放能量、产生ATP的过程,是所有有机体中不可或缺的代谢途径,包括植物在内。

其反应方程式为:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量呼吸作用分为三个阶段:糖解、Krebs循环和氧化磷酸化。

在糖解中,葡萄糖被分解成两个分子的三碳糖;在Krebs循环中,三碳糖的分子进一步分解,并与氧化酶反应生成乙酰辅酶A;在氧化磷酸化中,水和氧与乙酰辅酶A反应,产生大量的ATP和CO2。

呼吸作用在生物体内释放出的能量用于维持生命的正常代谢活动,提供机体运动、运输、分泌等生命活动需要的能量。

同时,呼吸作用与光合作用之间也存在着相互联系。

三、光合作用和呼吸作用的区别和联系1、反应体系光合作用发生在植物叶绿体内,而呼吸作用发生在细胞的线粒体中。

2、反应物质光合作用的反应物质为二氧化碳和水,而呼吸作用的反应物质为有机物质和氧气。

高考生物呼吸作用光合作用考点总结

高考生物呼吸作用光合作用考点总结

高考生物呼吸作用光合作用考点总结高考生物考题中,呼吸作用与光合作用是常常涉及的重要概念。

下面是对两个考点的总结:一、呼吸作用:呼吸作用是生物体将有机物转化为能量的一种代谢现象,主要包括有氧呼吸和无氧呼吸。

1.有氧呼吸:有氧呼吸是指生物体在充分供氧的情况下进行的呼吸作用,可分为三个阶段:糖解(糖原的分解)、Krebs循环和氧化磷酸化。

糖解:将葡萄糖分子分解成两个三碳的丙酮酸,然后通过有机酸分解成乙醇。

反应方程式为:C6H12O6+2ADP+2Pi→2C3H6O3+2ATPKrebs循环:乙醇进一步被氧化成乙醛酸,最终释放出二氧化碳。

反应方程式为:2C3H6O3 + 9ADP + 9Pi + 6NAD+ + 6FAD → 6CO2 +6C2H4O2 + 9ATP + 6NADH + 6FADH2氧化磷酸化:乙醛酸被氧化成乙酸,并通过线粒体呼吸链最终生成水。

反应方程式为:6C2H4O2+24ADP+24Pi+18O2→12CO2+12H2O+24ATP2.无氧呼吸:无氧呼吸是指在缺氧的情况下进行的呼吸作用,主要产生能量的方式为乳酸发酵和乙酸发酵。

乳酸发酵:糖在肌肉中发酵产生乳酸,反应方程式为:C6H12O6+2ADP+2Pi→2C3H6O3+2ATP乙酸发酵:细菌在无氧条件下将糖转化为乙酸和二氧化碳,反应方程式为:C6H12O6+2ADP+2Pi→2C2H5OH+2CO2+2ATP二、光合作用:光合作用是指绿色植物利用光能将二氧化碳和水转化为有机物质(葡萄糖)的过程。

1.光化学反应:光能被吸收,激发叶绿素a的电子,产生高能电子;水分子被光解,产生氧气和两个氢离子。

反应方程式为:光能+2H2O→2H++1/2O22.光合糖合成反应:高能电子通过光合色素系统传递,最终与二氧化碳反应生成葡萄糖。

反应方程式为:6CO2+18ATP+12NADPH+12H+→C6H12O6+18ADP+18Pi+12NADP++6H2O 值得注意的是,光合作用不仅出现在植物中,还出现在一些浮游植物和光合细菌中。

高中生物呼吸作用和光合作用知识点

高中生物呼吸作用和光合作用知识点

高中生物呼吸作用和光合作用知识点
高中生物呼吸作用和光合作用知识点
一、呼吸作用:
1、呼吸作用是指生物体维持正常的代谢过程中消耗氧、产生二氧化碳的一种作用。

2、呼吸作用的主要过程包括氧合作用、氧化还原反应和三碳(糖)酸循环。

3、氧合作用是指生物体在细胞内将氧与有机物的氢结合,产生水和活性碳酸根,放出能量的一种生物反应。

4、氧化还原反应是指在细胞内氧化有机物,消耗氧,释放能量的一种生物反应。

5、三碳酸循环是指在呼吸中水分子拆分,产生二氧化碳,消耗多种烃、酮和醛,放出能量的一种生物反应。

二、光合作用:
1、光合作用是指植物在光照作用下,将水分子拆分,同时将二氧化碳和水转化为有机物,释放出能量的一种重要生物作用。

2、光合作用的主要过程包括光捕猎反应,光补充反应,光水分解反应以及光照脱碳反应四个步骤。

3、光捕猎反应是指植物质细胞内的光合系统将外界的光能转换成生物的化学能的一种反应。

4、光补充反应是指植物利用光捕猎反应获得的光能,运用ATP 和NADPH将二氧化碳合成为有机物的一种反应。

5、光水分解反应是指植物利用光能将水分子拆分成氢和氧的一种反应。

6、光照脱碳反应是指植物利用光能把光合作用脱离反应和光补充反应产生的有机物,放出大量能量的一种反应。

光合作用和呼吸作用的关系

光合作用和呼吸作用的关系

光合作用和呼吸作用的关系光合作用和呼吸作用是生物体中两个重要的能量转化过程。

光合作用通过光能转化为化学能,将二氧化碳和水转化为有机物质,并释放出氧气;而呼吸作用则是将有机物质分解为二氧化碳和水,同时释放能量。

这两个过程在生物体内密切相关,相互依存。

1. 光合作用的基本过程光合作用是植物和一些蓝藻、细菌等光合生物利用太阳能将无机物质转化为有机物质的过程。

光合作用的基本反应方程式为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2在光合作用中,光能被植物的叶绿素吸收后,通过一系列化学反应将二氧化碳和水转化为葡萄糖等有机物质,并且释放出氧气。

2. 呼吸作用的基本过程呼吸作用是一种生物氧化过程,它将有机物质(如葡萄糖)分解为二氧化碳和水,并释放出大量的能量。

呼吸作用的基本反应方程式为:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量在呼吸作用中,有机物质在细胞线粒体中被氧化分解,产生能量以供生物体进行各种代谢活动。

3. 光合作用和呼吸作用的关系光合作用和呼吸作用在生物体内有着密切的互补关系。

它们之间的关系可以通过以下三个方面来解释:3.1 材料和产物的互相转化光合作用的产物葡萄糖可被用于细胞内的呼吸作用,呼吸作用中的产物二氧化碳和水则可被用于光合作用。

这种物质的相互转化使得生物体能够循环利用自身产生的物质,实现能量的再利用。

3.2 能量的转化与传递光合作用将太阳能转化为化学能,并且以葡萄糖的形式存储在植物体内。

而呼吸作用则通过分解葡萄糖释放出储存的能量。

这种能量的转化和传递使得生物体能够进行各种生命活动,并且维持生物体的正常生长和发育。

3.3 氧气的产生和利用光合作用中产生的氧气可以被呼吸作用所利用,而呼吸作用中产生的二氧化碳也可以被光合作用吸收。

这种氧气和二氧化碳的交换使得环境中的气氛得以维持,维持了生物体的生存条件。

综上所述,光合作用和呼吸作用是生物体内紧密相连的两个过程。

完整版光合作用和呼吸作用知识点总结

完整版光合作用和呼吸作用知识点总结

完整版光合作用和呼吸作用知识点总结光合作用和呼吸作用是自然界中两个重要的生物化学过程。

光合作用是指植物通过光能将二氧化碳和水转化成有机物质,并释放出氧气的过程。

呼吸作用是指将有机物与氧气反应生成能量、二氧化碳和水的过程。

以下是对光合作用和呼吸作用的详细知识点总结:光合作用:1.光合作用发生在植物的叶绿体中的叶绿体膜上,主要包括光合光反应和暗反应两个阶段。

2.光合光反应是指在叶绿体的光合膜中,通过光能激发叶绿体色素分子,产生高能电子和氧气。

其中,光合色素主要有叶绿素a和叶绿素b。

3.光合光反应主要包括光能捕获、光化学传递和光合电子传递三个过程。

光能捕获是指光合色素分子吸收光能,激发电子跃迁到高能态。

光化学传递是指激发电子通过传递分子链,最终被载体分子接受。

光合电子传递是指高能电子在电子传递链上传递,最终用于合成有机物和生成ATP。

4.暗反应是指在光合作用中,光能转化成化学能,通过一系列酶催化的反应将二氧化碳转化成有机物质。

暗反应主要包括碳同化和C3和C4途径两个过程。

碳同化是指在植物叶片的叶绿体中,通过碳酸化作用将二氧化碳转化成碳水化合物。

C3和C4途径是植物通过不同的途径将二氧化碳转化成有机物质。

呼吸作用:1.呼吸作用是通过氧气氧化有机物质,释放出能量并生成二氧化碳和水的过程。

2.有氧呼吸是指在有氧条件下进行的呼吸作用,主要分为糖类有氧呼吸和脂类有氧呼吸。

糖类有氧呼吸是指糖类被氧化分解生成二氧化碳和水,并释放出能量。

脂类有氧呼吸是指脂类被氧化分解生成二氧化碳和水,并释放出更多的能量。

3.无氧呼吸是指在无氧条件下进行的呼吸作用,主要分为乳酸发酵和酒精发酵。

乳酸发酵是指在无氧条件下,糖类被氧化成乳酸。

酒精发酵是指在无氧条件下,糖类被氧化成乙醇和二氧化碳。

4.呼吸作用主要发生在细胞的线粒体中,包括三个步骤:糖分解、三羧酸循环和呼吸链。

糖分解是指糖类被分解成丙酮酸,进而通过三羧酸循环生成能量分子ATP。

高中生物 呼吸作用,光合作用 知识点总结

高中生物  呼吸作用,光合作用 知识点总结

自养型光合自养:绿色植物和蓝藻同化作用 化能自养:硝化细菌异养型 :自己不能利用无机物合成有机物需氧型:靠有氧呼吸才能生存,但小部分细胞可进行短暂的无氧呼吸 异化作用 厌氧性:只能进行无氧呼吸。

乳酸菌 兼性厌氧型:酵母菌ATP 的主要来源——细胞呼吸细胞呼吸:由于呼吸作用是在细胞内进行的,因此也叫细胞呼吸。

细胞呼吸是指有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP 的过程。

一、细胞呼吸的方式1.细胞呼吸 有氧呼吸——是细胞呼吸的主要形式无氧呼吸2.有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能 量,生成ATP 的过程。

总反应式: C 6H 12O 6 + 6H 2O + 6O 2 6CO 2 + 12H 2O + 能量(38ATP )有氧呼吸过程中O 2的去路:O 2用于和[H]生成H 2O3.无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。

(其余能量在分解不彻底的氧化产物中) 总反应式: C 6H 12O 6 2C 3H 6O 3 (乳酸) + 少量能量(2ATP )C 6H 12O 6 2C 2H 5OH(酒精) + 2CO 2 +少量能量(2ATP ) 发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。

产生酒精的叫酒精发酵(乙醇发酵)产生乳酸的叫乳酸发酵。

4.有氧呼吸和无氧呼吸的比较产物不同产物的原因是催化反应的酶不同。

根本原因是控制酶合成的基因不同。

酶代谢类型酶酶5.实验:探究酵母菌细胞(兼性厌氧菌)呼吸的方式检测方法CO2使澄清石灰水变浑浊CO2使溴麝香草酚蓝水溶液由蓝变绿再变黄橙色的重酪酸钾溶液在酸性下与酒精发生反应,变成灰绿色实验注意事项:1)NaOH溶液:洗除空气中的CO2,保证最后通入澄清石灰水的CO2是由于酵母菌有氧呼吸产生的。

高考生物知识点光合作用与呼吸作用

高考生物知识点光合作用与呼吸作用
3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。
6、光合作用的的探பைடு நூலகம்历程
①、1648年海尔蒙脱(比利时),把一棵的柳树苗种植在一桶的土壤中,然后只用雨水浇
灌而不供给任何其他物质,5年后柳树增重到,而土壤只减轻了57g。指出:植物的
物质积累来自水
1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃 罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而 死,证明:植物可以更新空气。
暗 反
条件
酶、ATP [H]
场所
叶绿体基质
8、光合作用的过程:

的有1161KJ(38molATP),以热能散失1709KJ,无氧呼吸产生的可利用能量是_KJ(2
molATP),1molATP水解后放出能量
3、写出2条无氧呼吸反应式
GH2Q 2C2H5OH(酒精)+2CQ+能量
GH2Q 2C3H3Q+能量
无氧呼吸的场所是细胞质基质,分2个阶段,第一个阶段和有氧呼吸的相同,是由葡萄糖分解为丙酮酸,第二阶段的反应是由丙酮酸分解成CQ和酒精或转化成期0(乳 酸)。熟悉95页图。
4、影响呼吸速率的外界因素:
1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。 温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越 低,细胞呼吸越弱;温度越高,细胞呼吸越强。
2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。
3、水分:一般来说,细胞水分充足,呼吸作用将增强。但陆生植物根部如长时间受水
浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。

高中生物植物光合作用与呼吸作用

高中生物植物光合作用与呼吸作用

高中生物植物光合作用与呼吸作用生物光合作用与呼吸作用是植物生命活动中的两个重要过程。

光合作用是指植物通过叶绿素和阳光将二氧化碳和水转化为有机物质(葡萄糖)和氧气的过程,而呼吸作用是指植物通过分解有机物质,释放能量并产生二氧化碳和水的过程。

本文将从植物光合作用和呼吸作用的原理、过程以及相互关系等方面进行探讨。

一、光合作用光合作用是植物能够利用太阳能将无机物转化为有机物的过程。

它主要发生在植物叶片的叶绿体中。

光合作用的方程式如下:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2植物通过叶绿素吸收太阳能,并将其转化为化学能,进而将二氧化碳和水转化为葡萄糖和氧气。

光合作用可分为光能捕捉和光化学反应两个阶段。

1. 光能捕捉:光能捕捉是指植物叶绿体中的叶绿素分子吸收光子能量,并将其转化为化学能。

光能捕捉发生在叶绿体的叶绿体膜上,其中的光合色素吸收不同波长的光子能量。

2. 光化学反应:光化学反应是指通过一系列的反应过程,将光能转化为化学能,并最终生成葡萄糖和氧气。

这一过程主要包括光系统Ⅰ和光系统Ⅱ的作用,以及光合电子传递链的工作。

二、呼吸作用呼吸作用是植物或动物分解有机物质以释放能量的过程。

植物进行呼吸作用可以分为有氧呼吸和无氧呼吸两种情况。

有氧呼吸是指植物通过氧气将有机物质分解为二氧化碳和水,并释放出化学能。

呼吸作用的方程式如下:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量1. 糖酵解:糖酵解是有氧呼吸的第一阶段,发生在植物的细胞质中。

通过一系列的反应,葡萄糖被分解为丙酮酸,并产生少量的ATP(三磷酸腺苷)。

2. 柠檬酸循环和电子传递链:柠檬酸循环和电子传递链是有氧呼吸的后续阶段,发生在植物线粒体中。

在柠檬酸循环中,丙酮酸被氧化为二氧化碳,并产生进一步的ATP。

在电子传递链中,电子从柠檬酸循环过程中的载体分子中转移,并释放出更多的ATP。

三、光合作用与呼吸作用的关系光合作用和呼吸作用是两个互为逆过程的生物化学反应。

光合作用与呼吸作用知识点

光合作用与呼吸作用知识点

光合作用与呼吸作用知识点光合作用和呼吸作用是生物体中两个非常重要的代谢过程。

它们在维持生物体能量平衡和物质转化方面起着关键的作用。

本文将介绍光合作用和呼吸作用的基本概念、作用过程和相关知识点。

一、光合作用的基本概念和作用过程光合作用是绿色植物、藻类和一些细菌等光合生物利用光能将二氧化碳和水转化为有机物质和氧气的过程。

它是地球上所有生物的能量来源,同时还能够产生氧气,维持氧气含量的平衡。

光合作用的过程包括两个阶段:光依赖反应和暗反应。

光依赖反应发生在叶绿体的光合膜上,其中叶绿素吸收太阳能量,在光合色素系统中产生高能电子。

这些电子经过一系列传递过程,最终在光化学反应中用来还原辅酶NADP+,将二氧化碳还原成有机物质。

暗反应发生在叶绿体基质中,利用经光依赖反应产生的高能物质ATP和NADPH,将二氧化碳和水合成为葡萄糖等有机物质。

暗反应的过程又称为Calvin循环,其中包括碳固定、还原和再生三个阶段。

最终,光合作用产生的有机物质可以被植物用于生长和代谢,并释放出氧气。

光合作用的一些关键知识点包括:光合作用方程式(光合作用反应的化学方程式)、光合作用与温度、光合作用的物质参与和影响因素等。

二、呼吸作用的基本概念和作用过程呼吸作用是指所有生物体内将有机物质氧化分解为二氧化碳和水,并释放能量的过程。

呼吸作用是生物细胞的基本能量供应来源,可分为有氧呼吸和无氧呼吸两种形式。

有氧呼吸是指在氧气存在的条件下,将有机物质完全氧化分解为二氧化碳、水和能量的过程。

有氧呼吸主要发生在线粒体内,包括三个主要步骤:糖酵解、三羧酸循环和氧化磷酸化。

无氧呼吸是指在缺氧或氧气供应有限的条件下,将有机物质转化为能量的过程。

无氧呼吸可以分为乳酸发酵和酒精发酵两种形式。

乳酸发酵主要发生在动物肌肉细胞中,产生乳酸和少量能量。

酒精发酵则主要发生在酵母等微生物中,产生乙醇和少量能量。

呼吸作用的一些关键知识点包括:呼吸作用方程式(呼吸作用反应的化学方程式)、呼吸作用与能量释放、呼吸作用与发酵、呼吸作用的物质参与和调控等。

光合作用与呼吸作用

光合作用与呼吸作用

光合作用与呼吸作用光合作用和呼吸作用是生物体中两个重要的能量转化过程。

光合作用是指植物通过光能将二氧化碳和水转化为有机物质和氧气的过程,而呼吸作用则是指生物体将有机物质氧化分解为二氧化碳和水释放能量的过程。

本文将详细介绍光合作用和呼吸作用的过程、作用机制以及它们在生物体中的重要性。

一、光合作用光合作用是植物和一些蓝藻、原藻等光合有机体利用光能将二氧化碳和水转化为有机物质和氧气的过程。

光合作用主要发生在植物的叶绿体中,包括光能捕获、光化学反应和暗反应三个阶段。

1. 光能捕获:植物叶绿体中的叶绿素能够吸收光能,其中主要的吸收峰位于蓝光和红光区域。

当光能被吸收后,它会激发叶绿素中的电子,使其跃迁到一个较高的能级上。

2. 光化学反应:在光化学反应中,激发的电子会通过一系列的电子传递过程,最终被接受并转化为化学能。

这个过程中,光能被转化为化学能,同时产生了氧气。

3. 暗反应:暗反应是光合作用的最后一个阶段,也是最重要的阶段。

在暗反应中,植物利用光化学反应产生的化学能将二氧化碳还原为有机物质,主要是葡萄糖。

这个过程中需要ATP和NADPH的参与,它们是光合作用过程中产生的能量和电子供应体。

光合作用是生物体中最重要的能量来源之一,它不仅能够提供植物自身所需的能量,还能够为其他生物提供能量。

此外,光合作用还能够产生氧气,维持地球上的氧气含量,维持生态平衡。

二、呼吸作用呼吸作用是生物体将有机物质氧化分解为二氧化碳和水释放能量的过程。

呼吸作用主要发生在细胞的线粒体中,包括糖酵解和细胞呼吸两个阶段。

1. 糖酵解:糖酵解是呼吸作用的第一个阶段,它发生在细胞质中。

在糖酵解过程中,葡萄糖被分解为两个分子的丙酮酸,同时产生了少量的ATP和NADH。

2. 细胞呼吸:细胞呼吸是呼吸作用的第二个阶段,它发生在线粒体中。

在细胞呼吸过程中,丙酮酸被进一步氧化分解为二氧化碳和水,同时产生了大量的ATP。

细胞呼吸包括三个步骤:乳酸发酵、酒精发酵和氧化磷酸化。

光合作用和呼吸作用知识点总结

光合作用和呼吸作用知识点总结

光合作用和呼吸作用知识点总结
1. 光合作用
光合作用是植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。

下面
是光合作用的主要知识点:
•光合作用的位置:光合作用主要发生在叶绿体内的叶片细胞中。

•光合作用的作用:光合作用是植物生长的能量来源,也是氧气的主要产生者。

•光合作用的公式:光合作用的化学方程式为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2。

•光合作用的阶段:光合作用可分为光反应和暗反应两个阶段。

•光合作用的影响因素:光强、温度、二氧化碳浓度等因素都会影响光合作用的速率。

2. 呼吸作用
呼吸作用是生物将有机物质分解为能量的过程,同时释放出二氧化碳和水。


下是呼吸作用的主要知识点:
•呼吸作用的位置:呼吸作用发生在细胞的线粒体内。

•呼吸作用的作用:呼吸作用是维持生物体生命活动所需的能量来源。

•呼吸作用的公式:呼吸作用的化学方程式为:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量。

•呼吸作用的类型:呼吸作用分为有氧呼吸和无氧呼吸两种类型。

•呼吸作用与光合作用的关系:呼吸作用产生的二氧化碳是光合作用的原料,两者形成了生物体的气体交换循环。

总的来说,光合作用和呼吸作用是植物生长和生命活动中至关重要的过程,二
者相辅相成,在生物体内形成了能量和物质循环。

深入了解光合作用和呼吸作用对于理解植物生长和生态系统运转具有重要意义。

高考生物知识点光合作用与呼吸作用

高考生物知识点光合作用与呼吸作用

光合作用与呼吸作用1、呼吸作用的本质是氧化分解有机物,释放能量,不一定需要氧气,分为有氧呼吸和无氧呼吸。

2、有氧呼吸的反应式:,第一阶段在细胞质基质进行,原料是糖类等,产物是丙酮酸、氢、 ATP,第二阶段在线粒体进行,原料是丙酮酸和水,产物是C02、ATP 、氢,第三阶段在线粒体进行,原料是氢和氧,产物是水、 ATP ,第一、二阶段的共同产物是氢、 ATP,三个阶段的共同产物是ATP。

1mol葡萄糖有氧呼吸产生能量2870 KJ,可用于生命活动的有1161 KJ(38molATP),以热能散失1709 KJ,无氧呼吸产生的可利用能量是 KJ( 2 molATP),1molATP水解后放出能量KJ 。

场所发生反应产物第一阶段细胞质基质丙酮酸、[H]、释放少量能量,形成少量ATP第二阶线粒体CO2、[H]、释放少少6CO段基质量能量,形成少量ATP第三阶段线粒体内膜生成H2O、释放大量能量,形成大量ATP3、写出2条无氧呼吸反应式C6H12O62C2H5OH(酒精)+2CO2+能量C6H12O62C3H3O3+能量无氧呼吸的场所是细胞质基质,分2个阶段,第一个阶段和有氧呼吸的相同,是由葡萄糖分解为丙酮酸,第二阶段的反应是由丙酮酸分解成CO2和酒精或转化成C3H3O3(乳酸)。

熟悉95页图。

4、影响呼吸速率的外界因素:1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。

温度过低或过高都会影响细胞正常的呼吸作用。

在一定温O度范围内,温度越低,细胞呼吸越弱;温度越高,细胞呼吸越强。

2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。

3、水分:一般来说,细胞水分充足,呼吸作用将增强。

但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。

4、CO2:环境CO2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。

5、呼吸作用在生产上的应用:1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。

高考生物植物的光合作用与呼吸作用

高考生物植物的光合作用与呼吸作用

高考生物植物的光合作用与呼吸作用生物学中,植物的光合作用与呼吸作用是两个重要的生命过程,对于高考生物考试来说,这是一个关键的知识点。

本文将详细介绍植物的光合作用与呼吸作用的原理、过程以及它们在生物界中的重要性。

一、植物的光合作用光合作用是指植物利用阳光能将二氧化碳和水转化为有机物质的过程。

它是通过叶绿体中的色素分子吸收光能,并在光合膜上进行一系列的化学反应来完成的。

1. 光合作用的原理光合作用的原理基于光能的转化。

在叶绿体的叶片中,存在着一种叫做叶绿素的色素分子,它能够吸收光线中的能量。

当光线照射到叶绿体时,叶绿素分子吸收光能,并将其转化为化学能。

这种化学能被用来将二氧化碳和水合成为葡萄糖,同时释放出氧气。

2. 光合作用的过程光合作用可以分为光能捕捉、光化学反应和暗反应三个过程。

光能捕捉是指叶绿体中的叶绿素吸收光线中的能量。

叶绿体内存在着两种光反应单位:光系统Ⅰ和光系统Ⅱ。

通过这两种光反应单位,光能被捕捉并转化为高能化合物ATP和NADPH。

光化学反应是指ATP和NADPH在光合膜中进行一系列的化学反应。

在这个过程中,ATP和NADPH的化学能被转化为其他物质的化学能。

暗反应是指在没有光照的情况下,将二氧化碳通过一系列的化学反应转化为有机物质,特别是葡萄糖。

这个过程发生在植物的叶绿体中的基质中。

3. 光合作用在生物界中的重要性光合作用不仅是植物的生命活动,也为整个生物界提供了氧气和有机物质。

在光合作用过程中,植物释放出的氧气是其他生物进行呼吸所必需的。

同时,光合作用还能够将二氧化碳转化为有机物质,并在食物链中提供能量流动的起点。

二、植物的呼吸作用呼吸作用是指植物将有机物质转化为能量的过程。

它与动物的呼吸作用类似,但有一些独特之处。

1. 呼吸作用的原理呼吸作用是通过氧气和有机物质在线粒体内进行一系列的氧化反应来完成的。

这些氧化反应会将有机物质分解为二氧化碳和水,并释放出能量。

2. 呼吸作用的过程呼吸作用可以分为三个阶段:糖解、三羧酸循环和氧化磷酸化。

高中生物呼吸作用和光合作用知识点

高中生物呼吸作用和光合作用知识点

高中生物呼吸作用和光合作用知识点
一、高中生物呼吸作用
1、呼吸作用是指植物体和动物体内细胞利用氧来氧化食物,释放能量,产生热量和碳酸,这一过程叫做新陈代谢和营养代谢,主要由呼吸酶系统(也称呼吸链)完成。

2、呼吸作用分为内源性呼吸作用和外源性呼吸作用两种:内源性呼吸作用是指植物体和动物体利用食物中的营养物质(如糖类等)
为原料,通过呼吸酶系统将氧补充到细胞内,以提供能量,进行新陈代谢及营养代谢,生成热量和碳酸。

外源性呼吸作用是指植物体和动物体在缺氧条件下利用外源氧(如氧气)为原料,直接通过呼吸酶系统产生能量,进行新陈代谢和营养代谢,释放热量和碳酸。

二、高中生物光合作用
1、光合作用是指植物体在光作用下,利用外源氧 (如氧气)和水分,将二氧化碳氧化为糖类物质,发生的生命活动。

通过光合作用产生的糖类物质可以直接或间接作为植物体生长所需的营养物质。

2、光合作用也可以分为内源性光合作用和外源性光合作用两种:内源性光合作用是指植物体利用太阳光中的紫外线和可见光作用下,利用植物体内部的糖类物质及水分,将太阳光中的二氧化碳氧化为糖类物质,发生光合作用;外源性光合作用是指植物体在受到太阳光的作用下,利用外界的空气中的二氧化碳和外界的水分,将太阳光中的二氧化碳氧化为糖类物质,发生光合作用。

- 1 -。

生物学中的光合作用与呼吸作用

生物学中的光合作用与呼吸作用

生物学中的光合作用与呼吸作用生物学研究了许多关于生物体代谢的过程,其中光合作用和呼吸作用是两个至关重要的过程。

光合作用是指植物及某些类似细菌的生物利用光能将二氧化碳和水转化为有机物质的过程。

而呼吸作用则是指生物体利用有机物质分解释放能量的过程。

本文将对光合作用和呼吸作用进行深入探讨,并比较二者之间的异同。

一、光合作用光合作用是植物中最主要的代谢过程之一。

它发生在叶绿体中的叶绿体色素中,其中叶绿素是光合作用的关键物质。

光合作用的基本方程式可以表示为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2从方程式中可以看出,光合作用需要光能的输入,同时也需要二氧化碳和水。

通过光合作用,植物将二氧化碳和水转化为葡萄糖和氧气。

葡萄糖是植物体内的主要有机物质,它可以被植物利用作为能量源,也可以用来构建其他有机物质。

光合作用可以分为光化反应和暗反应两个阶段。

光化反应是指植物叶绿体中的光合色素吸收光能后产生的一系列反应,其中产生的能量储存在ATP和NADPH分子中。

而暗反应则是在光化反应的基础上,利用ATP和NADPH将二氧化碳转化为葡萄糖的过程。

二、呼吸作用呼吸作用是生物细胞中产生能量的过程,它发生在细胞质和线粒体中。

呼吸作用的基本方程式可以表示为:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量从方程式中可以看出,呼吸作用需要有机物质葡萄糖和氧气。

通过呼吸作用,有机物质被分解产生二氧化碳、水和能量。

这个能量可以用于维持生物体的正常代谢活动,例如运动、生长和繁殖等。

呼吸作用可以分为三个阶段:糖解、柠檬酸循环和氧化磷酸化。

糖解是指葡萄糖分子在细胞质中被分解为两个三碳糖分子。

柠檬酸循环是将三碳糖分子进一步分解为二氧化碳,并产生少量能量分子。

氧化磷酸化是最主要的能量生成过程,其中通过线粒体内的电子传递链将能量转化为ATP分子。

三、光合作用与呼吸作用的比较1. 能量转化方向:光合作用是利用光能将无机物转化为有机物和能量,而呼吸作用则是将有机物分解为无机物和能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光合作用与呼吸作用1、呼吸作用的本质是氧化分解有机物,释放能量,不一定需要氧气,分为有氧呼吸和无氧呼吸。

2、有氧呼吸的反应式:,第一阶段在细胞质基质 进行,原料是糖类等,产物是 丙酮酸 、氢 、 ATP ,第二阶段在线粒体 进行,原料是丙酮酸和水 ,产物是 C02 、ATP 、氢 ,第三阶段在线粒体进行,原料是 氢 和 氧 ,产物是 水、 ATP ,第一、二阶段的共同产物是氢 、 ATP ,三个阶段的共同产物是 ATP 。

1mol 葡萄糖有氧呼吸产生能量 2870 KJ ,可用于生命活动的有1161 KJ ( 38molATP ),以热能散失 1709 KJ ,无氧呼吸产生的可利用能量是 61.08 KJ ( 2 molATP ),1molATP 水解后放出能量 30.54 KJ 。

场所 发生反应产物第一阶段细胞质基质丙酮酸、[H]、释放少量能量,形成少量ATP第二阶段线粒体 基质 CO 2、[H]、释放少量能量,形成少量ATP 第三阶段线粒体膜生成H 2O 、释放大量能量,形成大量ATP3、写出2条无氧呼吸反应式 C 6H 12O 6 2C 2H 5OH (酒精)+2CO 2+能量 C 6H 12O 62C 3H 3O 3+能量无氧呼吸的场所是细胞质基质,分 2个阶段,第一个阶段与 有氧 呼吸的相同,是由 葡萄糖分解为 丙酮酸 ,第二阶段的反应是由丙酮酸分解成CO 2和酒精 或转化成 C 3H 3O 3(乳酸) 。

熟悉95页图。

4、影响呼吸速率的外界因素:1、温度:温度通过影响细胞与呼吸作用有关的酶的活性来影响细胞的呼吸作用。

温度过低或过高都会影响细胞正常的呼吸作用。

在一定温度围,温度越低,细胞呼吸越弱;温度越高,细胞呼吸越强。

2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。

3、水分:一般来说,细胞水分充足,呼吸作用将增强。

但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。

4、CO 2:环境CO 2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。

5、呼吸作用在生产上的应用:6H 2O 酶2丙酮酸 少量能量 [H] + + + 6CO 2 H 2O 酶大量能量[H] + + O 2葡萄糖 酶 2丙酮酸少量能量[H] + +1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。

2、粮油种子贮藏时,要风干、降温,降低氧气含量,则能抑制呼吸作用,减少有机物消耗。

3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。

6、光合作用的的探究历程①、1648年海尔蒙脱(比利时),把一棵2.3kg的柳树苗种植在一桶90.8kg的土壤中,然后只用雨水浇灌而不供给任何其他物质,5年后柳树增重到76.7kg,而土壤只减轻了57g。

指出:植物的物质积累来自水②、1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩,小鼠不容易窒息而死,证明:植物可以更新空气。

③、1785年,由于空气组成的发现,人们明确了绿叶在光下放出的气体是氧气,吸收的是二氧化碳。

•1845年,德国科学家梅耶指出,植物进行光合作用时,把光能转换成化学能储存起来。

④、1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。

过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。

证明:绿色叶片在光合作用中产生了淀粉。

⑤、1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。

证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。

⑥、20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。

第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。

光合作用释放的氧全部来自来水。

7、叶绿体色素吸收可见光,主要吸收红橙光和蓝紫光,(叶绿素a和叶绿素b主要吸收蓝紫光和红橙光,胡萝卜素和叶黄素主要吸收蓝紫光),光反应的场所是叶绿体类囊体膜上,(因为所有色素和所有光反应的酶都在囊状结构上),原料是水,ADP、Pi,动力是光能,产物是氧、氢和ATP ,暗反应场所是叶绿体基质,原料是 CO2,动力是ATP 水解释放的能量,产物是有机物(CH2O)和C5,光反应为暗反应提供还原剂氢和ATP (能量),CO2被还原前先要进行固定,C3化合物一部分被还原为有机物,另一部分又变成五碳化合物。

光合作用的总反应式:CO2+H2O(CH2O)+O2。

自然界最基本的物质、能量代是光合作用,光合作用产生的氧气来自 H20 ,有机物中的O来自 CO2。

光合作用的意义:1.制造有机物,固定太阳能,为其他生物提供物质和能量需要,2.制造氧气,维持O2与CO2的平衡,使好氧生物得以发展3.形成O3层,使生物由水生向陆生进化。

熟悉103页图。

8光反应 阶 段 条件 光、色素、酶 场所 在类囊体的薄膜上 物质变化水的分解:H 2O → [H] + O 2↑ ATP 的生成:ADP + Pi → ATP能量变化 光能→ATP 中的活跃化学能暗 反应 阶 段条件酶、ATP 、[H] 场所 叶绿体基质物质变化 CO 2的固定:CO 2 + C 5 → 2C 3 C 3的还原: C 3 + [H] → (CH 2O )能量变化 ATP 中的活跃化学能→(CH 2O )中的稳定化学能总反应式CO 2 + H 2O O 2 + (CH 2O )9、提高农作物产量的重要条件之一,是提高农作物对光能的利用率。

要提高农作物的光能的利用率的方法有:1)延长光合作用的时间 2)增加光合作用的面积(合理密植,间作套种)3)光照强弱的控制 4)必需矿质元素的供应 5)CO 2的供应(温室栽培多施有机肥或放置干冰,提高二氧化碳浓度)。

影响光合作用速度的曲线分析及应用因素图像关键点的含义在生产上的应用① ②③④光能叶绿体光 酶酶酶ATP单因子影响光照强度A点光照强度为0,此时只进行呼吸作用,释放CO2的量,表明此时的呼吸强度。

AB段表明随光照强度加强,光合作用逐渐加强,CO2的释放量逐渐减少,有一部分用于光合作用; B点时,呼吸作用释放的CO2全部用于光合作用,即光合作用强度=呼吸作用强度,称B点为光补偿点(植物白天光照强度应在光补偿点以上,植物才能正常生长)。

BC段表明随着光照强度不断加强,光合作用强度不断加强,到C点以上不再加强了。

C点为光合作用的饱和点。

(1)适当提高光照强度(2)延长光合作用时间(例:轮作)(3)对温室大棚用无色透明玻璃(4)若要降低光合作用则用有色玻璃。

如用红色玻璃,则透红光吸收其他波长的光,光合能力较白光弱。

但较其他单色光强。

光合面积OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合作用面积的饱和点,随叶面积的增大,光合作用不再增强,原因是有很多叶被遮挡在光补偿点以下。

OB段干物质量随光合作用增强而增加,而由于A点以后光合作用量不再增加,而叶片随叶面积的不断增加OC段呼吸量不断增加,所以干物质积累量不断降低如BC段。

植物的叶面积指数不能超过C点,若超过C点,植物将入不敷出,无法生活下去。

适当间苗、修剪,合理施肥、浇水,避免陡长,封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。

温室栽培植物时,可增加光合作用面积,合理密植是增加光合作用面积的一项重要措施。

二氧化碳浓度CO2是光合作用的原料,在一定围,CO2越多,光合作用速率越大,但到A点时,即CO2达到饱和时,就不再增加了温室栽培植物时适当提高室CO2的浓度,如释放一定量的干冰或多施有机肥,使根部吸收的CO2增多。

大田生产“正其行,通其风”,即为提高CO2浓度、增加产量温度光合作用是在酶催化下进行的,温度直接影响酶的活性。

一般植物在10℃~35℃下正常进行光合作用,其中AB段(10℃~35℃),随温度的升高而逐渐加强,B点(35℃)以上光合酶活性下降,光合作用开始下降,40℃~50℃光合作用几乎完全停止(1)适时播种(2)温室栽培植物时,白天适当提高温度,晚上适当降温(3)植物“午休”现象的原因之一叶龄OA段为幼叶,随幼叶的不断生长,叶面积不断增大,叶叶绿体不断增多,叶绿素含量不断增加,光合作用速率不断增加。

AB段为壮叶,叶片的面积、叶绿体和叶绿素都处于稳定状态,光合速率也基本稳定。

BC段为老叶,随叶龄的增加,叶片叶绿素被破坏,光合速率也随之下降农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理。

又可降低其呼吸作用消耗有机物矿质元素矿质元素是光合作用的产物——葡萄糖进一步合成许多有机物时所必需的物质。

如缺少N,就影响蛋白质(酶)的合成;缺少P就会影响ATP的合成;缺少Mg就会影响叶绿素的合成合理施肥可促进叶片面积增大,提高酶的合成率,提高光合作用速率多因子影响图像含义P点时,限制光合速率的因素应为横坐标所表示的因子,随其因子的不断加强,光合速率不断提高。

当到Q点时,横坐标所表示的因子,不再是影响光合速率的因子,要想提高光合速率,叶面积指数光合作用实际量干物质量呼吸量物质的量O 2 4 6 8ABC···22的含量的提高,光合作用逐渐提高;当CO2的含量提高到一定程度时,光合作用的强度不再随CO2的含量的提高而提高。

光照强度:在一定围,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下降。

温度:温度可影响酶的活性。

10、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来维持自身生命活动,如许多动物。

11、请自行比较光合作用与呼吸作用。

相关文档
最新文档