第10讲+平面几何-2009-2017全国高中数学联赛分类汇编+Word版含解析
2010-2017高考数学全国卷分类汇编(解析几何)
HW 数学复习资料 2010-2017 新课标全国卷分类汇编(解析几何) 解析几何2010-2017 新课标全国卷分类汇编(解析几何)1.( 2017 课标全国Ⅰ,理 10)已知 F 为抛物线 C : 24y x 的交点,过F 作两条互相垂直 l 1 , l 2 ,直线 l 1 与 C 交于 A 、 B 两点,直线 l 2 与 C 交于 D , E 两点, AB DE 的最小值为() A . 16 B . 14 C . 12D . 10【答案】 A 【解析】设A B 倾斜角为.作 AK 1 垂直准线, AK 2 垂直 x 轴 AF cosGFAK(几何关系) 1易知 A KAF 1(抛物线特性)PPGP P2 2 ∴ AF cosP AF同理 PAF,1 cosP 2P2PBF, ∴22AB 1 cos1 cos sin又 DE 与 AB 垂直,即 DE 的倾斜角为 π 2DE2sin2P 2P 2π cos2,而24yx ,即 P 2 .11ABDE 2P∴22sincos4 2 2 sin cos 2 2sin cos422sin cos1 4 42 sin 2162sin 2≥ 16 ,当π取等号,即 ABDE 最小值为 16 ,故选A42.( 2017 课标全国Ⅰ,理 15)已知双曲线 C : 2 2x y 2 2a b,( a 0 , b 0 )的右顶点为 A ,以 A 为圆心, b 为 半径作圆 A ,圆 A 与双曲线 C 的一条渐近线交于 M , N 两点,若 MAN 60 ,则C 的离心率为 _______.2 3【答案】3 【解析】 如图,1HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何OA a ,AN AM b∵MAN 60 ,∴ 3AP b ,22 2 23 2 OP OA PA a b4∴tanAPOP32b32 2a b4又∵tanba ,∴3b22 23a b4ba,解得a2 3b2∴ e2b1 12a1 2 33 33.(2017课标全国Ⅰ,理20)(12 分)已知椭圆 C :2 2x y2 2 1a ba b 0 ,四点P1 1,1 ,P2 0,1 ,3 3P ,, 41 P ,中恰有三点在椭圆 C 上.1 32 2(1)求C 的方程;(2)设直线l不经过P点且与 C 相交于 A 、B 两点,若直线P2 A与直线P2 B 的斜率的和为1,证明:l 过2定点.【解析】(1)根据椭圆对称性,必过P3 、P4 又P4 横坐标为1,椭圆必不过P,所以过P2 ,P3 ,P4 三点13P 0,1 ,P 1,代入椭圆方程得将2 3212b13 ,解得a24 , 2 1b1 4 12 2a b∴椭圆C 的方程为:2x42 1y .(2)①当斜率不存在时,设l : x m,A m,y ,B m,yA Ak k P A P B2 2 y 1 y 1 2A Am m m1得m 2 ,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l∶y kx b b 1 ,A x ,y ,B x ,y1 12 22HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何y kx b联立 2 2x 4y 4 0 ,整理得 2 2 21 4k x 8kbx 4b 4 08kb x x1 2 21 4k ,24b 4 x x1 2 21 4k,则k kP A P B2 2 y 1 y 11 2x x1 2x kx b x x kx b x2 1 2 1 2 1x x1 22 28kb 8k 8kb 8kb21 4k24b 421 4k8k b 14 b 1 b 1 1,又b 1 b 2k 1,此时64k ,存在k 使得0成立.∴直线l 的方程为y kx 2k 1当x 2 时,y 1,所以l 过定点 2 , 1 .2 2x y4.(2017课标全国Ⅱ,理9)若双曲线 C : 1(a 0,b 0) 的一条渐近线被圆2 2a b2 y2(x 2) 4所截得的弦长为 2 ,则C 的离心率为2 3A.2 B. 3 C. 2 D.3【答案】A【解析】由几何关系可得,双曲线2 2x y2 2 1 0, 0a ba b的渐近线方程为bx ay 0 ,圆心2,0 到渐近线距离为 2 2d 2 1 3 ,则点2,0 到直线b x a y 0 的距离为d 2b a 0 2b2 2a bc 3 ,即2 24(c a )2c3,整理可得2 4 2c a ,双曲线的离心率e2c2 4 2a.故选A.【考点】双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式 e ca;②只需要根据一个条件得到关于a,b,c 的齐次式,2 2 2 结合 b =c -a2转化为a,c 的齐次式,然后等式(不等式)两边分别除以 a 或 a 转化为关于 e 的方程(不等式),解方程(不等式)即可得e(e 的取值范围).25.(2017课标全国Ⅱ,理16)已知F 是抛物线C : y 8x 的焦点,M 是C上一点,FM的延长线交y 轴于点N . 若M 为FN 的中点,则FN . 【答案】6【解析】3HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何试题分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F' ,作MB l 与点B ,NA l 与点 A ,由抛物线的解析式可得准线方程为x 2 ,则A N 2 , F F ' 4,在直角梯形ANFF' 中,中位线AN FF 'BM 3,由抛物线的定义有:2MF MB 3,结合题意,有MN MF 3,故FN FM NM 3 3 6.【考点】抛物线的定义、梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.2x2 6.(2017课标全国Ⅱ,理20)(12 分)设O为坐标原点,动点M 在椭圆 1C : y 上,2过M 作x 轴的垂线,垂足为N ,点P满足NP 2NM .(1)求点P的轨迹方程;(2)设点Q在直线x 3上,且OP PQ 1. 证明:过点P且垂直于OQ 的直线l 过 C 的左焦点 F .2 y2 2 x解:(1)设P( x,y) ,则) ,所以点P的轨迹方程M (x,y ,将点M 代入C中得 12 2 22 y2为x 2.(2)由题可知 F ( 1,0) ,设Q(3,t),P( m,n),则OQ ( 3,t),PF ( 1 m,n),OP (m,n),PQ ( 3 m,t n).由OP OQ 1得3m 1 ,由(1)2 tn n2 mm2 n2 ,则有3 3m tn 0,所以OQ PF 3 3m tn 0,即过点有 2P且垂直于OQ 的直线l 过C 的左焦点F .7.(2017课标全国Ⅲ,理1)已知集合A= 2 2(x, y│) x y 1 ,B= (x, y│)y x ,则A B 中元素的个数为A.3 B.2 C.1 D.0【答案】 B4HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何【解析】A表示圆 2 2x y 1 上所有点的集合, B 表示直线y x 上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.8.(2017课标全国Ⅲ,理5)已知双曲线 C2 2x y2 2 1a b(a>0,b>0)的一条渐近线方程为5y x ,2且与椭圆2 2x y12 31 有公共焦点,则 C 的方程为A.2 2x y8 101 B.2 2x y4 51 C.2 2x y5 41 D.2 2x y4 31【答案】 B5 b 5【解析】∵双曲线的一条渐近线方程为y x,则①2 a 2 2 2x y2 2 2又∵椭圆 a b c 9②1与双曲线有公共焦点,易知 c 3,则12 32 2x y由①②解得a 2,b 5 ,则双曲线 C 的方程为 14 5,故选B.9.(2017课标全国Ⅲ,理10)已知椭圆C:2 2x y,(a>b>0)的左、右顶点分别为A1,A2,2 2 1a b且以线段A1A2 为直径的圆与直线bx ay 2ab 0 相切,则 C 的离心率为A.63B.33C.23D.13【答案】 A【解析】∵以A1 A2 为直径为圆与直线bx ay 2ab 0 相切,∴圆心到直线距离 d 等于半径,∴2abd a2 2a b又∵a 0,b 0 ,则上式可化简为 2 3 2a b∵ 2 2 2b ac ,可得 2 3 2 2a a c ,即22ca23∴ e ca63,故选A10.(2017课标全国Ⅲ,理12)在矩形ABCD 中,AB 1 ,AD 2 ,动点P 在以点 C 为圆心且与BD 相切5HW 数学复习资料 2010-2017 新课标全国卷分类汇编(解析几何)解析几何的圆上.若A P AB AD ,则的最大值为() A .3 B . 2 2C . 5D .2【答案】 A【解析】由题意,画出右图 .设 BD 与 C 切于点 E ,连接C E . 以 A 为原点, AD 为 x 轴正半轴,AB 为 y 轴正半轴建立直角坐标系,则C 点坐标为 (2,1) . ∵ | CD | 1, | BC | 2 . ∴ BD12225 .∵ BD 切 C 于点 E .y∴ CE ⊥ BD .P g∴ CE 是 Rt △BCD 中斜边B D 上的高 .1 2| BC | | CD | 2222S△ BCD| EC |5| BD | |BD |55即 C 的半径为 2 5 5.P C ∵在上.CBEA O D x( )∴ P 点的轨迹方程为2 24 (x 2)(y 1)5. 设 P 点坐标 (x 0 , y 0 ) ,可以设出 P 点坐标满足的参数方程如下:x225 cos 5y215 sin 5而 AP (x 0 , y 0 ) , AB (0,1), AD (2,0) . ∵ APAB AD (0,1) (2,0) (2 , )∴21 5y15 sin .x1cos ,525两式相加得:251 5 sin1cos5 52 55222 ( ) ( ) sin( )5 5 2 sin( ) ≤ 3(其中sin55,cos2 55)当且仅当π22kπ,k Z时,取得最大值3.6HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何11.(2017课标全国Ⅲ,理20)(12分)已知抛物线C:y2=2x,过点(2,0)的直线l 交C 与A,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P(4,-2),求直线l 与圆M 的方程.解:(1)设A x ,y,B x , y ,l : x my1 12 2 2由x my2y 2x2可得 2 y 2my 4 0,则y y41 2又22 2y yy y1 2 1 2x1 = ,x2= ,故x1 x2 = =42 2 4因此OA 的斜率与OB 的斜率之积为y y1 2x x1 2-4= =-14所以OA⊥OB故坐标原点O 在圆M 上.(2)由(1)可得 2y1+y2 =2m,x1 +x2=m y1+y2 +4=2m 4故圆心M 的坐标为m m ,圆M 的半径2 +2,2 +2,22 2 2 r m m由于圆M 过点P(4,-2),因此AP BP 0 ,故x x y y1 42 4 1 2 2 2 0 即x x x x y y y y1 2 4 1+ 2 1 2 2 1 2 20 0由(1)可得y1 y2 =-4 ,x1x2=4 ,所以 22m m 1 0,解得1 m 1或m .2当m=1 时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M 的半径为10 ,圆M 的方程为 2 2x 3 y 1 10当1m 时,直线l 的方程为2x y 4 0,圆心M 的坐标为29 1,-4 2,圆M 的半径为854,圆M 的方程为2 29 1 85+ +x y4 2 162 2x y12.(2016课标全国Ⅰ,理5)已知方程1表示双曲线,且该双曲线两焦点间的2 2m n 3m n距离为4,则n 的取值范围是7HW 数学复习资料 2010-2017 新课标全国卷分类汇编(解析几何) 解析几何(A ) ( 1,3 )(B ) ( 1, 3)(C ) (0 ,3)(D ) (0, 3)【解析】:22xy221 mn 3m n表示双曲线,则 2 3 2mn mn,∴2 2m n 3m由双曲线性质知: 223 24 2cm nm n m ,其中 c 是半焦距,∴焦距 2c 2 2 m 4 ,解得 m 1∴ 1 n 3,故选A .13(. 2016 课标全国Ⅰ, 理 10)以抛物线 C 的顶点为圆心的圆交 C 于 A,B 两点,交 C 的准线于 D ,E两点,已知 AB 4 2 , DE 2 5 ,则 C 的焦点到准线的距离为 (A )2 (B )4(C )6(D )8【解析】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为 2y px p 0 ,设圆的方程为 2 222x y r ,如图:设 p A x 0,2 2 , D, 5 ,点 2A x 0,2 2 在抛物线 2 2 y px 上,∴ p 8 2px ⋯ ⋯ ①;点 D, 5 在圆22 2 2x y r 上,2pF∴2A x 0 ,2 2在圆r ⋯ ⋯ ②;点522 2 2x y r上,∴22x r ⋯ ⋯ ③;联立①②③解得: p4 , 0 8焦点到准线的距离为 p 4 .故选B .13.(2016 课标全国Ⅰ,理 20)(本小题满分 12 分)2yx 2设圆 x215 0的圆心为 A ,直线 l 过点 B(1,0) 且与 x 轴不重合, l 交圆 A 于 C, D两点,过 B 作 AC 的平行线交 AD 于点 E .(Ⅰ)证明E AEB 为定值,并写出点 E 的轨迹方程;(Ⅱ)设点 E 的轨迹为曲线 C 1 ,直线 l 交 C 1于 M , N 两点,过 B 且与 l 垂直的直线与圆 A 交 于 P,Q 两点,求四边形M PNQ 面积的取值范围. 4 3【解析】:⑴圆 A 整理为 2 2xy,A 坐标 1,0 ,如图,1162CQ BE ∥AC ,则 ∠C ∠EBD ,由 ACAD ,则∠ D ∠C ,1Ax ∠∠,则EB ED ,AEEB AE ED AD 4 | AB |EBD D根据椭圆定义为一个椭圆,方程为2 2x y4 31,( y 0 );4 2 2 4BE123D48HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何⑵2 2x yC1 : 1;设l : x my 1 ,因为PQ⊥l ,设PQ : y m x 1 ,4 3P 432 2 236m 36 3m 4 12 m 12 22| MN | 1 m | y y | 1 mM N2 23m 4 3m 41Nx my 1A2 23m 4 y 6my 9 0 则4 2 2 4B,1联立l与椭圆C1 : 2 2x y4 31Q M2圆心A到PQ 距离d| m 1 1 | | 2m |2 21 m 1 m,34所以 2 2| PQ | 2 | AQ | d 2 162 24m 4 3m 42 21 m 1 m,2 2 212 1m m m1 1 4 3 4 24 1 1S | MN | | PQ | 24 12,8 3 MPNQ2 2 212 2 3m 4 1 m 3m 4 32m 114.(2016课标全国Ⅱ,理4)圆 2 2 2 8 13 0x y x y 的圆心到直线ax y 1 0 的距离为1,则a= ()(A) 43 (B) 34 (C)3 (D)215.(2016课标全国Ⅱ,理11)已知F1, F2 是双曲线E2 2x y: 12 2的左,右焦点,点M 在E 上,MF1 与xa b轴垂直,sin1MF F ,则E 的离心率为()2 13(A) 2 (B)32(C) 3 (D)29HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何16.(2016课标全国Ⅱ,理20)(本小题满分12 分)已知椭圆E:2 2x yt 31的焦点在x 轴上,A 是E 的左顶点,斜率为k(k 0) 的直线交E 于A,M 两点,点N 在 E 上,MA NA.(Ⅰ)当t 4,| AM | | AN | 时,求AMN 的面积;(Ⅱ)当2 AM AN 时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试题解析:(I )设,则由题意知,当时,的方程为,.10HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何由已知及椭圆的对称性知,直线的倾斜角为. 因此直线的方程为.将代入得. 解得或,所以.因此的面积.(II )由题意,,.将直线的方程代入得.由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此. 等价于,即. 由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系.17.(2016课标全国Ⅲ,理11)已知O为坐标原点,F 是椭圆C :2 2x y2 2 1(a b 0)a b 的左焦点,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x 轴.过点A 的直线l 与线段PF 交于点M ,,与y 轴交于点 E .若直线BM 经过OE 的中点,则 C 的离心率为()1 12 3(A)3(B)2 (C)3 (D)4【答案】A11HW 数学复习资料2010-2017 新课标全国卷分类汇编(解析几何)解析几何考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得a,c的值,进而求得 e 的b值;(2)建立a, b,c 的齐次等式,求得置,求出e.a或转化为关于e的等式求解;(3)通过特殊值或特殊位19(. 2016课标全国Ⅲ,理16)已知直线l :mx y 3m 3 0 错误!未找到引用源。
2009-2017全国高中数学联赛分类汇编第01讲不等式Word版含解析
3、( 2011 一试 3)设 a, b 为正实数, 1
1
2 2, (a
2
b)
3
4(ab) ,则
log a
b
.
ab
【答案】 -1
【解析】由 1
1
2 2 ,得 a b
2 2ab .又 (a
2
b)
2
4ab (a b)
3
4ab 4(ab)
3
4 2 ab (ab)
8(ab ) 2 ,
ab
即 a b 2 2ab ①于是 a b 2 2 ab ②
所以 M 2( z x) z x ( 2 1) z x 2 1.
1
当且仅当 y
x
z
y, x
0, z 1, y
时上式等号同时成立
2
. 故 M max
2 1.
3 5、 (2014 一试 2) 设集合 {
b |1
a
b
2} 中的最大值与最小值分别为
M , m ,则 M m =_________.
a
【答案】 5 2 3
⑵1
1 ln 1
n1
n
1 .令 xn n
nk
k2
k1
1
ln n ,则 x1
1 ,
2
n
1
xn xn 1 n2 1 ln 1 n 1
n1 n2 1 n
1 ( n2 1)n 0
因此 xn xn 1
1
x1
.
2
又因为 ln n (ln n ln( n 1)) (ln( n 1) ln( n 2))
(ln 2 ln1)
33 由于直线 CD的方程为 x+3y=6, 直线 GH的方程为 3x+y=6, 故它们的交点 P 的坐标为 ( , ) ,
高中数学竞赛平面几何讲座(非常详细)
第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:APAB+AQ AC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DCAQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3)对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN=90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ).于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NCME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O与BC 、CA 、AB图6AN CDEB MAGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB .(提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°) 3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k ) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)O图107. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG .(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.A BGCD FE图1ABCDPO 图2设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.A图3BPQDHC A EDCB图4解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交 于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有 3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ',E A NCD B FM 12345图6(1)(2)图8ABCA'B'C'c a b a'c'b'ABCa bb c∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=aa '=DB b '. 故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.) 6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.F DAEC图10图11(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。
第08讲+解析几何-2009-2017全国高中数学联赛分类汇编
2009-2017全国高中数学联赛分类汇编第08讲:解析几何
1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为.
【答案】[]36,
【解析】设()9A a a -,
,则圆心M 到直线AC 的距离sin45d AM =︒,由直线AC 与圆M 相交,得
d .解得36a ≤≤.
2、(2009一试5)椭圆22
221x y a b
+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为. 【答案】22
222a b a b
+ 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭,. 由P ,Q 在椭圆上,有
222221
cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ②
①+②得222211
11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22
222a b a b +.
3、(2010一试3)双曲线12
2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是.
【答案】9800
4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,。
第08讲 解析几何20092017全国高中数学联赛分类汇编 (1)
2009-2017全国高中数学联赛分类汇编第08讲:解析几何1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为.【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤.解得36a ≤≤. 2、(2009一试5)椭圆22221x y a b+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为.【答案】22222a b a b+【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a b OP OQ+=+.于是当22222a b OP OQ a b ==+时,OP OQ 达到最小值22222a b a b +. 3、(2010一试3)双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】98004、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(-即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t , 即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.5、(2012一试4)抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N ,则||||MN AB 的最大值是.【答案】1【解析】由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos 3AB AF BF AF BF π=+-⋅当且仅当AF BF =时等号成立.故MNAB的最大值为1. 6、(2013一试2)在平面直角坐标系xOy 中,点A B 、在抛物线24y x =上,满足4OA OB ⋅=-,F 是抛物 线的焦点.则OFA OFB S s ∆∆⋅=. 【答案】2.【解析】点F 坐标为()1,0.设()11,A x y ,()22,B x y ,则2114y x =,2224y x =,故()2121212121416OA OB x x y y y y y y -=⋅=+=+,即()21218016y y +=,故128y y =-.212121112224OFA OFB S S OF y OF y OF y y ∆∆⎛⎫⎛⎫⋅=⋅⋅⋅=⋅⋅= ⎪ ⎪⎝⎭⎝⎭.7、(2013一试7)若实数,x y 满足42x y x y -=-x 的取值范围是. 【答案】{}[]04,20.如图所示,在aOb 平面内,点(),a b 的轨迹是以()1,2为圆心,5为半径的圆在,0a b ≥的部分,即点O 与弧ACB 的并集.因此{}2202,25a b ⎡⎤+⎣⎦,从而{}[]2204,20x a b =+∈.学%科网8、(2014一试6)设椭圆Γ的两个焦点是21,F F ,过点1F 的直线与Γ交于点Q P ,,若||||212F F PF =,且||4||311QF PF =,则椭圆Γ的短轴与长轴的比值为__________.267【解析】11||4,||3,PF QF ==记椭圆T 的长轴,短轴的长度分别为2a,2b,焦距为9、(2016一试7)双曲线C 的方程为1322=-y x ,左、右焦点分别为1F 、2F ,过点2F 作直线与双曲线C 的右半支交于点P ,Q ,使得PQ F 1∠=90°,则PQ F 1∆的内切圆半径是 . 【答案】17- 【解析】10、(2017一试3)在平面直角坐标系xoy 中,椭圆C 的方程为221910x y +=,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为. 【答案】3112【解析】易知(3,0),F(0,1).P 3cos ,10sin ),[0,],2A πθθθ∈设的坐标是(则11、(2009一试9)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.【解析】由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k x kmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ①由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k x kmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k +=- ()()()2222243120km k m ∆=-+-+> ②因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=. 由1234x x x x +=+得2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得2323m -<.因m是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得33k -<<.因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.12、(2010一试10)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值. 【解析】解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=. 线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1) 依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离202029)0()25(y y CM h +=-+-==.3202020)392249(2131y y y ++-++≤7314= . 当且仅当20202249y y -=+,即05y =±,635635(57),(57)33A B 或 635635(,(57)),(57)33A B --时等号成立. 所以,ABC ∆面积的最大值为7314. 221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t 3)314(23≤, 所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即 ,6571-=t 6572+-=t ,635635(57),(57)A B +-或 635635(,(57)),(57)33A B --时等号成立.所以,ABC ∆面积的最大值是7314.13、(2011一试11)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积. 【解析】(1)设直线l :m x y +=31,),(),,(2211y x B y x A .将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x . 上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x 0122626312322=+-+--=m m m m ,从而,0=+PB PA k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==PB PA k k .直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .1||||sin 602132(331)32(331)311732PAB S PA PB ∆=⋅⋅⋅︒+-==所以.14、(2012一试11)如图5,在平面直角坐标系XOY 中,菱形ABCD 的边长为4,且6OB OD ==. (1)求证:||||OA OC ⋅为定值;(2)当点A 在半圆22(2)4x y -+=(24x ≤≤)上运动时,求点C 的轨迹.yOPAB(2)设(,),(22cos ,2sin ),C x y A αα+其中(),22XMA ππαα=∠-≤≤则2XOC α∠=. 因为2222(22cos )(2sin )8(1cos )16cos ,2OA αααα=++=+=所以4cos2OA α=由(1)的结论得cos5,2OC α=所以cos5.2x OC α==从而sin5tan[5,5].22y OC αα==∈-故点C 的轨迹是一条线段,其两个端点的坐标分别为(5,5),(5,5)A B - 学科/网15、(2013一试11)(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为()222210x y a b a b+=>>,12A A 、分别为椭圆的左、右顶点,12F F 、分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q R 、满足11QA PA ⊥,22QA PA ⊥,11RF PF ⊥,22RF PF ⊥,试确定线段QR 的长度与b 的大小关系,并给出证明.【解析】令22c a b =-,则()1,0A a -,()2,0A a ,()1,0F c -,()2,0F c .设()00,P x y ,()11,Q x y ,()22,R x y ,其中2200221x y a b+=,00y ≠.由11QA PA ⊥,22QA PA ⊥可知()()1110100A Q A P x a x a y y ⋅=+++=,○1 根据11RF PF ⊥,22RF PF ⊥,同理可得22000,x c R x y ⎛⎫-- ⎪⎝⎭.因此2222200000x a x c b QR y y y --=-=, 由于(]00,y b ∈,故QR b ≥(其中等号成立的充分必要条件是0y b =,即点P 为()0,b ±).16、(2014一试9)(本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上一个动点,满足条件:过P 可作抛物线x y 42=的两条切线,两切点连线P l 与PO 垂直.设直线P l 与PO ,x 轴的交点分别为R Q ,, (1)证明:R 是一个顶点. (2)求||||QR PQ 的最小值. 【解析】(1)设P 点的坐标为(a,b)(0)b ≠,易知0a ≠,记两切点A B ,的坐标为1122,),,),x y x y ((则PA PB ,的方程分别为11222()12()2yy x x yy x x =+=+()()而点P 的坐标为(a,b)同时满足(1)(2),故A ,B 的坐标均满足方程by=2(x+a)(3),故(3)就是直线AB 的方程. 直线PO 与AB 的斜率分别为22=-1,a=-2b b PO AB a b a b⊥与,由知,故 从而(3)即为2y=(2),x b-故AB 与x 轴的交点R 是定点(2,0). (2)因为a=-2,故直线PO 的斜率12.24b bPR k =-=-k ,直线的斜率设=OPR α∠,则α为锐角,且17、(2015一试11)(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2212x y +=的左,右焦点,设不经过焦点1F 的直线l 与椭圆C 交于两个不同的点,A B ,焦点2F 到直线l 的距离为d .如果直线11,,AF l BF 的斜率成等差数列,求d 的取值范围.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程(1)的两个不同实根,因此有(1)的判别式 即2221.(2)k m +>由直线11AF l BF 、、的斜率121211y yk x x ++、、依次成等差数列, 12112212+2,,11y yk y kx m y kx m x x ==+=+++又,所以 化简并整理得12)(2)0m k x x -++=( 假如m k =,则直线L 的方程为y=kx+k,即l 经过点11,0F (-),不符合条件. 因此必有122=0x x ++,故由方程(1)及韦达定理知, 由22212321=2k m k k +>+()、()知,()化简得2214k k>,这等价于2||2k > 反之当m,k 满足(3及)2||2k >时,l 必不经过点1F (否则将导致,m k =与(3)矛盾),注意到2||2k >,令211t k =+3),t ∈上式可改写为21313()().(4)222t t t t⋅+=⋅+d=考虑到函数13()()2f t t t=⋅+在3]上单调递减,故由(4)得(3)(1),f d f <<即3,2)d ∈ 18、(2016一试11)(本题满分20分)如图所示,在平面直角坐标系xOy 中,F 是x 轴正半轴上的一个动点.以F 为焦点,O 为顶点作抛物线C .设P 是第一象限内C 上的一点,Q 是x 轴负半轴上一点,使得PQ 为C 的切线,且|PQ |=2.圆21,C C 均与直线OP 相切于点P ,且均与轴相切.求点F 的坐标,使圆1C 与2C 的面积之和取到最小值. 【解析】设抛物线C 的方程是)0(22>=p px y ,点Q 的坐标为)0)(0,(>-a a ,并设21,C C 的圆心分别为),(),,(222111y x O y x O .设直线PQ 的方程为)0(>-=m a my x ,将其与C 的方程联立,消去x 可知0222=+-pa pmy y . 因为PQ 与C 相切于点P ,所以上述方程的判别式为024422=•-=∆pa m p ,解得pam 2=.进而可知,点P 的坐标为)2,(),(pa a y x P P =.于是)2(2221|0|1||2a p a pa pay m PQ P +=•+=-+=. 由|PQ |=2可得4242=+pa a ①结合①,就有2221342a pa a y y -=+=② 由21,,O P O 共线,可得212121212122y yN O M O PO P O y y y y y pa pa y P P ===--=--.化简得212122y y pay y =+③令2221y y T +=,则圆21,C C 的面积之和为T π.根据题意,仅需考虑T 取到最小值的情况. 根据②、③可知,22222221)2)(34()34(2)34(444aa a a a a ---=----=.学科*网 作代换21a t -=,由于024442>=-=pa a t ,所以0>t .于是4324132413)1)(13(+=+•≥++=++=tt t t t t t T .上式等号成立当且仅当33=t ,此时3111-=-=t a ,因此结合①得, 从而F 的坐标为)0,331()0,2(-=p .。
全国高中数学联赛分类汇编 专题 解析几何
1、(2000一试3)已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是 ( ) (A)33 (B) 233 (C) 33 (D) 633、(2002一试2)若实数x, y 满足(x+5)2+(y12)2=142,则x 2+y 2的最小值为( )(A ) 2 (B) 1 (C) 3 (D) 2 【答案】B【解析】利用圆的知识结合数形结合分析解答,22x y +表示圆上的点(x,y )到原点的距离。
4、(2002一试4)直线134=+yx 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】B5、(2003一试2)设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是()A. B. C. D.【答案】B6、(2003一试3)过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB的中垂线与x轴交于点P,则线段PF的长等于()(A)163(B)83(C)1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB所在直线方程为y=3x,弦的中点在y=pk=43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.7、(2004一试2)已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ≠∅,则b 的取值范围是 ( )A .[-62,62]B .(-62,62)C .(-233,233]D .[-233,233] 【答案】A【解析】点(0,b )在椭圆内或椭圆上,⇒2b 2≤3,⇒b ∈[-62,62].选A .8、(2005一试5)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线 【答案】C9、(2007一试5)设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )【答案】A【解析】设圆O 1和圆O 2的半径分别是r 1、r 2,|O 1O 2|=2c ,则一般地,圆P 的圆心轨迹是焦点为O 1、O 2,且离心率分别是212r r c +和||221r r c -的圆锥曲线(当r 1=r 2时,O 1O 2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。
高中数学竞赛平面几何讲义
高中平面几何(叶中豪话题几何问题的联系和转化解题和编题的一些规律调和点列,反演与配极,调和四边形完全四边形及其 Miquel 点例题和习题1. △ ABC 中, AB =AC , BD ⊥ AC 于 D , E 在 AC 延长线上,且 CE =CD , F 在CA 延长线上,且 AF = 12CD 。
求证:BE ⊥ BF 。
2. AB 为半圆直径, C 为半圆上一点,由 C 引 AB 的垂线, D 为垂足。
分别在半圆上截取 AE =AD , BF =BD 。
求证:CD 平分 EF 。
3. 已知半圆的直径 AB 的长为 2r ,半圆外的直线 l 与 BA 的延长线垂直,垂足为T ,AT =2a (2a <2r , 半圆上有相异两点 M 、 N , 它们与直线 l 的距离 MP 、 NQ 满足 MP AM=NQAN=1。
求证:AM +AN =AB 。
l PQ T4. 在△ ABC 的边 BC 的延长线上取一点 D ,使 CD =AC ,△ ACD 的外接圆与以BC边为直径的圆交于 C 、 G 两点,直线 BG 、 AC 交于 E ,直线 CG 、 AB 交于F 。
求证:D 、 E 、 F 三点共线。
B5. △ ABC 内心为 I ,内切圆切 AB 、 AC 边于 E 、 F ,延长 BI 、 CI 分别交直线EF 于 M 、N 。
求证:S 四边形 AMIN =S △ IBC 。
B6. AC 是与 BD 垂直于 E 的直径, G 是 BA 延长线上一点,过 B 作 BF ∥ DG 交DA 延长线于 F ,作 CH ⊥ GF 于 H 。
求证:B 、 E 、 F 、 H 四点共圆。
7. 如图,圆 O 1和圆 O 2相交于 E 、 F ,过 E 作割线 AB ,使 AE =EB ,过 F 作割线CD , 联 AD 、 BC ,并过 A 作 AD 的垂线、过 B 作 BC 的垂线,设两条垂线相交于 P 点。
计数原理-2009-2017全国高中数学联赛分类汇编(Word版含解析)
2009-2017全国高中数学联赛分类汇编第06讲:计数原理1、(2010一试8)方程2010=++z y x 满足z y x ≤≤的正整数解(,,)x y z 的个数是. 【答案】336675易知 100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=,即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.2、(2011一试5)现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为.(用数字作答) 【答案】15000【解析】由题设条件可知,满足条件的方案有两种情形:(1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案;(2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.3、(2011一试8)已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为. 【答案】15 【解析】=n a C65400320020023n n n--⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n .当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数. 因此,整数项的个数为15114=+.4、(2013一试6)从1,2,…,20中任取5个不同的数,其中至少有两个是相邻数的概率为. 【答案】2323235、(2015一试8)对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若,,a b b c c d <><,则称a b c d 为Q 类数,用()N P 与()N Q 分别表示P 类数与Q 类数的个数,则()()N P N Q -的值为【答案】285【解析】分别记P 类数、Q 类数的全体为A,B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的P 类数全体记为1A .1,,,,1,abcd A dcba a b b c c d ∈><>≥对任一四位数将其对应到四位数注意到11..dcba B dcba B A abcd A B ∈∈故反之,每个唯一对应于中的元素这建立了与之间的一一 对应,因此有010()()||||||||||||.N P N Q A B A A B A -=-=+-=00||:0,0,19b,A abc A b ∈⋅⋅⋅下面计算对任一四位数可取,,,对其中每个99b a b c <≤<≤由及知,a 和c 分别有9-b 种取法,从而992200191019|=(9)26|85.b k b k ==⨯⨯-===∑∑A ()()285.N P N Q -=因此,6、(2016一试8)设4321,,,a a a a 是1,2,…,100中的4个互不相同的数,满足2433221242322232211)())((a a a a a a a a a a a a ++=++++则这样的有序数组),,,(4321a a a a 的个数为 . 【答案】40先考虑m n >的情况.此时331314)(mn a m n a a ==,注意到33,n m 互素,故31m a l =为正整数. 相应地,4321,,,a a a a 分别等于l n l mn nl m l m 3223,,,,它们均为正整数.这表明,对任意给定的1>=mnq ,满足条件并以q 为公比的等比数列4321,,,a a a a 的个数,即为满足不等式1003≤l n 的正整数l 的个数,即]100[3n.由于10053>,故仅需考虑34,4,23,3,2=q 这些情况,相应的等比数列的个数为20113312]64100[]64100[]27100[]27100[]8100[=++++=++++. 当m n <时,由对称性可知,亦有20个满足条件的等比数列4321,,,a a a a . 综上可知,共有40个满足条件的有序数组),,,(4321a a a a .7、(2017一试4)若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是. 【答案】75【解析】考虑平稳数abc .若b=0,则a=1,{0,1},.c ∈有两个平稳数1,a {1,2},c {0,1,2},23=6.2b 8,a,c {b 1,b,b 1},733=63.9,a,c {8,9}22=4.2+6+63+4=75.b b =∈∈⨯≤≤∈-+⨯⨯=∈⨯若则有个平稳数若则有个平稳数若则,有个平稳数综上可知,平稳数的个数是个平稳数8、(2010二试4)一种密码锁的密码设置是在正n 边形12n A A A 的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍.设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j -⎡⎤≤≤⎢⎥⎣⎦.选取2i 条边标记a 的有2in C 种方法,在余下的边中取出2j 条边标记b 的有22jn i C -种方法,其余的边标记c .由乘法原理,此时共有2in C 22j n i C -种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为 222222004n n i i j nn i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪ ⎪ ⎪⎝⎭∑∑. ① 这里我们约定001C =.当n 为奇数时,20n i ->,此时22221202n i jn i n ij C-⎡⎤⎢⎥⎣⎦---==∑. ②代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i nn i n n i j i i C C C C -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦----====⎛⎫ ⎪== ⎪ ⎪⎝⎭∑∑∑∑ 022(1)(21)(21)nnkn kk n kk n n nn k k C C --===+-=++-∑∑31n =+. 当n 为偶数时,若2n i <,则②式仍然成立;若2ni =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪= ⎪⎪⎝⎭∑∑()122210412n i n i n i C ⎡⎤-⎢⎥⎣⎦--=⎛⎫ ⎪⨯+ ⎪ ⎪⎝⎭∑()2221024233n i n i nn i C ⎡⎤⎢⎥⎣⎦--==+=+∑. 综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n +种;当n 为偶数时有33n+种.。
高中数学竞赛平面几何讲座(非常详细).
第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB+AQAC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BCAN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来. 4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NC ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB图6AN CDEB M AGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F .)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG.O图10(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.A BGCD FE图1ABCDPO 图2又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有A图3BPQDHC A EDCB图4图53=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab .E A NCD B FM 12345图6(1)(2)图8ABCA'C'cb a'c'b'A BCDabb c图9又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)F DAEC图10图11第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。
2003-2017年全国高中数学联赛分类汇编(精编版)
2003-2017年全国高中数学联赛分类汇编(精编版)01不等式部分1、(2003一试5)已知x ,y 都在区间(-2,2)内,且xy=-1,则函数u=44-x 2+99-y 2的最小值是( )(A) 85 (B) 2411 (C ) 127 (D) 125【答案】D2、(2004一试3)不等式log 2x -1+12log 12x 3+2>0的解集为( )A .[2,3)B .(2,3]C .[2,4)D .(2,4] 【答案】C【解析】令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),⇒x ∈[2,4),选C .3、(2005一试1)使关于x k 有解的实数k 的最大值是( )A 【答案】D4、(2006一试2)设2log (21)log 2 1x x x x +->-,则x 的取值范围为( )A .112x << B .1, 12x x >≠且 C . 1x > D . 01x << 【答案】B5、(2007一试2)设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[-D. [−3,3]【答案】A【解析】令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
2017年全国高中数学联赛二试试题及答案解析.pdf
2010年全国高中数学联合竞赛加试 试题参考答案及评分标准(A 卷)说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次。
一、(本题满分40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.证明:用反证法.若A ,B ,D ,C 不四点共圆,设三角形ABC 的外接圆与AD 交于点E ,连接BE 并延长交直线AN 于点Q ,连接CE 并延长交直线AM 于点P ,连接PQ .因为2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O ) ()()2222PO rKOr =−+−,同理 ()()22222QK QO rKOr =−+−,所以 2222PO PK QO QK −=−,故 OK ⊥PQ . (10分)由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=. ① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=, ② 1MC DE APCD EA PM⋅⋅=. ③ 由①,②,③可得NB MCBD CD=, (30分) 所以ND MDBD DC=,故△DMN ∽ △DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆. (40分)注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅, ④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅, ⑤⑤-④,得 2PK PE PC AK KE =⋅−⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ). 注2:若点E 在线段AD 的延长线上,完全类似.二、(本题满分40分)设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r = (1)(()),2l f f r l −≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.证明:记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法.当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠为整数. (10分)假设命题对1(1)v v −≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+",FE Q PO NM KDC B A这里,0i α=或者1,1,2,i v v =++". (20分)于是 ()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠2122kk k =+++ 11211212(1)2()222v v v vv v v ααα−++++=+++⋅++⋅+++""12k ′=+, ①这里1121122(1)2()22v v v v v v v k ααα−++++′=++⋅++⋅+++"".显然k ′中所含的2的幂次为1v −.故由归纳假设知,12r k ′′=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明. (40分) 三、(本题满分50分)给定整数2n >,设正实数12,,,n a a a "满足1,1,2,,k a k n ≤=",记12,1,2,,kk a a a A k n k+++=="".求证:1112nnk k k k n a A ==−−<∑∑. 证明:由01k a <≤知,对11k n ≤≤−,有110,0kni ii i k a k an k ==+<≤<≤−∑∑. (10分)注意到当,0x y >时,有{}max ,x y x y −<,于是对11k n ≤≤−,有11111kn n k i i i i k A A a a n k n ==+⎛⎞−=−+⎜⎟⎝⎠∑∑11111n ki i i k i a a n k n =+=⎛⎞=−−⎜⎟⎝⎠∑∑ 11111max ,n k i i i k i a a n k n =+=⎧⎫⎛⎞<−⎨⎬⎜⎟⎝⎠⎩⎭∑∑111max (),n k k nk n ⎧⎫⎛⎞≤−−⎨⎬⎜⎟⎝⎠⎩⎭1k n=−, (30分) 故111nnnk kn k k k k a AnA A ===−=−∑∑∑()1111n n nk n k k k AA A A −−===−≤−∑∑111n k k n −=⎛⎞<−⎜⎟⎝⎠∑12n −=. (50分) 四、(本题满分50分)一种密码锁的密码设置是在正n 边形12n A A A "的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?解:对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a ,如果颜色不同,则标上b ,如果数字和颜色都相同,则标上c .于是对于给定的点1A 上的设置(共有4种),按照边上的字母可以依次确定点23,,,n A A A "上的设置.为了使得最终回到1A 时的设置与初始时相同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍. (20分)设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j −⎡⎤≤≤⎢⎥⎣⎦.选取2i 条边标记a 的有2in C 种方法,在余下的边中取出2j 条边标记b 的有22jn i C −种方法,其余的边标记c .由乘法原理,此时共有2in C 22jn i C −种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦−==⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠∑∑. ①这里我们约定001C =. (30分)当n 为奇数时,20n i −>,此时22221202n i j n i n i j C −⎡⎤⎢⎥⎣⎦−−−==∑. ② 代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i n n i n n i j i i C C C C −⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎢⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦−−−−====⎛⎞⎜⎟==⎜⎟⎜⎟⎝⎠∑∑∑∑ 0022(1)(21)(21)nnkn kk n kk n n nn k k C C −−===+−=++−∑∑ 31n =+. (40分)当n 为偶数时,若2n i <,则②式仍然成立;若2ni =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦−==⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠∑∑()122210412n i n i n i C ⎡⎤−⎢⎣⎦−−=⎛⎞⎜⎟×+⎜⎟⎜⎟⎝⎠∑ ()222124233n i n i n n i C ⎡⎤⎢⎣⎦−−==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n+种;当n 为偶数时有33n+种. (50分)。
历年全国高中数学联赛《平面几何》专题真题汇编
历年全国高中数学联赛《平面几何》专题真题汇编1、如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等.2、如图:⊿ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N 。
求证:(1)OB ⊥DF ,OC ⊥DE ;(2)OH ⊥MN 。
【解析】证明:(1)∵A 、C 、D 、F 四点共圆 ∴∠BDF =∠BAC又∠OBC =21(180°-∠BOC )=90°-∠BAC∴OB ⊥DF . (2)∵CF ⊥MA∴MC 2-MH 2=AC 2-AH 2 ① ∵BE ⊥NA∴NB 2-NH 2=AB 2-AH 2 ② ∵DA ⊥BC∴BD 2-CD 2=BA 2-AC 2 ③ ∵OB ⊥DF∴BN 2-BD 2=ON 2-OD 2 ④ ∵OC ⊥DE∴CM 2-CD 2=OM 2-OD 2 ⑤ ①-②+③+④-⑤,得NH 2-MH 2=ON 2-OM 2 MO 2-MH 2=NO 2-NH 2 ∴OH ⊥MN∵1-=DF OB k k ∴OB ⊥DF 同理可证OC ⊥DE . 在直线BE 的方程)(b x a cy -=中令x =0得H (0,a bc -)∴ac ab bc a c b a bc a a bc k OH++=+++=32222直线DF 的方程为x bc a acab y +-=2由⎪⎪⎩⎪⎪⎨⎧--=+-=)(2c x c a y x bc a ac ab y 得N (22222222,2c bc a ac abc c bc a bc c a -+--++) 同理可得M (22222222,2b bc a ab abc b bc a c b b a -+--++) ∴bc a ac ab bc a bc a b c bc a c b a k MN3)3)()(())((222222++-=++-+-=∵k OH ·k MN =-1,∴OH ⊥MN .3、如图,在⊿ABC 中,∠A=60°,AB>AC ,点O 是外心,两条高BE 、CF 交于H点,点M 、N 分别在线段BH 、HF 上,且满足BM=CN ,求OH NH MH +的值。
全国高中数学联赛分类汇编第10讲平面几何
BABCMNPTIB 2009-2017全国高中数学联赛分类汇编第10讲:平面几何1、(2009二试1)如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC ⌒ 、AC ⌒的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB ⌒(不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I , 求证:Q ,1I ,2I ,T 四点共圆.【解析】⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆, 故PCMN 是等腰梯形.因此NP MC =,PM NC =. 连AM ,CI ,则AM 与CI 交于I ,因为MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =.于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高). 又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式 1sin 2PMT S PM MT PMT =⋅∠△1sin 2PNT S PN NT PNT ==⋅∠△1sin 2PN NT PMT=⋅∠于是PM MT PN NT ⋅=⋅.又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽. 故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠. 因此Q ,1I ,2I ,T 四点共圆.学&科网2、(2010二试1)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.同理()()22222QK QO r KO r =-+-,所以2222PO PK QO QK -=-,故OK ⊥PQ .由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=.① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=,② 1MC DE APCD EA PM⋅⋅=.③ 由①,②,③可得NB MC BD CD =,所以ND MDBD DC=,故△DMN ∽△DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆. 注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅,④则P ,E ,F ,A 四点共圆,故MPFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅,⑤⑤-④,得2PK PE PC AK KE =⋅-⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ).注2:若点E 在线段AD 的延长线上,完全类似.3、(2011二试1)如图,Q P ,分别是圆内接四边形ABCD 的对角线BD AC ,的中点.若DPA BPA ∠=∠,证明:CQB AQB ∠=∠.【解析】延长线段DP 与圆交于另一点E ,则BPA DPA CPE ∠=∠=∠,又P 是线段AC 的中点,故⋂⋂=CE AB ,从而BDA CDP ∠=∠.又PCD ABD ∠=∠,所以△ABD ∽△PCD ,于是CDPCBD AB =,即BD PC CD AB ⋅=⋅ . FE QPONMK D CBA从而有BQ AC BD AC BD AC CD AB ⋅=⋅=⋅=⋅)21(21, 即CDBQAC AB =. 又ACD ABQ ∠=∠,所以△ABQ ∽△ACD ,所以DAC QAB ∠=∠. 延长线段AQ 与圆交于另一点F ,则DAF CAB ∠=∠,故⋂⋂=DF BC . 又因为Q 为BD 的中点,所以DQF CQB ∠=∠. 又DQF AQB ∠=∠,所以CQB AQB ∠=∠.4、(2012二试1)如图,在锐角ABC ∆中,,,AB AC M N >是BC 边上不同的两点,使得.BAM CAN ∠=∠设ABC ∆和AMN ∆的外心分别为12,O O ,求证:12,,O O A 三点共线.是1O 的切线.因此B PAC ∠=∠, 因为,BAM CAN ∠=∠所以AMP B BAM PAC CAN PAN ∠=∠+∠=∠+∠=∠因而AP 是AMN 的外接圆2O 的切线, 故2.AP AO ⊥所以12,,O O A 三点共线.5、(2013二试1)(本题满分40分)如图,AB 是圆ω的一条弦,P 为弧AB 内一点,E 、F 为线段AB 上两点,满足AE EF FB ==.连接PE PF 、并延长,与圆ω分别相交于点C D 、.求证:EF CD AC BD ⋅=⋅【证明】连接AD ,BC ,CF ,DE .由于AE=EF=FB ,从而ABsin =2sin BC BCE B CP BEAC ACE A CP AE⋅∠==⋅∠点到直线的距离点到直线的距离.(1 )同样sin =2sin AD ADF A PD AFBD BDF B PD BF⋅∠==⋅∠点到直线的距离点到直线的距离.(2 )另一方面,由于BCE BCP BDP BDF ∠=∠=∠=∠, ACE ACP ADP ADF ∠=∠=∠=∠,6、(2014二试2)(本题满分40分)如图,在锐角三角形ABC 中,∠BAC ≠60°,过点B,C 分别作三角形ABC 的外接圆的切线BD,CE,且满足BD=CE=BC,直线DE 与A B ,AC 的延长线分别交于点F,G ,设CF 与BD 交于点M,CE 与BG 交于点N ,证明:AM=AN.ABCDEFPωωPFEDCBA.,MC BC BD AC LCDFB MF FD FD AB LB====△相似||.LM BF 因此 ||,LN CG 同理,由此推出0180-BAL ABL +=∠ALM=∠ALB+∠BLM=∠ALB ∠∠0=180-CAL ALC ACL ALC CLN =+=+∠∠∠∠∠.ALN =∠||BC FG 再结合以及内角平分线定理得到1LM LM BF CG CL AB BC CL ABLN BF CG LN BC AC BL BL AC=⋅⋅=⋅⋅=⋅=及LM=LN.学科*网 故由AL=AL,∠ALM=∠ALN,LM=LN 得到△ALM 与△ALN 全等,因而AM=AN,证毕.7、(2015二试3)(本题满分50分)如图,ABC ∆内接于圆,O P 为BC 上一点,点K 在线段AP 上,使得BK 平分ABC ∠,过,,K P C 三点的圆Ω与边AC 交于点D ,连结BD 交圆Ω于点E ,连结PE 并延长与边AB 交于点F ,证明:2ABC FCB ∠=∠8、(2016二试2)(本题满分40分)如图所示,在△ABC 中,X,Y 是直线BC 上两点(X,B,C,Y 顺次排列),使得BX·AC=CY·AB. 设△ACX ,△ABY 的外心分别为12,O O ,直线12O O 与AB,AC 分别交于点U 、V.证明:△AUV 是等腰三角形.即CP·PX=BP·PY .故P 对圆1w 和2w 的幂相等,所以P 在1w 和2w 的根轴上. 于是AP ⊥12O O ,这表明点U 、V 关于直线AP 对称,从而△AUV 是等腰三角形.9、(2017二试1)(本题满分40分)如图,在ABC ∆中,AB AC =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1T ,以I 为圆心,IB 为半径作圆2T ,过点B I 、的圆3T 与1T ,2T 分别交于点,P Q (不同于点B ),设IP 与BQ 交于点R .证明:BR CR ⊥.证明:连接,,,,.IB IC IQ PB PC201,IBQ IPB..,I ABC IB IC,,1180,2360?360IB IP Q T IB IQ IR IBIC IP AB AC IR ICBC BPC A BRC IRB IRC IBP ICPBIC BPC =∠=∠∆∆∠∠==∆==∆∆∠∠∠=-∠∠=∠+∠=∠+∠=-∠-∠=由于点在圆上,故所以故IBP IRB,从而有IRB=IBP,且注意到且为的内心,故所以于是ICP IRC,故IRC=ICP.又点P 在圆T 的弧上,故因此0011°(90?+180=90.22A A BR CR -∠--∠⊥)().故。
2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文
可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
2017年全国高中数学联赛一试二试试题整理详解汇编(一试二试为A卷)(教师版)
二、解答题:(本大题共3小题,满分56分.解答应写出文字说明、证明过程或解答步骤).
9、(本题满分16分)设 为实数,不等式 对所有 成立,证明: .
证明:令 则 于是
当 时不等式等号成立,故所求的最小值为1.
因为
当 时不等式等号成立,故所求的最大值为
11.(本题满分20分)设复数 满足 且 (其中 表示复数 的实部).
2017年全国高中数学联赛一试试题参考答案
一、填空题(本大题共8小题,每小题8分,共64分)
1、设 是定义在 上的函数,对任意实数 有 .又当 时, ,则 的值为.
【答案】
【解析】由条件知,
2、若实数 满足 ,则 的取值范围是.
【答案】
3、在平面直角坐标系 中,椭圆 的方程为 , 为 的上焦点, 为 的右顶点, 是 上位于第一象限内的动点,则四边形 的面积的最大值为.
所以
又易知直线 在平面 上的射影是直线
所以
故棱 与平面 所成的角的余弦值为
6、在平面直角坐标系 中,点集 ,在 中随机取出三个点,则这三点中存在两点之间距离为 的概率为.
【答案】
【解析】易知 中有9个点,故在 中随机取出三个点的方式数为 种.
将中的点按图标记为 ,其中有8对点之间的距离为 ,由对称性,考虑取 两点的情况,则剩下的一个点有7种取法,这样有 个三点组(不计每组中三点的顺序),对每个 , 中恰有 两点与之距离为 (这里下标按模8理解),因而恰有 这8个三点组被计了两次,从而满足条件的三点组个数为 ,进而所求概率为 .
【答案】
【解析】易知 设 的坐标是 则
其中 时,四边形 面积的最大值为
4、若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是.
高二数学竞赛班二试平面几何讲义第十讲-----几何不等式doc3
高二数学竞赛班二试平面几何讲义第十讲几何不等式班级一、知识要点:到三角形的三个顶点的距离之和最短的点叫做费尔马点。
对于一个顶角不超过120的三角形,费尔马点是对各边的张角都是120的点。
对于一个顶角超过120的三角形,费尔马点就是最大的内角的顶点。
例1. 如图,设三角形的外接圆O 的半径为R,内心为I ,∠B=60︒,∠A <∠C ,∠A 的外角平分线交圆O 于E .证明:(1) IO=AE ; (2) 2R <IO +IA +IC <(1+3)R .例2. 水平直线m 通过圆O 的中心,直线l ⊥m ,l 与m 相交于M ,点M 在圆心的 右侧,直线l 上不同的三点A,B,C 在圆外,且位于直线m 上方,A 点离M 点 最远,C 点离M 点最近,AP ,BQ,CR 为圆 O 的三条切线,P ,Q,R 为切点. 试证:(1)l 与圆O 相切时,AB ⨯CR +BC ⨯AP=AC ⨯BQ ;(2)l 与圆O 相交时, AB ⨯CR +BC ⨯AP <AC ⨯BQ ;(3)l 与圆O 相离时,AB ⨯CR +BC ⨯AP >AC ⨯BQ .例3. 如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:S ∆PQR S ∆ABC >29.A B C O I E N AC B P Q R H1.如图,在△ABC 中,P 为边BC 上任意一点,PE ∥BA ,PF ∥CA ,假设S △ABC =1,证明:S △BPF 、S △PCE 、S □PEAF 中至少有一个不小于49 (S XY …Z 表示多边形XY …Z 的面积).2.设凸四边形ABCD 的面积为1,求证:在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三点为顶点所构成的四个三角形的面积大于14.3.在圆O 内,弦CD 平行于弦EF ,且与直径AB 交成45°角,假设CD 与EF 分别交直径AB 于P 和Q ,且圆O 的半径为1,求证:PC ∙QE +PD ∙QF 2.M NAD C B FE P Q O BPBA D CB E四、拓展提高:4.设一凸四边形ABCD ,它的内角中仅有 D 是钝角,用一些直线段将该凸四边 形分割成n 个钝角三角形,但除去A 、B 、C 、D 外,在该四边形的周界上, 不含分割出的钝角三角形顶点.试证n 应满足的充分必要条件是n ≥4.5.已知边长为4的正三角形ABC .D 、E 、F 分别是BC 、CA 、AB 上的点,且 |AE |=|BF |=|CD |=1,连结AD 、BE 、CF ,交成△RQS .点P 在△RQS 内及边上 移动,点P 到△ABC 三边的距离分别记作x 、y 、z .(1)求证当点P 在△RQS 的顶点位置时乘积xyz 有极小值; (2)求上述乘积xyz 的极小值.C B ADFE G H lz xy E F B C DAP Q R S高二数学竞赛班二试平面几何讲义第十讲 几何不等式例1. 如图,设三角形的外接圆O 的半径为R,内心为I ,∠B=60︒,∠A <∠C,∠A 的外角平分线交圆O 于E .证明:(1) IO=AE ; (2) 2R <IO +IA +IC <(1+3)R . 证明:∵∠B=60°,∴∠AOC=∠AIC=120°.∴A ,O ,I ,C 四点共圆.圆心为弧AC 的中点F ,半径为R . ∴O 为⊙F 的弧AC 中点,设OF 延长线交⊙F 于H ,AI 延长线交弧BC 于D . 由∠EAD=90°〔内外角平分线〕知DE 为⊙O 的直径.∠OAD=∠ODA . 但∠OAI=∠OHI ,故∠OHI=∠ADE ,于是Rt ΔDAE ≌Rt ΔHIO ∴AE=IO .由ΔACH 为正三角形,易证IC +IA=IH . 由OH=2R .∴IO +IA +IC=IO +IH >OH=2R . 设∠OHI =α,则0<α<30°.∴IO +IA +IC=IO +IH=2R (sin α+cos α)=2R 2sin(α+45°) 又α+45°<75°,故IO +IA +IC <2 2R (6+2)/4=R (1+3)例 2. 水平直线m 通过圆O 的中心,直线l ⊥m ,l 与m 相交于M ,点M 在圆心的右侧,直线l 上不同的三点A,B,C 在圆外,且位于直线m 上方,A 点离M 点最远,C 点离M 点最近,AP ,BQ,CR 为圆 O 的三条切线,P ,Q,R 为切点.试证:(1)l 与圆O 相切时,AB ⨯CR +BC ⨯AP=AC ⨯BQ ;(2)l 与圆O 相交时,AB ⨯CR +BC ⨯AP <AC ⨯BQ ;(3)l 与圆O 相离时,AB ⨯CR +BC ⨯AP >AC ⨯BQ .证明:设MA=a ,MB=b ,MC=c ,OM=d , ⊙O 的半径=r .且设k=d 2-r 2.则当k >0时,点M 在⊙O 外,此时,直线l 与⊙O 相离; 当k=0时,点M 在⊙O 上,此时,直线l 与⊙O 相切; 当k <0时,点M 在⊙O 内,此时,直线l 与⊙O 相交.∴ AP=a 2+d 2-r 2=a 2+k ,同理,BQ=b 2+k ,CR=c 2+k . 则AB ⨯CR +BC ⨯AP -AC ⨯BQ= AB ⨯CR +BC ⨯AP -(AB +BC )⨯BQ =BC ×(AP -BQ )-AB ×(BQ -CR )=BC ×AP 2-BQ 2AP +BQ -AB ×BQ 2-CR 2BQ +CR=(b -c )(a -b )(a +b )AP +BQ -(a -b )(b -c )(b +c )BQ +CRAB C O I E=(a -b )(b -c )(a +b AP +BQ -b +cBQ +CR )=(a -b )(b -c )a ·BQ +a ·CR +b ·CR -b ·AP -c ·AP -c ·BQ(AP +BQ )(BQ +CR ).注意到a ∙BQ -b ∙AP=a 2·BQ 2-b 2·AP 2b ·AP +a ·BQ =(a 2-b 2)kb ·AP +a ·BQ .故k >0时,a ∙BQ -b ∙AP >0,k=0时,a ∙BQ -b ∙AP=0,k <0时,a ∙BQ -b ∙AP <0; 同理可得,k >0时,b ∙CR -c ∙BQ >0,k=0时,b ∙CR -c ∙BQ =0,k <0时,b ∙CR -c ∙BQ <0;k >0时,a ∙CR -c ∙AP >0,k=0时,a ∙CR -c ∙AP =0,k <0时,a ∙CR -c ∙AP <0; 即当k >0时,AB ⨯CR +BC ⨯AP -AC ⨯BQ >0; 当k=0时,AB ⨯CR +BC ⨯AP -AC ⨯BQ=0,当k <0时,AB ⨯CR +BC ⨯AP -AC ⨯BQ <0.故证.、例3. 如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:S ∆PQR S ∆ABC >29.证明:作△ABC 及△PQR 的高CN 、RH .设△ABC 的周长为1.则PQ=13. 则S ∆PQR S ∆ABC=PQ ·RH AB ·CN =PQ AB ·AR AC ,但AB <12,于是PQ AB >23,AP ≤AB -PQ <12-13=16,∴ AR=13-AP >16,AC <12,故AR AC >13,从而S ∆PQR S ∆ABC>29.1.如图,在△ABC 中,P 为边BC 上任意一点,PE ∥BA ,PF ∥CA ,假设S △ABC =1,证明:S △BPF 、S △PCE 、S □PEAF 中至少有一个不小于49(S XY …Z 表示多边形XY …Z 的面积).证明:如图,三等分BC 于M 、N ,假设点P 在BM 上(含点M ),则由于PE ∥AB ,则△CPE ∽△CBA .CP ∶CB ≥23.于是S △PCE ≥49.同理,假设P 在NC 上(含点N ),则S △BPF ≥49.假设点P 在线段MN 上.连EF ,设BP BC =r (13<r <23),则CP BC =1-r .S △BPF =r 2,S △PCE =(1-r )2. ∴ S △BPF +S △PCE =r 2+(1-r )2=2r 2-2r +1=2(r -12)2+12<2(13-12)2+12=59. 于是S □AEPF ≥49. 故命题成立.2.设凸四边形ABCD 的面积为1,求证:在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三点为顶点所构成的四个三角形的面积大于14.证明:考虑四边形的四个顶点A 、B 、C 、D ,假设△ABC 、△BCD 、△CDA 、N A C B PQ R HBP B△DAB 的面积,设其中面积最小的三角形为△AB D .⑴ 假设S △ABD >14,则A 、B 、C 、D 即为所求.⑵ 假设S △ABD <14,则S △BCD >34,取△BCD 的重心G ,则以B 、C 、D 、G 这4点中的任意3点为顶点的三角形面积>14.⑶ 假设S △ABD =14,其余三个三角形面积均> S △ABD =14.由于S △ABC +S △ACD =1,而S △ACD >14,故S △ABC <34=S △BC D . ∴ 过A 作AE ∥BC 必与CD 相交,设交点为E . 则∵ S △ABC >S △ABD ,从而S △ABE >S △ABD =14.S △ACE =S △ABE >14,S △BCE =S △ABC >14.即A 、B 、C 、E 四点即为所求.⑷ 假设S △ABD =14,其余三个三角形中还有一个的面积=14,这个三角形不可能是△BCD ,(否则ABCD 的面积=12),不妨设S △ADC =S △ABD =14.则AD ∥BC ,四边形ABCD 为梯形.由于S △ABD =14,S △ABC =34,故假设AD=a ,则BC=3a ,设梯形的高=h , 则2ah=1.设对角线交于O ,过O 作EF ∥BC 分别交AB 、CD 于E 、F . ∴ AE ∶EB=AO ∶OC=AD ∶BC=1∶3.∴ EF=a ·3+3a ·11+3=32a .S △EFB =S △EFC =12·32a ·34h=916ah=932>14.S △EBC =S △FBC =12·3a ·34h=98ah=916>12.于是B 、C 、F 、E 四点为所求.综上可知所证成立.又证:当ABCD 为平行四边形时,A 、B 、C 、D 四点即为所求. 当ABCD 不是平行四边形,则至少有一组对边的延长线必相交,设延长AD 、BC 交于E ,且设D 与AB 的距离<C 与AB 的距离,⑴ 假设ED ≤12AE ,取AE 中点P ,则P 在线段AD 上,作PQ ∥AB交BC 于Q .假设PQ=a ,P 与AB 距离=h .则AB=2a ,S ABQP =34S ABE >34S ABCD =34.即12(a +2a )h >34,ah >12. ∴ S △APQ =S △BPQ =12ah >14.S △P AB =S △QAB =ah >12>14.即A 、B 、Q 、P 为所求.⑵ 假设ED >12AE ,取AE 中点P ,则P 在线段DE 上,作PR ∥BC 交CD 于AD CBEh 3aaOAD CBFE P QA D C BE NF RS E C D AQ PR ,AN ∥BC ,交CD 于N ,由于∠EAB +∠EBA <π,故R 在线段CD 上.N 在DC延长线上.作RS ∥AB ,交BC 于S ,则RS=12AB ,延长AR 交BC 于F ,则S △F AB =S ABCN >S ABCD =1.问题化为上一种情况.3.在圆O 内,弦CD 平行于弦EF ,且与直径AB 交成45°角,假设CD 与EF 分别交直径AB 于P 和Q ,且圆O 的半径为1,求证:PC ∙QE +PD ∙QF <2. 证明:作OM ⊥CD ,垂足为M ,交EF 于N ,设ON=n ,OM=m .则CM=DM=1-m 2,EN=FN=1-n 2,此题即证(1-m 2+m )( 1-n 2-n )+( 1-m 2-m )( 1-n 2+n )<2. 展开得,1-m 2·1-n 2±mn <1.移项,平方得,1-m 2-n 2+m 2n 2<1∓2mn +m 2n 2.⇒m 2+n 2>∓2mn . 取“+”号时,M 、N 在点O 同侧,此时m ≠n ,总之,命题成立. (当E 、F 交换位置时,且CD 、EF 在点O 异侧时,可能有m=n .)又证:PC 2+PD 2=(CM +OM )2+(CM -OM )2=2(CM 2+OM 2)=2,同理QE 2+QF 2=2. ∴ 4=PC 2+PD 2+QE 2+QF 2=(PC 2+QE 2)+(PD 2+QF 2)≥2 (PC ∙QE +PD ∙QF ).等号当且仅当PC=QE ,PD=QF 时成立.但由已知,此二式不成立.故证.4.设一凸四边形ABCD ,它的内角中仅有∠D 是钝角,用一些直线段将该凸四边形分割成n 个钝角三角形,但除去A 、B 、C 、D 外,在该四边形的周界上,不含分割出的钝角三角形顶点.试证n 应满足的充分必要条件是n ≥4.证明 充分性 ⑴当n=4时,如图,只要连AC ,并在ΔABC 内取一点F ,使∠AFB 、∠BFC 、∠CF A 都为钝角(例如,可以取ΔABC 的Fermat 点,由于ΔABC 是锐角三角形,故其Fermat 点在其形内).于是,ΔADC 、ΔAFB 、ΔBFC 、ΔAFC 都是钝角三角形.⑵当n=5时,可用上法把凸四边形分成四个钝角三角形.再在AF 上任取一点E ,连EB ,则ΔAEB 也是钝角三角形,这样就得到了5个钝角三角形.一般的,由⑴得到了4个钝角三角形后,只要在AF 上再取n -4个点E 1、E 2、…E n -4,把这些点与B 连起来,即可得到均是钝角三角形的n 个三角形.必要性n=2时,连1条对角线把四边形分成了2个三角形,但其中最多只能有1个钝角三角形.n=3时,无法从同一顶点出发连线段把四边形分成3个三角形,现连了1条对角线AC 后,再连B 与AC 上某点得到线段,此时无法使得到的两个三角形都是钝角三角形.∴当n=2,3时无法得到满足题目要求的解.只有当n ≥4时才有解.CB AD FE M NAD C BF E P Q O5.已知边长为4的正三角形ABC.D、E、F分别是BC、CA、AB上的点,且|AE|=|BF|=|CD|=1,连结AD、BE、CF,交成△RQS.点P在△RQS内及边上移动,点P到△ABC三边的距离分别记作x、y、z.⑴求证当点P在△RQS的顶点位置时乘积xyz有极小值;⑵求上述乘积xyz的极小值.解:利用面积,易证:⑴当点P在△ABC内部及边上移动时,x+y+z为定值h=23;⑵过P作BC的平行线l,交△ABC的两边于G、H.当点P在线段GH上移动时,y+z为定值,从而x为定值.⑶设y∈[α,β],m为定值.则函数u=y(m-y)在点y=α或y=β时取得极小值.于是可知,过R作AB、AC的平行线,过Q作AB、BC的平行线,过S作BC、AC的平行线,这6条平行线交得六边形STRUQV,由上证,易得只有当点P在此六点上时,xyz取得极小值.由对称性易知,xyz的值在此六点处相等.由EAAC·CDDB·BSSE=1,得BSBE=1213,x=1213·34h=913h,y=SEBE h=113h,z=313h.∴xyz=(313)3h3=64821973.VU Tl SR QAD CB FEG HlzxyEFB CDAPQRS。
数学名师叶中豪高中数学竞赛平面几何讲义完整版
高中平面几何学习要点几何问题的转化 圆幕与根轴PSlemy 定理及应用几何变换及相似理论 位似及其应用完全四边形与Miquel 点 垂足三角形与等角共轨 反演与配极,调和四边形 射影几何 复数法及重心坐标方法例题和习题10.如图…O 切厶ABC 的边AB 于点D ,切边AC 于点C, M 是边BC 上一点, AM 交CD 于点N •求证:M 是BC 中点的充要条件是ON 丄BC 。
(09031302gsp) 门・已知:BC 是圆上的定弦,而动点A 在圆上运动,M 是AC 中点,作MP 丄AB 于 P 。
求 P 点的轨迹 o ( 10081601-4.gspAC 、BC 交于S 、T,与AB 交于M 、N 。
求证:PM=MS 的充要条件是 PN=NT 。
(10081601-3.gsp)13 •在△ ABC 中AC 〉BC ,F 是AB 的中点,过F 作它的外接圆直径DE ,使得C 、E在AB 同一侧,又过C 做AB 的平行线交DE 于L 。
求证:(AC+BC)2 二 4DLXEF 。
(09011003.gsp 14 •已知:P 是垂直ABC 外接圆BC 弧上任意一点,PD 丄BC 于D ,PE 丄CA 于E ,PF 丄 AB 于 F 。
求证:(BC/PD)二(AC/PE)+(AB/PF)。
(09012201-7.1 .gsp 15 •已知O 是厶ABC 的外匚、,M 是BC 边中点,D 是OM 延长线上一点,满足DO=DB ,E 、F 分别是AB 、AC 边上的点,满足/ MEA= / MFA= / A 。
求证: AD 丄 EF 。
(10080302.gsp16 •已知△ ABC 中,AB 二AC,线段AB 上有一点D ,线段AC 延长线上有一点E,使得DE 二AB 。
线段DE 与厶ABC 的外接圆交于点T ,P 是线段AT 延长线上 的一点。
求证:点P 满足PD+ PE 二AT 的充要条件是P 在厶ADE 的 外接圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
A
B
C
M
N
P
T
I
B 2009-2017全国高中数学联赛分类汇编第10讲:平面几何
1、(2009二试1)如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC ⌒ 、AC ⌒的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .
⑴求证:MP MT NP NT ⋅=⋅;
⑵在弧AB ⌒(不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I , 求证:Q ,1I ,2I , T 四点共圆.
【解析】⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆, 故PCMN 是等腰梯形.因此NP MC =,PM NC =. 连AM ,CI ,则AM 与CI 交于I ,因为
MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.
同理NC NI =.
于是NP MI =,PM NI =.
故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高). 又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式 1sin 2PMT S PM MT PMT =⋅∠△1sin 2PNT S PN NT PNT ==⋅∠△1
sin 2
PN NT
PMT =⋅∠
于是PM MT PN NT ⋅=⋅.
又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽. 故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠. 因此Q ,1I ,2I ,T 四点共圆.
2、(2010二试1)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.
同理()(
)
22222
QK QO r KO r =-+-,
所以222
2
PO PK QO QK -=-,
故OK ⊥PQ .由题设,OK ⊥MN ,所以PQ ∥MN ,于是
AQ AP
QN PM
=.① 由梅内劳斯(Menelaus )定理,得
1NB DE AQ
BD EA QN
⋅⋅=,② 1MC DE AP
CD EA PM
⋅⋅=.③ 由①,②,③可得NB MC BD CD =,所以ND MD
BD DC
=,故△DMN ∽△DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆. 注1:“2
PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得
M
PK KF AK KE ⋅=⋅,④
则P ,E ,F ,A 四点共圆,故
PFE PAE BCE ∠=∠=∠,
从而E ,C ,F ,K 四点共圆,于是
PK PF PE PC ⋅=⋅,⑤
⑤-④,得
2PK PE PC AK KE =⋅-⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ).
注2:若点E 在线段AD 的延长线上,完全类似.
3、(2011二试1)如图,Q P ,分别是圆内接四边形ABCD 的对角线BD AC ,的中点.若DPA BPA ∠=∠,证明:CQB AQB ∠=∠.
【解析】延长线段DP 与圆交于另一点E ,则BPA DPA CPE ∠=∠=∠,又P 是线段AC 的中点,故⋂
⋂
=CE AB ,从而BDA CDP ∠=∠.
F
E Q
P
O
N
M
K D C
B
A
又PCD ABD ∠=∠,所以△ABD ∽△PCD ,于是CD
PC
BD AB =
,即BD PC CD AB ⋅=⋅ . 从而有BQ AC BD AC BD AC CD AB ⋅=⋅=⋅=⋅)2
1
(21, 即
CD
BQ
AC AB =
. 又ACD ABQ ∠=∠,所以△ABQ ∽△ACD ,所以DAC QAB ∠=∠. 延长线段AQ 与圆交于另一点F ,则DAF CAB ∠=∠,故⋂
⋂
=DF BC . 又因为Q 为BD 的中点,所以DQF CQB ∠=∠. 又DQF AQB ∠=∠,所以CQB AQB ∠=∠.
4、(2012二试1)如图,在锐角ABC ∆中,,,AB AC M N >是BC 边上不同的两点,使得.BAM CAN ∠=∠设ABC ∆和AMN ∆的外心分别为12,O O ,求证:12,,O O A 三点共线.
是1O 的切线.因此B PAC ∠=∠, 因为,BAM CAN ∠=∠ 所以AMP B BAM PAC CAN PAN ∠=∠+∠=∠+∠=∠
因而AP 是AMN 的外接圆2O 的切线, 故2.AP AO ⊥所以12,,O O A 三点共线.
5、(2013二试1)(本题满分40分)如图,AB 是圆ω的一条弦,P 为弧AB 内一点,E 、F 为线段AB 上两点,满足AE EF FB ==.连接PE PF 、并延长,与圆ω分别相交于点C D 、.求证:
A
B
EF CD AC BD ⋅=⋅
【证明】连接AD ,BC ,CF ,DE .由于AE=EF=FB ,从而
sin =2sin BC BCE B CP BE
AC ACE A CP AE
⋅∠==⋅∠点到直线的距离点到直线的距离.
(1 )
同样
sin =2sin AD ADF A PD AF
BD BDF B PD BF
⋅∠==⋅∠点到直线的距离点到直线的距离.
(2 )
另一方面,由于
BCE BCP BDP BDF ∠=∠=∠=∠, ACE ACP ADP ADF ∠=∠=∠=∠,
6、(2014二试2)(本题满分40分)如图,在锐角三角形ABC 中,∠BAC ≠60°,过点B,C 分别作三角形ABC 的外接圆的切线BD,CE,且满足BD=CE=BC,直线DE 与AB ,AC 的延长线分别交于点F,G ,设CF 与BD 交于点M,CE 与BG 交于点N ,证明:AM=AN.
A
B
C
D
E
F
P
ω
ω
P
F
E
D
C
B
A
.
,MC BC BD AC LC
DFB MF FD FD AB LB
====△相似||.LM BF 因此 ||,LN CG 同理,由此推出0180-BAL ABL +=∠ALM=∠ALB+∠BLM=∠ALB ∠∠
0=180-CAL ALC ACL ALC CLN =+=+∠∠∠∠∠.ALN =∠
||BC FG 再结合以及内角平分线定理得到
1LM LM BF CG CL AB BC CL AB
LN BF CG LN BC AC BL BL AC
=⋅⋅=⋅⋅=⋅=及LM=LN. 故由AL=AL,∠ALM=∠ALN,LM=LN 得到△ALM 与△ALN 全等,因而AM=AN,证毕.
7、(2015二试3)(本题满分50分)如图,ABC ∆内接于圆,O P 为 BC
上一点,点K 在线段AP 上,使得BK 平分ABC ∠,过,,K P C 三点的圆Ω与边AC 交于点D ,连结BD 交圆Ω于点E ,连结PE 并延长与边AB 交于点F ,证明:2ABC FCB ∠=∠
8、(2016二试2)(本题满分40分)如图所示,在△ABC 中,X,Y 是直线BC 上两点(X,B,C,Y 顺次排列),使得BX·AC=CY·AB. 设△ACX,△ABY 的外心分别为12,O O ,直线12O O 与AB,AC 分别交于点U 、V.证明:
△AUV 是等腰三角形.
即CP·PX=BP·PY.故P 对圆1w 和2w 的幂相等,所以P 在1w 和2w 的根轴上. 于是AP⊥12O O ,这表明点U 、V 关于直线AP 对称,从而△AUV 是等腰三角形.
9、(2017二试1)(本题满分40分)如图,在ABC ∆中,AB AC =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1T ,以I 为圆心,IB 为半径作圆2T ,过点B I 、的圆3T 与1T ,2T 分别交于点,P Q (不同于点B ),设IP 与BQ 交于点R .证明:BR CR ⊥.
证明:连接,,,,.IB IC IQ PB PC
201,IBQ IPB..,I ABC IB IC,,1
180,2360?IB IP Q T IB IQ IR IB
IC IP AB AC IR IC
BC BPC A BRC IRB IRC IBP ICP
BIC BPC =∠=∠∆∆∠∠==∆==∆∆∠∠∠=-∠∠=∠+∠=∠+∠=-∠-∠= 由于点在圆上,故所以故IBP IRB,从而有IRB=IBP,且注意到且为的内心,故所以
于是ICP IRC,故IRC=ICP.又点P 在圆T 的弧上,故因此0011
°(90?22
A A BR CR
-∠--∠⊥)().故。