高一数学映射
高一数学 函数映射、单调性
高一数学函数及函数的性质1、映射的概念(1)映射是特殊的对应,即是“一对一”的对应和“多对一”的对应,而“一对多”的对应不是映射.(2)给定一个映射f:A→B,则A中的每一个元素都有唯一的象,B的某些元素可以没有原象,如果有原象,也可以不唯一的.2、函数的概念(1)函数是特殊的映射,即集合A、B均为非空数集的映射.(2)构成函数的三要素;对应关系f、定义域A、值域{f(x)|x∈A},其中值域{f(x)|x∈A} B.正确理解函数符号y=f(x):①它表示y是x的函数,绝非f与x的积;②f(a)仅表示函数f(x)在x=a时的函数值,是一常数.(3)确定函数的条件:当对应关系f和定义域A已确定,则函数已确定,判定两个函数是否相同时,就要看定义域和对应法则是否完全一致.(4)函数的定义域,一般是使函数解析式有意义的x值的集合,在具体问题中则应考虑x的实际意义,如时间t,距离d均应为非负数等.求函数定义域的基本方法:①分式中分母不为零;②偶次根式中的被开方式不小于零;③ [f(x)]0中的底f(x)不为零;④如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使每个部分式子都有意义的实数集合.根据对应法则的性质求定义域,如已知f(x)的定义域为[a,b],则f[ψ(x)]的定义域应为ψ(x)的定义域与a≤ψ(x)≤b的解集的交集.3、函数的表示法:解析法、列表法、图象法.4、函数的值域是全体函数值所组成的集合,有观察法,换元法、配方法、图象法、反求法、判别式法等求值域的基本方法.函数的值域是函数的“三要素”之一,在一个给定的函数中,函数的值域随对应法则和定义域而确定.几个基本初等函数的值域:一次函数y=kx+b(k≠0)的值域:{y|y∈R};二次函数y=ax2+bx+c(a≠0)的值域:当a>0时,;当a<0时,;反比例函数(k≠0)的值域:(-∞,0)∪(0,+∞).求函数值域的基本方法(1)直接法:从自变量x的范围出发,推出y=f(x)的取值范围;例如:的值域为[1,+∞).这是因为x≤3,所以≥0,∴ y≥1.(2)二次函数法:利用换元法将函数转化为二次函数求值域(或最值);(3)反函数法:将求函数值域转化为求反函数的定义域;4)判别式法:运用方程的思想,将函数变形成关于x的二次方程,依据二次方程有实根,求出y 的取值范围;(5)利用函数的单调性求值域;(6)图象法:作出函数的图象,由图象来确定函数的值域.1、判断下列对应是否是从集合A到集合B的映射;(1)A=R,B={x|x>0且x∈R},x∈A,f:x→|x|;(2)A=N,B=N*,x∈A,f:x→|x-1|;(3)A={x|x>0且x∈R},B=R,x∈A,f:x→x2.2、求函数的定义域.1、已知映射f:A→B,则下列说法正确的是()A.A中某一元素的象可能不止一个 B.A中两个不同元素的象必不相同C.B中某一元素的原象可能不止一个 D.B中两个不同元素的原象可能相同2、若A={2,4,6,8},B={-1,-3,-5,-7},下列对应法则:①f:x→9-2x;②f:x→1-x;③f:x→7-x;④f:x→x-9中,能确定A到B的映射的是()A.①②B.②③ C.③④D.②④3、下面四组函数f(x)与g(t)中,表示同一函数的是()A.B.C.D.4、函数的定义域是()A.(4,+∞) B.(2,3)C.(-∞,2)∪(3,+∞) D .(-∞,2)∪(2,3)∪(3,+∞)5、已知f(x)是一次函数,且满足2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为()A.3x-2 B.3x+2 C.2x-3 D.2x+36、设函数y=f(x)的定义域为[-],则函数y=f(-2)的定义域是()A.[-,2] B.[2-,2+] C.[6-4,6+4] D.[0,6+4]7、若函数的定义域为A,y=的定义域为B,的定义域为C,则集合A、B、C之间的关系是()A.A∩B=C B.A∩B C C.A∩B C D.A∪B C8、若函数y=f(x)的定义域为[0,1],则函数y=f(x+a)+f(2x+a)(0<a<1)的定义域是()A.B.C.[-a,1-a] D.9.下列图中,画在同一坐标系中,函数与的图象只可能是()A. B.C. D.10、给出四个命题:(1)函数是其定义域到值域的映射;2)是函数;(3)函数y=2x(x∈N)是一次函数;4)与g(x)=x是同一个函数.其中正确的有()A.1个B.2个 C.3个 D.4个11、设(x,y)在映射f:A→B的作用下的象是(),则在f的作用下,元素(-1,1)象是_____________,元素(3,-2)的原象是_____________.12、若f(x+1)=2x2+1,则f(x-1)= _____________.13、(1)f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x)的表达式;(2)已知:f(2x-1)=4x2-2x,求f(x)的表达式.14、已知函数y=f(x)的定义域为[0,1],设函数F(x)=f(x+a)+f(x-a),求正实数a的取值范围,并求函数F(x)的定义域.15、已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(1-)的值.6、求下列函数的值域.1、函数的单调性(1)定义: 设函数y=f(x)的定义域为 A :区间,如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在区间I上是增函数. 区间I称为y=f(x)的单调增区间;如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在这个区间上是减函数。
高考数学考点一-映射的概念
高考数学考点一-映射的概念高考数学考点一、映射的概念1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A 中的任意一个元素_,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。
包括:一对一多对一高考数学考点二、函数的概念1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数_,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。
记作y=f(_),_A.其中_叫自变量,_的取值范围A叫函数的定义域;与_的值相对应的y的值函数值,函数值的集合叫做函数的值域。
函数是特殊的映射,是非空数集A到非空数集B的映射。
2.函数的三要素:定义域、值域、对应关系。
这是判断两个函数是否为同一函数的依据。
3.区间的概念:设a,bR,且a①(a,b)={_a⑤(a,+∞)={__a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__高考数学考点三、函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同部分,有不同的对应法则的函数。
注意两点:①分段函数是一个函数,不要误认为是几个函数。
②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
考点四、求定义域的几种情况①若f(_)是整式,则函数的定义域是实数集R;②若f(_)是分式,则函数的定义域是使分母不等于0的实数集;③若f(_)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(_)是对数函数,真数应大于零。
⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。
⑥若f(_)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑦若f(_)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题高中地理知识点分析(1)位置:①经纬度位置:(100E-140E)(10S-20N)②海陆位置:东临太平洋,西临印度洋,是亚洲和大洋洲的过渡地带(2)范围:东南亚包括中南半岛和马来群岛两大部分,是亚洲纬度最低的地区。
高一数学映射知识点
高一数学映射知识点数学是一门综合性科学,映射是其中的重要概念之一。
在高一数学学习中,映射是一个需要深入理解和掌握的知识点。
本文将从映射的定义、映射的性质以及映射的应用等方面进行详细介绍。
一、映射的定义映射是一种对应关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
映射常常用符号“f”表示,表示一个元素或者一组元素通过某种规则对应到另一个集合中。
对于集合A和集合B,如果存在一个映射f,使得对于A中的任意元素a,都有唯一的对应元素b在集合B中,即f(a)=b,那么我们可以说A中的元素通过映射f对应到B中的元素。
二、映射的性质1. 单射:如果映射f中不同的元素在B中有不同的对应元素,即对于任意的a1和a2,如果f(a1)=f(a2),则a1=a2。
这种映射被称为单射或一一映射。
单射保证了映射的唯一性。
2. 满射:如果映射f中的所有元素都有对应的元素存在于B中,即对于任意的b∈B,都存在a∈A,使得f(a)=b。
这种映射被称为满射。
满射保证了映射的完备性。
3. 双射:既是单射又是满射的映射被称为双射。
双射保证了映射的一一对应关系,即A中的每一个元素都有唯一对应的元素在B中,B中的每一个元素也都有唯一对应的元素在A中。
4. 逆映射:如果映射f是一个双射,那么它存在一个逆映射g,使得g(f(a))=a对于任意的a∈A成立,同时f(g(b))=b对于任意的b∈B也成立。
逆映射可以实现映射的互逆。
三、映射的应用映射在数学中的应用非常广泛,尤其在解决实际问题时起到了重要的作用。
以下是映射在几个常见领域的应用示例:1. 函数关系:函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
函数在数学中有着广泛的应用,例如描述物理规律、经济关系以及建立模型等。
2. 图论:映射在图论中有重要作用。
图是由一系列的顶点和边组成的数学模型,而映射则常常用于描述顶点之间的关系,例如在社交网络中描述用户之间的关注关系。
大一高数映射知识点归纳
大一高数映射知识点归纳在大一高等数学课程中,映射是一个非常重要且常见的概念。
映射可以理解为一种对应关系,它将一个集合中的元素映射到另一个集合中的元素。
接下来,我将对大一高数中与映射相关的知识点进行归纳总结。
一、映射定义与表示法映射是从一个集合到另一个集合的一个对应关系。
如果集合A 中的每个元素a都对应集合B中的唯一一个元素b,那么我们称A 到B的映射为定义在集合A上的一个映射。
在表示映射时,常用的表示法有:- 将映射写成集合形式,例如:{(x, y) | x∈A, y∈B, y=f(x)}- 使用函数的形式表示映射,例如:f: A → B,其中f表示映射的名称,A为起始集合,B为终止集合。
二、映射的分类1. 单射:如果映射中的每个不同元素a对应的都是不同的元素b,那么称该映射为单射。
也可以说是任意两个不同的元素在映射中的像都不相同。
2. 满射:如果映射中的每个元素b都有对应的元素a,那么称该映射为满射。
也可以说是终止集合B中的每个元素都有源自集合A中的元素与之对应。
3. 双射:如果一个映射既是单射又是满射,那么称该映射为双射。
三、映射的运算1. 复合映射:设有两个映射f: A → B,g: B → C,那么可以通过复合运算得到新的映射h: A → C。
复合映射的运算规则为:h(x) = g(f(x)),即先使用f进行映射,再使用g进行映射。
2. 逆映射:如果一个映射f: A → B是一个双射,那么可以定义其逆映射g: B → A。
逆映射的性质为:g(f(x)) = x,f(g(y)) = y。
四、映射的例子与应用1. 一次函数:一次函数可以表示为f(x) = kx + b的形式,其中k 为不为零的常数,称为斜率,b为常数,称为截距。
一次函数是一种常见的线性映射,常用于描述常量比例关系。
2. 复数平面映射:将复数表示为平面上的点,可以将复数映射到平面上。
3. 矩阵映射:在线性代数中,矩阵可以表示一个线性映射,通过矩阵乘法可以实现向量的变换。
映射的知识点总结
映射的知识点总结一、映射的定义在数学中,映射被定义为一种从一个集合到另一个集合的元素之间的关系。
设A和B是两个集合,如果存在一个规则f,使得对A中的每一个元素a,都有一个唯一确定的元素b∈B与之对应,则称f是从A到B的一个映射,记作f:A→B。
在这里,A称为定义域,B称为值域,f(a)称为元素a的像,b称为元素a的原像。
映射的定义也可以用集合的语言来描述。
即映射是一个集合到另一个集合的元素之间的规则,使得集合中的每一个元素有且只有一个唯一确定的对应元素。
这种描述映射的方式更加直观,容易理解。
二、映射的性质1. 单射如果映射f:A→B的不同元素a1、a2∈A,若f(a1)≠f(a2),则称f是单射。
直观地说,单射表示A中的不同元素映射后得到的像也是不同的,即不会出现多个元素映射到一个元素上。
2. 满射如果映射f:A→B的任意元素b∈B,都存在一个元素a∈A,使得f(a)=b,即值域与B相等,则称f是满射。
满射表示在映射中,值域中的每一个元素都有至少一个原像。
3. 双射如果映射f:A→B既是单射又是满射,则称f是双射。
双射表示映射是一种一一对应的关系,每一个元素都有唯一的对应元素。
4. 逆映射设f:A→B是一个双射,那么存在一个映射f^-1:B→A,使得对于任意元素b∈B,f^-1(b)是唯一与b对应的元素,称f^-1是f的逆映射。
5. 复合映射设f:A→B和g:B→C是两个映射,其中f的值域是g的定义域,那么可以定义f和g的复合映射为g∘f:A→C,它的定义规则是(g∘f)(a)=g(f(a))。
6. 映射的像和原像对于映射f:A→B,其中元素b∈B,称元素b在映射f下的像为f^-1(b)={a∈A|f(a)=b},即元素b对应的所有原像所构成的集合。
而元素a∈A,称元素a在映射f下的原像为f(a)。
三、映射的分类根据映射的性质,可以将映射分为不同的类型。
1. 根据值域的大小,映射可以分为有限映射和无限映射。
高一数学映射的概念
所以, (1,-2)在 f 作用下的象是(-1,-2)
x y 2 (2)设它的原象是(x , y),则有: x 1 xy 1 解得:
y 1 所以,原象是(1,1)
体验2:已知(x , y)在映射 f 的作用下的象是 (x+y , x-y) (1)求(2,-2)在 f 作用下的象; (2)若在 f 作用下的象是(3,-1),求它的原象.
, 记作 集合 B的映射 m apping
f : A B.
函数是映射, 但映射不一定是函数 .
例1 下图所示的对应中 , 哪些是A到 B的映射?
a 1 b c
A
1 2
B
1 2 2
A
a b c
B
1 3 2 3
A
a b
B
a 4 b c
A
1 2
B
答案:(4)
思考 映射与函数有什么区别 与联系?
f :x y
y为x的体重数
A B
再如, 坐标平面内的所有点组 成的集合为A, 所有 的有序数对组成的集合 为 B x, y | x R, y R.
让每一点与其坐标对应 , 则 A中每一个元素点, 在B中都有惟一元素有序数对 与之对应.
一般地 , 设A, B是两个集合 , 如果按某种对应法则 f , 对于 A中的每一个元素 , 在 B中者有惟一的元 素与之对应 , 那么, 这样的单值对应叫做集 合A到
2 .1 8 映 射 的 概 念
问题情境:
• (1)看电影时,电影票和座位之间存在一一对 应关系吗? • (2)每个人和他的老师可建立一种对应关系, 它是不是一种单值对应? • (3)任意一个三角形,都有惟一确定的面积与 此对应,它是不是一种单值对应? 答案: (1) 是 ; (2) 不是 (它是一对多)
映射重要知识点总结
映射重要知识点总结一、映射的定义1.1 映射的概念映射是一种将一个集合中的元素对应到另一个集合中的元素的规则。
具体来说,如果从集合A到集合B的每个元素a都能找到集合B中的唯一元素b与之对应,那么我们就说存在从集合A到集合B的一个映射。
我们通常用f: A → B来表示这个映射,其中f表示映射的规则,A称为定义域,B称为值域,而对应的元素对(a, b)称为映射对。
1.2 映射的表示方式映射可以用图、公式、表格等形式来表示。
在图中,我们可以用箭头连接集合A和集合B 的元素,表示它们之间的对应关系;在公式中,我们可以用f(x) = y来表示映射的规则,其中x表示集合A中的元素,y表示集合B中的元素;在表格中,我们可以将集合A的元素和对应的集合B的元素按一定顺序排列,表示它们之间的对应关系。
1.3 映射的例子为了更好地理解映射的概念,我们可以举几个具体的例子。
比如说,将一个学生的学号与他的成绩对应起来,就是一个映射;将一个人的身高与体重对应起来,也是一个映射;将一个城市的名称与它的人口数量对应起来,同样也是一个映射。
二、映射的性质2.1 单射、满射和双射在研究映射的性质时,我们通常关注三个重要的性质,即单射、满射和双射。
- 单射:如果一个映射f: A → B满足对任意的x1, x2∈A,只要x1≠x2就有f(x1)≠f(x2),那么我们就说这个映射是单射。
单射也可以表述为:对于集合A中的任意两个不同的元素,它们在集合B中的像也是不同的。
- 满射:如果一个映射f: A → B满足对于集合B中的任意元素y,都能在集合A中找到一个元素x与之对应,那么我们就说这个映射是满射。
- 双射:如果一个映射既是单射又是满射,那么我们就说这个映射是双射。
2.2 映射的复合在实际问题中,有时我们会遇到多个映射的复合。
设有两个映射f: A → B和g: B → C,我们可以定义它们的复合映射g∘f: A → C为:对于A中的任意元素x,它在C中对应的像为(g∘f)(x) = g(f(x))。
高一数学映射的概念
D { 0,1,2 }
1 1 1 3、集合A={1,2,3,-----,10} , B= {1, , , } , 4 9 100
设x∈A, y∈ B , 试写出一个对应法则 f ,使f:A
是 从集合A到集合B的一个映射. f:x
1 y= 2 x
B
4、已知集合A={ a,b,c },集合B={ -1,0,1 } ,映射 f:A B满足f(a)+f(b)=f(c),则 f : A
f :x y
y为x的体重数
A BΒιβλιοθήκη 再如, 坐标平面内的所有点组 成的集合为A, 所有 的有序数对组成的集合 为 B x, y | x R, y R.
让每一点与其坐标对应 , 则 A中每一个元素点, 在B中都有惟一元素有序数对 与之对应.
一般地 , 设A, B是两个集合 , 如果按某种对应法则 f , 对于 A中的每一个元素 , 在 B中者有惟一的元 素与之对应 , 那么, 这样的单值对应叫做集 合A到
体验1:1、下图表示集合A到集合B的映射的是____
A
1
B
A B C d
A
1
2 3 4
B
B C d
2
3 4
(1) (4)
(1)
(2)
A
1
B
A B C d
A
1
B
A B C d
2
3 4
2
3 4
(3)
(4)
2、判断以下对应是否是从A到B的映射?
(1)、设A={矩形},B={实数} ,对应法则f为矩形到它的面 积的对应; (2)、A={实数},B={正实数},对应法则f为:x 答案:(1)是 (2)不是
高一数学映射
实例分析
• 1.集合A={全班同学},集合B=(全班 同学的姓},对应关系是:集合A中的每一个 同学在集合B中都有一个属于自己的姓. •2.集合A={中国,美国,英国,日本}, B={北京,东京,华盛顿,伦敦},对应关 系是:对于集合A中的每一个国家,在集合 B中都有一个首都与它对应. •3.设集合A={1,-3,2,3,-1,-2}, 集合B={9,0,4,1,5},对应关系是: 集合A中的每一个数,在集合B中都有一个其 对应的平方数.
思考 交流 1.P37
练习1
2.函数与映射有什么区别和联系?
1.函数是一种特殊的映射; 结论: 2.两个集合中的元素类型有区别; 3.对应的要求有区别.
一一映射:是一种特殊的映射
1.A中的不同元素的像也不同 2.B中的每一个元素都有原像
知识应用
1. 已知集合A={x│x≠0,x∈R},B=R,对 应法则是“取负倒数” (1) 画图表示从集合A到集合B的对应(在集 合A中任取四个元素); (2) 判断这个对应是否为从集合A到集合B的 映射;是否为一一映射? (3) 元素-2的象是什么?-3的原象是什么? (4) 能不能构成以集合B到集合A的映射?
a=2 , k=5
问题探究
.判断下列对应是否A到B的映射和一一映 射?
ห้องสมุดไป่ตู้
(1) A R, B R , x A, f : x | x | (2) A N , B N , x A, f : x | x 1 | (3) A {x | x 2, x Z }, B { y | y 0, y N } x A, f : x y x 2 2 x 2 (4) A [1,2], B [a, b](a b), x A f : x y (b a ) x 2a b
高一数学映射的概念
必修一数学第一章知识点【映射】
映射 · 数学定义设A 、B 是两个非空集合,如果存在一个法则f ,使得对A 中的每个元素a ,按法则f ,在B 中有唯一确定的元素b 与之对应,则称f 为从A 到B 的映射,记作f :A→B。
其中,其中,b b 称为元素a 在映射f 下的象,记作:,记作:y=f(a); a y=f(a); a称为称为b 关于映射f 的原象。
集合A 中多有元素的像的集合记作f(A)f(A)。
映射,或者射影,在数学及相关的领域还用于定义函数。
在数学及相关的领域还用于定义函数。
函数是从非空数集到非空数集函数是从非空数集到非空数集的映射,而且只能是一对一映射或多对一映射。
在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质的函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。
如果将函数定义中两个集合从非空集合扩展到任意元素的集合如果将函数定义中两个集合从非空集合扩展到任意元素的集合(不限于数)(不限于数),我们可以得到映射的概念:映射是数学中描述了两个集合元素之间一种特殊的对应关系的。
按照映射的定义,下面的对应都是映射。
⑴设A={1,2,3,4}A={1,2,3,4},,B={3,5,7,9}B={3,5,7,9},集合,集合A 中的元素x 按照对应关系“乘2加1”和集合B 中的元素2x-1对应,这个对应是集合A 到集合B 的映射。
⑵设A=N*A=N*,,B={0,1}B={0,1},集合,集合A 中的元素按照对应关系“x 除以2得的余数”和集合B 中的元素对应,这个对应是集合A 到集合B 的映射。
⑶设A={x|x 是三角形是三角形}},B={y|y>0}B={y|y>0},,集合A 中的元素x 按照对应关系“计算面积”和集合B 中的元素对应,这个对应是集合A 到集合B 的映射。
⑷设A=R ,B={B={直线上的点直线上的点直线上的点}},按照建立数轴的方法,是A 中的数x 与B 中的点P 对应,这个对应是集合A 到集合B 的映射。
高一数学映射
在漫漫人生路上,往往只有不留下退路,才更容易赢得出路。当我们难以驾驭自己的惰性和欲望,不能专心致志地前行时,不妨也采取一些斩断退路之举,逼着自己全力以赴地寻找出路,走向成功。 请以“不留退路,才有出路”为话题写一篇作文,所写内容必须与“退路和出路”有关,
文体不限,文题自拟,不得少于800字,不得抄袭。 [写作提示]这个话题富于哲理性。一个人在生活中,如果事事留有退路,说白了就是败有退路。也就意味着这个人在事情还未开始的时候,就已经准备要承受失败了,那么他成功的概率肯定小,因为,留有退路的时候,就潜藏着懈怠、
面的材料,根据要求作文。 《古兰经》上有这样一个故事:人们听说有位大师几十年来练就一身移山大法。一天,有人找到这位大师,求他当面表演一下。大师在一座山的对面坐了一会儿,就起身跑到山的另一面,然后说表演完毕。众人大惑不解,大师微微一笑说:“事实上,这世上
根本就没有什么移山大法,唯一能够移动山的方法是:山不过来,我就过去。” 世界上很多人在处理很多事情的时候,往往如此。不同的人在处理相同的事情,用不同的方法去解决,其结果大不相同…… 请以“事情的难易与方法的变通”为话题,写一篇不少于800字的作文。所写的内
意:所写内容必须在话题范围之内,立意自定,文体自选,题目自拟,不少于800字,不得抄袭。 [写作提示]从话题形式上看,“命运与××”这是一道填空式关系型话题,“改变了环境,便能改变命运”告诉我们,这两个概念之间可以理解为因果关系,也可理解为 条件关系。
知识探究(一)
考察下列两个对应:
A
B
图1
A
B
图2
的好伙伴。 这天,老人用轮椅推着她去附近的一所幼儿园,操场上孩子们动听的歌声吸引了他们。当一首歌唱完,老人说着:“
”她吃惊地看着老人,问道:“我的胳膊动不了,你只有一条胳膊,怎么鼓掌啊?”老人对她笑了笑,解开衬衣扣子,露出胸膛,用手掌
高一必修一数学映射知识点
高一必修一数学映射知识点数学作为一门重要的学科,拥有丰富而精彩的内容。
在高中数学学习中,映射是一个非常重要的知识点。
映射是一种将一个集合中的元素对应到另一个集合中的方法。
本文将从映射的定义、映射的性质和应用等方面进行探讨。
首先,我们来看映射的定义。
映射可以简单理解为一个输入与输出之间的对应关系。
设A和B是两个非空集合,如果对于集合A中的每一个元素a,都有唯一确定的集合B中的元素b与之对应,那么我们就称这样的对应关系为映射。
通常用符号f表示映射,表示为:f:A→B,其中A为定义域,B为值域。
在学习映射的过程中,我们需要了解映射的一些重要性质。
映射的重要性质有两个,分别是单射性和满射性。
单射性指的是映射中每个元素在值域中都有唯一对应的元素。
换句话说,映射中不会存在两个不同的元素映射到值域中的同一个元素。
满射性则是指映射中的每个元素都至少有一个对应的元素在值域中。
也就是说,值域中的每个元素都有被映射到的元素。
而如果一个映射既满足单射性又满足满射性,我们就称之为双射。
双射是映射中最为理想的情况。
映射作为一个重要的数学工具,在生活中也有着广泛的应用。
一个常见的应用是数学模型中的映射。
数学模型是用来描述真实世界的数学方法。
映射在数学模型中经常被用来描述不同变量之间的关系。
例如,在人口增长模型中,我们可以定义一个映射,将时间作为输入,将人口数量作为输出。
通过这个映射,我们可以研究人口随时间变化的规律。
另一个应用是密码学中的映射。
密码学是保护信息安全的学科,映射在密码学中被广泛使用来进行加密和解密操作,保障信息的安全性。
除了上述应用之外,映射还有着其他一些特殊的类型。
比如说,我们可以将一个集合映射到它自身,这种映射称为恒等映射。
恒等映射保持集合中元素的原有顺序和对应关系。
又比如,有些映射满足交换律,即改变映射中元素的顺序不会改变映射的结果,这种映射称为交换映射。
交换映射在很多数学理论中都有着重要的地位。
综上所述,映射是高一数学必修一课程中的重要知识点。
高一数学 映射的概念
想一想:
练
设f : A B中,A={(x,y)|x,y是
实数},B={(x,y)|x、y是实数},对应
法则f是 “A中的元素(x,y)和B中元
素(x+y,x-y)对应”,
习
(1)求(3,-1)的象;
(2)求(4,2)的原象。
小结
今天,我们学习了映射的概念。 一、映射是一种 特殊的对应--象 都存在且唯一; 二、映射由三个部分组成:两个集 合和一个对应法则; 三、映射的记号是:f : A B
b 4
a 4
b 4
(1)
(2)
A
B
A
a
b
1
1
a
a 2
b 2
b
B e f g
a 3
b 3
c d
a 4
b 4
h i
(3)
(4)
b 的原象 1
一个从A 到B的映射, 如果
a A,b B 且b与a对应, 我们就把元 素b叫做元素 a的象,元素 a叫做元素b 的原象。
一、下列图中所表示的对应是不是从A到B的
3
1
12
0
2、设A=R,B=R,对于A中任一元素x,按 “取x的绝对值”和B中元素对应,这种对应 是不是从A到B的映射?
-2 -1 0 1 2 3
B
A -2 -1 0 1 2 3 3、设A={正数},B=R,对应法则是“求 平方根”,这个对应是不是A到B的映射?
4、设A={x|x>0},B={x|0<x<12},对应法则是 “求算术平方根”,这个对应 是不是从A到 B的映射?
高一数学研究课
课题:
射映
前面我们在学习了集合的初步
高一数学必修教学课件第二章映射
02 一一映射与逆映射
一一映射的定义及性质
一一映射定义
设A和B是两个非空集合,如果存在一个从A到B的映射f,使得B中的每一个元素 都有A中的唯一元素与之对应,则称f为从A到B的一一映射。
一一映射的性质
一一映射具有单射和满射的性质,即每个元素都有唯一的像,且像集B中的每个 元素都有原像。
逆映射的概念及求法
方程的图像可以看作是定义域到值域的一个映射 关系的图形表示,通过映射的性质可以研究方程 的图像的形状和性质。
方程的变换与映射关系
通过映射的变换可以研究方程之间的内在联系和 相互转化。
映射在不等式中的应用
不等式的解集与映射关系
不等式的解集可以看作是定义域到值域的一个映射关系的 集合表示,通过映射的性质可以研究不等式的解集的存在 性和范围。
映射的表示方法
通常用箭头图或表格来表示映射。在箭头图中,箭头表示元 素之间的对应关系;在表格中,第一行列出原像集合的元素 ,第一列列出像集合的元素,表格中的其余部分表示对应关 系。
映射的性质与分类
有向性
映射是有方向的,即A中的元素通 过对应关系f对应到B中的元素。
唯一性
对于A中的任何一个元素,通过对 应关系f在B中有唯一确定的元素 与之对应。
不等式的图像与映射关系
不等式的图像可以看作是定义域到值域的一个映射关系的 图形表示,通过映射的性质可以研究不等式的图像的形状 和性质。
不等式的证明与映射关系
通过映射的性质可以证明一些不等式,例如利用单调性证 明不等式等。
05 映射的拓展与应用前景
拓展映射的概念及应用
拓展映射的定义
在原有映射的基础上,通过引入新的元素或规则,对映射关系进行扩展和深化,以适应更 广泛的应用场景。
高一数学 2.3 映射的概念
发 挥 榜 样 的 力 量
第 1页
多”的对应. (2)映射中所允许的“一对一”与“多对一”这两种对应的特点,从 A 到 B 的映射 f: A→B 实际是要求集合 A 中的任一元素都必须对应于集合 B 中惟一的元素.但对集合 B 中的 元素并无任何要求, 即允许集合 B 中的元素在集合 A 中可能有一个元素与之对应, 可能有两 个或多个元素与之对应,也可能没有元素与之对应. 题型一 映射的概念 【例 1】下列对应是不是从 A 到 B 的映射? (1)A=Q,B={x∈Q|x>0},f:x→|x|; * (2)A=B=N ,f:x→|x-2|; 2 (3)A={x∈N|x≥2},B={y∈Z|y≥0},f:x→y=x -2x+1; (4)A={x|x>0},B={y|y∈R},f:x→y=± x. 解:(1)中,当 x=0∈A 时,|x|=0 B,即 A 中的元素 0 按照对应法则在 B 中找不到应 该对应的元素,故(1)不是映射. (2)中,当 x=2∈A 时,|x-2|=0 B,与(1)类似,(2)也不是映射. 2 2 (3)中,因为 y=(x-1) ≥0,所以对任意 x,总有 y≥0;又当 x∈N 时,x -2x+1 必为 2 整数,即 y∈Z.所以当 x∈A 时,x -2x+1∈B,且对 A 中每一个元素 x,在 B 中都有惟一 的 y 与之对应,故(3)是映射. (4)中,任意一个 x 都有两个 y 与之对应,故不是映射. 反思:给定两集合 A、B 及对应法则 f,判断是否是从集合 A 到集合 B 的映射,其基本 方法是利用映射的定义.用通俗的语言讲:A→B 的对应有“多对一”“一对一”及“一对 多”,前两种对应是 A→B 的映射,而后一种不是 A→B 的映射. 题型二 映射的个数问题 【例 2】 已知 M={a, b, c}, N={-2,0,2}, 且从 M 到 N 的映射满足 f(a)>f(b)≥f(c), 试确定这样的映射 f 的个数为__________. 解析:因为从 M 到 N 的映射满足 f(a)>f(b)≥f(c),所以,(1)当 f(a)=2 时,有 f(b)=0, f(b)=-2, f(b)=0, 或 或 f(c)=0 f(c)=-2 f(c)=-2. f(b)=-2, (2)当 f(a)=0 时,有 f(c)=-2. 综上,从 M 到 N 满足 f(a)>f(b)≥f(c)的映射 f 的个数是 4. 答案:4 反思:对于这类有条件的映射问题,求解时要注意考虑周到,注意分情况讨论,切勿遗 漏情况. 【例 3】已知 A={1,2,3,4},B={6,7},则以 A 为定义域,B 为值域的不同函数的个数 为__________. 解析:当 A 中有三个元素对应 B 中元素 6 时,另一个元素必须对应 B 中元素 7,这样可 组成 4 个满足题意的不同函数; 当 A 中有三个元素对应 B 中元素 7 时,另一个元素必须对应 B 中元素 6,这样可组成 4 个满足题意的不同函数; 当 A 中有两个元素对应 B 中元素 6 时,剩下两个元素必对应 7,这样可组成 6 个满足题 意的函数. 所以共可组成 4+4+6=14(个)不同函数. 答案:14 反思:求解此题要特别注意集合 B 必须为函数的值域的特别要求,它实际是要求集合 B 恰好是集合 A 中的所有元素所对应的元素组成的.
大一高数映射知识点汇总
大一高数映射知识点汇总在大一的高等数学课程中,映射是一个重要的概念。
它在数学中有着广泛的应用,并且在不同的领域中都有着重要的作用。
本文将汇总大一高数中与映射相关的各个知识点,以帮助读者全面了解和掌握映射的概念和应用。
定义和基本概念在开始探讨映射的不同方面之前,我们需要了解一些基本的定义和概念。
在数学中,映射可以被定义为一个将一个集合中的元素映射到另一个集合中的元素的规则。
其中,我们称映射的起始集合为定义域,映射的终止集合为值域。
映射通常用符号表示,如f: A → B,表示从集合 A 到集合 B 的映射 f。
映射的分类根据映射的性质和特点,可以将映射分为不同的类型。
以下是几种常见的映射分类:1. 单射:如果映射中的每一个元素都对应不同的元素,则称其为单射,也叫一一映射。
2. 满射:如果映射中的每一个元素都有至少一个元素与之对应,则称其为满射,也叫到上映射。
3. 双射:如果一个映射既是单射又是满射,则称其为双射,也叫一一对应。
4. 非单射:如果一个映射中存在不同的元素对应到相同的元素,则称其为非单射。
5. 非满射:如果一个映射中存在无元素与之对应的元素,则称其为非满射。
映射的性质映射具有一些重要的性质,其对于研究映射的特性和应用至关重要。
以下是映射的一些常见性质:1. 传递性:对于映射f: A → B 和g: B → C,如果 f 和 g 都是映射,那么 f ∘ g 也是映射。
2. 反函数:对于映射f: A → B,如果对于任意的 y ∈ B,存在唯一的 x ∈ A,使得 f(x) = y,则称g: B → A 为 f 的反函数。
3. 复合函数:对于映射f: A → B 和g: B → C,定义 f ∘ g(x) =f(g(x)),其中 x ∈ A,称 f ∘ g 为映射 f 和 g 的复合函数。
4. 逆映射:对于映射f: A → B,如果存在映射g: B → A 使得 f ∘ g = I_B 和 g ∘ f = I_A,其中 I_A 和 I_B 分别是集合 A 和集合 B 上的恒等映射,则称 g 为 f 的逆映射。
高一数学映射的概念
劳汉堡包”、“肯德基炸鸡”都成了非常迷人的回忆,非常老掉牙的故事。如果,我的孙子或曾孙子因看到我在偷吃一个油汤汤的汉堡而骂我“老番婆”,不知道七十多岁的简嫃会不会暗地掉泪? 算了,不要吵醒在地底的伏流。让阿嬷在她的年代里梳髻,我在我的年代里散发,我
们只不过共用一个晨光而已。
? 到现在,还是喜欢看阿嬷梳头,及腰雪发与晨丝相缠。“茶仔油”的味道依然熟悉--她终于探听到“利泽简”有一家杂货店还卖这种油,专程坐火车回去打两瓶。日子不会老,老的是肉体凡躯。二十多年过了,我变了千万个脸孔心性,
?“你要买水果,不要在外头买,贵参参地给人唬不知,去给巷子底那个查甫人买,伊爱饮烧酒,不
时一个面红光光,臭酒现,若是到十二点,日头一下晒,伊就人晕头壳痛,伊就轻彩卖,外头的红肉木瓜一斤三十,伊喊三斤五十。” 持家的学位在此吧!要不然,苦日子怎么捱得过?如果战争、灾荒、病乱的年岁让我碰上了,为着存活,也许还捏得更紧更狠?
? 生命就是要受这么多苦楚,才能扶养上一世、哺育下一代,谁敢说老来得福呢?社会永远是属于年轻人的,所有的衣食、流行、玩乐,
都为年轻的人设计。老者,才是真正的“稀少民族”,单单活在他们旧有的观念、制度、秩序、情法、宗教、语言之中,那是一个不易改变的世界,用长长的一辈子吐丝结出来的茧,而他们除了这个温暖的茧还能去哪里落脚?总有一天,我及我的同代也会到了七十岁,那时,也许“麦当
变式:
若 A={正实数}, B={实数},对应法则f为:x
答案:是
1 x。
例2、已知(x , y)在映射 f 的作用下的象是
(x+y , xy) (1)求(1,-2)在 f 作用下的象; (2)若在 f 作用下的象是(2,1),求它的原象.
的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
高一数学必修一中的集 合与映射关系如何理解
高一数学必修一中的集合与映射关系如何理解在高一数学必修一中,集合与映射是两个非常重要的概念,它们不仅是后续数学学习的基础,也对我们理解和解决数学问题有着至关重要的作用。
那么,如何理解集合与映射的关系呢?让我们一起来探讨一下。
首先,我们来聊聊集合。
集合是什么呢?简单来说,集合就是把一些具有共同特征的对象放在一起,构成的一个整体。
比如说,我们班所有同学就可以构成一个集合,教室里所有的椅子也能构成一个集合。
集合中的每个对象都叫做元素。
集合的表示方法有很多种,常见的有列举法、描述法和区间法。
列举法就是把集合中的元素一一列举出来,像{1, 2, 3, 4, 5}就是用列举法表示的集合。
描述法呢,则是通过描述元素所具有的特征来表示集合,比如{x | x 是小于 10 的正整数}。
区间法通常用于表示连续的数集,比如1, 5表示 1 到 5 之间包括 1 和 5 的所有实数。
集合之间还有一些关系,比如子集、真子集和相等。
如果集合 A 中的所有元素都在集合 B 中,那么 A 就是 B 的子集,记作 A ⊆ B。
如果A 是B 的子集,且 B 中至少有一个元素不在 A 中,那么 A 就是 B 的真子集,记作 A ⊂ B。
如果集合 A 和集合 B 中的元素完全相同,那么A 和B 就相等,记作 A = B。
接下来,我们再谈谈映射。
映射可以理解为一种特殊的对应关系。
比如说,我们有两个集合 A 和 B,对于集合 A 中的每一个元素,在集合 B 中都有唯一的元素与之对应,那么这种对应关系就叫做从集合 A到集合 B 的映射。
为了更好地理解映射,我们来看一个例子。
假设集合 A 是所有学生的集合,集合 B 是所有学生的成绩集合。
那么,我们可以定义一个映射,将每个学生对应到他的成绩。
这样,对于集合A 中的每一个学生,在集合 B 中都有唯一的成绩与之对应。
映射有一些重要的性质。
首先是单射,如果对于集合 A 中不同的元素,在集合 B 中对应的元素也不同,那么这个映射就是单射。
什么是映射 高中数学
什么是映射高中数学
嘿,同学们!你们知道什么是映射吗?这玩意儿在高中数学里可重要啦!
就像我们玩的连连看游戏,每一个图案都有对应的另一个图案,这就是一种简单的映射。
那在数学里的映射又是什么呢?
比如说,我们有一堆苹果,给每个苹果都编上号,从1 号到10 号。
然后呢,又有一堆箱子,也从1 号到10 号。
现在规定,1 号苹果只能放进1 号箱子,2 号苹果只能放进2 号箱子,以此类推。
这是不是很像一种对应关系呀?这就是映射!
再打个比方,我们班的每个同学都有自己的学号,这学号和同学之间的关系,不也是一种映射嘛!
那映射到底有啥特点呢?它要求每个元素都得有“归宿”,不能有被落下的。
就像我们排队跑步,一个都不能少!而且,一个元素不能同时去两个“地方”,这可就乱套啦!
老师上课讲映射的时候,那表情可严肃啦,好像在说:“同学们,这个知识点很重要,一定要认真听!”我心里就想:“这映射到底有多大的魔力呀?”同桌悄悄跟我说:“别担心,认真听就懂啦!”
后来做作业的时候,我一开始还做错了不少,我就纳闷了:“我怎么就没搞明白呢?”还好,经过反复琢磨,我终于搞清楚啦!
其实啊,映射就像是给每个“小朋友”都找到一个专属的“家”,不能让“小朋友”流浪,也不能让一个“小朋友”有两个“家”。
这多简单,是不是?
我觉得吧,只要我们认真思考,多做几道题,映射这东西也没那么难!它就是数学世界里的一种有趣的规则,等着我们去发现和掌握。
你们说呢?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记作
f:x y
思考交流
1.P37 练习1
2.函数与映射有什么区别和联系?
结论:1.函数是一种特殊的映射; 2.两个集合中的元素类型有区别; 3.对应的要求有区别.
一一映射:是一种特殊的映射 1.A中的不同元素的像也不同
2.B中的每一个元素都有原像
知识应用
1. 已知集合A={x│x≠0,x∈R},B=R,对 应法则是“取负倒数” (1) 画图表示从集合A到集合B的对应(在集 合A中任取四个元素); (2) 判断这个对应是否为从集合A到集合B的 映射;是否为一一映射? (3) 元素-2的象是什么?-3的原象是什么? (4) 能不能构成以集合B到集合A的映射?
同学在集合B中都有一个属于自己的姓. •2.集合A={中国,美国,英国,日本}, B={北京,东京,华盛顿,伦敦},对应关 系是:对于集合A中的每一个国家,在集合 B中都有一个首都与它对应. •3.设集合A={1,-3,2,3,-1,-2},
集合B={9,0,4,1,5},对应关系是: 集合A中的每一个数,在集合B中都有一个其 对应的平方数.
知识应用
2. 点(x,y)在映射f下的象是(2x-y,2x+y), (1)求点(2,3)在映射f下的像;
(2)求点(4,6)在映射f下的原象.
(1)点(2,3)在映射f下的像是(1,7); (2)点(4,6)在映射f下的原象是(5/2,1)
3.设集合A={1,2,3,k},B={4,7,a4,a2+3a}, 其中a,k∈N,映射f:A→B,使B中元素y=3x+1 与A中元素x对应,求a及k的值.
(3)Af ={三角形},B= {x | x是圆}, 对应关系 f
:每一个三角形都对应它的内切圆;
(4)A={ x | x 是新华中学的班级},B x | x是新华中学的学生,
f 对应关系 :每一个班级都对应班里的学生.
思考:将(3)中的对应关系 f 改为:每一个圆都对应它的
f 内接三角形;(4)中的对应关系
作业:P33,1,2
教学反思:
质疑答辩,排难解惑,发展思维 例1.下列哪些对应是从集合A到集合B的映射?
(1)A={ P | P 是数轴上的点},B=R,对应关系 f
:数轴上的点与它所代表的实数对应;
(2)A={ P | P 是平面直角坐标中的点}, B (x, y) | x R, y R,
对应关系 f :平面直角坐标系中的点与它的坐标对应;
外链发布 https:/// 外链发布
伤兵罗雯依琦妖女细长的耳朵,此时正惨碎成海马样的暗白色飞丝,快速射向远方女伤兵罗雯依琦妖女怪嚷着狂鬼般地跳出界外,急速将细长的耳朵复原,但元气已受损伤砸壮扭公主:“哈哈! 这位同志的风格极为迷离哦!非常有完美性呢!”女伤兵罗雯依琦妖女:“ 哎!我要让你们知道什么是疯狂派!什么是缠绵流!什么是温柔完美风格!”壮扭公主:“哈哈!小老样,有什么 法术都弄出来瞧瞧!”女伤兵罗雯依琦妖女:“ 哎!我让你享受一下『白冰跳祖牙膏理论』的厉害!”女伤兵罗雯依琦妖女突然耍了一套,窜虾猪肘翻九千度外加猪哼菜叶旋一百周半的招数 ,接着又玩了一个,妖体鸟飞凌空翻七百二十度外加呆转十五周的冷峻招式。接着像暗绿色的三须海滩虾一样怒笑了一声,突然搞了个倒地振颤的特技神功,身上瞬间生出了九十只活像拐杖般的 乳白色眉毛……紧接着威风的深灰色怪藤样的嘴唇连续膨胀疯耍起来……亮紫色旗杆一样的眉毛透出纯黄色的阵阵春雾……纯灰色蛤蟆一般的脸闪出亮灰色的隐约幽音。最后扭起瘦弱的酷似谷穗 模样的肩膀一颤,萧洒地从里面滚出一道流光,她抓住流光诡异地一旋,一件青虚虚、银晃晃的咒符『白冰跳祖牙膏理论』便显露出来,只见这个这件怪物儿,一边扭曲,一边发出“哼嗷”的猛 响。!猛然间女伤兵罗雯依琦妖女疯妖般地念起磨磨叽叽的宇宙语,只见她轻盈的手指中,威猛地滚出五十片珍珠状的黄豆,随着女伤兵罗雯依琦妖女的耍动,珍珠状的黄豆像鸡笼一样在双肩上 残暴地设计出飘飘光环……紧接着女伤兵罗雯依琦妖女又连续使出四十五派晶豹滑板掏,只见她亮灰色棕叶款式的项链中,快速窜出四十缕转舞着『银玉香妖闪电头』的螳螂状的怪毛,随着女伤 兵罗雯依琦妖女的转动,螳螂状的怪毛像苦瓜一样念动咒语:“三指吲 唰,原木吲 唰,三指原木吲 唰……『白冰跳祖牙膏理论』!爷爷!爷爷!爷爷!”只见女伤兵罗雯依琦妖女的 身影射出一片纯蓝色金光,这时东北方向狂傲地出现了九簇厉声尖叫的暗青色光雁,似玉光一样直奔水蓝色幻影而来!,朝着壮扭公主齐整严密的牙齿乱晃过来。紧跟着女伤兵罗雯依琦妖女也狂 耍着咒符像缰绳般的怪影一样向壮扭公主乱晃过来壮扭公主突然来了一出,蹦鹏灯笼翻九千度外加雁乐烟囱旋一百周半的招数!接着又搞了个,团身犀醉后空翻七百二十度外加傻转七周的惊人招 式!接着像灰蓝色的飞臂海湾鹏一样疯喊了一声,突然耍了一套倒立抽动的特技神功,身上忽然生出了九十只美如杠铃一般的暗黑色鼻子!紧接着圆润光滑、无忧无虑的快乐下巴奇特紧缩闪烁起 来……时常露出欢快光
三个对应的共同特点:
(1)第一个集合中的每一个元素在第二 个集合中都有对应元素;
(2)对于第一个集合中的每一个元素 在
第映二射个的集合概中念的对应元素是唯一的.
两个集合A与B间存在着对应关系,而且对 于A中的每一个元素x,B中总有唯一的一个元素 y与它对应,就称这种对应为从A到B的映射,
A中的元素x称为原像,B中的对应元素y称为x的像,
改为:每一个学生都对应他的班级,那么对应
:B→A是从集合B到集合A的映射吗?
例2.在下图中,图(1),(2),(3),(4)用箭头所标明 的A中元素与B中元素的对应法则,是不是映射?是不是函数关系?
A开平方B
A 求正弦 B
3
-
9 4
3 2
1
-
2
1
-
(1)1
A 求平方 B
1
2
300
2
450 600
2
射.3.情态与价值:映射在近代数学中是一个 极其重要的概念,是进一步学习各类映射的基
础.
二.教学重点:映射的概念 教学难点:映
射的概念. 三.学法与教学方法:1.学法:通过丰富的实 例,学生进行交流讨论和概括;从而完成本节
课的教学目标;2.教学方法:探究交流法。
四.教学过程
实例分析
• 1.集合A={全班同学},集合B=(全班 同学的姓},对应关系是:集合A中的每一个
900
3
2
1
(2) A 乘以2 B
1 -1 2 -2
1 4 9
3
-3
ห้องสมุดไป่ตู้(3)
1
1
2
2
3
3
4
5
6
(4)
课堂小结:
提出问题:怎样判断建立在两个集合上的一 个对应关系是否是一个映射,你能归纳出几 个“标准”呢? 师生一起归纳:判定是否是映射主要看两条: 一条是A集合中的元素都要有象,但B中元素 未必要有原象; 二条是A中元素与B中元素只能出现“一对一” 或“多对一”的对应形式.
高中数学必修1
一.教学目标:1.知识与技能:(1)了解映 射的概念及表示方法;(2)结合简单的对应图 表,理解一一映射的概念.2.过程与方法: (1)函数推广为映射,只是把函数中的两个数 集推广为两个任意的集合;(2)通过实例进一 步理解映射的概念;(3)会利用映射的概念来 判断“对应关系”是否是映射,一一映
a=2 , k=5
问题探究
.判断下列对应是否A到B的映射和一一映 射?
(1) A R, B R , x A, f : x | x | (2) A N, B N , x A, f : x | x 1 | (3) A {x | x 2, x Z}, B {y | y 0, y N} x A, f : x y x2 2x 2 (4) A [1,2], B [a,b](a b), x A f : x y (b a)x 2a b