中考数学模拟试卷(Word版,含答案)
中考数学模拟试题(含答案和解析)
【答案】C
【解析】
【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB= m.证明△AFL≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=( m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP= .FP= m.BP= .即知P为AB中点.CP=AP=BP= .由△CPN∽△FPA.得CN=m.PN= m.即得AN= m.而tan∠BAC= .又△AEC∽△BCH.根据相似三角形的性质列出方程.解方程即可求解.
【答案】B
【解析】
【分析】根据四边形的内角和等于360°计算可得∠BAC=50°.再根据圆周角定理得到∠BOC=2∠BAC.进而可以得到答案.
【详解】解:∵OD⊥AB.OE⊥AC.
∴∠ADO=90°.∠AEO=90°.
∵∠DOE=130°.
∴∠BAC=360°-90°-90°-130°=50°.
∴∠BOC=2∠BAC=100°.
A. B.
C. D.
【答案】A
【解析】
【分析】分别对每段时间的路程与时间的变化情况进行分析.画出路程与时间图像.再与选项对比判断即可.
【详解】解:对各段时间与路程的关系进行分析如下:
从家到凉亭.用时10分种.路程600米.s从0增加到600米.t从0到10分.对应图像为
在凉亭休息10分钟.t从10分到20分.s保持600米不变.对应图像为
故选:B.
【点睛】本题考查扇形统计图.解答本题的关键是明确题意.求出本次参加兴趣小组的总人数.
4.化简 的结果是( )
A. B. C. D.
中考数学模拟测试试卷(附含有答案)
中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。
两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。
中考数学综合模拟测试题(word版含答案)
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分:120分测试时间:120分钟一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣42.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 23.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣34.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)26.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=817.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个二.填空题(共4小题,满分20分,每小题5分)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是.12.不等式5x+1≥3x﹣5的解集为.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为(用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是.三.解答题(共9小题,满分90分)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:;(2)猜想并写出第n个等式:;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.21.如图,已知△A B C ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =°时,四边形OD C E是菱形.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .参考答案一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣4【分析】首先根据负数小于0,0小于正数,然后判断﹣π和﹣4的大小即可得到结果.【解答】解:由于负数小于0,0小于正数,又∵π<4,∴﹣π>﹣4,故选:D .【点评】本题考查实数大小的比较,利用不等式的性质比较实数的大小是解本题的关键.2.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 2【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及平方差公式逐一判断即可.【解答】解:A 、A 4•A 2=A 6,故本选项不合题意;B 、(2A 3)2=4A 6,故本选项不合题意;C 、(A B )6÷(A B )2=(A B )2=A 4B 4,故本选项符合题意;D 、(A +B )(A ﹣B )=A 2﹣B 2,故本选项不合题意;故选:C .【点评】本题主要考查了同底数幂的乘除法,积的乘方以及完全平方公式,熟记相关公式与运算法则是解答本题的关键.3.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为A ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,底层是一个矩形,上层是一个等腰梯形,故选:C .【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)2【分析】利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:选项A :运用平方差公式得9x2﹣1=(3x+1)(3x﹣1),符合题意;选项B :运用提取公因式法得4xy+6x=2x(2y+3),不符合题意;选项C :x2﹣2x﹣1不能进行因式分解,不符合题意;选项D :x2+xy+y2不能进行因式分解,不符合题意.故选:A .【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=81【分析】设每人每轮平均感染x人,根据经过两轮后共有81人得流感,即可得出关于x的一元二次方程,此题得解.【解答】解:设每人每轮平均感染x人,∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x=(1+x)2,∵经过两轮后共有81人得流感,∴可列方程为:(1+x)2=81.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°【分析】过点C 作C F∥A ,则C F∥A ∥B ,再利用平行线的性质和等边三角形的内角是60°可得∠2的度数.【解答】解:过点C 作C F∥A ,则C F∥A ∥B ,∴∠1=∠A C F=40°,∠2=∠B C F.∵等边三角形A B C 中,∠A C B =60°,∴∠B C F=60°﹣40°=20°,∴∠2=∠B C F=20°.故选:C .【点评】本题考查平行线的性质和等边三角形的性质,正确作出辅助线是解题关键.8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A 作A D ⊥B C 于D ,∵A B =A C =B C =3,∠B A C =∠A B C =∠A C B =60°,∵A D ⊥B C ,∴B D =C D =,A D = B D =,∴△A B C 的面积为•B C •A D =,S扇形B A C ==π,∴莱洛三角形的面积S=3×π﹣2×=π﹣,故选:D .【点评】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对【分析】根据条件,可以求得点A 关于直线B D 的对称点E的坐标,再根据E在图形中的位置,得到关于t的方程组【解答】解:∵点B (t,3)在直线y=kx+1上,∴3=kt+1,得到,于是直线B D 的表达式是.于是过点A (0,3)与直线B D 垂直的直线解析式为.联立方程组,解得,则交点M.根据中点坐标公式可以得到点E,∵点E在长方形A B C O的内部∴,解得或者.本题答案:或者.故选:C .【点评】该题涉及直线垂直时”k”之间的关系;直线的交点坐标与对应方程组的解之间的关系;中点坐标公式需要熟悉.计算量较大.10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个【分析】①由角平分线的性质和平行线的性质可证A B =B E,由勾股定理可得A D =A E= A B ,从而判断出①正确;②由”A A S”可证△A B E和△A HD 全等,则有B E=D H,再根据等腰三角形两底角相等求出∠A D E =∠A ED =67.5°,求出∠C ED =67.5°,从而判断出②正确;③求出∠A HB =67.5°,∠D HO=∠OD H=22.5°,然后根据等角对等边可得OE=OD =OH,判断出③正确;④求出∠EB H=∠OHD =22.5°,∠A EB =∠HD F=45°,然后利用”角边角”证明△B EH和△HD F 全等,根据全等三角形对应边相等可得B H=HF,判断出④正确;⑤根据全等三角形对应边相等可得D F=HE,然后根据HE=A E﹣A H=B C ﹣C D ,B C ﹣C F=B C ﹣(C D ﹣D F)=2HE,判断出⑤正确.【解答】解:①∵A E平分∠B A D ,∴∠B A E=∠D A E=∠B A D =45°,∵A D ∥B C ,∴∠D A E=∠A EB =45°,∴∠A EB =∠B A E=45°,∴A B =B E,∴A E= A B ,∵A D = A B ,∴A D =A E,故①正确;②在△A B E和△A HD 中,,∴△A B E≌△A HD (A A S),∴B E=D H,∴A B =B E=A H=HD ,∴∠A D E=∠A ED =(180°﹣45°)=67.5°,∴∠C ED =180°﹣45°﹣67.5°=67.5°,∴∠A ED =∠C ED ,故②正确;∵A B =A H,∵∠A HB =(180°﹣45°)=67.5°,∠OHE=∠A HB (对顶角相等),∴∠OHE=67.5°=∠A ED ,∴OE=OH,∵∠D HO=90°﹣67.5°=22.5°,∠OD H=67.5°﹣45°=22.5°,∴∠D HO=∠OD H,∴OH=OD ,∴OE=OD =OH,故③正确;∵∠EB H=90°﹣67.5°=22.5°,∴∠EB H=∠OHD ,在△B EH和△HD F中,,∴△B EH≌△HD F(A SA ),∴B H=HF,HE=D F,故④正确;∵HE=A E﹣A H=B C ﹣C D ,∴B C ﹣C F=B C ﹣(C D ﹣D F)=B C ﹣(C D ﹣HE)=(B C ﹣C D )+HE=HE+HE=2HE.故⑤正确;故选:D .【点评】本题为四边形的综合应用,涉及矩形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定与性质等知识.熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二.填空题(共4小题)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是 A <0.【分析】利用二次函数的性质得到抛物线开口向下,即可求解.【解答】解:∵抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,∴抛物线开口向下,∴A <0,故答案为A <0.【点评】本题考查了二次函数图象与系数的关系:二次项系数A 决定抛物线的开口方向和大小.当A >0时,抛物线向上开口;当A <0时,抛物线向下开口;一次项系数B 和二次项系数A 共同决定对称轴的位置:当A 与B 同号时,对称轴在y轴左;当A 与B 异号时,对称轴在y轴右.12.不等式5x+1≥3x﹣5的解集为x≥﹣3.【分析】不等式移项,合并,把x系数化为1,即可求出解集.【解答】解:不等式移项得:5x﹣3x≥﹣5﹣1,合并得:2x≥﹣6,解得:x≥﹣3.故答案为:x≥﹣3.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为﹣ A (用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为﹣<n<1.【分析】(1)把抛物线y1=A x2+3A x﹣4A 化成顶点式即可求得;(2)先求得顶点M的坐标,然后根据轴对称的性质求得对称点M′的坐标,由题意可知当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣6,易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,即可得出n﹣(﹣6)<7,即n<1,得到≤n<1;若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,即可得出n﹣(2n﹣)<7,即n>﹣,得到﹣<n<,进而即可得到﹣<n<1.【解答】解:(1)y1=A x2+3A x﹣4A =A (x+3)2﹣ A ,∴该抛物线顶点的纵坐标为﹣ A ,故答案为﹣ A ;(2)当A =﹣1时,y=﹣x2﹣3x+4=﹣(x+)2+,抛物线的顶点M(﹣,),∵直线A B ⊥y轴且过点(0,n)(﹣5<n<5),∴点M关于直线A B 的对称点M′(﹣,2n﹣),∵抛物线y1的对称轴为直线x=﹣,且自变量x的取值范围为﹣5≤x≤2,∴当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣22﹣3×2+4=﹣6,由题意易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,∵函数y2的最大值与最小值之差小于7,∴n﹣(﹣6)<7,即n<1,∴≤n<1,若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,∵函数y2的最大值与最小值之差小于7,∴n﹣(2n﹣)<7,即n>﹣,∴﹣<n<,综上,﹣<n<1,故答案为﹣<n<1.【点评】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,二次函数的最值,分类讨论是解题的关键.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是2﹣2≤x≤2或x=2或x=﹣1.【分析】考虑四种特殊位置,求出x的值即可解决问题;【解答】解:如图1中,当△P2MN是等边三角形时满足条件,作P2H⊥OA 于H.在Rt△P2HN中,P2H=NH=,∵∠O=∠HP2O=45°,∴OH=HP2=,∴x=OM=OH﹣MH=﹣1.如图2中,当⊙M与OB 相切于P1,MP1=MN=2时,x=OM=2,此时满足条件;如图3中,如图当⊙M经过点O时,x=OM=2,此时满足条件的点P有2个.如图4中,当⊙N与OB 相切于P1时,x=OM=2﹣2,观察图3和图4可知:当2﹣2<x≤2时,满足条件,综上所述,满足条件的x的值为:2﹣2<x≤2或x=2或x=﹣1,故答案为2﹣2<x≤2或x=2或x=﹣1.【点评】本题考查等腰三角形的判定、直线与圆的位置关系等知识,解题的关键是学会寻找特殊位置解决问题,属于中考填空题中的压轴题.三.解答题(共9小题)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.【分析】直接利用零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣2+2×=1+﹣2+=1﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?【分析】设绳长是x尺,井深是y尺,根据把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺列方程组即可.【解答】解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可.(2)将△A ′B ′C ′绕点B ′逆时针旋转90°即可.【解答】解:(1)如图,△A 'B 'C '即为所求作.(2)如图,△A ″B 'C ″即为所求作.【点评】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:=7+;(2)猜想并写出第n个等式:=(n+1)+;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=4753.【分析】(1)根据分母不变,分子是两个数的平方差可得答案;(2)根据发现的规律写出第n个等式并计算可进行验证;(3)根据=1,=2,=3…可得原式=1+2+3……+97,进而可得答案.【解答】解:(1)第⑥个式子为:=7+;故答案为:=7+;(2)猜想第n个等式为:=(n+1)+,证明:∵左边===(n+1)+=右边,故答案为:=(n+1)+;(3)原式=1+2+3+…+97==4753.故答案为:4753.【点评】本题考查对规律型问题的理解和有理数的运算能力,找到规律是解题关键.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.【分析】(1)计算判别式的值得到△=4m2+1,利用非负数的性质得△>0,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)根据根与系数的关系得x1+x2=2m+1,x1x2=m,利用x12+x22=3得到(2m+1)2﹣2×m=3,然后解方程即可.【解答】(1)证明:△=(2m+1)2﹣4m=4m2+1,∵4m2≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵x1,x2是该方程的两根,则x1+x2=2m+1,x1x2=m,∵x12+x22=3,∴(x1+x2)2﹣2x1x2=3,∴(2m+1)2﹣2×m=3,解得m=或﹣1.【点评】本题考查了一元二次方程A x2+B x+C =0(A ≠0)的根的判别式△=B 2﹣4A C :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解和根与系数的关系.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)首先根据A E⊥x轴于点E,tA n∠A OE=,A E=2等条件求出A 点的坐标,然后把A 点坐标代入反比例函数的解析式中,求出m的值,再根据B 点在反比例函数的图象上,进而求出k,根据两点式即可求出一次函数的解析式,(2)首先求出一次函数与y轴的交点坐标,然后再根据S△A OB =S△OB D +S△A OD 求面积;(3)根据图象即可求得.【解答】解:(1)在Rt△OEA 中:∵tA n∠A OE==,∵A E=2,∴OE=6,∴点A 的坐标为(6,2),∵A 在反比例函数y=(m≠0)的图象上,∴m=6×2=12,∴反比例函数的解析式为y=,设B 点坐标为(A ,﹣6),把(A ,﹣6)代入y=,解得A =﹣2,把A (6,2)和B (﹣2,﹣6)代入y=kx+B 中,∴,解得,∴一次函数的解析式为y=x﹣4;(2)直线y=x﹣4与y的交点为D ,故D 点坐标为(0,﹣4),∴S△A OB =S△OB D +S△A OD =×4×6+×4×2=12+4=16;(3)观察图象,一次函数的值大于反比例函数的值的x的取值范围是﹣2<x<0或x>6.【点评】本题主要考查反比例函数和一次函数交点问题的知识点,解答本题的关键是根据题干条件求出A 点的坐标,进而求出反比例函数和一次函数的解析式,本题难度一般,是一道很不错的试题.21.如图,已知△ABC ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =60°时,四边形OD C E是菱形.【分析】(1)连接A E,如图,先证明∠B =∠C 得到△A B C 为等腰三角形,再根据圆周角定理得到∠A EB =90°,即A E⊥B E,然后根据等腰三角形的性质得到结论;(2)①证明△C D E∽△C B A ,利用相似比可求出C D 的长;①当∠A =60°,证明△A OD 和△A B C 、△C D E、△OB D 都为等边三角形,则OD =D C =C E =OE,然后判定四边形OD C E是菱形.【解答】(1)证明:连接A E,如图,∵ED =EC ,∴∠C =∠ED C ,∵∠ED C =∠B ,∴∠B =∠C ,∴△A B C 为等腰三角形,∵A B 为直径,∴∠A EB =90°,即A E⊥B E,∴B E=C E,即点E为B C 的中点;(2)①∵∠D C E=∠B C A ,∠ED C =∠B ,∴△C D E∽△C B A ,∴C D :B C =D E:A B ,即C D :4=2:6,∴C D =;①当∠A =60°,∵OA =OD ,A B =A C ,∴△A OD 和△A B C 都为等边三角形,∴OD =OA ,同理可得△C D E、△OB D 都为等边三角形,∴C D =C E=D E=B E=OB ,∴OD =D C =C E=OE,∴四边形OD C E是菱形.故答案为;60.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质和菱形的判定.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为18°,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.【分析】(1)先由”不重视”的学生人数和所占百分比求出调查总人数,再由360°乘以”非常重视”的学生所占比例得所占的圆心角的度数;求出”重视”的人数,补全条形统计图即可;(2)由该校共有学生人数乘以”比较重视”的学生所占比例即可;(3)画树状图,共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,再由概率公式求解即可.【解答】解:(1)调查的学生人数为16÷20%=80(人),∴”非常重视”所占的圆心角的度数为360°×=18°,故答案为:18°,“重视”的人数为80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)由题意得:4000×=1800(人),即估计该校对视力保护”比较重视”的学生人数为1800人;(3)画树状图如图:共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,∴恰好抽到同性别学生的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了扇形统计图和条形统计图以及样本估计总体.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .【分析】(1)判断出△A HF∽△C HE,得出比例式,求出C E,最后用勾股定理,即可得出结论;(2)先求出A C =3,再判断出△A EG≌△C ED (A SA ),得出EG=ED ,再判断出△A EF∽△D A C ,得出比例式,即可得出结论;(3)先判断出△B ED ∽△B D C ,得出,进而判断出A G=GD ,即可得出结论.【解答】解:(1)如图1,连接A E,∵A F∥B C ,∴△A HF∽△C HE,∴,∴A F=1,,∴,∴C E=3,在Rt△A B C 中,A B =A C ,点E是B C 的中点,∴A E= B C =C E,A E⊥B C ,∴C E=3,∵A F∥B C ,∴A E⊥A F,∴∠EA F=90°,根据勾股定理得,EF==;(2)由(1)知,EF=,C E=3,∴B C =2C E=6,∴A C =3,∵∠A EP=∠C D P,∠A PE=∠C PD ,∴∠EA G=∠PC D ,∵∠A EG=∠C ED ,A E=C E,∴△A EG≌△C ED (A SA ),∴EG=ED ,∴∠ED G=45°=∠A C E,∵∠A PC =∠EPD ,∴∠PED =∠C A P,∴∠FEA =∠C A D ,∴△A EF∽△D A C ,∴,∴,∴C D =.(3)如图2,在Rt△A B C 中,A B =A C ,∴,,连接A E,∵,,∴,∵∠EB D =∠D B C ,∴△B ED ∽△B D C ,∴,∴C D = D E=GD ,∵C D =A G,∴A G=GD ,∵B D =A B ,∴B G⊥A D .【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形判定和性质,勾股定理,构造出相似三角形是解本题的关键.。
中考数学模拟测试卷带答案
中考数学模拟测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A .B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( )A .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x +=(k 为常数)的图象上123y y y 、、的大小关系为( ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 .11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 米(结果保留根号).三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)第5题图 第6题图 第8题图第10题图 第11题图 第12题图14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长?15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( B )B . B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( B )B .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( A )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上123y y y 、、的大小关系为( C ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( A )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( D ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( A )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( D )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= 1- .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 31 .第5题图 第6题图 第8题图11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 23 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 ()153 1.5 米(结果保留根号). 三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)1)由题意知60CAB ∠=︒,BC=4 ...................................................1分 ∴43tan603BC AB ==︒.................................................................3分 (2)43AB =30ACB ∠=︒ 90ABC ∠=︒ ⊙832AC AB = ...........................................................................................................................................................5分60BAC ∠=︒ 30ACB ∠=︒ 60DCE ∠=︒∴=90ACD ∠︒ 60DAC ∠=︒ ..........................................................................................................................................6分 ∴83tan6038DC AC =⋅︒== ...................................................................................................................................8分 在Rt CDE △中3sin60843DE CD =⋅︒==........................................................................................................10分 14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.第10题图 第11题图 第12题图(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;{}(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长? 1)解:设水温下降过程中,y 与x 的函数关系式为k y x=(k ≠0),...........................................1分 由题意得,点(4,100)在反比例函数k y x =的图象上 ∴4100k =..............................................................................................................................2分 解得:400k =∴水温下降过程中,y 与x 的函数关系式是400y x=;.....................................................3分 解:设在加热过程中,y 与x 的函数关系式为y=kx+b(k ≠0).......................................................................4分 把(0,20),(4,100)带入y=kx+b(k ≠0)得20=b, 100=4k+b.....................................................................................................................................................5分 解得:k=20,b=20..................................................................................................................................................6分 ∴y=20x+20当y=40时1x =.............................................................................................................................................7分在降温过程中,水温为40℃时40040x=..................................................................................................8分 解得:10x =...................................................................................................................................................9分1019-=........................................................................................................................................................10分∴一个加热周期内水温不低于40℃的时间为9min .15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.(1)证明:如图所示,连接OD ,.........................................................1分∵AD 平分∠CAB∴∠OAD =∠EAD ...........................................................................................................................................................2分 ∵OD =OA∴∠ODA =∠OAD ............................................................................................................................................................3分 ∴∠ODA =∠EAD .∴OD ∥AE .........................................................................................................................................................................4分 ∵AE PE ⊥∴OD PE ⊥∵D 在⊙O 上∴EP 与⊙O 相切...........................................................................................................................................................5分 (2)证明:OD PE ⊥∵∴90ODB BDP ∠+∠=︒.............................................................................................................................................6分 ∵AB 是⊙O 的直径⊙90ADB ∠=︒............................................................................................................................................................7分 即90ODB ODA ∠+∠=︒∴=ODA BDP ∠∠......................................................................................................................................................8分 ∵OD =OA∴∠ODA =∠OAD .⊙=OAD BDP ∠∠.....................................................................................................................................................9分 又∵APD DPB ∠=∠∴APD DPB ∆∆∽.....................................................................................................................................................10分 ∴AD AP BD DP=............................................................................................................................................................11分 ∴AD ·DP =BD ·AP ...................................................................................................................................................12分 解:作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB =90°∵AB =6,AD =2∴BD 22-AB AD 2 132OD AB ==.................................................................................................................15分 ∵12AB •DG =12AD •BD∴DG 423分 ∵AD 平分∠CAB ,AE ⊥DE ,DG ⊥AB∴DE =DG 423∴AE 22AD DE -163............................................................................................................................................17分 ∵OD ∥AE∴△ODP ∽△AEP .........................................................................................................................................................18分 ∴DP EP =OD AE ,即DP DE DP OD AE += ∴4213363DPDP =........................................................................................................................................................19分 ∴2721DP =分。
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)数1.0.﹣.﹣2中最大的是()A.1B.0C.﹣D.﹣2 2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称.其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107 3.(4分)某物体如图所示.它的主视图是()A.B.C.D.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球.其中4个白球.2个红球.1个黄球.从布袋里任意摸出1个球.是红球的概率为()A.B.C.D.5.(4分)如图.在△ABC中.∠A=40°.AB=AC.点D在AC边上.以CB.CD为边作▱BCDE.则∠E的度数为()A.40°B.50°C.60°D.70°6.(4分)山茶花是温州市的市花、品种多样.“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录.统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm 7.(4分)如图.菱形OABC的顶点A.B.C在⊙O上.过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1.则BD的长为()A.1B.2C.D.8.(4分)如图.在离铁塔150米的A处.用测倾仪测得塔顶的仰角为α.测倾仪高AD为1.5米.则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米9.(4分)已知(﹣3.y1).(﹣2.y2).(1.y3)是抛物线y=﹣3x2﹣12x+m 上的点.则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 10.(4分)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.过点C作CR⊥FG于点R.再过点C作PQ⊥CR分别交边DE.BH于点P.Q.若QH=2PE.PQ=15.则CR的长为()A.14B.15C.8D.6二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:m2﹣25=.12.(5分)不等式组的解集为.13.(5分)若扇形的圆心角为45°.半径为 3.则该扇形的弧长为.14.(5分)某养猪场对200头生猪的质量进行统计.得到频数直方图(每一组含前一个边界值.不含后一个边界值)如图所示.其中质量在77.5kg及以上的生猪有头.15.(5分)点P.Q.R在反比例函数y=(常数k>0.x>0)图象上的位置如图所示.分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1.S2.S3.若OE=ED=DC.S1+S3=27.则S2的值为.16.(5分)如图.在河对岸有一矩形场地ABCD.为了估测场地大小.在笔直的河岸l上依次取点E.F.N.使AE⊥l.BF⊥l.点N.A.B在同一直线上.在F点观测A点后.沿FN方向走到M点.观测C点发现∠1=∠2.测得EF=15米.FM=2米.MN=8米.∠ANE=45°.则场地的边AB为米.BC为米.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:﹣|﹣2|+()0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).18.(8分)如图.在△ABC和△DCE中.AC=DE.∠B=∠DCE=90°.点A.C.D依次在同一直线上.且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE.当BC=5.AC=12时.求AE的长.19.(8分)A.B两家酒店规模相当.去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平.你选择什么统计量?求出这个统计量.(2)已知A.B两家酒店7~12月的月盈利的方差分别为1.073(平方万元).0.54(平方万元).根据所给的方差和你在(1)中所求的统计量.结合折线统计图.你认为去年下半年哪家酒店经营状况较好?请简述理由.20.(8分)如图.在6×4的方格纸ABCD中.请按要求画格点线段(端点在格点上).且线段的端点均不与点A.B.C.D重合.(1)在图1中画格点线段EF.GH各一条.使点E.F.G.H分别落在边AB.BC.CD.DA上.且EF=GH.EF不平行GH.(2)在图2中画格点线段MN.PQ各一条.使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.21.(10分)已知抛物线y=ax2+bx+1经过点(1.﹣2).(﹣2.13).(1)求a.b的值.(2)若(5.y1).(m.y2)是抛物线上不同的两点.且y2=12﹣y1.求m 的值.22.(10分)系统找不到该试题23.(12分)某经销商3月份用18000元购进一批T恤衫售完后.4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份.经销商将这批T恤衫平均分给甲、乙两家分店销售.每件标价180元.甲店按标价卖出a件以后.剩余的按标价八折全部售出;乙店同样按标价卖出a件.然后将b件按标价九折售出.再将剩余的按标价七折全部售出.结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量.请你求出乙店利润的最大值.24.(14分)如图.在四边形ABCD中.∠A=∠C=90°.DE.BF分别平分∠ADC.∠ABC.并交线段AB.CD于点E.F(点E.B不重合).在线段BF上取点M.N(点M在BN之间).使BM=2FN.当点P从点D匀速运动到点E时.点Q恰好从点M匀速运动到点N.记QN =x.PD=y.已知y=x+12.当Q为BF中点时.y=.(1)判断DE与BF的位置关系.并说明理由.(2)求DE.BF的长.(3)若AD=6.①当DP=DF时.通过计算比较BE与BQ的大小关系.②连结PQ.当PQ所在直线经过四边形ABCD的一个顶点时.求所有满足条件的x的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)数1.0.﹣.﹣2中最大的是()A.1B.0C.﹣D.﹣2【分析】根据有理数大小比较的方法即可得出答案.【解答】解:﹣2<﹣<0<1.所以最大的是1.故选:A.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点.右边的点表示的数比左边的点表示的数大.(2)正数大于0.负数小于0.正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称.其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.【解答】解:1700000=1.7×106.故选:B.【点评】此题考查科学记数法的表示方法.表示时关键要正确确定a 的值以及n的值.3.(4分)某物体如图所示.它的主视图是()A.B.C.D.【分析】根据主视图的意义和画法进行判断即可.【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项A所表示的图形符合题意.故选:A.【点评】考查简单几何体的三视图的画法.主视图就是从正面看物体所得到的图形.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球.其中4个白球.2个红球.1个黄球.从布袋里任意摸出1个球.是红球的概率为()A.B.C.D.【分析】根据概率公式求解.【解答】解:从布袋里任意摸出1个球.是红球的概率=.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.5.(4分)如图.在△ABC中.∠A=40°.AB=AC.点D在AC边上.以CB.CD为边作▱BCDE.则∠E的度数为()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠C.再根据平行四边形的性质可求∠E.【解答】解:∵在△ABC中.∠A=40°.AB=AC.∴∠C=(180°﹣40°)÷2=70°.∵四边形BCDE是平行四边形.∴∠E=70°.故选:D.【点评】考查了平行四边形的性质.等腰三角形的性质.关键是求出∠C的度数.6.(4分)山茶花是温州市的市花、品种多样.“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录.统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm【分析】根据表格中的数据.可以得到这组数据的中位数.本题得以解决.【解答】解:由表格中的数据可得.这批“金心大红”花径的众数为6.7.故选:C.【点评】本题考查众数.解答本题的关键是明确众数的含义.会求一组数据的众数.7.(4分)如图.菱形OABC的顶点A.B.C在⊙O上.过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1.则BD的长为()A.1B.2C.D.【分析】连接OB.根据菱形的性质得到OA=AB.求得∠AOB=60°.根据切线的性质得到∠DBO=90°.解直角三角形即可得到结论.【解答】解:连接OB.∵四边形OABC是菱形.∴OA=AB.∵OA=OB.∴OA=AB=OB.∴∠AOB=60°.∵BD是⊙O的切线.∴∠DBO=90°.∵OB=1.∴BD=OB=.故选:D.【点评】本题考查了切线的性质.菱形的性质.等边三角形的判定和性质.解直角三角形.熟练正确切线的性质定理是解题的关键.8.(4分)如图.在离铁塔150米的A处.用测倾仪测得塔顶的仰角为α.测倾仪高AD为1.5米.则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米【分析】过点A作AE⊥BC.E为垂足.再由锐角三角函数的定义求出BE的长.由BC=CE+BE即可得出结论.【解答】解:过点A作AE⊥BC.E为垂足.如图所示:则四边形ADCE为矩形.AE=150.∴CE=AD=1.5.在△ABE中.∵tanα==.∴BE=150tanα.∴BC=CE+BE=(1.5+150tanα)(m).故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题.根据题意作出辅助线.构造出直角三角形是解答此题的关键.9.(4分)已知(﹣3.y1).(﹣2.y2).(1.y3)是抛物线y=﹣3x2﹣12x+m 上的点.则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【分析】求出抛物线的对称轴为直线x=﹣2.然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣2.∵a=﹣3<0.∴x=﹣2时.函数值最大.又∵﹣3到﹣2的距离比1到﹣2的距离小.∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征.主要利用了二次函数的增减性和对称性.求出对称轴是解题的关键.10.(4分)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.过点C作CR⊥FG于点R.再过点C作PQ⊥CR分别交边DE.BH于点P.Q.若QH=2PE.PQ=15.则CR的长为()A.14B.15C.8D.6【分析】如图.连接EC.CH.设AB交CR于J.证明△ECP∽△HCQ.推出===.由PQ=15.可得PC=5.CQ=10.由EC:CH=1:2.推出AC:BC=1:2.设AC=a.BC=2a.证明四边形ABQC是平行四边形.推出AB=CQ=10.根据AC2+BC2=AB2.构建方程求出a 即可解决问题.【解答】解:如图.连接EC.CH.设AB交CR于J.∵四边形ACDE.四边形BCIH都是正方形.∴∠ACE=∠BCH=45°.∵∠ACB=90°.∠BCI=90°.∴∠ACE+∠ACB+∠BCH=180°.∠ACB+∠BCI=90°∴B.C.D共线.A.C.I共线.E、C、H共线.∵DE∥AI∥BH.∴∠CEP=∠CHQ.∵∠ECP=∠QCH.∴△ECP∽△HCQ.∴===.∵PQ=15.∴PC=5.CQ=10.∵EC:CH=1:2.∴AC:BC=1:2.设AC=a.BC=2a.∵PQ⊥CR.CR⊥AB.∴CQ∥AB.∵AC∥BQ.CQ∥AB.∴四边形ABQC是平行四边形.∴AB=CQ=10.∵AC2+BC2=AB2.∴5a2=100.∴a=2(负根已经舍弃).∴AC=2.BC=4.∵•AC•BC=•AB•CJ.∴CJ==4.∵JR=AF=AB=10.∴CR=CJ+JR=14.故选:A.【点评】本题考查相似三角形的判定和性质.平行四边形的判定和性质.解直角三角形等知识.解题的关键是学会添加常用辅助线.构造相似三角形解决问题.学会利用参数构建方程解决问题.属于中考选择题中的压轴题.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:m2﹣25=(m+5)(m﹣5).【分析】直接利用平方差进行分解即可.【解答】解:原式=(m﹣5)(m+5).故答案为:(m﹣5)(m+5).【点评】此题主要考查了运用公式法分解因式.关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.(5分)不等式组的解集为﹣2≤x<3.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可求解.【解答】解:.解①得x<3;解②得x≥﹣2.故不等式组的解集为﹣2≤x<3.故答案为:﹣2≤x<3.【点评】考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.13.(5分)若扇形的圆心角为45°.半径为 3.则该扇形的弧长为π.【分析】根据弧长公式l=.代入相应数值进行计算即可.【解答】解:根据弧长公式:l==π.故答案为:π.【点评】此题主要考查了弧长的计算.关键是掌握弧长公式.14.(5分)某养猪场对200头生猪的质量进行统计.得到频数直方图(每一组含前一个边界值.不含后一个边界值)如图所示.其中质量在77.5kg及以上的生猪有140头.【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数.本题得以解决.【解答】解:由直方图可得.质量在77.5kg及以上的生猪:90+30+20=140(头).故答案为:140.【点评】本题考查频数分布直方图.解答本题的关键是明确题意.利用数形结合的思想解答.15.(5分)点P.Q.R在反比例函数y=(常数k>0.x>0)图象上的位置如图所示.分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1.S2.S3.若OE=ED=DC.S1+S3=27.则S2的值为.【分析】设CD=DE=OE=a.则P(.3a).Q(.2a).R(.a).推出CP=.DQ=.ER=.推出OG=AG.OF=2FG.OF=GA.推出S1=S3=2S2.根据S1+S3=27.求出S1.S3.S2即可.【解答】解:∵CD=DE=OE.∴可以假设CD=DE=OE=a.则P(.3a).Q(.2a).R(.a).∴CP=.DQ=.ER=.∴OG=AG.OF=2FG.OF=GA.∴S1=S3=2S2.∵S1+S3=27.∴S3=.S1=.S2=.故答案为.【点评】本题考查反比例函数系数k的几何意义.矩形的性质等知识.解题的关键是学会利用参数解决问题.属于中考常考题型.16.(5分)如图.在河对岸有一矩形场地ABCD.为了估测场地大小.在笔直的河岸l上依次取点E.F.N.使AE⊥l.BF⊥l.点N.A.B在同一直线上.在F点观测A点后.沿FN方向走到M点.观测C点发现∠1=∠2.测得EF=15米.FM=2米.MN=8米.∠ANE=45°.则场地的边AB为15米.BC为20米.【分析】根据已知条件得到△ANE和△BNF是等腰直角三角形.求得AE=EN=15+2+8=25(米).BF=FN=2+8=10(米).于是得到AB=AN﹣BN=15(米);过C作CH⊥l于H.过B作PQ∥l 交AE于P.交CH于Q.根据矩形的性质得到PE=BF=QH=10.PB =EF=15.BQ=FH.根据相似三角形的性质即可得到结论.【解答】解:∵AE⊥l.BF⊥l.∵∠ANE=45°.∴△ANE和△BNF是等腰直角三角形.∴AE=EN.BF=FN.∴EF=15米.FM=2米.MN=8米.∴AE=EN=15+2+8=25(米).BF=FN=2+8=10(米).∴AN=25.BN=10.∴AB=AN﹣BN=15(米);过C作CH⊥l于H.过B作PQ∥l交AE于P.交CH于Q.∴AE∥CH.∴四边形PEHQ和四边形PEFB是矩形.∴PE=BF=QH=10.PB=EF=15.BQ=FH.∵∠1=∠2.∠AEF=∠CHM=90°.∴△AEF∽△CHM.∴===.∴设MH=3x.CH=5x.∴CQ=5x﹣10.BQ=FH=3x+2.∵∠APB=∠ABC=∠CQB=90°.∴∠ABP+∠P AB=∠ABP+∠CBQ=90°.∴∠P AB=∠CBQ.∴△APB∽△BQC.∴.∴=.∴x=6.∴BQ=CQ=20.∴BC=20.故答案为:15.20.【点评】本题考查了相似三角形的应用.矩形的性质.等腰直角三角形的判定和性质.正确的识别图形是解题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:﹣|﹣2|+()0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).【分析】(1)直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2﹣2+1+1=2;(2)(x﹣1)2﹣x(x+7)=x2﹣2x+1﹣x2﹣7x=﹣9x+1.【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算.正确掌握相关运算法则是解题关键.18.(8分)如图.在△ABC和△DCE中.AC=DE.∠B=∠DCE=90°.点A.C.D依次在同一直线上.且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE.当BC=5.AC=12时.求AE的长.【分析】(1)由“AAS”可证△ABC≌△DCE;(2)由全等三角形的性质可得CE=BC=5.由勾股定理可求解.【解答】证明:(1)∵AB∥DE.∴∠BAC=∠D.又∵∠B=∠DCE=90°.AC=DE.∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE.∴CE=BC=5.∵∠ACE=90°.∴AE===13.【点评】本题考查了全等三角形的判定和性质.勾股定理.熟练掌握全等三角形的判定方法是本题的关键.19.(8分)A.B两家酒店规模相当.去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平.你选择什么统计量?求出这个统计量.(2)已知A.B两家酒店7~12月的月盈利的方差分别为1.073(平方万元).0.54(平方万元).根据所给的方差和你在(1)中所求的统计量.结合折线统计图.你认为去年下半年哪家酒店经营状况较好?请简述理由.【分析】(1)由要评价两家酒店月盈利的平均水平.即可得选择两家酒店月盈利的平均值.然后利用求平均数的方法求解即可求得答案;(2)平均数.盈利的方差反映酒店的经营业绩.A酒店的经营状况较好.【解答】解:(1)选择两家酒店月盈利的平均值;==2.5.==2.3;(2)平均数.方差反映酒店的经营业绩.A酒店的经营状况较好.理由:A酒店盈利的平均数为2.5.B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073.B酒店盈利的方差为0.54.无论是盈利的平均数还是盈利的方差.都是A酒店比较大.且盈利折线A是持续上升的.故A酒店的经营状况较好.【点评】此题考查了折线统计图的知识.此题难度适中.注意掌握折线统计图表达的实际意义是解此题的关键.20.(8分)如图.在6×4的方格纸ABCD中.请按要求画格点线段(端点在格点上).且线段的端点均不与点A.B.C.D重合.(1)在图1中画格点线段EF.GH各一条.使点E.F.G.H分别落在边AB.BC.CD.DA上.且EF=GH.EF不平行GH.(2)在图2中画格点线段MN.PQ各一条.使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.【分析】(1)根据点E.F.G.H分别落在边AB.BC.CD.DA上.且EF =GH.EF不平行GH.画出线段即可;(2)根据使点M.N.P.Q分别落在边AB.BC.CD.DA上.且PQ=MN.画出线段即可.【解答】解:(1)如图1.线段EF和线段GH即为所求;(2)如图2.线段MN和线段PQ即为所求.【点评】本题考查了作图﹣应用与设计作图.熟练掌握勾股定理是解题的关键.21.(10分)已知抛物线y=ax2+bx+1经过点(1.﹣2).(﹣2.13).(1)求a.b的值.(2)若(5.y1).(m.y2)是抛物线上不同的两点.且y2=12﹣y1.求m 的值.【分析】(1)把点(1.﹣2).(﹣2.13)代入y=ax2+bx+1解方程组即可得到结论;(2)把x=5代入y=x2﹣4x+1得到y1=6.于是得到y1=y2.即可得到结论.【解答】解:(1)把点(1.﹣2).(﹣2.13)代入y=ax2+bx+1得..解得:;(2)由(1)得函数解析式为y=x2﹣4x+1.把x=5代入y=x2﹣4x+1得.y1=6.∴y2=12﹣y1=6.∵y1=y2.且对称轴为x=2.∴m=4﹣5=﹣1.【点评】本题考查了二次函数图象上点的坐标特征.解方程组.正确的理解题意是解题的关键.22.(10分)系统找不到该试题23.(12分)某经销商3月份用18000元购进一批T恤衫售完后.4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份.经销商将这批T恤衫平均分给甲、乙两家分店销售.每件标价180元.甲店按标价卖出a件以后.剩余的按标价八折全部售出;乙店同样按标价卖出a件.然后将b件按标价九折售出.再将剩余的按标价七折全部售出.结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量.请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T恤衫.数量是3月份的2倍.可以得到相应的分式方程.从而可以求得4月份进了这批T恤衫多少件;(2)①根据甲乙两店的利润相同.可以得到关于a、b的方程.然后化简.即可用含a的代数式表示b;②根据题意.可以得到利润与a的函数关系式.再根据乙店按标价售出的数量不超过九折售出的数量.可以得到a的取值范围.从而可以求得乙店利润的最大值.【解答】解:(1)设3月份购进x件T恤衫..解得.x=150.经检验.x=150是原分式方程的解.则2x=300.答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元).(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简.得b=;②设乙店的利润为w元.w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×﹣600=36a+2100.∵乙店按标价售出的数量不超过九折售出的数量.∴a≤b.即a≤.解得.a≤50.∴当a=50时.w取得最大值.此时w=3900.答:乙店利润的最大值是3900元.【点评】本题考查一次函数的应用、分式方程的应用.解答本题的关键是明确题意.利用一次函数的性质和分式方程的知识解答.注意分式方程要检验.24.(14分)如图.在四边形ABCD中.∠A=∠C=90°.DE.BF分别平分∠ADC.∠ABC.并交线段AB.CD于点E.F(点E.B不重合).在线段BF上取点M.N(点M在BN之间).使BM=2FN.当点P从点D匀速运动到点E时.点Q恰好从点M匀速运动到点N.记QN =x.PD=y.已知y=x+12.当Q为BF中点时.y=.(1)判断DE与BF的位置关系.并说明理由.(2)求DE.BF的长.(3)若AD=6.①当DP=DF时.通过计算比较BE与BQ的大小关系.②连结PQ.当PQ所在直线经过四边形ABCD的一个顶点时.求所有满足条件的x的值.【分析】(1)推出∠AED=∠ABF.即可得出DE∥BF;(2)求出DE=12.MN=10.把y=代入y=﹣x+12.解得x=6.即NQ=6.得出QM=4.由FQ=QB.BM=2FN.得出FN=2.BM=4.即可得出结果;(3)连接EM并延长交BC于点H.易证四边形DFME是平行四边形.得出DF=EM.求出∠DEA=∠FBE=∠FBC=30°.∠ADE=∠CDE=∠FME=60°.∠MEB=∠FBE=30°.得出∠EHB=90°.DF=EM=BM=4.MH=2.EH=6.由勾股定理得HB=2.BE =4.当DP=DF时.求出BQ=.即可得出BQ>BE;②(Ⅰ)当PQ经过点D时.y=0.则x=10;(Ⅱ)当PQ经过点C时.由FQ∥DP.得出△CFQ∽△CDP.则=.即可求出x=;(Ⅲ)当PQ经过点A时.由PE∥BQ.得出△APE∽△AQB.则=.求出AE=6.AB=10.即可得出x=.由图可知.PQ不可能过点B.【解答】解:(1)DE与BF的位置关系为:DE∥BF.理由如下:如图1所示:∵∠A=∠C=90°.∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°.∵DE、BF分别平分∠ADC、∠ABC.∴∠ADE=∠ADC.∠ABF=∠ABC.∴∠ADE+∠ABF=×180°=90°.∵∠ADE+∠AED=90°.∴∠AED=∠ABF.∴DE∥BF;(2)令x=0.得y=12.∴DE=12.令y=0.得x=10.∴MN=10.把y=代入y=﹣x+12.解得:x=6.即NQ=6.∴QM=10﹣6=4.∵Q是BF中点.∴FQ=QB.∵BM=2FN.∴FN+6=4+2FN.解得:FN=2.∴BM=4.∴BF=FN+MN+MB=16;(3)①连接EM并延长交BC于点H.如图2所示:∵FM=2+10=12=DE.DE∥BF.∴四边形DFME是平行四边形.∴DF=EM.EH∥CD.∴∠MHB=∠C=90°.∵AD=6.DE=12.∠A=90°.∴∠DEA=30°.∴∠DEA=∠FBE=∠FBC=30°.∴∠ADE=60°.∴∠ADE=∠CDE=∠FME=60°.∴∠DFM=∠DEM=120°.∴∠MEB=180°﹣120°﹣30°=30°.∴∠MEB=∠FBE=30°.∴∠EHB=180°﹣30°﹣30°﹣30°=90°.DF=EM=BM=4.∴MH=BM=2.∴EH=4+2=6.由勾股定理得:HB===2.∴BE===4.当DP=DF时.﹣x+12=4.解得:x=.∴BQ=14﹣x=14﹣=.∵>4.∴BQ>BE;②(Ⅰ)当PQ经过点D时.如图3所示:y=0.则x=10;(Ⅱ)当PQ经过点C时.如图4所示:∵BF=16.∠FCB=90°.∠CBF=30°.∴CF=BF=8.∴CD=8+4=12.∵FQ∥DP.∴△CFQ∽△CDP.∴=.∴=.解得:x=;(Ⅲ)当PQ经过点A时.如图5所示:∵PE∥BQ.∴△APE∽△AQB.∴=.由勾股定理得:AE===6.∴AB=6+4=10.∴=.解得:x=.由图可知.PQ不可能过点B;综上所述.当x=10或x=或x=时.PQ所在的直线经过四边形ABCD的一个顶点.【点评】本题是四边形综合题.主要考查了平行四边形的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强.难度较大.熟练掌握平行四边形的判定与性质是解题的关键.。
中考数学模拟测试卷带答案
中考数学模拟测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)﹣37的相反数是()A.﹣37B.37C.D.2.(3分)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°3.(3分)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y34.(3分)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD5.(3分)如图,AD是△ABC的高.若BD=2CD=6,tanC=2,则边AB的长为()A.3B.3C.3D.66.(3分)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.7.(3分)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°8.(3分)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1二、填空题(共5小题,每小题3分,计15分)9.(3分)计算:3﹣=.10.(3分)实数a,b在数轴上对应点的位置如图所示,则a﹣b.(填“>”“=”或“<”)11.(3分)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.12.(3分)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.13.(3分)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.三、答案题(共13小题,计81分.答案应写出过程)14.(5分)计算:5×(﹣3)+|﹣|﹣()0.15.(5分)解不等式组:.16.(5分)化简:(+1)÷.17.(5分)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)18.(5分)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE =∠A.求证:DE=BC.19.(5分)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C (﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是;(2)请在图中画出△A'B'C'.20.(5分)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21.(6分)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.22.(7分)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6﹣4﹣202…输出y…﹣6﹣22616…根据以上信息,答案下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23.(7分)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60850B60≤t<901675C90≤t<12040105D t≥12036150根据上述信息,答案下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.24.(8分)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.25.(8分)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x 轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.26.(10分)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.参考答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.【知识点】相反数.【答案】解:﹣37的相反数是﹣(﹣37)=37故选:B.2.【知识点】平行线的性质.【答案】解:∵AB∥CD,∠1=58°∴∠C=∠1=58°∵BC∥EF∴∠CGF=∠C=58°∴∠2=180°﹣∠CGF=180°﹣58°=122°故选:B.3.【知识点】单项式乘单项式.【答案】解:原式=2×(﹣3)x1+2y3=﹣6x3y3.故选:C.4.【知识点】矩形的判定;平行四边形的性质.【答案】解:A、▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项A 不符合题意;B、∵▱ABCD中,AC⊥BD∴▱ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,AB=AD∴▱ABCD是菱形,故选项C不符合题意;D、∵▱ABCD中,AC=BD∴▱ABCD是矩形,故选项D符合题意;故选:D.5.【知识点】解直角三角形.【答案】解:∵2CD=6∴CD=3∵tanC=2∴=2∴AD=6在Rt△ABD中,由勾股定理得AB=故选:D.6.【知识点】一次函数图象上点的坐标特征;二元一次方程组的解.【答案】解:将点P(3,n)代入y=﹣x+4得n=﹣3+4=1∴P(3,1)∴关于x,y的方程组的解为故选:C.7.【知识点】圆周角定理.【答案】解:如图,连接OB∵∠C=46°∴∠AOB=2∠C=92°∵OA=OB∴∠OAB==44°.故选:A.8.【知识点】二次函数的性质.【答案】解:抛物线的对称轴为直线x=﹣=1∵﹣1<x1<0,1<x2<2,x3>3而抛物线开口向上∴y2<y1<y3.故选B.二、填空题(共5小题,每小题3分,计15分)9.【知识点】实数的运算;算术平方根.【答案】解:原式=3﹣5=﹣2.故答案为:﹣2.10.【知识点】实数与数轴.【答案】解:∵b与﹣b互为相反数∴b与﹣b关于原点对称,即﹣b位于3和4之间∵a位于﹣b左侧∴a<﹣b故答案为:<.11.【知识点】黄金分割.【答案】解:∵BE2=AE•AB设BE=x,则AE=(2﹣x)∵AB=2∴x2=2(2﹣x)即x2+2x﹣4=0解得:x1=﹣1,x2=﹣1﹣(舍去)∴线段BE的长为(﹣1+)米.故答案为:(﹣1+).12.【知识点】待定系数法求反比例函数解析式;关于x轴、y轴对称的点的坐标;正比例函数的性质;反比例函数图象上点的坐标特征.【答案】解:∵点A'与点A关于y轴对称,点A(﹣2,m)∴点A'(2,m)∵点A'在正比例函数y=x的图象上∴m==1∴A(﹣2,1)∵点A(﹣2,1)在一个反比例函数的图象上∴反比例函数的表达式为y=﹣故答案为:y=﹣.13.【知识点】相似三角形的判定与性质;勾股定理;菱形的性质.【答案】解:连接AC交BD于O∵四边形ABCD为菱形∴BD⊥AC,OB=OD=,OA=OC由勾股定理得:OA===∵ME⊥BD,AO⊥BD∴ME∥AO∴△DEM∽△DOA∴=,即=解得:ME=同理可得:NF=∴ME+NF=故答案为:.三、答案题(共13小题,计81分.答案应写出过程)14.【知识点】零指数幂;绝对值;实数的运算.【答案】解:5×(﹣3)+|﹣|﹣()0=﹣15+﹣1=﹣16+.15.【知识点】解一元一次不等式组.【答案】解:由x+2>﹣1,得:x>﹣3由x﹣5≤3(x﹣1),得:x≥﹣1则不等式组的解集为x≥﹣1.16.【知识点】分式的混合运算.【答案】解:(+1)÷=•==a+1.17.【知识点】作图—基本作图.【答案】解:如图,射线CP即为所求.18.【知识点】全等三角形的判定与性质;平行线的性质.【答案】证明:∵DE∥AB∴∠EDC=∠B在△CDE和△ABC中∴△CDE≌△ABC(ASA)∴DE=BC.19.【知识点】作图﹣平移变换;坐标与图形变化﹣平移.【答案】解:(1)∵A(﹣2,3),A'(2,3)∴点A、A'之间的距离是2﹣(﹣2)=4故答案为:4;(2)如图所示,△A'B'C'即为所求.20.【知识点】列表法与树状图法;概率公式.【答案】解:(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是故答案为:;(2)画树状图如下:共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种∴所选两个纸箱里西瓜的重量之和为15kg的概率为=.21.【知识点】相似三角形的应用.【答案】解:∵AD∥EG∴∠ADO=∠EGF∵∠AOD=∠EFG=90°∴△AOD∽△EFG∴=,即=∴AO=15同理得△BOC∽△AOD∴=,即=∴BO=12∴AB=AO﹣BO=15﹣12=3(米)答:旗杆的高AB是3米.22.【知识点】待定系数法求一次函数解析式;函数值.【答案】解:(1)当输入的x值为1时,输出的y值为y=8x=8×1=8故答案为:8;(2)将(﹣2,2)(0,6)代入y=kx+b得解得;(3)令y=0由y=8x得0=8x∴x=0<1(舍去)由y=2x+6,得0=2x+6∴x=﹣3<1∴输出的y值为0时,输入的x值为﹣3.23.【知识点】中位数;用样本估计总体;加权平均数.【答案】解:(1)(2)把100名学生的“劳动时间”从小到大排列,排在中间的两个数均在C组,故这100名学生的“劳动时间”的中位数落在C组故答案为:C;(2)=×(50×8+75×16+105×40+105×36)=112(分钟)答:这100名学生的平均“劳动时间”为112分钟;(3)1200×=912(人)答:估计在该校学生中,“劳动时间”不少于90分钟的人数为912人.24.【知识点】相似三角形的判定与性质;垂径定理;切线的性质.【答案】(1)证明:∵AM是⊙O的切线∴∠BAM=90°∵∠CEA=90°∴AM∥CD∴∠CDB=∠APB∵∠CAB=∠CDB∴∠CAB=∠APB.(2)解:如图,连接AD∵AB是直径∴∠CDB+∠ADC=90°∵∠CAB+∠C=90°,∠CDB=∠CAB∴∠ADC=∠C∴AD=AC=8∵AB=10∴BD=6∵∠BAD+∠DAP=90°,∠PAD+∠APD=90°∴∠APB=∠DAB∵∠BDA=∠BAP∴△ADB∽△PAB∴=∴PB===∴DP=﹣6=.故答案为:.25.【知识点】二次函数的应用.【答案】解:(1)由题意抛物线的顶点P(5,9)∴可以假设抛物线的解析式为y=a(x﹣5)2+9把(0,0)代入,可得a=﹣∴抛物线的解析式为y=﹣(x﹣5)2+9;(2)令y=6,得﹣(x﹣5)2+9=6解得x1=+5,x2=﹣+5∴A(5﹣,6),B(5+,6).26.【知识点】三角形综合题.【答案】解:(1)∵△ABC为等边三角形∴AB=AC,∠BAC=60°∵AD是等边△ABC的中线∴∠PAC=∠BAC=30°∵AP=AC∴∠APC=×(180°﹣30°)=75°故答案为:75°;(2)如图2,连接PB∵AP∥BC,AP=BC∴四边形PBCA为平行四边形∵CA=CB∴平行四边形PBCA为菱形∴PB=AC=6,∠PBC=180°﹣∠C=60°∴BE=PB•cos∠PBC=3,PE=PB•sin∠PBC=3∵CA=CB,∠C=120°∴∠ABC=30°∴OE=BE•tan∠ABC=∴S四边形OECA=S△ABC﹣S△OBE=×6×3﹣×3×=;(3)符合要求理由如下:如图3,过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F∵CA=CD,∠DAC=45°∴∠ACD=90°∴四边形FDCA为正方形∵PE是CD的垂直平分线∴PE是AF的垂直平分线∴PF=PA∵AP=AC∴PF=PA=AF∴△PAF为等边三角形∴∠PAF=60°∴∠BAP=60°﹣45°=15°∴裁得的△ABP型部件符合要求.第21页共21页。
数学中考仿真模拟试题(word版含答案)
3.下列计算正确的是( )
A.2A3+3A3=5A6B.(x5)3=x8
C.﹣2m(m﹣3)=﹣2m2﹣6mD.(﹣3A﹣2)(﹣3A+2)=9A2﹣4
4.下列调查中,适宜采用全面调查方式的是()
A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状
C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件
【答案】
【分析】
用科学记数法表示较大的数时,一般形式为A×10n,其中1≤|A|<10,n为整数,据此判断即可.
【详解】
580亿=58000000000=5.8×1010.
故答案为:5.8×1010.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为A×10n,其中1≤|A|<10,确定A与n的值是解题的关键.
5.如图,在⊙O中,若∠C D B=60°,⊙O的直径A B等于4,则B C的长为()
A. B.2C.2 D.4
6.我国古代数学名著《算法统宗》中,有一道“群羊逐草”的问题,大意是:牧童甲在草原上放羊,乙牵着一只羊来,并问甲:“你的羊群有100只吗?”甲答:“如果在这群羊里加上同样的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”问牧童甲赶着多少只羊?若设这群羊有x只,则下列方程中,正确的是( )
11.如图:A B∥C D,直线MN分别交A B、C D于点E、F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=50°,则∠CFG= __________.
故选B.
【点睛】
本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.
7.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()
中考数学模拟测试试卷(附含有答案)
中考数学模拟测试试卷(附含有答案)(考试时间:120分钟;满分:150分)学校:___________班级:___________姓名:___________考号:___________第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的)1.2024的绝对值是()A.12024B.﹣12024C.2024D.-20242.如图,是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是()A. B. C. D.3.海水淡化是解决全球水资源危机的战略手段,根据《海水淡化利用发展行动计划(2021-2025年)》,到2025年我国海水淡化总规模将达到2900000吨/日以上.数字2 900 000用科学记数法表示为()A.0.29x107B.2.9x106C.29x105D.290x1044.将直角三角板和直尺按照如图位置摆放,若∠1=56°,则∠2的度数是()A.26°B.28°C.30°D.36°(第4题图)(第6题图)5.我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.实数a、b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是()A.|a|<|b|B.2a>2bC.ab>0D.a<-17.有四张大小和背面完全相同的不透明卡片,正面分别印有"前"、"程"、"朋"、"鹬"四个汉字,将这四张卡片背面朝上洗匀,甲随机抽出一张并放回,洗匀后,乙再随机抽出一张,则两人抽到汉字可以组成"墨朋"的概率是()A.12B.14C.16D.188.某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,弧AB 、弧CD 所在圆的圆心为点O ,点C 、D 分别在OA 和OB 上.已知消防车道宽AC=4m ,∠AOB=120°,则弯道外边缘AB 的长与内边缘CD 的长的差为( )A.4π3mB.8π3mC.16π3mD.32π3m(第8题图) (第9题图) 9.如图,在△ABC 中,AB=AC ,∠BAC=108°,分别以点A 、C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点,作直线MN 分别BC 和AC 于点D 、E ,连接AD .以下结论不正确的是( )A.∠BDA=72°B.BD=2AEC.CD CB =√5-12D.CA 2=CD ·CB 10.定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的"n 阶方点",例如,点(1,3)与点(12,2)都是函数y=2x+1图象的"3阶方点".若y 关于x 的二次函数y=(x -n)2+n 2-6的图象存在"n 阶方点",则n 的取值范围是( )A.1≤n≤65B.65≤n≤2C.2≤≤3D.1≤≤3第II 卷(非选择题 共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:xy -y 2= .12.若分式3x+1有意义,则x 的值可以是 .(写出一个即可)13.如图,矩形ABCD 内的图形来自中国古代的太极图,已知AB 长为6,BC 长为8,一小球在矩形ABCD 内自由地滚动,并随机停留在某区域,它最终停留在黑色区域的概率为 (结果保留π)(第13题图) (第14题图) (第15题图) (第16题图)14.如图所示,在△ABC 中,AB=AC=4,∠A=90°,以点A 为圆心,以AB 的长为半径作弧BC ,以BC 为直径作半圆弧BFC ,则阴影部分的面积为 。
数学中考仿真模拟试题word版含答案
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分120分,考试时间100分钟.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣52.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=34.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣85.下列图形中,不是正方体表面展开图的是()A .B .C .D .6.如图,在Rt △A B C 中,∠C =90°,A B =4,A C =3,则sin B =( )A .35B .45C .34D .√747.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =238.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0B .k <0,B >0C .k >0,B <0D .k >0,B >09.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是( )A .100°B .105°C .110°D .120°10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103二、填空题(每小题3分,共18分)在实数范围内有意义,则x的取值范围是.11.若式子√x−112.因式分解:y3﹣4y2+4y=.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.15.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.18.(4分)已知:如图,Rt△A B C 中,∠C =90°,M是A B 的中点,A N=1A B ,A N∥C M.2求证:MN=A C .19.(6分)先化简(1﹣xx−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥30),一周的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E (要求:尺规作图,保留作图痕迹,不写作法,要下结论); (2)在A D 边上截取A F =A B ,连接EF ,若A B =3,∠B =60°,求四边形A B EF 的面积.23.(10分)如图,直线y=x+B 与双曲线y=k(x>0)的交点为A (1,A ),与x轴的交点为B (﹣1,0),点C 为双曲x(x>0)上的一点.线y=kx(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.24.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 为AB上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 恰好是CD中点,求证:C E2=B E•B A ;是否为定值,如(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A BMN 果是,请求出这个值,如果不是,请说明理由.25.(12分)在平面直角坐标系中,点A 是抛物线y=﹣1x2+mx+2m+2与y轴的交点,点B 在该抛物线上,该抛2物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G.设点B 的横坐标为2m﹣1.(1)当m=1时,①当函数y的值随x的增大而增大时,自变量x的取值范围为.②求图象G最高点的坐标.(2)当m<0时,若图象G与x轴只有一个交点,求m的取值范围.(3)设图象G最高点与最低点的纵坐标之差为h,求h与m之间对应的函数关系式.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣5【答案】C【解答】解:与15为倒数的数为:5.故选:C .2.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .【答案】A【解答】解:A 、既是中心对称图形,又是轴对称图形,故本选项符合题意;B 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;D 、是中心对称图形,不是轴对称图形,故本选项不合题意.故选:A .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=3【答案】B【解答】解:A 、√2+√3,无法计算,故此选项错误;B 、√4×2=2√2,故此选项正确;C 、√6+2,无法计算,故此选项错误;D 、3√2﹣√2=2√2,故此选项错误;故选:B .4.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣8【答案】B【解答】解:0.000000125=1.25×10﹣7,故选:B .5.下列图形中,不是正方体表面展开图的是()A .B .C .D .【答案】C【解答】解:根据正方体的展开图的11种情况可得,C 选项中的图形不是它的展开图.故选:C .6.如图,在Rt△A B C 中,∠C =90°,A B =4,A C =3,则sin B =()A .35B .45C .34D .√74【答案】C【解答】解:∵在Rt △A B C 中,∠C =90°,A B =4,A C =3, ∴sin B =,故选:C .7.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =23【答案】C【解答】解:图2所示的算筹图我们可以表述为:{3x +2y =19x +4y =23.故选:C .8.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0 B .k <0,B >0C .k >0,B <0D .k >0,B >0【答案】D【解答】解:此题可通过观察图象求解,如图所示,(1)y =﹣x 只有向上平移时,图象才会经过第一象限,即B >0;(2)y =kx ﹣4(k ≠0),①k <0时,图象不经过第一象限,不合题意,②k >0时,图象经过第一象限,和y =﹣x +B 的交点在第一象限,符合题意.故选:D .9.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是()A .100°B .105°C .110°D .120°【答案】B【解答】解:过O 分别作OE ⊥A B 于E ,OF ⊥B C 于F ,连接OB ,则A E =B E =12A B =√22,B F =C F =12B C =√32,OB =1∴C os ∠OB E =OE OB =√32,C os ∠OB F =√32,∴∠OB E =45°,∠OB F =30°,∴∠A B C =∠OB E +∠OB F =75°,∵四边形A B C D 内接于⊙O ,∴∠A D C +∠A B C =180°,∴∠A D C =180°﹣75°=105°,故选:B .10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103【答案】B【解答】解:∵A +B =2,C ﹣3A =4,∴B =2﹣A ,C =3A +4,∵B ,C 都是非负数,∴{2−A ≥0①3A +4≥0②,解不等式①得,A ≤2,解不等式②得,A ≥﹣43,∴﹣43≤A ≤2,又∵A 是非负数,∴0≤A ≤2,S=A 2+B +C =A 2+(2﹣A )+3A +4, =A 2+2A +6,∴对称轴为直线A =﹣22×1=﹣1, ∴A =0时,最小值n=6,A =2时,最大值m=22+2×2+6=14, ∴m﹣n=14﹣6=8.故选:B .二、填空题(每小题3分,共18分)11.若式子在实数范围内有意义,则x的取值范围是.√x−1【答案】x>1【解答】解:根据题意得:x﹣1>0,解得:x>1,故答案为:x>1.12.因式分解:y3﹣4y2+4y=.【答案】y(y﹣2)2【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2.故答案为:y(y﹣2)2.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.【答案】56【解答】解:∵A B ∥C D ,∴∠A B E+∠B EC =180°,∵∠A B E=146°,∴∠B EC =180°﹣146°=34°,∵FE⊥C D ,∴∠C EF=90°,∴∠FEB =∠C EF﹣∠B EC =90°﹣34°=56°.故答案为:56.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.【答案】A ≥﹣43【解答】解:∵关于x的一元二次方程x2+4x﹣3A =0有实数根,∴△≥0,即42﹣4×(﹣3A )≥0,.解得A ≥﹣43故答案为:A ≥﹣4.315.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.【答案】20【解答】解:根据题意得6=0.3,m解得:m=20,经检验:m=20是分式方程的解,故答案为:20.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.【答案】①②③④【解答】解:在正方形A B C D 中,C D =B C ,∠B C D =90°,∴∠B C N +∠D C N =90°,又∵C N ⊥D M ,∴∠C D M +∠D C N =90°,∴∠B C N =∠C D M ,又∵∠C B N =∠D C M =90°,∴△C NB ≌△D MC (A SA ),故①正确;∵△C NB ≌△D MC ,∴C M =B N ,又∵∠OC M =∠OB N =45°,OC =OB ,∴△OC M ≌△OB N (SA S ),∴OM =ON ,∠C OM =∠B ON ,∴∠D OC +∠C OM =∠C OB +∠B PN ,即∠D OM =∠C ON ,又∵D O =C O ,∴△C ON ≌△D OM (SA S ),故②正确;∵∠B ON +∠B OM =∠C OM +∠B OM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△A OD 是等腰直角三角形,∴△OMN ∽△OA D ,故③正确;∵A B =B C ,C M =B N ,∴B M =A N ,又∵Rt △B MN 中,B M 2+B N 2=MN 2,∴A N 2+C M 2=MN 2,故④正确;∵△OC M ≌△OB N ,∴四边形B MON 的面积=△B OC 的面积=1,即四边形B MON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设B N =x =C M ,则B M =2﹣x ,∴△MNB 的面积=12x (2﹣x )=﹣12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1﹣12=12,故⑤错误,故答案为①②③④.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.【解答】解:原式=1+4﹣2×14=1+4﹣12 =92.18.(4分)已知:如图,Rt △A B C 中,∠C =90°,M 是A B 的中点,A N =12A B ,A N ∥C M . 求证:MN =A C .【解答】证明:在Rt △A B C 中,∠C =90°,∵M 是A B 的中点,∴C M =12A B , ∵A N =12A B ,∴C M =A N ,∵A N ∥C M ,∴四边形A C MN 是平行四边形.∴MN =A C .19.(6分)先化简(1﹣x x−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.【解答】解:原式=x−1−x x−1·(x+1)(x−1)(x−2)2 =−1x−1·(x+1)(x−1)(x−2)2 =﹣x+1(x−2)2,∵x ﹣1≤2,且x≠1,2,∴x ≤3,把x =3代入上式得,原式=﹣x+1(x−2)2=3+112=-4.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?【解答】解:(1)在这次评价中,共抽查的学生有:224÷40%=560(名).故答案为:560;(2)选择“讲解题目”的人数为:560-84-168-224=84(人),讲解题目组所在扇形的圆心角的大小是:360°×84560=54°.故答案为:54°;(3)168560×12000=3600(人),答:在试卷讲评课中,“独立思考”的学生约有3600人.21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y 件.(1)直接写出y与x的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?【解答】(1)依题意得:y=500-10(x-30)=-10x+800(x≥30).(2)依题意得:(x-20)(-10x+800)=8000,整理得:x2-100x+2400=0,解得:x1=40,x2=60.当x=40时,20(-10x+800)=8000(元),8000>5000,不合题意,舍去;当x=60时,20(-10x+800)=4000(元),4000<5000,符合题意.答:销售单价应定为60元.22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E(要求:尺规作图,保留作图痕迹,不写作法,要下结论);(2)在A D 边上截取A F=A B ,连接EF,若A B =3,∠B =60°,求四边形A B EF的面积.【解答】解:(1)如图,A E即为所求;(2)在平行四边形A B C D 中,A D ∥B C ,∴∠D A E=∠A EB ,由(1)知:A E平分∠B A D ,∴∠D A E=∠B A E,∴∠A EB =∠B A E,∴A B =EB ,∵A B =A F,∴A F =B E ,∴A F ∥B E ,∴四边形A B EF 是平行四边形,∵A B =A F ,∴▱A B EF 是菱形,作A H ⊥B E 于点H ,∵A B =B E =3,∠B =60°,∴A H =3√32, ∴四边形A B EF 的面积为:B E ×A H =3×3√32=9√32.23.(10分)如图,直线y =x +B 与双曲线y =k x (x >0)的交点为A (1,A ),与x 轴的交点为B (﹣1,0),点C 为双曲线y =k x (x >0)上的一点.(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.【解答】解:(1)∵直线A B 过点B (﹣1,0),∴﹣1+B =0,解得:B =1,∴直线A B 的表达式为y =x +1.∵点A (1,A )在直线A B 上,∴A =1+1=2,∴点A 的坐标为(1,2).又∵双曲线y =k x (x >0)过点A (1,2),∴k =1×2=2,∴反比例函数的表达式为y =2x (x >0). (2)在图1中,过点C 作C D ⊥x 轴于点D ,过点O 作OE ⊥A B 于点E ,设直线A B 与y 轴交于点M . ∵直线A B 的表达式为y =x +1,OC ∥A B ,∴直线OC 的表达式为y =x .联立两函数表达式成方程组,{y =x y =2x,解得:{x =√2y =√2或{x =−√2y =−√2(不合题意,舍去), ∴点C 的坐标为(√2,√2),∴OD =C D =√2,∴OC =√OD 2+C D 2=2.当x =0时,y =0+1=1,∴点M 的坐标为(0,1),∴OM =OB =1,∴△B OM 为等腰直角三角形,∴OE =12B M =12√OB 2+OM 2=√22, ∴S △A OC =12OC •OE =12×2×√22=√22.(3)在图1中,过点A 作A F ⊥x 轴于点F ,则B F =1﹣(﹣1)=2,A F =2,∴A B =√B F 2+A F 2=2√2,∴A E =A B ﹣B E =2√2﹣√22=3√22, ∴tA n ∠OA E =OE A E =13.∵OB =OM ,∠B OM =90°,∴∠A B O =45°.在图2中,过点C 作C N ⊥x 轴于点N .∵∠A ON =∠A B O +∠B A O ,∠A OC =∠A B O =45°,∠A ON =∠A OC +∠C ON ,∴∠C ON =∠B A O ,∴tA n ∠C ON =13.设点C 的坐标为(m,1m),3∵点C 在反比例函数y=2(x>0)的图象上,x∴m×1m=2,3∴m=√6或m=﹣√6(舍去),).∴点C 的坐标为(√6,√6324.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 中点,求证:C E2=B E•B A ;(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A B是否为定值,如MN 果是,请求出这个值,如果不是,请说明理由.【解答】解:(1)∵=,∴∠C A B =∠C D B =40°,∵∠A B C +∠A C B +∠C A B =180°,∠A B C =∠A C B =α,∴α=12×(180°−40°)=70°;(2)证明:∵点B 的中点,∴=,∴∠D C B =∠A ,∵∠A B C =∠C B E,∴△B C E∽△B A C ,∴B CB A =B EB C,∴B C 2=B E•B A ,∵∠A C B =∠A C D +∠B C D ,∠B EC =∠A C D +∠A ,∠B C D =∠A ,∴∠A B C =∠A C B =∠B EC ,∴C B =C E,∴C E2=B E•B A ;(3)是定值.∵将C D 分别沿B C 、A C 翻折得到C M、C N,∴∠D C N=2∠D C A ,∠D C M=2∠D C B ,C N=C D =C M=2r,∴∠MC N=2∠A C B =2α,过点C 作C Q⊥MN于点Q,则MN=2NQ,∠NC Q=12∠MC N=α,∠C QN=90°,连接A O并延长交⊙O于点P,连接B P,则∠A B P=90°,,∴∠P=∠A C B =∠NC Q=α,∵A P=C N,∠A B P=90°=∠NQC ,∴△A B P ≌△NQC (A A S ),∴A B =NQ =12MN ,∴A B MN =12,A B MN 为定值.25.(12分)在平面直角坐标系中,点A 是抛物线y =﹣12x 2+mx +2m +2与y 轴的交点,点B 在该抛物线上,该抛物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G .设点B 的横坐标为2m ﹣1.(1)当m =1时,①当函数y 的值随x 的增大而增大时,自变量x 的取值范围为 .②求图象G 最高点的坐标.(2)当m <0时,若图象G 与x 轴只有一个交点,求m 的取值范围.(3)设图象G 最高点与最低点的纵坐标之差为h ,求h 与m 之间对应的函数关系式.【解答】解:(1)①当m =1时,抛物线的表达式为y =﹣12x 2+x +2, ∵-12<0,故抛物线开口向下,当函数y 的值随x 的增大而增大时,则图象在对称轴的左侧,即x ≤1,故答案为x ≤1;②函数的对称轴为x =1,当x =1时,y =﹣12x 2+x +2=92, 即点G 的坐标为(1,92);(2)当x =2m ﹣1时,y =﹣12x 2+mx +2m +2=3m +32,则点B 的坐标为(2m ﹣1,3m +32), 同理,点A 的坐标为(0,2m +2),∵m <0,则y B ﹣y A =3m +32﹣2m ﹣2=m ﹣12<0,即点A 在点B 的上方,故当y A >0且y B ≤0时,符合题意,即2m +2>0且3m +32≤0, 解得﹣1<m ≤﹣12;(3)设抛物线的顶点为H ,则点H (m ,12m 2+2m +2),由抛物线的表达式知,点A 、B 的坐标分别为(0,2m +2)、(2m ﹣1,3m +32), ①当m ≤0时,由(2)知,y B <y A ,而y H ﹣y A =12m 2+2m +2﹣2m ﹣2≥0,故图象G 的H 点和B 点分别是最高和最低点,则h =y H ﹣y B =12m 2+2m +2﹣3m ﹣32=12m 2﹣m +12;②当0<m ≤12时,此时点A 、B 分别是G 的最高和最低点,则h =y A ﹣y B =(2m +2)﹣(3m +32)=﹣m +12;③当12<m ≤1时,此时点B 、A 分别是G 的最高和最低点,则h =y B ﹣y A =m ﹣12;④当m >1时,此时点H 、A 分别是G 的最高和最低点,则h =y H ﹣y A =12m 2;∴h ={12m 2−m +12(m ≤0)−m +12(0<m ≤12)m −12(12<m ≤1)12m 2(m >1)。
中考数学模拟试卷word版含答案
A. B. C. D.
4.若一个扇形的圆心角为90°,半径为6,则该扇形的面积为()
A. B. C. D.
5.已知一组数据 方差 ,则 的值为()
A.22B.21C.20D.7
6.有下列四个函数:①y=4x;②y= ;③y= ;④y= ,其中图象经过如图所示的阴影部分(包括边界)的函数有()
14.如图,A B是⊙O的直径,C D是弦,若B C=1,A C=3,则tAn∠A D C的值为_____.
【答案】3
【解析】
【分析】根据A B是⊙O的直径,求出∠A C B=90°,根据圆周角定理得出∠A D C=∠A B C,运用锐角三角函数的概念求出答案.
【详解】解:∵A B是⊙O的直径,
∴∠A C B=90°,
19.某校组织学生参加“新冠肺炎”防疫知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如表(未完成),解答下列问题:
(1)样本容量为,频数分布直方图中A=;
(2)扇形统计图中E小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上(不含80分)为优秀,全校共有3000名学生,估计成绩优秀的学生有多少名?
函数y=﹣(x )2 的图象开口向下,对称轴是直线x ,
当x=1时,y 3,
当x=2时,y 3,
故④不符合题意;
故选:A.
【点睛】本题考查一次函数的图象、二次函数的图象、反比例函数的图象,解答本题的关键是明确题意,利用它们的性质解答.
二、填空题
7.化简: ______.
【答案】3
【解析】
【详解】分析:根据算术平方根的概念求解即可.
中考数学模拟考试word版含答案
故选B.
[点睛]考核知识点:中心对称图形的识别.
4.为了防控输入性”新冠肺炎”,某医院成立隔离治疗发热病人防控小组,决定从内科3位骨干医师中(含有甲)抽调2人组成.则甲一定会被抽调到防控小组的概率是( )
[详解]∵△A B C在平面内绕点A逆时针旋转到△A B'C'的位置,
∴A C=A C′,∠C A C′为旋转角,
∵C C'∥A B,
∴∠A C C′=∠C A B=30°,
∵A C=A C′,
∴∠A C′C=∠A C C′=30°,
∴∠C A C′=180°-30°-30°=120°,
∴旋转角的度数为120°.
A. 2B. 2.5C. 3D. 3.5
9.如图,⊙O是△A B C的外接圆,B C=2,∠B A C=30°,则劣弧 的长等于()
A. B. C. D.
10.抛物线 的顶点为 ,与 轴的一个交点 在点 和 之间,其部分图象如图,则以下结论:① ;②当 时, 随 增大而减小;③ ;④若方程 没有实数根,则 ;⑤ .其中正确结论的个数是( ).
16.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.
17.如图所示,正方形A B C D的面积为12,△A BE是等边三角形,点E在正方形A B C D内,在对角线A C上有一点P,使PD+PE的和最小,则这个最小值为_____.
[详解]A.(xy)3= ;B.x5÷x5=1;D.5x2y3+2x2y3=7x2y3
中考数学全真模拟试卷(word版含答案)
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-12020的倒数的相反数为()A .-2020B .1C .2020D .1 20202.式子3x 在实数范围内有意义,则x的取值范围是()A .x≥0B .x≥﹣3C .x≥3D .x≤﹣33.在一个不透明的袋子中装有6个除颜色外完全相同的小球,其中黄球2个,红球2个,白球2个,“从中任意摸出2个球,它们的颜色相同”,这一事件是()A .必然事件B .不可能事件C .随机事件D .确定事件4.下列图形中是轴对称图形是()A .B .C .D .5.如图的几何体是由5个相同的小正方体搭成的,若从下列图形中选出该几何体的主视图、左视图和俯视图,则落选的是()A .B .C .D .6.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是( )A .16B .14C .13D .127.已知点A 是双曲线y=1x在第一象限分支上的一个动点,连接A O并延长交另一分支于点B ,以A B 为边作等边三角形A B C ,点C 在第四象限内,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y=kx(x>0)上运动,则k的值是()A .3B .3C .﹣3D .﹣38.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒A .200B .150C .100D .809.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A .1B .2C .3D .510.如图,动点M 从(0,3)出发,沿y 轴以每秒1个单位长度的速度向下移动,同时动点N 从(4,0)出发,沿x 轴以每秒2个单位长度的速度向右移动,当点M 移动到O 点时,点M 、N 同时停止移动.点P 在第一象限内,在M 、N 移动过程中,始终有PM PN ⊥,且PM PN =.则在整个移动过程中,点P 移动的路径长为( )A .322B .332C .5D .253二、填空题:本题共6小题,每小题3分,共18分.11.在327、m 、4、6、2a 、12102a a ⎛⎫-<< ⎪⎝⎭中,二次根式有______. 12.如果A +B =2,那么a b a b b a+--22的值是_____. 13.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_______.14.如图,在五边形A B C D E 中,3AB AE ==45CAD ∠=︒, 90E EAB B ∠=∠=∠=︒,点 A 到直线C D 的距离为__________15.关于x的方程412ax x-=-的解为正整数,且关于x的不等式组128263a xxx-≤⎧⎪-⎨+>⎪⎩有解且最多有7个整数解,则满足条件的所有整数a的值为_______.16.对于任意实数A ,B ,定义一种运算“◇”如下:A ◇B =A (A -B )+B (A +B ),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____.三、解答题:共8题、共72分.解答应写出文字说明、证明过程或演算步骤.17.已知三个互不相等的有理数,既可以表示为1,A ,A +B 的形式,又可以表示0,ba,B 的形式,试求A 2n-1A 2n(n≥1)的值.18.如图,A B 和C D 相交于点O,EF∥A B ,∠C =∠C OA ,∠D =∠B OD .求证:∠A =∠F.19.某学校七年级、八年级各有500名学生,为了解两个年级的学生对垃圾分类知识的掌握情况,学校从七年级、八年级各随机抽取20名学生进行垃圾分类知识测试,满分100分,成绩整理分析过程如下,请补充完整:(收集数据)七年级20名学生测试成绩统计如下:67,58,64,56,69,70,95,84,74,77,78,78,71,86,91,86,86,92,86,70(整理数据)按照如下分数段整理、描述两组样本数据:成绩5060x≤<6070x≤<7080x≤<8090x≤<90100x≤≤(分析数据)两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差七年级76.9 a b126.2八年级79.2 81 74 100.4(1)请直接写出a,b的值;(2)根据抽样调查数据,估计七年级垃圾分类知识测试成绩在80分及其以上的大约有多少人?(3)通过以上分析,你认为哪个年级对垃圾分类知识掌握得更好,并说明推断的合理性(说明两条理由即可).20.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为,边长为.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A ,那么点A 表示的数是.(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是.21.如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数12(0)y xx=>图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A 、与y轴交于点B ,连接A B .(1)求证:P为线段A B 的中点;(2)求△A OB 的面积.22.如图,在平面直角坐标系中,函数y =2x +8的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线A M 的函数解析式.(2)试在直线A M 上找一点P ,使得S △A B P =S △A OB ,求出点P 的坐标.(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是平行四边形?若存在,请直接写出所有点H 的坐标;若不存在,请说明理由.23.思维探索:在正方形A B C D 中,A B =4,∠EA F 的两边分别交射线C B ,D C 于点E ,F ,∠EA F =45°. (1)如图1,当点E ,F 分别在线段B C ,C D 上时,△C EF 的周长是 ;(2)如图2,当点E ,F 分别在C B ,D C 的延长线上,C F =2时,求△C EF 的周长;拓展提升:如图3,在Rt △A B C 中,∠A C B =90°,C A =C B ,过点B 作B D ⊥B C ,连接A D ,在B C 的延长线上取一点E ,使∠ED A =30°,连接A E ,当B D =2,∠EA D =45°时,请直接写出线段C E 的长度.24.已知抛物线21:65L y x x =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为M .(1)请求出C 、M 两点的坐标;(2)将抛物线21:65L y x x =-+绕平面内的某一点旋转180°,旋转后得到抛物线2L ,抛物线2L 的顶点为M ',与x 轴相交于E 、P 两点(点F 在点E 的右侧),使得抛物线2L 过点M ,且以点C 、M 、M '、F 为顶点的四边形为平行四边形,请求出所有满足条件的抛物线2L 的顶点坐标.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-12020的倒数的相反数为()A .-2020B .1C .2020D .1 2020【答案】C【分析】根据倒数和相反数的定义解答即可.【详解】解:﹣12020的倒数是﹣2020,﹣2020的相反数是2020.故选:C .【点评】本题考查了倒数和相反数的定义,属于应知应会题型,熟练掌握基础知识是解题的关键.2x的取值范围是()A .x≥0B .x≥﹣3C .x≥3D .x≤﹣3【答案】B【分析】根据二次根式有意义的条件解题即可.【详解】∵30x∴+≥3x∴≥-故选:B .【点评】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是关键.3.在一个不透明的袋子中装有6个除颜色外完全相同的小球,其中黄球2个,红球2个,白球2个,“从中任意摸出2个球,它们的颜色相同”,这一事件是()A .必然事件B .不可能事件C .随机事件D .确定事件【答案】C【解析】在一个不透明的袋子中装有6个除颜色外完全相同的小球,其中黄球2个,红球2个,白球2个,从中任意摸出2个球,有红黄、红白、黄白、白白、黄黄、红红6种可能,从中任意摸出2个球,它们的颜色相同可能发生,也可能不发生,所以这一事件是随机事件.故选C4.下列图形中是轴对称图形是()A .B .C .D .【答案】A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:A .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图的几何体是由5个相同的小正方体搭成的,若从下列图形中选出该几何体的主视图、左视图和俯视图,则落选的是()A .B .C .D .【答案】B【分析】分别从正面,左面,上面看,得到该组合体的三种视图,从而可得出答案.【详解】解:从正面看得到主视图是,A故A不符合题意;从左面看得到左视图是C,故C不符合题意;从上面看得到的俯视图是D,故D不符合题意;所以落选的是B,故B符合题意;故选.B【点评】本题考查的是简单组合体的三视图,掌握三种视图的知识是解题的关键.6.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是( )A .16B .14C .13D .12【答案】C【分析】列举出所有可能,进而求出和为偶数的概率.【详解】画树状图如下:由树状图知共有6种等可能结果,其中和为偶数的有2种结果,所以两个球上的数字之和为偶数的概率为2 6=13.故选C .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B 的结果数目m,然后根据概率公式求出事件A 或B 的概率.7.已知点A 是双曲线y=1x在第一象限分支上的一个动点,连接A O并延长交另一分支于点B ,以A B 为边作等边三角形A B C ,点C 在第四象限内,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y=kx(x>0)上运动,则k的值是()A .3B 3C .﹣3D 3【答案】C【分析】连接OC ,根据反比例函数的中心对称性质,知OA =OB ,根据等腰三角形三线合一,可得OC ⊥A B ,且OC :3 A 作A D ⊥x轴,垂足为点D ,过点C 作C E⊥x轴,垂足为点E,可证明△D OA ∽△EC O,得EC =3D O,OE=3A D ,把线段转化为坐标,结合反比例函数的解析式求解即可.【详解】如图,连接OC ,根据反比例函数的中心对称性质,得OA =OB ,∵△A B C 是等边三角形,∴OC ⊥A B ,∠OC A =30°,∴OC :OA =3,过点A 作A D ⊥x轴,垂足为点D ,过点C 作C E⊥x轴,垂足为点E,∴∠A D O=∠OEC =90°,∵∠A OD +∠OA D =90°,∠A OD +∠C OE=90°,∴∠OA D =∠C OE,∴△D OA ∽△EC O,∴EC :D O=OE:A D =OC :A D ,∴EC =3D O,OE=3A D ,设点A (A ,B ),则D O=A ,A D =B ,A B =1,∵点C 在第四象限,∴点C 的坐标为(3B ,-3A ),∵点C 始终在双曲线y=kx(x>0)上运动,∴k=(-3A )×3B = -3A B = -3,故选C .【点评】本题考查了反比例函数的对称性,等腰三角形三线合一的性质,三角形的相似,坐标与线段之间的关系,熟练掌握反比例函数的对称性,灵活选择方法证明三角形的相似是解题的关键.8.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒A .200B .150C .100D .80【答案】C【分析】首先求得C 点的纵坐标,即A 的值,则C D 段的路程可以求得,时间是560-500=60秒,则乙跑步的速度即可求得.【详解】解:根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;甲跑500秒时的路程是:500×1.5=750米,则C D 段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.故选:C .【点评】本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息是关键.9.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A .1B .2C .3D .5【答案】A【分析】先得出青蛙前4次跳后它停的点所对应的数,再归纳类推出一般规律,由此即可得出答案.【详解】由题意得:青蛙第1次跳到的那个点是3,青蛙第2次跳到的那个点是5,青蛙第3次跳到的那个点是2,青蛙第4次跳到的那个点是1,归纳类推得:青蛙跳后它停的点所对应的数是以3,5,2,1循环往复的,因为20204505=⨯,所以经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1,故选:A .【点评】本题考查了数字变化类的规律型问题,依据题意,正确归纳类推出一般规律是解题关键. 10.如图,动点M 从(0,3)出发,沿y 轴以每秒1个单位长度的速度向下移动,同时动点N 从(4,0)出发,沿x 轴以每秒2个单位长度的速度向右移动,当点M 移动到O 点时,点M 、N 同时停止移动.点P 在第一象限内,在M 、N 移动过程中,始终有PM PN ⊥,且PM PN =.则在整个移动过程中,点P 移动的路径长为( )A 322B 332C 5D 253【答案】A【分析】由题意过P 点作PD ON ⊥交于D 点,作PE OM ⊥交于E 点,并利用全等三角形判定()PEM PDN AAS ≅,得出PE PD =,从而分当0t =时,有M (0,3),N (4,0),设P 点坐标为(,)m m 以及当3t =时,有M 、O (0,0),N 、H (10,0),设P 点坐标为(,)n n ,求出P 点坐标,继而由点P 移动的路径为一条线段利用两点间距离公式求得点P 移动的路径长.【详解】解:由题意过P 点作PD ON ⊥交于D 点,作PE OM ⊥交于E 点,如图,∵PM PN ⊥,∴NPD DPM DPM EPM ∠+∠=∠+∠,∴NPD EPM ∠=∠,∵90NPD EPM PEM PDN PM PN ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴()PEM PDN AAS ≅,即有PE PD =,由题意可知03t ≤≤,当0t =时,有M (0,3),N (4,0),设P 点坐标为(,)m m ,由PE PD =,即有()()()()22220340m m m m -+-=-+-,解得72m =, 即此时P 点坐标为77(,)22;当3t =时,有M 、O (0,0),N 、H (10,0),设P 点坐标为(,)n n ,由PM PN =即图上PO PH =,即有()()()()222200100n n n n -+-=-+-,解得5n =,即此时P 点坐标为(5,5);由图可知点P 移动的路径为一条线段, 则点P 22277552322⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭故选:A .【点评】本题考查平面直角坐标系点的运动问题,熟练掌握全等三角形的性质和判定以及两点间距离公式是解题的关键.二、填空题:本题共6小题,每小题3分,共18分.11102a ⎫<<⎪⎭中,二次根式有______.【分析】根据二次根式的定义: A ≥0)的代数式叫做二次根式,逐一判定即可.102a ⎫<<⎪⎭不能确定m 的取.【点评】此题主要考查对二次根式的理解,熟练掌握,即可解题.12.如果A +B =2,那么a b a b b a+--22的值是_____. 【答案】2【分析】先将原式化为同分母分式的减法,再依据法则计算、化简,继而将A +B 的值代入计算可得.【详解】原式=2-a a b ﹣2b a b - =22a b a b-- =()()a b a b a b+-- =A +B ,当A +B =2时,原式=2,故答案为:2.【点评】此题主要考查分式的化简求值,熟练掌握,即可解题.13.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_______.【答案】28【详解】解:把这一组数据从小到大依次排列为20,24,27,28,31,34,38,最中间的数字是28,所以这组数据的中位数是28故答案为:2814.如图,在五边形A B C D E 中,3AB AE ==,45CAD ∠=︒, 90E EAB B ∠=∠=∠=︒,点 A 到直线C D 的距离为__________【答案】3【分析】延长ED 与B C 交于点F ,作A H ⊥D C 于点H ,先证明出四边形A EFB 是正方形,然后将△A B C 逆时针旋转90°得到△A EG ,通过证明△GA D ≌△C A D 证明出A H=A E 最终得出答案.【详解】如图,延长ED 与B C 交于点F ,作A H ⊥D C 于点H ,∵90E EAB B ∠=∠=∠=︒,∴四边形A EFB 是矩形,∵A B =A E ,∴四边形A EFB 是正方形,将△A B C 逆时针旋转90°得到△A EG ,如图所示,则A G=A C ,∠GA E=∠C A B ,∵45CAD ∠=︒,∴∠C A B +∠D A E=45°,∴∠GA D =∠GA E+∠D A E=45°,∴∠GA D =∠C A D ,在△GA D 与△C A D 中,∵GA =C A ,∠GA D =∠C A D ,A D =A D ,∴△GA D ≌△C A D (SA S),∴A H=A E=3,故答案为3.【点评】本题主要考查了正方形与全等三角形的综合运用,熟练掌握相关概念是解题关键.15.关于x的方程412ax x-=-的解为正整数,且关于x的不等式组128263a xxx-≤⎧⎪-⎨+>⎪⎩有解且最多有7个整数解,则满足条件的所有整数a的值为_______.【答案】﹣2,﹣1【分析】表示出分式方程的解,由分式方程的解为正整数确定出A 的值,表示出不等式组的解集,由不等式组最多有7个整数解,即可得到A 的取值范围,从而得出满足条件的所有整数A 的值.【详解】解:分式方程去分母得:8﹣4x=A x﹣x,解得:x=83a+,由分式方程解为正整数,得到A +3=1,2,4,8,解得:A =﹣2,﹣1,1,5,又∵x≠2,∴A ≠1,∴A =﹣2,﹣1,5,不等式组整理得:5xx a<⎧⎨≥⎩,解得:A ≤x<5,由不等式组有解且最多有7个整数解,得到整数解为4,3,2,1,0,﹣1,﹣2,∴﹣3<A <5,∴整数解为4,3,2,1,0,﹣1,﹣2,则满足题意A 的值为﹣2,﹣1,故答案为:﹣2,﹣1.【点评】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握各自的解法是解本题的关键.16.对于任意实数A ,B ,定义一种运算“◇”如下:A ◇B =A (A -B )+B (A +B ),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____. 【答案】5 【解析】3◇2=()()3322323662-++=-++=5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,A 对应3,B 对应2,即将A =3,B =2,代入到代数式A (A -B )+B (A +B )中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.三、解答题:共8题、共72分.解答应写出文字说明、证明过程或演算步骤.17.已知三个互不相等的有理数,既可以表示为1,A ,A +B 的形式,又可以表示0,b a ,B 的形式,试求A 2n-1A 2n (n≥1)的值.【答案】-1.【分析】由于b a 有意义,则A ≠0,则应有A +B =0,则b a=-1,故只能B =1,A =-1了,再代入代数式求解. 【详解】解:由题可得:A ≠0,A +B =0,∴b a=-1,B =1, ∴A =-1,又∵2n-1为奇数,-1的奇数次方得-1;2n 为偶数,-1的偶数次方得1,∴A 2n-1•A 2n =(-1)2n-1×(-1)2n =-1×1=-1. 【点评】本题主要考查了实数的运算,解决问题的关键是根据已知条件求出未知数A ,B 的值. 18.如图,A B 和C D 相交于点O ,EF ∥A B ,∠C =∠C OA ,∠D =∠B OD .求证:∠A =∠F .【答案】见解析.【解析】【分析】求出∠C =∠D ,根据平行线的判定得出A C ∥D F ,根据平行线的性质得出∠A =∠D B O ,∠F =∠D B O ,即可得出答案.【详解】证明:∵∠A OC =∠D OB ,∠C =∠C OA ,∠D =∠B OD ,∴∠C =∠D ,∴A C ∥D F,∴∠A =∠D B O,∵EF∥A B ,∴∠F=∠D B O,∴∠A =∠F.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.19.某学校七年级、八年级各有500名学生,为了解两个年级的学生对垃圾分类知识的掌握情况,学校从七年级、八年级各随机抽取20名学生进行垃圾分类知识测试,满分100分,成绩整理分析过程如下,请补充完整:(收集数据)七年级20名学生测试成绩统计如下:67,58,64,56,69,70,95,84,74,77,78,78,71,86,91,86,86,92,86,70(整理数据)按照如下分数段整理、描述两组样本数据:(分析数据)两组样本数据的平均数、中位数、众数、方差如下表所示:八年级79.2 81 74 100.4(1)请直接写出a,b的值;(2)根据抽样调查数据,估计七年级垃圾分类知识测试成绩在80分及其以上的大约有多少人?(3)通过以上分析,你认为哪个年级对垃圾分类知识掌握得更好,并说明推断的合理性(说明两条理由即可).【答案】(1)A =77.5,B =86,(2)200人,(3)八年级对垃圾分类知识掌握得更好.理由见解析.【分析】(1)根据中位数、众数的意义可求;(2)求出样本中七年级垃圾分类知识测试成绩在80分及其以上的百分比,再用它来估计总体;(3)根据平均数和方差可判断.【详解】解:(1)将七年级的数据从小到大排列,56,58,64,67,69,70,70,71,74,77,78,78,84,86,86,86,86,91,92,95.中位数是:(77+78) ÷2=77.5,众数是:86,故A =77.5,B =86.(2)500×820=200(人),答:根据抽样调查数据,估计七年级垃圾分类知识测试成绩在80分及其以上的大约有200人;(3)因为八年级平均数比七年级的高,方差比七年级的低,我认为八年级对垃圾分类知识掌握得更好.【点评】本题考查了数据的分析和根据数据对统计结果进行估计,解题关键是明确中位数、众数、方差的意义.20.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为,边长为.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A ,那么点A 表示的数是.(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是.【答案】(1)(21;(3【分析】(1)根据题意可得,5个小正方形的面积和是拼成的正方形的面积,求得面积的算术平方根即为大正方形的边长;(2)利用勾股定理得出直角三角形的斜边长,进而根据线段的和差关系求出点A 表示的数;(3)图中阴影部分的面积相当于6个小正方形的面积,然后求面积的算术平方根即为新正方形的边长.【详解】(1)∵5个小正方形拼成一个大正方形后,面积不变,∴拼成的正方形的面积是:5×1×1=5,边长故答案是:5(2)根据勾股定理可求出图中直角三角形的斜边长∴A 1,1;(3)∵阴影部分的面积是6个小正方形的面积,即为6,∴拼成的新正方形的面积是6,∴新正方形的边长=21.如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数12(0)y xx=>图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A 、与y轴交于点B ,连接A B .(1)求证:P为线段A B 的中点;(2)求△A OB 的面积.【答案】(1)证明见解析;(2)S△A OB =24.【解析】试题分析:(1)利用圆周角定理的推论得出A B 是⊙P的直径即可;(2)首先假设点P坐标为(m,n)(m>0,n>0),得出OA =2OM=2m,OB =2ON=2n,进而利用三角形面积公式求出即可.试题解析:(1)证明:∵∠A OB =90°,且∠A OB 是⊙P中弦A B 所对的圆周角,∴A B 是⊙P的直径.(2)过点P作PM⊥x轴于点M,PN⊥y轴于点N,设点P坐标为(m,n)(m>0,n>0),∵点P是反比例函数y=(x>0)图象上一点,∴mn=12.则OM=m,ON=n.由垂径定理可知,点M为OA 中点,点N为OB 中点,∴OA =2OM=2m,OB =2ON=2n,∴S△A OB =12B O•O A =12×2n×2m=2mn=2×12=24.考点: 反比例函数综合题.22.如图,在平面直角坐标系中,函数y=2x+8的图象分别交x轴、y轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M,且点M为线段OB 的中点.(1)求直线A M的函数解析式.(2)试在直线A M上找一点P,使得S△A B P=S△A OB ,求出点P的坐标.(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A 、B 、M、H为顶点的四边形是平行四边形?若存在,请直接写出所有点H的坐标;若不存在,请说明理由.【答案】(1)y=x+4;(2)点P的坐标为(-12,-8)或(4,8);(3)存在,(-4,-4),(-4,4)或(4,12).【分析】(1)通过函数y=2x+8求出A 、M两点坐标,由两点坐标求出直线A M的函数解析式;(2)设出P点坐标,按照等量关系“S△A B P=S△A OB ”即可求出;(3)设点H的坐标为(m,n),然后分三种情况进行讨论即可.【详解】(1)当x=0时,y=2x+8=8,∴点B 的坐标为(0,8);当y=0时,2x+8=0,解得:x=-4,∴点A 的坐标为(-4,0).∵点M为线段OB 的中点,∴点M的坐标为(0,4).设直线A M的函数解析式为y=kx+B (k≠0),将A (-4,0),B (0,4)代入y=kx+B ,得:404k bb-+=⎧⎨=⎩,解得:14 kb=⎧⎨=⎩,∴直线A M的函数解析式为y=x+4.(2)设点P的坐标为(x,x+4),∵S△A B P=S△A OB ,∴12B M•|x P-x A |=12OA •OB ,即12×4×|x+4|=12×4×8,解得:x1=-12,x2=4,∴点P的坐标为(-12,-8)或(4,8).(3)存在,(-4,-4),(-4,4)或(4,12).设点H的坐标为(m,n).分三种情况考虑(如图所示):①当A M为对角线时,040 804mn+=-+⎧⎨+=+⎩,解得:44mn=-⎧⎨=-⎩,∴点H1的坐标为(-4,-4);②当A B 为对角线时,040 408mn+=-+⎧⎨+=+⎩,解得:44mn=-⎧⎨=⎩,∴点H2的坐标为(-4,4);③当B M为对角线时,-400 048mn+=+⎧⎨+=+⎩,解得:412 mn=⎧⎨=⎩,∴点H3的坐标为(4,12).综上所述:在坐标平面内存在点H,使以A 、B 、M、H为顶点的四边形是平行四边形,点H的坐标为(-4,-4),(-4,4)或(4,12).【点评】此题考查一次函数综合题,解题关键在于求出A 、M两点坐标,再利用待定系数法求解析式. 23.思维探索:在正方形A B C D 中,A B =4,∠EA F的两边分别交射线C B ,D C 于点E,F,∠EA F=45°.(1)如图1,当点E,F分别在线段B C ,C D 上时,△C EF的周长是;(2)如图2,当点E,F分别在C B ,D C 的延长线上,C F=2时,求△C EF的周长;拓展提升:如图3,在Rt△A B C 中,∠A C B =90°,C A =C B ,过点B 作B D ⊥B C ,连接A D ,在B C 的延长线上取一点E,使∠ED A =30°,连接A E,当B D =2,∠EA D =45°时,请直接写出线段C E的长度.【答案】思维探索:(1)8;(2)12;拓展提升:C E31.【分析】思维探索:(1)利用旋转的性质,证明△A GE≌△A FE即可;(2)把△A B E绕点A 逆时针旋转90°到A D ,交C D 于点G,证明△A EF≌△A GF即可求得EF=D F ﹣B E;拓展提升:如图3,过A 作A G⊥B D 交B D 的延长线于G,推出四边形A C B G是矩形,得到矩形A C B G是正方形,根据正方形的性质得到A C =A G,∠C A G=90°,在B G上截取GF=C E,根据全等三角形的性质得到A E=A F,∠EA C =∠F A G,∠A D F=∠A D E=30°,解直角三角形得到D E=D F=4,B E =3 C E=x,则GF=C E=x,B C =B G=3x,根据线段的和差即可得到结论.【详解】思维探索:(1)如图1,将△A D F绕点A 顺时针旋转90°得到△A B G,∴GB =D F,A F=A G,∠B A G=∠D A F,∵四边形A B C D 为正方形,∴∠B A D =90°,∵∠EA F=45°,∴∠B A E+∠D A F=45°,∴∠B A G+∠B A E=45°=∠EA F,在△A GE和△A FE中AG AFGAE EAF AE AE=⎧⎪∠=∠⎨⎪=⎩∴△A GE≌△A FE(SA S),∴GE=EF,∵GE=GB +B E=B E+D F,∴EF=B E+D F,∴△C EF的周长=C E+C F+EF=C E+B E+D F+C F=B C +C D =8,故答案为:8;(2)如,2,把△A B E绕点A 逆时针旋转90°到A D ,交C D 于点G,同(1)可证得△A EF≌△A GF,∴EF=GF,且D G=B E,∴EF=D F﹣D G=D F﹣B E,∴△C EF的周长=C E+C F+EF=C E+C F+D F﹣B E=B C +D F+C F=4+4+2+2=12;拓展提升:如图3,过A 作A G⊥B D 交B D 的延长线于G,∵B D ⊥B C ,∠A C B =90°,∴∠A C B =∠C B G=∠G=90°,∴四边形A C B G是矩形,∵A C =B C ,∴矩形A C B G是正方形,∴A C =A G,∠C A G=90°,在B G上截取GF=C E,∴△A EC ≌△A GF(SA S),∴A E=A F,∠EA C =∠F A G,∵∠EA D =∠B A C =∠GA B =45°,∴∠D A F=∠D A E=45°,∵A D =A D ,∴△A D E≌△A D F(SA S),∴∠A D F=∠A D E=30°,∴∠B D E=60°,∵∠D B E =90°,B D =2,∴D E =D F =4,B E =23, 设C E =x ,则GF =C E =x ,B C =B G =23﹣x ,∴D G =2+23﹣x ,∴D G ﹣FG =D F ,即2+23﹣x ﹣x =4,∴x =3﹣1,∴C E =3﹣1.【点评】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.24.已知抛物线21:65L y x x =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为M .(1)请求出C 、M 两点的坐标;(2)将抛物线21:65L y x x =-+绕平面内的某一点旋转180°,旋转后得到抛物线2L ,抛物线2L 的顶点为M ',与x 轴相交于E 、P 两点(点F 在点E 的右侧),使得抛物线2L 过点M ,且以点C 、M 、M '、F 为顶点的四边形为平行四边形,请求出所有满足条件的抛物线2L 的顶点坐标.【答案】(1)()0,5C 、()3,4M -;(2)()1313,9M '-、()2313,9M '+ 【分析】(1)将x =0代入即可求得点C 坐标,将函数关系式配成顶点式即可求得点M 的坐标; (2)先根据中心对称可得点M '在抛物线21:65L y x x =-+的图像上,当点M '抛物线1L 对称轴的右侧时,过点M 作MG ⊥y 轴于点G ,过点M '作M'G ⊥x 轴于点H ,根据平行四边形的性质可得C M ∥M'F ,C M=M'F ,进而可证得△C GM ≌△M'HF ,从而可得点M'的纵坐标,代入抛物线21:65L y x x =-+即可求得点M'的坐标,当点M '抛物线1L 对称轴的左侧时,同理可得.【详解】解:(1)当x =0时,y =5,则点C 坐标为(0,5),∵2265(3)4y x x x =-+=--,∴顶点M 的坐标为(3,-4),(2)∵抛物线21:65L y x x =-+绕平面内的某一点旋转180°,旋转后得到抛物线2L ,∴1L 与2L 关于该点成中心对称∵2L 经过1L 的顶点M ,∴1L 经过2L 的顶点M ',如图,当点M '抛物线1L 对称轴的右侧时,过点M 作MG ⊥y 轴于点G ,过点M '作M'G ⊥x 轴于点H ,。
中考数学全真模拟考试(word版含答案)
中 考 仿 真 模 拟 测 试数 学 试 卷学校________ 班级________ 姓名________ 成绩________满分:120分 测试时间:120分钟一.选择题(共8小题,满分16分,每小题2分) 1.(2分)3倒数等于( ) A .3B .13C .﹣3D .−132.(2分)某校篮球队有12名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16 人数2433则这12名队员年龄的中位数和众数分别是( ) A .14,15B .14.5,14C .14,14D .14.5,153.(2分)下列运算中,计算结果正确的是( ) A .3(A ﹣1)=3A ﹣1 B .(A +B )2=A 2+B 2 C .A 6÷A 3=A 2D .(3A 3)2=9A 64.(2分)下列平面图形经过折叠不能围成一个正方体的是( )A .B .C .D .5.(2分)方程2x 2﹣8x ﹣1=0的解的情况是( ) A .有两个不相等的实数根 B .没有实数根C .有两个相等的实数根D .有一个实数根6.(2分)对于函数y =﹣2x +1,下列结论正确的是( ) A .y 值随x 值的增大而增大B .它的图象与x 轴交点坐标为(0,1)C .它的图象必经过点(﹣1,3)D .它的图象经过第一、二、三象限7.(2分)在矩形A B C D 中,E 是B C 边的中点,A E ⊥B D ,垂足为点F ,则tA n ∠A ED 的值是( )A .√63B .2√63C .2√3D .2√28.(2分)如图1,有一张矩形纸片A B C D ,已知A B =10,A D =12,现将纸片进行如下操作:现将纸片沿折痕B F 进行折叠,使点A 落在B C 边上的点E 处,点F 在A D 上(如图2);然后将纸片沿折痕D H 进行第二次折叠,使点C 落在第一次的折痕B F 上的点G 处,点H 在B C 上(如图3),给出四个结论:①A F 的长为10;②△B GH 的周长为18;③BG GF=23;④GH 的长为5,其中正确的结论有( )A .①②③B .①②④C .①③④D .②③④二.填空题(共10小题,满分20分,每小题2分) 9.(2分)如果|x ﹣1|=2,那么x 的值是 .10.(2分)函数y =√x −3+√5−x 中,自变量x 的取值范围是 .11.(2分)近年来,我国5G 发展取得明显成效,截至2020年9月底,全国建设开通5G 基站超510000个,将数据510000用科学记数法可表示为 .12.(2分)如图,点A 、B 分别在x 轴和y 轴上,OA =1,OB =2,若将线段A B 平移至A 'B ',则A +B 的值为 .13.(2分)计算2m−2+m2−m的结果是.14.(2分)因式分解:A 3﹣9A =.15.(2分)如图,在▱A B C D 中,过A ,B ,C 三点的圆交A D 于E,且与C D 相切,若A B =4,B E=5,则D E的长为.16.(2分)如图,在△A B C 中,C A =C B ,∠A C B =90°,A B =2,点D 为A B 的中点,以点D 为圆心作圆心角为90°的扇形D EF,点C 恰在弧EF上,则图中阴影部分的面积为.17.(2分)已知如图,在正方形A B C D 中,A D =4,E,F分别是C D ,B C 上的一点,且∠EA F=45°,EC =1,将△A D E绕点A 沿顺时针方向旋转90°后与△A B G重合,连接EF,过点B 作B M∥A G,交A F 于点M,则S△MB F=.18.(2分)如图,菱形A B C D 的边A D ⊥y轴,垂足为点E,顶点A 在第二象限,顶点B 在y轴的正半轴上,反比例函数y=kx(k≠0,x>0)的图象经过顶点C 、D ,若点C 的横坐标为5,B E=3D E,则k的值为.三.解答题(共10小题,满分84分)19.(8分)计算:(1)4sin60°−√12−(12)﹣1; (2)(A ﹣2B )(A +2B )﹣(A ﹣2B )220.(6分)解不等式组:{4(x+1)≤7x+13①x−83>x−4②,并把解集在数轴上表示出来,并写出它的所有负整数解.21.(8分)如图,△EB F为等腰直角三角形,点B 为直角顶点,四边形A B C D 是正方形.(1)求证:△A B E≌△C B F;(2)C F与A E有什么特殊的位置关系?请证明你的结论.22.(8分)为了了解某地区初二学生课余时间活动安排情况,现对学生课余时间活动安排进行调查,根据调查的部分数据绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:(1)求调查中,一共抽查了多少名初二同学?(2)求所调查的初二学生课余时间用于安排”读书”活动人数,并补全条形统计图;(3)如果该地区现有初二学生12000人,那么利用课余时间参加”体育”锻炼活动的大约有多少人?23.(8分)数学课上,李老师准备了四张背面都一样的卡片A 、B 、C 、D ,每张卡片的正面标有字母A 、B 、C 表示三条线段(如图).把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)李老师随机抽取一张卡片,抽到卡片B 的概率等于;(2)求李老师抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.24.(8分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?25.(8分)如图,线段A B 表示一信号塔,D E表示一斜坡,D C ⊥C E.且点B ,C ,E三点在同一水平线上,点A ,B ,C ,D ,E在同一平面内,斜坡D E的坡比为1:√3,D E=42米.某人站在坡顶D 处测得塔顶A 点的仰角为37°,站在坡底C 处测得塔顶A 点的仰角为48°(人的身高忽略不计),求信号塔的高度A B (结果精确到1米).(参考数据:sin37°≈35,tA n37°≈34,sin48°≈710,tA n48°≈1110)26.(10分)已知图1和图2中,正方形的边长为1,按要求作格点三角形,并注相应的字母,(1)在图1中作△A B C ,使各其边长均为整数;(2)在图2中作△A ′B ′C ′,使△A ′B ′C ′∽△A B C ,并且A ′B ′:A B =√2.27.(10分)定义:如图①,⊙O的半径为r,若点P'在射线OP上,且OP•OP'=r2.则称点P'是点P关于⊙O的”反演点”.(1)如图①,设射线OP与⊙O交于点A ,若点P'是点P关于⊙O的”反演点”,且OP'=P A ,求证:点P'为线段OP的一个黄金分割点;(2)如图②,若点P'是点P关于⊙O的”反演点”,过点P'作P'B ⊥OP,交⊙O于点B ,连接PB ,求证:PB为⊙O的切线;(3)如图③,在Rt△C D E中,∠E=90°,C E=6,D E=8,以C E为直径作⊙O,若点P为C D 边上一动点,点P'是点P关于⊙O的”反演点”,则在点P运动的过程中,线段OP'长度的取值范围是.28.(10分)直线y=﹣3x+3与x轴交于点B ,与y轴交于点C ,抛物线y=﹣x2+B x+C 经过B ,C 两点,与x轴的另一交点为A ,连接A C ,点P为A C 上方的抛物线上一动点.(1)求抛物线的解析式;(2)如图①,连接B P,交线段A C 于点D ,若PD :B D =5:16,求此时点P的坐标;(3)如图②,连接PC ,过点P作PE∥y轴,交线段A C 于点E,若△PC E与△A B C 相似,求出点P的横坐标及线段PE长.参考答案一.选择题(共8小题,满分16分,每小题2分) 1.(2分)3倒数等于( ) A .3B .13C .﹣3D .−13[分析]根据乘积是1的两数互为倒数可得答案. [解答]解:3倒数等于13,故选:B .[点评]此题主要考查了倒数,关键是掌握倒数定义. 2.(2分)某校篮球队有12名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16 人数2433则这12名队员年龄的中位数和众数分别是( ) A .14,15B .14.5,14C .14,14D .14.5,15[分析]众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解. [解答]解:这12名队员年龄的中位数14+152=14.5(岁),众数为14岁,故选:B .[点评]本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.3.(2分)下列运算中,计算结果正确的是( ) A .3(A ﹣1)=3A ﹣1 B .(A +B )2=A 2+B 2 C .A 6÷A 3=A 2D .(3A 3)2=9A 6[分析]根据去括号法则,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则作答. [解答]解:A 、3(A ﹣1)=3A ﹣3,故本选项错误; B 、(A +B )2=A 2+2A B +B 2,故本选项错误; C 、A 6÷A 3=A 3,故本选项错误; D 、(3A 3)2=9A 6,故本选项正确. 故选:D .[点评]本题综合考查了去括号法则,完全平方公式,同底数幂的除法,幂的乘方与积的乘方,是基础题型,比较简单.4.(2分)下列平面图形经过折叠不能围成一个正方体的是( )A .B .C .D .[分析]由平面图形的折叠及立体图形的表面展开图的特点解题.[解答]解:A ,B ,D 经过折叠均能围成正方体,C 、折叠后有两个面重合,不能折成正方体. 故选:C .[点评]本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题. 5.(2分)方程2x 2﹣8x ﹣1=0的解的情况是( ) A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个实数根[分析]根据根的判别式的值与零的大小关系即可判断. [解答]解:依题意,得△=B 2﹣4A C =64﹣4×2×(﹣1)=72>0, 所以方程有两不相等的实数根. 故选:A .[点评]本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根.6.(2分)对于函数y =﹣2x +1,下列结论正确的是( ) A .y 值随x 值的增大而增大B .它的图象与x 轴交点坐标为(0,1)C .它的图象必经过点(﹣1,3)D .它的图象经过第一、二、三象限[分析]A 、由k =﹣2,利用一次函数的性质可得出y 值随x 值的增大而减小,结论A 不符合题意;B 、代入y =0求出x 值,进而可得出函数y =﹣2x +1的图象与x 轴交点坐标为(12,0),结论B 不符合题意;C 、代入x =﹣1求出y 值,进而可得出函数y =﹣2x +1的图象必经过点(﹣1,3),结论C 符合题意;D 、由k =﹣2<0,B =1>0,利用一次函数图象与系数的关系可得出函数y =﹣2x +1的图象经过第一、二、四象限,结论D 不符合题意. 此题得解.[解答]解:A 、∵k =﹣2<0,∴y 值随x 值的增大而减小,结论A 不符合题意; B 、当y =0时,﹣2x +1=0,解得:x =12,∴函数y =﹣2x +1的图象与x 轴交点坐标为(12,0),结论B 不符合题意;C 、当x =﹣1时,y =﹣2x +1=3,∴函数y =﹣2x +1的图象必经过点(﹣1,3),结论C 符合题意; D 、∵k =﹣2<0,B =1>0,∴函数y =﹣2x +1的图象经过第一、二、四象限,结论D 不符合题意. 故选:C .[点评]本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数图象与系数的关系,逐一分析四条结论的正误是解题的关键.7.(2分)在矩形A B C D 中,E 是B C 边的中点,A E ⊥B D ,垂足为点F ,则tA n ∠A ED 的值是( )A .√63B .2√63C .2√3D .2√2[分析]由”SA S ”可证△A B E ≌△D C E ,可得A E =ED ,通过证明△B EF ∽△D A F ,可得A F =2EF ,由勾股定理可求D F =2√2EF ,即可求tA n ∠A ED 的值. [解答]解:∵四边形A B C D 是矩形∴A B =C D ,∠A B C =∠C =90°,A D =B C ∵点E 是B C 的中点∴B E =C E ,且A B =C D ,∠A B C =∠C =90° ∴△A B E ≌△D C E (SA S ) ∴A E =ED ∵A D ∥B C ∴△B EF ∽△D A F ∴BE AD=EF AF=12∴A F =2EF ∴A E =3EF =D E ∴D F =√DE2−EF2=2√2EF∴tA n ∠A ED =DFEF=2√2 故选:D .[点评]本题考查了矩形的性质,三角函数,相似三角形的判定和性质,全等三角形的判定和性质等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.8.(2分)如图1,有一张矩形纸片A B C D ,已知A B =10,A D =12,现将纸片进行如下操作:现将纸片沿折痕B F 进行折叠,使点A 落在B C 边上的点E 处,点F 在A D 上(如图2);然后将纸片沿折痕D H 进行第二次折叠,使点C 落在第一次的折痕B F 上的点G 处,点H 在B C 上(如图3),给出四个结论:①A F 的长为10;②△B GH 的周长为18;③BG GF=23;④GH 的长为5,其中正确的结论有( )A .①②③B .①②④C .①③④D .②③④[分析]过G 点作MN ∥A B ,交A D 、B C 于点M 、N ,可知四边形A B EF 为正方形,可求得A F 的长,可判断①,且△B NG 和△FMG 为等腰三角形,设B N =x ,则可表示出GN 、MG 、MD ,利用折叠的性质可得到C D =D G ,在Rt △MD G 中,利用勾股定理可求得x ,再利用△MGD ∽△NHG ,可求得NH 、GH 和HC ,则可求得B H ,容易判断②③④,可得出答案.[解答]解:如图,过点G 作MN ∥A B ,分别交A D 、B C 于点M 、N , ∵四边形A B C D 为矩形,∴A B =C D =10,B C =A D =12,由折叠可得A B =B E ,且∠A =∠A B E =∠B EF =90°, ∴四边形A B EF 为正方形, ∴A F =A B =10, 故①正确; ∵MN ∥A B ,∴△B NG 和△FMG 为等腰直角三角形,且MN =A B =10,设B N =x ,则GN =A M =x ,MG =MN ﹣GN =10﹣x ,MD =A D ﹣A M =12﹣x ,又由折叠的可知D G =D C =10,在Rt △MD G 中,由勾股定理可得MD 2+MG 2=GD 2, 即(12﹣x )2+(10﹣x )2=102,解得x =4, ∴GN =B N =4,MG =6,MD =8, 又∠D GH =∠C =∠GMD =90°,∴∠NGH +∠MGD =∠MGD +∠MD G =90°, ∴∠NGH =∠MD G , ∵∠D MG =∠GNH , ∴△MGD ∽△NHG , ∴MD GN=MG NH=DG GH,即84=6NH=10GH,∴NH =3,GH =C H =5, ∴B H =B C ﹣HC =12﹣5=7, 故④正确;又△B NG 和△FMG 为等腰直角三角形,且B N =4,MG =6, ∴B G =4√2,GF =6√2,∴△B GH 的周长=B G +GH +B H =4√2+5+7=12+4√2, ∴BG GF=√26√2=23,故②不正确;③正确; 综上可知正确的为①③④, 故选:C .[点评]本题为四边形的综合应用,涉及知识点有矩形的性质、正方形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质、折叠的性质及方程思想等.过G 点作A B 的平行线,构造等腰直角三角形,利用方程思想在Rt △GMD 中得到方程,求得B N 的长度是解题的关键.本题考查知识点较多,综合性较强,难度较大.二.填空题(共10小题,满分20分,每小题2分) 9.(2分)如果|x ﹣1|=2,那么x 的值是 3或﹣1 .[分析]根据题意,可得:x ﹣1=±2,据此求出x 的值是多少即可.[解答]解:∵|x ﹣1|=2, ∴x ﹣1=±2,∴x =2+1=3或x =﹣2+1=﹣1. 故答案为:3或﹣1.[点评]此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当A 是正有理数时,A 的绝对值是它本身A ;②当A 是负有理数时,A 的绝对值是它的相反数﹣A ;③当A 是零时,A 的绝对值是零. 10.(2分)函数y =√x −3+√5−x 中,自变量x 的取值范围是 3≤x ≤5 . [分析]根据二次根式的意义,被开方数为非负数,列不等式组求解. [解答]解:根据题意,得{x −3≥05−x ≥0,解得3≤x ≤5.[点评]函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.11.(2分)近年来,我国5G 发展取得明显成效,截至2020年9月底,全国建设开通5G 基站超510000个,将数据510000用科学记数法可表示为 5.1×105 .[分析]科学记数法的表示形式为A ×10n 的形式,其中1≤|A |<10,n 为整数.确定n 的值时,要看把原数变成A 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. [解答]解:510000=5.1×105, 故答案为:5.1×105.[点评]此题考查科学记数法的表示方法.科学记数法的表示形式为A ×10n 的形式,其中1≤|A |<10,n 为整数,表示时关键要正确确定A 的值以及n 的值.12.(2分)如图,点A 、B 分别在x 轴和y 轴上,OA =1,OB =2,若将线段A B 平移至A 'B ',则A +B 的值为 2 .[分析]由作图可知,线段A B 向右平移3个单位,再向下平移1个单位得到线段A ′B ′,求出A ′,B ′的坐标可得结论.[解答]解:由作图可知,线段A B 向右平移3个单位,再向下平移1个单位得到线段A ′B ′,∵A (﹣1,0),B (0,2),∴A ′(2,﹣1),B ′(3,1),∴A =﹣1,B =3,∴A +B =2,故答案为:2.[点评]本题考查坐标与图形变化﹣平移,解题的关键是理解题意,灵活运用所学知识解决问题.13.(2分)计算2m−2+m2−m的结果是﹣1.[分析]先变形为同分母分式的减法,再约分即可得.[解答]解:原式=2m−2−mm−2=2−mm−2=−(m−2)m−2=﹣1,故答案为:﹣1.[点评]本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和分式的基本性质.14.(2分)因式分解:A 3﹣9A = A (A +3)(A ﹣3).[分析]原式提取A ,再利用平方差公式分解即可.[解答]解:原式=A (A 2﹣9)=A (A +3)(A ﹣3),故答案为:A (A +3)(A ﹣3).[点评]此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(2分)如图,在▱A B C D 中,过A ,B ,C 三点的圆交A D 于E,且与C D 相切,若A B =4,B E=5,则D E的长为165.[分析]连接C E,可得出∠B A E=∠B EC +∠EB C ,而∠D C B =∠D C E+∠B C E,这两个等式中,由弦切角定理知:∠D C E=∠EB C ;再由平行四边形的性质知:∠D C B =∠EA B ,则∠B EC =∠B C E,即可得B C =B E=5,即A D =5,进而可由切割线定理求D E的长.[解答]解:连接C E,∵BCÊ=BĈ+CÊ,∴∠B A E=∠EB C +∠B EC ;∵∠D C B =∠D C E+∠B C E,由弦切角定理知:∠D C E=∠EB C ,∵四边形A B C D 是平行四边形,∴∠D C B =∠B A E,∴∠B EC =∠B C E,即B C =B E=5,∴A D =5,由切割线定理知:D E=DC2DA=165.故答案为:165.[点评]此题主要考查了平行四边形的性质、切割线定理、弦切角定理以及圆周角定理的综合应用,能够判断出△B EC 是等腰三角形是解决此题的关键.16.(2分)如图,在△A B C 中,C A =C B ,∠A C B =90°,A B =2,点D 为A B 的中点,以点D 为圆心作圆心角为90°的扇形D EF,点C 恰在弧EF上,则图中阴影部分的面积为π4−12.[分析]连接C D ,证明△D C H≌△D B G,则S四边形D GC H=S△B D C ,求得扇形FD E的面积,则阴影部分的面积即可求得.[解答]解:连接C D ,∵C A =C B ,∠A C B =90°,∴∠B =45°,∵点D 为A B 的中点,∴D C =12A B =B D =1,C D ⊥A B ,∠D C A =45°, ∴∠C D H =∠B D G ,∠D C H =∠B , 在△D C H 和△D B G 中, {∠CDH =∠BDGCD =BD ∠DCH =∠B,∴△D C H ≌△D B G (A SA ),∴S 四边形D GC H =S △B D C =12S △A B C =12×12A B •C D =14×2×1=12.∴S 阴影=S 扇形D EF ﹣S △B D C =90π×12360−12=π4−12.故答案为π4−12.[点评]本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△D C H ≌△D B G ,得到S 四边形D GC H=S △B D C 是关键.17.(2分)已知如图,在正方形A B C D 中,A D =4,E ,F 分别是C D ,B C 上的一点,且∠EA F =45°,EC =1,将△A D E 绕点A 沿顺时针方向旋转90°后与△A B G 重合,连接EF ,过点B 作B M ∥A G ,交A F 于点M ,则S △MB F =32175.[分析]由旋转的性质可得A G =A E ,D E =GB =3,∠D A E =∠B A G ,由”A A S ”可证△A GF ≌△A EF ,可得EF =GF =3+B F ,由勾股定理可求B F 的长,由相似三角形的性质可求解. [解答]解:∵D C =B C =A D =4,EC =1, ∴D E =3,∵将△A D E 绕点A 沿顺时针方向旋转90°后与△A B G 重合,∴A G =A E ,D E =GB =3,∠D A E =∠B A G , ∵∠EA F =45°,∴∠D A E +∠B A F =45°, ∴∠GA B +∠B A F =45°,∴∠GA F =∠EA F ,且A G =A E ,A F =A F ,∴△A GF ≌△A EF (SA S ) ∴EF =GF =3+B F ,∵EF 2=EC 2+FC 2,∴(3+B F )2=1+(4﹣B F )2, ∴B F =47, ∴GF =B G +B F =257, ∴S △A GF =12×GF ×A B =507, ∵B M ∥A G , ∴△B MF ∽△GA F ,∴S △BFM S △GFA =(BF GF)2, ∴S △B FM =32175, 故答案为:32175.[点评]本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.18.(2分)如图,菱形A B C D 的边A D ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k ≠0,x >0)的图象经过顶点C 、D ,若点C 的横坐标为5,B E =3D E ,则k 的值为154.[分析]过点D 作D F ⊥B C 于点F ,由菱形的性质可得B C =C D ,A D ∥B C ,可证四边形D EB F 是矩形,可得D F =B E ,D E =B F ,在Rt △D FC 中,由勾股定理可求D E =1,D F =3,由反比例函数的性质可求k 的值.[解答]解:如图,过点D 作D F ⊥B C 于点F ,∵四边形A B C D 是菱形, ∴B C =C D ,A D ∥B C ∵∠D EB =90°,A D ∥B C∴∠EB C =90°,且∠D EB =90°,D F ⊥B C ∴四边形D EB F 是矩形 ∴D F =B E ,D E =B F ,∵点C 的横坐标为5,B E =3D E ,∴B C =C D =5,D F =3D E ,C F =5﹣D E ∵C D 2=D F 2+C F 2, ∴25=9D E 2+(5﹣D E )2, ∴D E =1 ∴D F =B E =3,设点C (5,m ),则点D (1,m +3),∵反比例函数y =kx 图象过点C ,D ,∴5m =1×(m +3), ∴m =34. ∴点C (5,34),∴k =5×34=154.故答案为:154.[点评]本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出D E 的长度是本题的关键. 三.解答题(共10小题,满分84分) 19.(8分)计算:(1)4sin60°−√12−(12)﹣1(2)(A ﹣2B )(A +2B )﹣(A ﹣2B )2[分析](1)根据特殊角的三角函数值,二次根式的性质以及负整数指数幂的定义计算即可; (2)根据平方差公式以及完全平方公式计算即可. [解答]解:(1)原式=4×√32−2√3−2 =2√3−2√3−2=﹣2;(2)原式=A 2﹣4B 2﹣(A 2﹣4A B +4B 2) =A 2﹣4B 2﹣A 2+4A B ﹣4B 2 =4A B ﹣8B 2.[点评]本题主要考查了实数的运算以及整式的混合运算,熟记相关定义与公式是解答本题的关键. 20.(6分)解不等式组:{4(x +1)≤7x +13①x−83>x −4②,并把解集在数轴上表示出来,并写出它的所有负整数解.[分析]分别解出两个不等式的解集,再根据解集的规律:大小小大中间找确定不等式组的解集,然后再确定所有负整数解.[解答]解:解①得:x ≥﹣3, 解②得:x <2,不等式组的解集为:﹣3≤x <2, 则它的所有负整数解为﹣3,﹣2,﹣1. 在数轴上表示:.[点评]此题主要考查了一元一次不等式组的解法,关键是掌握不等式组确定解集的方法. 21.(8分)如图,△EB F 为等腰直角三角形,点B 为直角顶点,四边形A B C D 是正方形. (1)求证:△A B E ≌△C B F ;(2)C F 与A E 有什么特殊的位置关系?请证明你的结论.[分析](1)由正方形的性质和等腰直角三角形性质可得B A =B C ,∠A B C =90°,B E =B F ,∠EB F =90°,由”SA S ”可证△A B E ≌△C B F ;(2)延长C F 交A B 于H ,交A E 于G ,由全等三角形的性质可得∠B A E =∠B C F ,由直角三角形的性质可求∠A GH =90°,可得结论. [解答]证明:(1)∵等腰直角△EB F , ∴B E =B F ,∠EB F =90°, ∵正方形A B C D ,∴B A =B C ,∠A B C =90°, ∴∠A B E +∠A B F =∠C B F +∠A B F , ∴∠A B E =∠C B F , 在△A B E 和△C B F 中 {AB =CB∠ABE =∠CBF BE =BF∴△A B E ≌△C B F (SA S ); (2)C F ⊥A E ,理由:延长C F 交A B 于H ,交A E 于G ,∵△A B E ≌△C B F , ∴∠B A E =∠B C F , ∵∠B C F +∠B HC =90°, ∴∠B A E +∠A HG =90°, ∴∠A GH =90°, ∴C F ⊥A E .[点评]本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定是本题的关键.22.(8分)为了了解某地区初二学生课余时间活动安排情况,现对学生课余时间活动安排进行调查,根据调查的部分数据绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:(1)求调查中,一共抽查了多少名初二同学?(2)求所调查的初二学生课余时间用于安排”读书”活动人数,并补全条形统计图;(3)如果该地区现有初二学生12000人,那么利用课余时间参加”体育”锻炼活动的大约有多少人? [分析](1)根据安排”艺术”活动的人数和所占的百分比,可以求得调查中,一共抽查了多少名初二同学; (2)根据(1)中的结果和扇形统计图中的数据,可以计算出安排”体育”活动的人数和读书活动的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出利用课余时间参加”体育”锻炼活动的大约有多少人. [解答]解:(1)50÷20%=250(名), 即调查中,一共抽查了250名初二同学;(2)安排”体育”活动的学生有:250×28%=70(名), 安排”读书”活动的学生有:250﹣70﹣50﹣30=100(名), 补全的条形统计图如右图所示; (3)12000×28%=3360(人),即利用课余时间参加”体育”锻炼活动的大约有3360人.[点评]本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(8分)数学课上,李老师准备了四张背面都一样的卡片A 、B 、C 、D ,每张卡片的正面标有字母A 、B、C 表示三条线段(如图).把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)李老师随机抽取一张卡片,抽到卡片B 的概率等于14;(2)求李老师抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.[分析](1)根据概率公式直接求解即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三条线段都能组成三角形的情况数,然后根据概率公式即可求得答案.[解答]解:(1)∵有四张卡片,背面标有A 、B 、C 、D , ∴李老师随机抽取一张卡片,抽到卡片B 的概率等于14;故答案为:14;(2)根据题意画图如下:共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果, ∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为212=16.[点评]此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?[分析](1)设每盒口罩和每盒水银体温计的价格各是x 元,(x ﹣150)元,根据题意列出分式方程即可; (2)根据配套问题,设购买水银体温计y 盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m 的代数式表示;(3)根据题意列出不等式:200m +50×5m ≤1800,可得m ≤4时,w =450m ;当m >4时,w =1800+(450m ﹣1800)×0.8=360m +360,进而可得w 关于m 的函数关系式.[解答]解:(1)设每盒口罩和每盒水银体温计的价格各是x 元,(x ﹣150)元,根据题意,得1200x=300x−150,解得x =200,经检验,x =200是原方程的解, ∴x ﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元; (2)设购买水银体温计y 盒能和口罩刚好配套,根据题意,得 100m =2×10y , 则y =5m ,答:购买水银体温计5m 盒能和口罩刚好配套;(3)若200m +50×5m ≤1800, ∴450m ≤1800, ∴m ≤4,即m ≤4时,w =450m ; 若m >4,则w =1800+(450m ﹣1800)×0.8=360m +360, 综上所述:w ={450m(m ≤4)360m +360(m >4).若该校九年级有900名学生, 需要购买口罩:900×2=1800(支), 水银体温计:900×1=900(支),此时m =1800÷100=18(盒),y =5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.[点评]本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(8分)如图,线段A B 表示一信号塔,D E表示一斜坡,D C ⊥C E.且点B ,C ,E三点在同一水平线上,点A ,B ,C ,D ,E在同一平面内,斜坡D E的坡比为1:√3,D E=42米.某人站在坡顶D 处测得塔顶A 点的仰角为37°,站在坡底C 处测得塔顶A 点的仰角为48°(人的身高忽略不计),求信号塔的高度A B (结果精确到1米).(参考数据:sin37°≈35,tA n37°≈34,sin48°≈710,tA n48°≈1110)[分析]过点D 作D F⊥A B 于点F,根据斜坡D E的坡度(或坡比)i=1:√3,可设C D =xm,则C E=√3xm,利用勾股定理求出x的值,进而可得出C D 与B F的长,再由锐角三角函数的定义求出A F的长,进而可得出结论.[解答]解:过点D 作D F⊥A B 于点F,∵斜坡D E的坡度(或坡比)i=1:√3,D E=42米,∴设D C =xm,则C E=√3xm.在Rt△C D E中,∵D C 2+C E2=D E2,即x2+(√3x)2=422,解得x=21,∴D C =21米,∵∠B =∠D FB =∠D C B =90°,∴四边形D FB C 是矩形,D F=B C ,∴D C =B F=21米,设A F=ym,在Rt△A D F中,∵∠A D F=37°,∴A F=D F•tA n37°≈34D F,∴D F=43ym,在Rt△A B C 中,∵∠A C B =48°,∴A B =B C •tA n48°≈1110D F,∴A F+B F=1110D F,∴y+21=1110×43y,解得y=45,∴A F=45米,∴A B =A F+B F=45+21=66(米).答:信号塔的高度A B 约为66米.[点评]本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形并运用方程的思想方法是解答此题的关键.26.(10分)已知图1和图2中,正方形的边长为1,按要求作格点三角形,并注相应的字母,(1)在图1中作△A B C ,使各其边长均为整数;(2)在图2中作△A ′B ′C ′,使△A ′B ′C ′∽△A B C ,并且A ′B ′:A B =√2.[分析](1)可作△A B C ,使A C =3,A B =5,B C =4;(2)△A ′B ′C ′∽△A B C ,并且A ′B ′:A B =√2,即两个三角形的相似比为√2,可作A 'C '=3√2,B′C′=4√2,则A 'B '=5√2.[解答]解:所作图形如下所示:(1)作△A B C ,使A C =3,A B =5,B C =4;(2)∵△A ′B ′C ′∽△A B C ,并且A ′B ′:A B =√2,∴两个三角形的相似比为√2,作A 'C '=3√2,B′C′=4√2,则A 'B '=5√2.[点评]本题考查了左图中的相似变换的知识,有一定难度,注意借助勾股定理使各边长均为整数.27.(10分)定义:如图①,⊙O的半径为r,若点P'在射线OP上,且OP•OP'=r2.则称点P'是点P关于⊙O的”反演点”.(1)如图①,设射线OP与⊙O交于点A ,若点P'是点P关于⊙O的”反演点”,且OP'=P A ,求证:点P'为线段OP的一个黄金分割点;(2)如图②,若点P'是点P关于⊙O的”反演点”,过点P'作P'B ⊥OP,交⊙O于点B ,连接PB ,求证:PB 为⊙O的切线;(3)如图③,在Rt△C D E中,∠E=90°,C E=6,D E=8,以C E为直径作⊙O,若点P为C D 边上一动点,点P'是点P关于⊙O的”反演点”,则在点P运动的过程中,线段OP'长度的取值范围是9√7373≤OP'≤154.[分析](1)先证明PP'=r,再根据”反演点”的定义可知:OP•OP'=r2,化成比例式可得结论; (2)先证明△P'OB ∽△B OP,得∠OB P=∠OP'B =90°,根据切线的判定可得结论;(3)作辅助线,构建直角三角形,根据”反演点”的定义确定OP和OP'的关系:OP'=9OP,根据三角函数和勾股定理计算OH和OD 的长,根据OH≤OP≤OD ,列不等式组可得结论.[解答](1)证明:由已知得OP•OP'=r2,∵OP'=P A ,∴PP'=P A +A P'=OP'+P'A =r,∴OP′PP′=PP′OP,∴点P'为线段OP的一个黄金分割点;(2)证明:∵P'B ⊥OP,∴∠OP'B =90°,∵OP•OP'=r2,∴OP′OB=OBOP,∵∠P'OB =∠B OP,∴△P'OB ∽△B OP,∴∠OB P=∠OP'B =90°,∴PB ⊥OB ,∴PB 为⊙O的切线;(3)解:如图③,过点O作OH⊥C D 于H,连接OD ,∵C E=6,∴⊙O的半径为3,即r=3,∵点P'是点P关于⊙O的”反演点”,∴OP•OP'=32=9,∴OP'=9OP,∵OH≤OP≤OD ,∵∠C EB =90°,C E=6,D E=8,∴C D =10,∵sin∠C =OHOC=810=45,∴OH=45OC =125,由勾股定理得:OD =√OE2+DE2=√32+82=√73,。
中考数学综合模拟考试(word版含答案)
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分:120分测试时间:120分钟一.选择题(共10小题,满分40分)1.在实数﹣2,,3,中,最小的实数是()A .﹣2B .C .3D .2.估算﹣2的值在()A .﹣1到0之间B .0到1之间C .1到2之间D .2到3之间3.下列计算正确的是()A .x2+x4=x6B .2x+3y=5xyC .x6÷x2=x3D .(x2)3=x64.如图所示的几何体,其左视图是()A .B .C .D .5.某工厂计划生产5000件T恤衫,由于更新了机器设备,实际每天生产T恤衫的数量是原计划的2倍,因此提前5天完成任务,设原计划每天生产T恤衫x件,根据题意,所列方程正确的是()A .﹣=5B .﹣=5C .﹣=5D .﹣=56.如图,已知△A B C 中,A B =A C ,点D ,E是射线A B 上的两个动点(点D 在点E的右侧),且C E=D E,连接C D ,若∠A C E=x°,∠B C D =y°,则y关于x的函数关系式是()A .y=90﹣x(0<x<180°)B .y=x(0<x<180°)C .y=90﹣x(0<x<180°)D .y=x(0<x<180°)7.在平面直角坐标系中,点A (1,0)第一次向左跳动至A 1(﹣1,1),第二次向右跳至A 2(2,1),第三次向左跳至A 3(﹣2,2),第四次向右跳至A 4(3,2),…,按照此规律,点A 第2021次跳动至A 2021的坐标是()A .(﹣1011,1011)B .(1011,1010)C .(﹣1010,1010)D .(1010,1009)8.如图1是传统的手工磨豆腐设备,根据它的原理设计了图2的机械设备,磨盘半径OM=20C m,把手MQ=15C m,点O,M,Q在同一直线,用长为135C m的连杆将点Q与动力装置P相连(∠PQM大小可变),点P在轨道A B 上来回滑动并带动磨盘绕点O转动,OA ⊥A B ,OA =80C m.若磨盘转动1周,则点P在轨道A B 上滑过的路径长为()A .90C mB .150C m C .180C mD .70πC m9.如图,半圆O的直径A B 长为4,C 是弧A B 的中点,连接C O、C A 、C B ,点P从A 出发沿A →O→C 运动至C 停止,过点P作PE⊥A C 于E,PF⊥B C 于F.设点P运动的路程为x,则四边形C EPF 的面积y随x变化的函数图象大致为()A .B .C .D .10.如图,E是正方形A B C D 外一点,D E=A D ,连接A E,C E过D 作D H⊥C E于H,交A E于F,连接B F,交C D 于G.①∠A FD =45°;②B F⊥D H;③A E= B F;④当F是D H中点,C H=3时,A E=9,以上结论正确的有()A .1个B .2个C .3个D .4个二.填空题(共4小题,每小题5分,满分20分)11.把多项式4A 2﹣16B 2分解因式结果是.12.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是.13.如图,点A 是反比例函数y=的图象上的一点,过点A 作A B ⊥x轴,垂足为B ,点C 为y轴上的一点,连接A C ,B C .若△A B C 的面积为2,则k的值是.14.如图,已知△A B C 是等边三角形,点D ,E,F分别是A B ,A C ,B C 边上的点,∠ED F=120°,设.(1)若n=1,则=;(2)若,则n=.三.解答题(共9小题,15、16、17、18每题8分,19、20每题10分,21、22每题12分,23题14分,合计90分)15.计算:.16.解方程:+=4.17.如图,在平面直角坐标系中,△A B C 的三个顶点分别是A (﹣2,﹣1),B (﹣4,﹣4),C (﹣1,﹣3).(1)把△A B C 向右平移4个单位后得到对应的△A 1B 1C 1,请画出平移后的△A 1B 1C 1;(2)把△A B C 绕原点O旋转180°后得到对应的△A 2B 2C 2,请画出旋转后的△A 2B 2C 2;(3)观察图形可知,△A 1B 1C 1与△A 2B 2C 2关于点(,)成中心对称.18.观察下列等式:①12﹣4×12=﹣3; ②32﹣4×22=﹣7; ③52﹣4×32=﹣11;……根据上述各题的规律,解决下列问题:(1)完成第⑤个等式:92﹣4×2=;(2)请你猜想第n个等式(用含n的式子表示),并验证其正确性.19.如图,某电影院的观众席成”阶梯状”,每一级台阶的水平宽度都为1m,垂直高度都为0.3m.测得在C 点的仰角∠A C E=42°,测得在D 点的仰角∠A D F=35°.求银幕A B 的高度.(参考数据:sin35°≈0.57,C os35°≈0.82,tA n35°≈0.7,sin42°≈0.67,C os42°≈0.74,tA n42°≈0.9)20.如图,在四边形A B C D 中,A D ∥B C ,D E⊥B C 于点E,∠B A D 的角平分线交D E于点O,以点O为圆心,OD 为半径的圆经过点C ,交B C 于另一点F.(1)求证:A B 与⊙O相切;(2)若C F=24,OE=5,求C D 的长.21.我县某中学就同学们对”道州历史文化”的了解程度进行随机抽样调查,将调查结果绘制成两幅统计图.根据统计图的信息,解答下列问题:(1)本次共调查名学生,条形统计图中m=;(2)若该校共有学生2400名,则该校约有多少名学生不了解”道州历史文化”;(3)调查结果中,该校九年级(1)班学生中了解程度为”很了解”的同学进行测试,发现其中有四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去县里参加”道州历史文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.22.某超市经销A 、B 两种商品.商品A 每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的对应值如表所示:25303540销售单价x(元/千克)销售量y(千克)50403020商品B 的成本为6元/克,销售单价为10元/克,但每天供货总量只有60千克,且能当天销售完为了让利消费者,超市开展了”买一送一”活动,即买1千克的商品A ,免费送1千克的商品B .(1)求y(千克)与x(元/千克)之间的函数表达式;(2)设这两种商品的每天销售总利润为w元,求出w(元)与x的函数关系式;(3)若商品A 的售价不低于成本,不高于成本的180%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(总利润=两种商品的销售总额﹣两种商品的成本)23.已知△A B C ,点D 在边B C 上(不与点B ,C 重合),点E是△A B C 内部一点.给出如下定义:若∠A EB =∠A EC ,∠D EB =∠D EC ,则称点E是点D 的”等角点”.(1)如图1,若点E是点D 的”等角点”,则∠A EB +∠D EC =°;(2)如图2,若A B =A C ,点D 是边B C 的中点,点E是中线A D 上任意一点(不与点A ,D 重合),求证:点E是点D 的”等角点”;(3)如图3,若∠A C B =90°,且∠B A D >∠C A D ,△A B C 内是否存在点E是点D 的”等角点”?若存在,请作出点E(要求:尺规作图,不写作法,保留作图痕迹);若不存在,请说明理由.参考答案一.选择题(共10小题,满分40分)1.在实数﹣2,,3,中,最小的实数是()A .﹣2B .C .3D .[分析]先估计的大小,再比较.[解答]解:∵2<<3.∴﹣2<<<3.故选:A .[点评]本题考查实数大小的比较,估计的范围是求解本题的关键.2.估算﹣2的值在()A .﹣1到0之间B .0到1之间C .1到2之间D .2到3之间[分析]根据1<<2即可得解.[解答]解:∵1<<2,∴1﹣2<﹣2<2﹣2,∴﹣1<﹣2<0,故选:A .[点评]此题考查了无理数的估算,正确估算出1<<2是解题的关键.3.下列计算正确的是()A .x2+x4=x6B .2x+3y=5xyC .x6÷x2=x3D .(x2)3=x6[分析]分别根据合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.[解答]解:A 、x2与x4不是同类项,属于不能合并,故本选项不合题意;B 、2x与3y不是同类项,属于不能合并,故本选项不合题意;C 、x6÷x2=x4,故本选项不合题意;D 、(x2)3=x6,故本选项符合题意;故选:D .[点评]本题考查了合并同类项,同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.4.如图所示的几何体,其左视图是()A .B .C .D .[分析]根据从左边看得到的图形是左视图,可得答案.[解答]解:从左边看,底层是两个小正方形,上层的左边是一个小正方形.故选:A .[点评]本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.某工厂计划生产5000件T恤衫,由于更新了机器设备,实际每天生产T恤衫的数量是原计划的2倍,因此提前5天完成任务,设原计划每天生产T恤衫x件,根据题意,所列方程正确的是()A .﹣=5B .﹣=5C .﹣=5D .﹣=5[分析]设原计划每天生产T恤衫x件,则实际每天生产T恤衫2x件,根据工作时间=工作总量÷工作效率,结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,此题得解.[解答]解:设原计划每天生产T恤衫x件,则实际每天生产T恤衫2x件,依题意得:﹣=5.故选:C .[点评]本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.6.如图,已知△A B C 中,A B =A C ,点D ,E是射线A B 上的两个动点(点D 在点E的右侧),且C E=D E,连接C D ,若∠A C E=x°,∠B C D =y°,则y关于x的函数关系式是()A .y=90﹣x(0<x<180°)B .y=x(0<x<180°)C .y=90﹣x(0<x<180°)D .y=x(0<x<180°)[分析]根据等腰三角形的性质得出∠A C B =∠A B C =x°+∠B C E和∠A D C =∠D C E=y°+∠BC E,由三角形外角的性质得出∠A B C =∠AD C +∠B C D ,即x°+∠B C E=y°+∠B C E+y°,即x=2y,可得y关于x的函数关系式.[解答]解:在△A B C 中,A B =A C ,∴∠A C B =∠A B C =x°+∠B C E,∵C E=D E,∴∠A D C =∠D C E=y°+∠B C E,∵∠A B C =∠A D C +∠B C D ,即x°+∠B C E=y°+∠B C E+y°,即x=2y,∴y关于x的函数关系式为y=x(0<x<180°).故选:B .[点评]本题考查了等腰三角形的性质,三角形外角的性质,三角形外角等于和它不相邻的两个内角的和,熟练掌握性质定理是解题的关键.7.在平面直角坐标系中,点A (1,0)第一次向左跳动至A 1(﹣1,1),第二次向右跳至A 2(2,1),第三次向左跳至A 3(﹣2,2),第四次向右跳至A 4(3,2),…,按照此规律,点A 第2021次跳动至A 2021的坐标是()A .(﹣1011,1011)B .(1011,1010)C .(﹣1010,1010)D .(1010,1009)[分析]根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.[解答]解:如图,观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2021次跳动至点A 2021的坐标是(﹣1011,1011).故选:A .[点评]本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.8.如图1是传统的手工磨豆腐设备,根据它的原理设计了图2的机械设备,磨盘半径OM=20C m,把手MQ=15C m,点O,M,Q在同一直线,用长为135C m的连杆将点Q与动力装置P相连(∠PQM大小可变),点P在轨道A B 上来回滑动并带动磨盘绕点O转动,OA ⊥A B ,OA =80C m.若磨盘转动1周,则点P在轨道A B 上滑过的路径长为()A .90C mB .150C m C .180C mD .70πC m[分析]连接OP,求出OP的取值范围,再求出PA 的取值范围,即可得结论.[解答]解:由题意可知OQ=OM+MQ=35C m,PQ=135C m,当Q、O、P三点共线且Q在线段OP左上方延长线上时,OP取得最小值,此时OP=PQ﹣MQ﹣OM=135﹣15﹣20=100C m;当Q、O、P三点共线且Q在右下方线段OP上时,OP取得最大值,此时OP=PQ+MQ+OM=135+15+20=170C m.∵OA ⊥A P,OA =80C m,∴①当OP=170C m时,A P==150(C m);②当OP=100C m时,A P==60(C m).∵每转一周,A P从最小值到最大值再到最小值,∴点P的运动路径长为:(150﹣60)×2=180(C m).故选:C .[点评]本题考查点的运动轨迹,勾股定理,找出A P的最小值和最大值是解题的关键.9.如图,半圆O的直径A B 长为4,C 是弧A B 的中点,连接C O、C A 、C B ,点P从A 出发沿A →O→C 运动至C 停止,过点P作PE⊥A C 于E,PF⊥B C 于F.设点P运动的路程为x,则四边形C EPF 的面积y随x变化的函数图象大致为()A .B .C .D .[分析]根据Rt△A B C 中,∠A C B =90°,A C =B C =2,可得A B =4,根据C D ⊥A B 于点D .可得A D =B D =2,C D 平分角A C B ,点P从点A 出发,沿A →D →C 的路径运动,运动到点C 停止,分两种情况讨论:根据PE⊥A C ,PF⊥B C ,可得四边形C EPF是矩形和正方形,设点P 运动的路程为x,四边形C EPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.[解答]解:∵在Rt△A B C 中,∠A C B =90°,A C =B C =,∴A B =4,∠A =45°,∵C D ⊥A B 于点D ,∴A D =B D =2,∵PE⊥A C ,PF⊥B C ,∴四边形C EPF是矩形,∴C E=PF,PE=C F,∵点P运动的路程为x,∴当点P从点A 出发,沿A →D 路径运动时,即0<x<2时,A P=x,则A E=PE=x•sin45°=,∴C E=A C ﹣A E=,∵四边形C EPF的面积为y,∴y=PE•C E==﹣=,∴当0<x<2时,抛物线开口向下;当点P沿D →C 路径运动时,即2≤x<4时,∵C D 是∠A C B 的平分线,∴PE=PF,∴四边形C EPF是正方形,∵A D =2,PD =x﹣2,∴C P=4﹣x,∴y=,∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A .故选:A .[点评]本题考查了动点问题的函数图象,解决本题的关键是掌握二次函数的性质.10.如图,E是正方形A B C D 外一点,D E=A D ,连接A E,C E过D 作D H⊥C E于H,交A E于F,连接B F,交C D 于G.①∠A FD =45°;②B F⊥D H;③A E= B F;④当F是D H中点,C H=3时,A E=9,以上结论正确的有()A .1个B .2个C .3个D .4个[分析]①由正方形的性质和等腰三角形的性质可证∠D A E=∠D C F,可得点A ,点D ,点F,点C 四点共圆,即可求得∠A FD =∠A C D =45°;②通过证明点A ,点B ,点C ,点F四点共圆,可得∠A FB =∠A C B =45°,可证B F⊥D H;③通过证明△B C F∽△A C E,可求得A E= B F;④由勾股定理可求A E=A F+EF=9.[解答]解:如图,连接A C ,C F,∵四边形A B C D 是正方形,∴∠A C D =∠A C B =45°,A D =C D =B C ,A C = B C ,∵D E=A D ,∴∠D A E=∠D EA ,D C =D E,∴∠D C E=∠D EC ,又∵D H⊥C E,∴D H是C E的垂直平分线,∴FC =EF,∴∠FC E=∠FEC ,∴∠D EF=∠D C F,∴∠D A E=∠D C F,∴点A ,点D ,点F,点C 四点共圆,∴∠A FD =∠A C D =45°,∠A D C =∠A FC =90°,故①正确;∵∠A B C =∠A FC =90°,∴点A ,点B ,点C ,点F四点共圆,∴∠A FB =∠A C B =45°,∠C B F=∠C A F,∠B FC =∠B A C =45°,∴∠D FB =90°,∴B F⊥D H,故②正确;∵∠A FC =∠FEC +∠FC E,∴∠FEC =∠FC E=45°,∴∠FEC =∠B FC ,又∵∠C B F=∠C A F,∴△B C F∽△A C E,∴,∴A E= B F,故③错误;∵∠C FE=90°,C F=EF,FH⊥C E,∴FH=C H=EH=3,∴EF=3=FC ,∵F是D H中点,∴D H=2FH=6,∴D C ===3,∴A C = D C =3,∴A F===6,∴A E=A F+EF=9,故④错误,故选:B .[点评]本题是四边形综合题,考查了正方形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,圆的有关知识,灵活运用这些性质解决问题是本题的关键.二.填空题(共4小题)11.把多项式4A 2﹣16B 2分解因式结果是4(A +2B )(A ﹣2B ).[分析]提公因式后再利用平方差公式即可.[解答]解:4A 2﹣16B 2=4(A +2B )(A ﹣2B ),故答案为:4(A +2B )(A ﹣2B ).[点评]本题考查提公因式法、平方差公式进行因式分解,掌握平方差公式的结构特征是正确应用的前提.12.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是k>﹣.[分析]利用判别式的意义得到△=32﹣4(﹣k)>0,然后解不等式即可.[解答]解:根据题意得△=32﹣4(﹣k)>0,解得k>﹣.故答案为k>﹣.[点评]本题考查了根的判别式:一元二次方程A x2+B x+C =0(A ≠0)的根与△=B 2﹣4A C 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.13.如图,点A 是反比例函数y=的图象上的一点,过点A 作A B ⊥x轴,垂足为B ,点C 为y轴上的一点,连接A C ,B C .若△A B C 的面积为2,则k的值是4.[分析]连接A O,将△A B C 的面积转化为△A B O的面积,通过反比例函数系数k的几何意义求解.[解答]解:连接A O,∴A B ∥y轴,∴S△A B C =S△A B O==2,∴k=4.故答案为:4.[点评]本题考查反比例函数系数k的几何意义,解题关键是掌握反比例函数系数k的几何意义.14.如图,已知△A B C 是等边三角形,点D ,E,F分别是A B ,A C ,B C 边上的点,∠ED F=120°,设.(1)若n=1,则=1;(2)若,则n=或.[分析](1)作D G∥B C 交A C 于G,得出△A D G是等边三角形,得到A D =D G,再结合已知得出∠B D F=∠ED G,利用A A S得出△D B F≌△D GE,即可得出结论;(2)同(1)中方法得出A D =D G和∠B D F=∠ED G,从而得到△D B F~△D GE,得到=n,再根据∵列出方程n+=3,解方程即可.[解答]解:(1)作D G∥B C 交A C 于G,∵△A B C 是等边三角形,∴∠A =∠B =∠C =60°,∴∠B =∠A D G=∠C =∠A GD =60°,∠B D G=120°,∴△A D G是等边三角形,∴A D =D G,∵,n=1,∴D B =A D ,∴D B =D G,∵∠B GD =120°,∠ED F=120°,∴∠B D F+∠GD F=∠ED G+∠GD F=120°,∴∠B D F=∠ED G,∵∠B =∠A GD =60°,∴△D B F≌△D GE(A SA ),∴D E=D F,∴=1,故答案为:1;(2)同(1)中方法得△A D G是等边三角形,∴A D =D G,∵∠B GD =120°,∠ED F=120°,∴∠B D F+∠GD F=∠ED G+∠GD F=120°,∴∠B D F=∠ED G,∵∠B =∠A GD =60°,∴△D B F~△D GE,∴,∴=n,∵,∴n+=3,化简得,n2﹣n+1=0,∴n1=,n2=,经检验n1=,n2=是原方程的解,∴n=或.故答案为:或.[点评]本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质,相似三角形的判定与性质,解题的关键是灵活运用有关定理来分析、判断、推理或解答.三.解答题(共9小题)15.计算:.[分析]首先计算零指数幂、特殊角的三角函数值、乘方和开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.[解答]解:=﹣1+6×﹣2+1=﹣1+3﹣2+1=.[点评]此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.解方程:+=4.[分析]分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.[解答]解:去分母得:7﹣x=4x﹣8,解得:x=3,检验:当x=3时,x﹣2≠0,∴x=3是分式方程的解.[点评]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.如图,在平面直角坐标系中,△A B C 的三个顶点分别是A (﹣2,﹣1),B (﹣4,﹣4),C (﹣1,﹣3).(1)把△A B C 向右平移4个单位后得到对应的△A 1B 1C 1,请画出平移后的△A 1B 1C 1;(2)把△A B C 绕原点O旋转180°后得到对应的△A 2B 2C 2,请画出旋转后的△A 2B 2C 2;(3)观察图形可知,△A 1B 1C 1与△A 2B 2C 2关于点(2,0)成中心对称.[分析](1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)对应点连线的交点即为对称中心.[解答]解:(1)如图,△A 1B 1C 1即为所求作.(2)如图,△A 2B 2C 2即为所求作.(3)△A 1B 1C 1与△A 2B 2C 2关于点(2,0),故答案为:2,0.[点评]本题考查作图﹣旋转变换,平移变换,中心对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.观察下列等式:①12﹣4×12=﹣3; ②32﹣4×22=﹣7; ③52﹣4×32=﹣11;……根据上述各题的规律,解决下列问题:(1)完成第⑤个等式:92﹣4×52=﹣19;(2)请你猜想第n个等式(用含n的式子表示),并验证其正确性.[分析](1)根据题目提供的算式直接写出答案即可;(2)写出第n个算式然后展开验证即可.[解答]解:(1)第⑤个等式:92﹣4×52=﹣19;故答案为:5,﹣19;(2)猜想:第n个等式为:(2n﹣1)2﹣4n2=﹣4n+1,验证:左边=4n2﹣4n+1﹣4n2=﹣4n+1,右边=﹣4n+1,所以左边=右边,所以:(2n﹣1)2﹣4n2=﹣4n+1.[点评]本题主要考查了数字变化规律,根据已知数字得出数字之间的变与不变是解题关键.19.如图,某电影院的观众席成”阶梯状”,每一级台阶的水平宽度都为1m,垂直高度都为0.3m.测得在C 点的仰角∠A C E=42°,测得在D 点的仰角∠A D F=35°.求银幕A B 的高度.(参考数据:sin35°≈0.57,C os35°≈0.82,tA n35°≈0.7,sin42°≈0.67,C os42°≈0.74,tA n42°≈0.9)[分析]延长C E、D F交A B 于H、G,在Rt△A GD 中,由三角函数的定义用A G表示出即D G,在Rt△A C H中,由三角函数的定义用A G表示出即C H,根据D G﹣C H=1得到关于A G的方程,解方程求出A G即可求出A B .[解答]解:延长C E、D F交A B 于H、G,由题意知,∠A GD =∠A HC =90°,在Rt△A GD 中,∠A D G=35°,∴tA n35°=,即D G=,在Rt△A C H中,∠A C H=42°,∴tA n42°=,即C H=,∵A H=A G+GH,GH=0.3,∴C H=,∵D G﹣C H=1,∴﹣=1,∴﹣=1解得:A G≈4.2,∴A B =A G+GH+B H=4.2+0.3+0.3=5.1.答:银幕A B 的高度约为5.1m.[点评]本题考查了解直角三角形的应用,仰角的定义,以及三角函数,熟练掌握三角函数的定义是解决问题的关键.20.如图,在四边形A B C D 中,A D ∥B C ,D E⊥B C 于点E,∠B A D 的角平分线交D E于点O,以点O为圆心,OD 为半径的圆经过点C ,交B C 于另一点F.(1)求证:A B 与⊙O相切;(2)若C F=24,OE=5,求C D 的长.[分析](1)过点O作A B 的垂线,证明出OG=OD 即可;(2)利用勾股定理求出半径,再利用勾股定理求出C D 即可.[解答]解:(1)过点O作OG⊥A B ,垂足为G,∵A D ∥B C ,D E⊥B C ,∴D E⊥A D ,又∵∠B A D 的角平分线交D E于点O,∴OG=OD ,又∵OG⊥A B ,∴A B 与⊙O相切;(2)连接OC .∵D E⊥C F,∴,在Rt△OEC 中,=OD ,∴D E=OD +OE=13+5=18,在Rt△D EC 中,.[点评]本题考查切线的性质和判定,直角三角形的边角关系,以及垂径定理,掌握切线的判断方法和直角三角形的边角关系是解决问题的前提.21.我县某中学就同学们对”道州历史文化”的了解程度进行随机抽样调查,将调查结果绘制成两幅统计图.根据统计图的信息,解答下列问题:(1)本次共调查60名学生,条形统计图中m=18;(2)若该校共有学生2400名,则该校约有多少名学生不了解”道州历史文化”;(3)调查结果中,该校九年级(1)班学生中了解程度为”很了解”的同学进行测试,发现其中有四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去县里参加”道州历史文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.[分析](1)根据了解很少的有24人,占40%,即可求得总人数;利用调查的总人数减去其它各项的人数即可求得m的值;(2)利用2400乘以不了解”道州历史文化”的人所占的比例即可求解;(3)列出表格即可求出恰好抽中一男生一女生的概率.[解答]解:(1)由题目图表提供的信息可知总人数为24÷40%=60(名),m=60﹣12﹣24﹣6=18,故答案为:60,18;(2)2400×=480(名),所以该校约有480名学生不了解”道州历史文化”;(3)列表如下:男男男女男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)女(女,男)(女,男)(女,男)由上表可知,共12种可能,其中一男一女的可能性有6种,∴恰好抽中一男生一女生的概率为=.[点评]本题考查的是条形统计图和扇形统计图的综合运用以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某超市经销A 、B 两种商品.商品A 每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的对应值如表所示:销售单价x(元/千克)25303540销售量y(千克)50403020商品B 的成本为6元/克,销售单价为10元/克,但每天供货总量只有60千克,且能当天销售完为了让利消费者,超市开展了”买一送一”活动,即买1千克的商品A ,免费送1千克的商品B .(1)求y(千克)与x(元/千克)之间的函数表达式;(2)设这两种商品的每天销售总利润为w元,求出w(元)与x的函数关系式;(3)若商品A 的售价不低于成本,不高于成本的180%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(总利润=两种商品的销售总额﹣两种商品的成本)[分析](1)利用待定系数法可求出一次函数的解析式;(2)利用每件的利润×销售量=总利润,即可求出w(元)与x的函数关系式;(3)先根据已知求出x的取值范围,再将(2)的解析式化为配方式,然后根据二次函数的性质来进行计算即可.[解答]解:(1)设y与x之间的函数表达式为y=kx+B (k≠0),将表中数据(30,40)、(40,20)代入得:,解得:,∴y与x之间的函数表达式为y=﹣2x+100;(2)设当天的销售利润为w元,则:w=(x﹣20)(﹣2x+100)+(10﹣6)[60﹣(﹣2x+100]=﹣2x2+148x﹣360;(3)20×180%=36,由题意知20≤x≤36,w=﹣2x2+148x﹣360=﹣2(x﹣37)2+2378,∵﹣2<0,∴x<37时,w随x的增大而增大,∴x=36时,w的最大值=﹣2×(36﹣37)2+2378=2376,答:当销售单价定为36元时,才能使当天的销售总利润最大,最大利润是2376元.[点评]本题考查了待定系数法求一次函数的解析式和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.23.已知△A B C ,点D 在边B C 上(不与点B ,C 重合),点E是△A B C 内部一点.给出如下定义:若∠A EB =∠A EC ,∠D EB =∠D EC ,则称点E是点D 的”等角点”.(1)如图1,若点E是点D 的”等角点”,则∠A EB +∠D EC =180°;(2)如图2,若A B =A C ,点D 是边B C 的中点,点E是中线A D 上任意一点(不与点A ,D 重合),求证:点E是点D 的”等角点”;(3)如图3,若∠A C B =90°,且∠B A D >∠C A D ,△A B C 内是否存在点E是点D 的”等角点”?若存在,请作出点E(要求:尺规作图,不写作法,保留作图痕迹);若不存在,请说明理由.[分析](1)由”等角点”可得∠A EB =∠A EC ,∠D EB =∠D EC ,由周角的定义可求解;(2)由等腰三角形的性质可得A D 是B C 的中垂线,可得B E=C E,由”等角点”的定义可证点E是点D 的”等角点”;(3)如图3,过点B 作A D 的B F⊥A D ,交A D 的延长线于F,在线段B F的延长线上截取FH=B F,连接A H,C H,延长HC 交A D 于E,连接B E,即点E为所求,由作图可得A D 是B C 的中垂线,可得B E=C E,由”等角点”的定义可证点E是点D 的”等角点”.[解答]解:(1)∵点E是点D 的”等角点”,∴∠A EB =∠A EC ,∠D EB =∠D EC ,∵∠A EB +∠A EC +∠D EB +∠D EC =360°,∴∠A EB +∠D EC =180°,故答案为180;(2)如图,连接B E,C E,∵A B =A C ,点D 是边B C 的中点,∴A D ⊥B C ,∴A D 是B C 的中垂线,∴B E=C E,又∵D E⊥B C ,∴∠B ED =∠C ED ,∴∠A EB =∠A EC ,∴点E是点D 的”等角点”;(3)如图3,过点B 作A D 的B F⊥A D ,交A D 的延长线于F,在线段B F的延长线上截取FH=B F,连接A H,C H,延长HC 交A D 于E,连接B E,即点E为所求,∵B F=FH,B F⊥A F,∴B E=EH,A B =A H,又∵EF⊥B H,∴∠B ED =∠C ED ,∴∠A EB =∠A EC ,∴点E是点D 的”等角点”.[点评]本题是三角形综合题,考查了等腰三角形的性质,线段垂直平分线的性质,理解”等角点”的定义并运用是本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷(解析版)一、选择题(共10小题,每小题4分,满分40分)1.如图,点A,B,C,D在数轴上,其中表示互为相反数的点是()A.点A与点D B.点B与点D C.点A与点C D.点B与点C【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2与﹣2互为相反数,故选:A.【点评】本题考查了数轴、相反数,在一个数的前面加上负号就是这个数的相反数.2.如图,一个水平放置的六棱柱,这个六棱柱的左视图是()A.B.C.D.【分析】根据从左往右看水平放置的六棱柱,所得的图形进行判断即可.【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:故选B.【点评】本题主要考查了三视图,解题时注意:从左往右看几何体所得的图形是左视图.3.a6可以表示为()A.a3•a2 B.(a2)3C.a12÷a2D.a7﹣a【分析】根据同底数幂的乘法,幂的乘方底数不变指数相乘,同底数幂的除法,可得答案.【解答】解:(a2)3=a2×3=a6,故选:B.【点评】本题考查了幂的乘方,熟记法则并根据法则计算是解题关键.4.下列交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.若﹣a≥b,则a≤﹣2b,其根据是()A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变B.不等式的两边都乘(或除以)同一个正数,不等号的方向不变C.不等式的两边都乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对【分析】根据不等式的基本性质3即可求解.【解答】解:若﹣a≥b,则a≤﹣2b,其根据是不等式的两边都乘(或除以)同一个负数,不等号的方向改变,故选:C.【点评】主要考查了不等式的基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变.6.若一组数据3,x,4,5,6的众数是5,则这组数据的中位数是()A.3 B.4 C.5 D.6【分析】先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:∵一组数据3,x,4,5,6的众数是5,∴x=5,从小到大排列此数据为:3,4,5,5,6.处在第3位的数是5.所以这组数据的中位数是5.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而错误,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.2016年漳州市生产总值突破3000亿元,数字3000亿用科学记数法表示为()A.3×1012B.30×1011C.0.3×1011D.3×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3000亿用科学记数法表示为:3×1011.故选D【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.如图,在△ABC中,AB=5,BC=3,AC=4,点E,F分别是AB,BC的中点.以下结论错误的是()A.△ABC是直角三角形B.AF是△ABC的中位线C.EF是△ABC的中位线D.△BEF的周长为6【分析】根据勾股定理等逆定理、三角形的中位线的性质,一一判断即可.【解答】解:A、正确.∵AB=5,BC=3,AC=4,∴AB2=BC2+AC2,∴△ACB是直角三角形,故正确.B、错误.AF是△ABC的中线,不是中位线.C、正确.∵点E,F分别是AB,BC的中点,∴EF是△ABC的中位线,故正确.D、正确.易知EF=AC=2,EB=AB=,FB=BC=,∴△EFB的周长=6,故正确,故选B.【点评】本题考查三角形的中位线定理、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.9.如图,点O是△ABC外接圆的圆心,若⊙O的半径为5,∠A=45°,则的长是()A.πB.πC.πD.π【分析】连接OB、OC,如图,先利用圆周角定理得到∠BOC=2∠A=90°,然后利用弧长公式求解.【解答】解:连接OB、OC,如图,∠BOC=2∠A=90°,所以的长==π.故选D.【点评】本题考查了弧长的计算:记住弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).也考查了圆周角定理.10.如图1,在矩形ABCD中,动点P从点B出发,沿BC→CD→DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,则m的值是()A.6 B.8 C.11 D.16【分析】首先结合题意可得当点P运动到点C,D之间时,△ABP的面积不变,则可得当BC=5,CD=6,继而求得答案.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,∵当点P运动到点C,D之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,∴x=5时,y开始不变,说明BC=5,∴△ABC的面积为:y=×AB×5=15.∴AB=6,∵四边形ABCD为矩形,∴CD=AB=6,∴M=5+6=11.故选:C.【点评】本题考查了动点问题的函数图象.注意解决本题应首先看清横轴和纵轴表示的量,找到面积不变的开始与结束,得到BC,CD的具体值.二、填空题(共6小题,每小题4分,共24分)11.分解因式:x3﹣4x2y+4xy2=x(x﹣2y)2.【分析】先提取公因式x,然后利用完全平方差公式进行二次分解即可.【解答】解:x3﹣4x2y+4xy2=x(x2﹣2xy+4y2)=x(x﹣2y)2.故答案是:x(x﹣2y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.已知正n边形的一个内角为135°,则边数n的值是8.【分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故答案为:8.【点评】本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.13.在一个不透明的布袋中装有4个红球和a个白球,它们除颜色不同外,其余均相同,若从中随机摸出一球,摸到红球的概率是,则a的值是6.【分析】根据摸到红球的概率为列出关于a的方程,求出a的值即可.【解答】解:∵袋中装有4个红球和a个白球,∴球的总个数为4+a,∵从中随机摸出一个球,摸到红球的概率为,∴=,解得,a=6.故答案为:6.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,在△ABC中,∠ACB=90°,将△ACD沿CD折叠,使点A恰好落在BC边上的点E 处.若∠B=25°,则∠BDE=40度.【分析】根据三角形内角和定理求出∠A的度数,根据翻折变换的性质求出∠CED的度数,根据三角形内角和定理求出∠∠BDE.【解答】解:∵将△ACD沿CD折叠,使点A恰好落在BC边上的点E处,∴∠CED=∠A,∵∠ACB=90°,∠B=25°,∴∠A=65°,∴∠CED=65°,∴∠BDE=65°﹣25°=40°;故答案为:40.【点评】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.15.若实数a满足a2﹣2a﹣1=0,则2a2﹣4a+2015的值是2017.【分析】将(a2﹣2a)看作一个整体并求出其值,再代入代数式进行计算即可得解.【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴2a2﹣4a+2015=2(a2﹣2a)+2015=2×1+2015=2017.故答案为:2017.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.定义:式子1﹣(a≠0)叫做a的影子数.如:3的影子数是1﹣=,已知a1=﹣,a2是a1的影子数,a3是a2的影子数,…,依此类推,则a2017的值是﹣.【分析】根据题意分别得出a2,a3,a4的值,得出变化规律,进而得出a2017的值.【解答】解:∵a1=﹣,a2是a1的影子数,∴a2=1﹣=3,∵a3是a2的影子数,∴a3=1﹣=,∴a4=1﹣=﹣…,依此类推,每3个数据一循环,2017÷3=672…1,则a2017的值是:﹣.故答案为:﹣.【点评】此题主要考查了数字变化规律,正确得出数字之间变化规律是解题关键.三、解答题(共9小题,共86分)17.(8分)计算:|﹣2|+3tan30°+2﹣2.【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+3tan30°+2﹣2=2﹣+3×+=【点评】此题主要考查了实数的运算,负整数指数幂以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(8分)先化简,再求值:,其中x=2.【分析】先将分式化简,然后将x的值代入即可求出答案.【解答】解:原式===.当x=2时,原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(8分)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的格点上.请你在图中找出一点D(仅一个点即可),连结DE,DF,使△DEF 与△ABC全等,并给予证明.【分析】根据题意找到一个格点D,使DE=AB=、DF=AC=或DF=AB=、DE=AC=,即可根据“SSS”判定俩三角形全等.【解答】解:解法一、如图1或图2的点D,连结DE,DF.∵在△DEF中,,EF=2.在△ABC中,,BC=2.∴DE=AB,DF=AC,EF=BC.∴△DEF≌△ABC(SSS).解法二、如图3或图4的点D,连结DE,DF.证明:∵在△DEF中,,EF=2,在△ABC中,,BC=2.∴DF=AB,DE=AC,EF=BC.∴△DFE≌△ABC(SSS).【点评】本题主要考查作图﹣应用设计作图及全等三角形的判定,熟练掌握勾股定理及全等三角形的判定是解题的关键.20.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,且OB=OD.点E在线段OA上,连结BE,DE.给出下列条件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.请你从中选择两个条件,使四边形BCDE是菱形,并给予证明.你选择的条件是:①②或①④或②④(只填写序号).【分析】可以选①②或①④或②④,根据菱形的判定方法一一判断即可.【解答】解:方法一:选①②.∵OB=OD,OC=OE,∴四边形BCDE是平行四边形,∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴平行四边形BCDE是菱形.,方法二:选①④.∵OB=OD,OC=OE,∴四边形BCDE是平行四边形,∴BC∥DE,∴∠CBD=∠BDE,∵∠CBD=∠EBD,∴∠BDE=∠EBD,∴BE=DE,∴平行四边形BCDE是菱形.方法三:选②④.解法一:∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴∠BOC=∠BOE=90°,∵∠CBD=∠EBD,BO=BO,∴△BOC≌△BOE,∴OE=OC,又∵OB=OD,∴四边形BCDE是平行四边形,又∵EC⊥BD,∴平行四边形BCDE是菱形.解法二:∵AB=AD,OB=OD,∴AO⊥BD,即EC⊥BD,∴EC垂直平分BD,∴BE=DE,BC=DC,∵∠BOC=∠BOE=90°,∠CBD=∠EBD,BO=BO,∴△BOC≌△BOE,∴BE=BC,∴BE=DE=BC=DC,∴四边形BCDE是菱形.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)为了落实漳州市教育局关于全市中小学生每天阅读1小时的文件精神.某校对七年级(3)班全体学生一周到图书馆的次数做了调查统计,以下是调查过程中绘制的还不完整的两个统计图.请你根据统计图表中的信息,解答下列问题: (1)求图表中m ,n 的值;(2)该年级学生共有300人,估计这周到图书馆的次数为“4次及以上”的学生大约有多少人?3【分析】(1)由一次的人数除以占的百分比得出总人数,确定出m 与n 的值即可;(2)求出4次及以上占的百分比,乘以300即可得到结果. 【解答】解:(1)该班学生总数为:10÷20%=50, 则m=50﹣5﹣10﹣8﹣12=15,n=×100=16;(2)∵该班学生一周到图书馆的次数为“4次及以上”的占×100%=24%,∴300×24%=72,∴该年级学生这周到图书馆的次数为“4次及以上”的学生大约有72人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.22.(10分)如图,直线y 1=kx +2与反比例函数y 2=的图象交于点A (m ,3),与坐标轴分别交于B ,C 两点.(1)若y1>y2>0,求自变量x的取值范围;(2)动点P(n,0)在x轴上运动,当n为何值时,|PA﹣PC|的值最大?并求最大值.【分析】(1)由点A的纵坐标利用反比例函数图象上点的坐标特征即可求出点A的坐标,再根据两函数图象的上下位置关系,即可得出当y1>y2>0时,自变量x的取值范围;(2)由点A的坐标利用待定系数法即可求出直线AB的函数解析式,利用一次函数图象上点的坐标特征可求出点B、C的坐标,再根据三角形的三边关系即可确定当点P与点B重合时,|PA﹣PC|的值最大,利用两点间的距离公式即可求出此最大值.【解答】解:(1)当y2==3时,x=1,∴点A的坐标为(1,3).观察函数图象,可知:当x>1时,直线在双曲线上方,∴若y1>y2>0,自变量x的取值范围为x>1.(2)将A(1,3)代入y1=kx+2中,3=k+2,解得:k=1,∴直线AB的解析式为y1=x+2.当x=0时,y1=x+2=2,∴点C的坐标为(0,2),∴AC==.当y1=x+2=0时,x=﹣2,∴点B的坐标为(﹣2,0).当点P于点B重合时,|PA﹣PC|的值最大,此时n=﹣2,|PA﹣PC|=AC=.∴当n为﹣2时,|PA﹣PC|的值最大,最大值为.【点评】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的三边关系,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点A的坐标;(2)利用三角形的三边关系确定点P的位置.23.(10分)如图,在△ABC中,AC=BC,以BC边为直径作⊙O交AB边于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的半径等于,cosB=,求线段DE的长.【分析】(1)连接OD,根据等腰三角形的性质证明证明OD∥AC即可得出DE是⊙O的切线;(2)根据cosB==可求出BD与CD的长度,可利用等面积求出DE,也可利用△ACD∽△AD求出DE的长度.【解答】解:(1)证明:连结OD.∵AC=BC,∴∠A=∠B,∵OB=OD,∴∠B=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线,(2)如图,连结CD.∵⊙O的半径等于,∴BC=3,∠CDB=90°,在Rt△CDB中,cosB==,∴BD=1,,∵AC=BC=3,∠CDB=90°.∴AD=BD=1,解法一:在Rt△ADC中,,解法二:∵∠A=∠A,∠ADC=∠AED=90°,∴△ACD∽△ADE.∴.∴【点评】本题考查圆的综合问题,涉及切线的判定,等腰三角形的性质,锐角三角函数,勾股定理等知识,综合程度较高.24.(12分)如图,已知抛物线y=x2+bx+c与直线y=﹣x+3相交于坐标轴上的A,B两点,顶点为C.(1)填空:b=﹣4,c=3;(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c 没有交点?(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.【分析】(1)由直线y=﹣x+3交坐标轴于A,B两点,求出A(0,3),B(3,0),再把A,B两点的坐标代入y=x2+bx+c,得到关于b、c的二元一次方程组,解方程组即可求解;(2)根据“上加下减”的平移规律得出直线EF的解析式为y=﹣x+3﹣h,再把y=﹣x+3﹣h代入y=x2﹣4x+3,整理得到x2﹣3x+h=0.根据直线EF与抛物线没有交点,得出△=(﹣3)2﹣4×1×h=9﹣4h<0,解不等式即可求出h的取值范围;(3)先求出抛物线y=x2﹣4x+3的顶点C的坐标,利用待定系数法求出直线AC的解析式为y=﹣2x+3.设直线AC交x轴于点D,则D(,0),BD=.再求出S△ABC=S△ABD+S△BCD=3.由直线x=m把△ABC的面积分为1:2两部分,分两种情况讨论:①=,②=,分别求出m的值即可.【解答】解:(1)∵直线y=﹣x+3交坐标轴于A,B两点,∴A(0,3),B(3,0),把A(0,3),B(3,0)代入y=x2+bx+c,得,解得.故答案为﹣4,3;(2)∵将直线AB:y=﹣x+3向下平移h个单位长度,得直线EF,∴可设直线EF的解析式为y=﹣x+3﹣h.把y=﹣x+3﹣h代入y=x2﹣4x+3,得x2﹣4x+3=﹣x+3﹣h.整理得:x2﹣3x+h=0.∵直线EF与抛物线没有交点,∴△=(﹣3)2﹣4×1×h=9﹣4h<0,解得h>.∴当h>时,直线EF与抛物线没有交点;(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点C(2,﹣1).设直线AC的解析式为y=mx+n.则,解得,∴直线AC的解析式为y=﹣2x+3.如图,设直线AC交x轴于点D,则D(,0),BD=.∴S△ABC=S△ABD+S△BCD=××3+××1=3.∵直线x=m与线段AB、AC分别交于M、N两点,则0≤m≤2,∴M(m,﹣m+3),N(m,﹣2m+3),∴MN=(﹣m+3)﹣(﹣2m+3)=m.∵直线x=m把△ABC的面积分为1:2两部分,∴分两种情况讨论:①当=时,即=,解得m=±;②当=时,即=,解得m=±2∵0≤m≤2,∴m=或m=2.∴当m=或2时,直线x=m把△ABC的面积分为1:2两部分.【点评】本题是二次函数综合题,其中涉及到抛物线与直线的交点,利用待定系数法求一次函数、二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,三角形的面积等知识,综合性较强,难度适中.利用方程思想、数形结合与分类讨论是解题的关键.25.(14分)操作与探究综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同一直线上(如图1),其中∠AMN=90°,AM=MN.(1)猜想发现老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE﹣DF;如图3,当45°<α<90°时,其它条件不变.①填空:∠DAF+∠BAE=45度;②猜想:线段EF,BE,DF三者之间的数量关系是:EF=BE+DF.(2)证明你的猜想;(3)拓展探究在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.【分析】(1)①由全等三角形的性质即可得出结论;②由全等三角形的性质即可得出答案;(2)延长CB至点K,使BK=DF,连结AK,由SAS证明△ABK≌△ADF,得出AK=AF,∠BAK=∠DAF.由等腰直角三角形的性质得出∠MAN=∠N=45°,即可证出∠DAF+∠BAE=45°.证出∠EAF=∠EAK.由SAS证明△AEF≌△AEK,得出EF=EK.即可得出EF=BE+DF.(3)连结AC.证明△ADH∽△ACE.得出,再证明△ADC∽△AHE.得出∠ADC=∠AHE=90°.即可得出结论.【解答】(1)解:①∠DAF+∠BAE=45°;故答案为:45;②线段EF,BE,DF三者之间的数量关系是EF=BE+DF;故答案为:EF=BE+DF;(2)证明:如图3,延长CB至点K,使BK=DF,连结AK.∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABK=∠D=90°.在△ABK和△ADF中,,∴△ABK≌△ADF(SAS),∴AK=AF,∠BAK=∠DAF.∵∠AMN=90°,AM=MN,∴∠MAN=∠N=45°,∴∠DAF+∠BAE=45°.∴∠EAK=∠BAK+∠BAE=45°,∴∠EAF=∠EAK.在△AEF和△AEK中,,∴△AEF≌△AEK(SAS).∴EF=EK.∴EF=BE+DF.(3)证明:如图4,连结AC.∵四边形ABCD是正方形,∴∠ACE=∠ADH=∠CAD=45°.∵∠EAF=45°,∴∠EAF=∠CAD=45°.∴∠CAE=∠DAH,∴△ADH∽△ACE.∴.∴,又∵∠CAD=∠EAF=45°,∴△ADC∽△AHE.∴∠ADC=∠AHE=90°.∴EH⊥AN.【点评】本题是四边形综合题目,考查了正方形的性质,全等三角形的性质和判定,相似三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.。