中考26题几何新定义练习

合集下载

北京市中考新定义练习题

北京市中考新定义练习题

1. 如图,在平面直角坐标系xOy 中,已知点A (0,1),B (0,-1). 点P 是平面内任意一点,直线PA ,PB 与直线4x =分别交于M ,N 两点.若以MN 为直径的圆恰好过点C (2,0),则称此时的点P 为理想点.(1)请判断P 1(-4,0),P 2(3,0)是否为理想点;(2)若直线3x =-上存在理想点,求理想点的纵坐标;(3)若动直线(0)x m m =≠上存在理想点,直接写出m 的取值范围.2. 对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值 之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为 零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3)记函数22()y x x x m =-≥的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为 .3.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是90°.(1)2,2(-E 中,选一点,使(21=y 向上翻折,(3)1,若该圆的坐标角度︒≤≤︒9060m .直接写出满足条件的r 的取值范围.4 定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个最小值函数图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是 ;②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;③以②中的点M 为圆心,以2为半径作圆. 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值.5.在平面直角坐标系 xOy 中,对于点P (x , y ),以及两个无公共点的图形W 1和W 2,若在图形W 1和W 2上分别存在点M (x 1, y 1 )和N (x 2, y 2 ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形W 1和W 2的一个“中位点”,此时P ,M ,N 三个点的坐标满足x =122x x +,y =122y y + (1)已知点A (0,1),B (4,1),C (3,-1),D (3,-2),连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为 ;②线段AB 和线段CD 的一“中位点”是Q (2,-12),求这两条线段上被点Q “关联”的两个点的坐标;(2)如图 1,已知点R (-2,0)和抛物线W 1 : y = x 2 - 2x ,对于抛物线W 1上的每一个点M ,在抛物线W 2上都存在点N ,使得点N 和M 被点R “关联”,请在图1 中画出符合条件的抛物线W 2;(3)正方形EFGH 的顶点分别是E (-4,1),F (-4,-1),G (-2,-1),H (-2,1), ⊙ T 的圆心为T (3,0),半径为1.请在图2 中画出由正方形EFGH 和 ⊙ T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.6.P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把PA PB ⋅的值称为点P 关于⊙O的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(1)的思路,用含r 、d 的式子表示点P 关于⊙O的“幂值”或“幂值”的取值范围________;(3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线3y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为13,请写出b 的取值范围________.。

九年级数学新定义(含答案)

九年级数学新定义(含答案)

新定义
一、单选题(共4道,每道25分)
1.已知抛物线(a,b,c均不为0)的顶点为M,与轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线的衍生抛物线,直线MN为抛物线的衍生直线.
(1)若一条抛物线的衍生抛物线和衍生直线分别是和,则这条抛物线的解析式为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:二次函数与几何综合
2.(上接第1题)(2)如图,设抛物线的顶点为M,与轴的交点为N,将它的衍生直线MN先绕点N旋转到与轴平行,再沿轴向上平移1个单位得直线,P是直线上的动点,若△POM为直角三角形,则点P的坐标为( )
A.
B.
C.
D.
答案:D
解题思路:
试题难度:三颗星知识点:直角三角形的存在性
3.如图,顶点M在y轴上的抛物线与直线相交于A,B两点,且点A在轴上,点B的横坐标为2.
(1)抛物线的解析式为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:二次函数的表达式
4.(上接第3题)(2)我们把抛物线与直线y=x的交点称为抛物线的“不动点”.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足( )时,平移后的抛物线总有不动点.
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:二次函数图象的平移
学生做题后建议通过以下问题总结反思问题1:什么是新定义问题?
问题2:新定义问题的一般思路是什么?
问题3:解决新定义问题时常考虑什么?。

中考数学专题复习 新定义题(含答案)

中考数学专题复习 新定义题(含答案)

最新的2019中考新定义题1.在平面直角坐标系xOy 中的某圆上,有弦MN ,取MN 的中点P ,我们规定:点P 到某点(直线)的距离叫做“弦中距”,用符号“d 中”表示. 以(3,0)W -为圆心,半径为2的圆上. (1)已知弦MN 长度为2.①如图1:当MN ∥x 轴时,直接写出到原点O 的d 中的长度;②如果MN 在圆上运动时,在图2中画出示意图,并直接写出到点O 的d 中的取值范围. (2)已知点(5,0)M -,点N 为⊙W 上的一动点,有直线2y x =-,求到直线2y x =-的d 中的最大值.图1 图22.研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =. 基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点. (1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________. 3.对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,(3,1)C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 . (2)点D 在直线3+33y x =-上,⊙D 的半径为1,点Q 在⊙D 上运动时都有 0≤L Q ≤3,求点D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤22时,画出满足条件的最大圆,xyWO x yP NW O M并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)答案:1.解: (1)①. 23……………………………………………2分②示意图正确 …………………………………3分3333d -+中≤≤……………………………4分 (2)由于PW 是⊙W 的弦心距 所以PW MN ⊥所以点N 在运动过程中,点P 在以MW 为直径的圆上…………………5分 由图可知直线与点P 的运动轨迹形成的圆相切时,且 弦中距d 中过圆心时,距离最大………………6分 ∵2y x =-的图象与x 轴夹角是45° ∴由图可得6DE =在等腰直角三角形DFM 中 可得32DE =,所以321PL =+ 即:d 中的最大值为321PL =+2. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴29.d 4≤≤ ---------------------------------------------------------------------------------- 5分 ②33 1.t --2≤≤2 ------------------------------------------------------------------------8分 3.(1)①3-. ………………………………………………………………………… 1分② 0≤QL ≤3.……………………………………………………………… 2分(2)设直线3+33y x =-与x 轴,y 轴的交点分别为点A ,点B ,可得(33,0)A ,由0≤QL ≤3,作直线3y x =.①如图,当⊙D 与x 轴相切时,相应的圆心1D 满足题意, 其横坐标取到最大值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BOAO =. ∵ ⊙D 的半径为1,xyP'PN W OMxyDLP NMEWO②如图,当⊙D 与直线3y x =相切时, 相应的圆心2D 满足题意,其横坐标取到 最小值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线3y x =与直线3+33y x =-的交点为F .可得60AOF ∠=︒,OF ⊥AB .则39cos 3322AF OA OAF =⋅∠=⨯=.∵ ⊙D 的半径为1,由①②可得,D x 的取值范围是534≤D x ≤23.………………………………………… 5分(3)画图.2.…………………………………………… 7分。

“新定义”试题——中考几何题中的一朵奇葩

“新定义”试题——中考几何题中的一朵奇葩
于是 , 2 c , 。= 2
当C >a>b a 及 >b 时, >C 均不存在三 条边长恰为三个连续正整数 的倍角三角形 . 故边长为 4 56 、 、 的三角形为所求 .
维普资讯

中学教与学
评析 : 此题不仅能考查考生掌握特殊三
于是点 D、 B关于 A C对称 . 设 P是线段 P P 上任一点 , 联结 P D、
P 如 图 6 由对 称性 知 , B, .
DP = A BPA, DPC = BPC .
等角点 , 保留画图痕迹( 不需写出画法) ;
则点 P是 四边形 A C 的半 等角 点 . BD 故

证、 分类讨论以及解方程等多种能力 , 是一道
颇具特色的综合题 .
2 定 义一 种新 的点
P , D 1 2 1 PP =
l 2 P P 为公共 P,l2
边 , 以, 所
△ D 1 2 △ B 2 P P PI . P
例 2 如图 3 凸四边形 A C 中, , BD 如果
维普资讯
20 年第 5期 08
● 试 题 研 究●
“ 新定义" 试题—— 中考几何题中的一朵奇葩
姜 官 扬 陈 勇

( 重庆市 云阳县 江口中学 ,056 44 0 )
以“ 新定义” 为背景设置的几何 问题 , 主 要考查考生 的学习 、 接受 、 理解 、 运用新知识 以及探索 、 归纳 、 判断能力 . 解此类题通 常要 … 现学现用”利用题 目中给 出的新定义 , , 采用 “ 转化” 策略来完成 问题 的求解 .
线段 P P 上任 意 一 点 也是 四边 形 A C 的 BD 半 等角 点 .

中考数学复习《新定义新概念问题》

中考数学复习《新定义新概念问题》

中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。

完整版)北京中考数学新定义题目汇总

完整版)北京中考数学新定义题目汇总

完整版)北京中考数学新定义题目汇总28.对于平面内的圆C和圆C外一点Q,定义如下:若过点Q的直线与圆C存在公共点,记为点A、B,设$k=\frac{AQ+BQ}{CQ}$,则称点A(或点B)是圆C的“k相关依附点”。

特别地,当点A和点B重合时,规定$AQ=BQ$,$k=\frac{2AQ^2}{CQ^2}$。

已知在平面直角坐标系$xOy$中,$Q(-1,0)$,$C(1,0)$,圆C的半径为$r$。

1) 当$r=2$时。

①若$A_1(0,1)$是圆C的“k相关依附点”,则$k$的值为$\frac{3}{2}$。

② $A_2(3,0)$是否为圆C的“2相关依附点”:否。

2) 若圆C上存在“k相关依附点”点M。

①当$r=1$,直线QM与圆C相切时,$k$的值为$2$。

②当$k=3$时,$r$的取值范围为$[\sqrt{\frac{3}{2}},2]$。

3) 若存在$r$的值使得直线$y=-3x+b$与圆C有公共点,且公共点是圆C的“3相关依附点”,则$b$的取值范围为$[-2\sqrt{2},2\sqrt{2}]$。

28.在平面直角坐标系$xOy$中,点M的坐标为$(x_1,y_1)$,点N的坐标为$(x_2,y_2)$,且$x_1\neq x_2$,$y_1\neq y_2$,以MN为边构造菱形,若该菱形的两条对角线分别平行于$x$轴,$y$轴,则称该菱形为边的“坐标菱形”。

1) 已知点$A(2,0)$,$B(0,23)$,则以AB为边的“坐标菱形”的最小内角为$60^\circ$。

2) 若点$C(1,2)$,点$D$在直线$y=5$上,以CD为边的“坐标菱形”为正方形,则直线$CD$的表达式为$y=5$。

3) 圆O的半径为2,点$P(m,1)$。

若在圆O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,则$m$的取值范围为$[-1,3]$。

28.对于平面上两点A、B,定义如下:以点A或B为圆心,AB长为半径的圆称为点A、B的“确定圆”。

初三新定义练习题

初三新定义练习题

初三新定义练习题在初三学习阶段中,学生们通常面临着各种难题和挑战。

为了更好地帮助学生们掌握知识并提高解题能力,提供一些新定义的练习题是非常有效的方法之一。

本文将从数学、英语和物理三个方面为大家提供一些初三新定义的练习题,帮助学生们更好地复习和巩固知识。

一、数学练习题1. 假设有一等差数列,已知首项为3,公差为4,请计算该等差数列的前10项之和。

2. 已知正方形ABCD的边长为x,求出正方形对角线的长度。

3. 改写方程:4x - 3y + z = 12。

4. 某地一天的气温分别为15℃、18℃、20℃、23℃,求这四天的平均气温。

二、英语练习题1. 将下列句子变为被动语态:They built a new school last year.2. 根据所给提示词,完成下列句子:My father is good at cooking. (改为一般疑问句,并作否定回答)3. 根据上下文,选择合适的词汇填空:I have a pet cat.______name is Kitty.4. 根据所给单词,完成下列句子:The baby is _______ (cute) in the family.三、物理练习题1. 在公式F=ma中,F代表的是什么物理量?2. 如果一个物体的质量为5千克,受到的重力是多少?3. 在电路中,电流指的是什么?4. 请列举出三种能量的形式。

通过这些数学、英语和物理的练习题,学生们可以巩固他们在初三学习阶段所学到的知识,并通过解题的方式提高他们的思维能力和解决问题的能力。

同时,这些题目可以帮助他们在考试中更好地应对各种题型,并且增加他们对知识的理解和运用能力。

希望本文提供的初三新定义练习题可以对学生们有所帮助,使他们在学习中取得更好的成绩和进步。

如果学生们能够坚持不懈地解答这些练习题,并寻找其他类型的练习题进行巩固,相信他们一定能够在初三阶段取得优异的成绩。

祝愿所有初三学生们学业有成,取得令人骄傲的成绩!。

中考压轴题 中考新定义题型

中考压轴题 中考新定义题型

蓬街私立中学校本作业41 .(2014?台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.2 .定义:六个内角相等的六边形叫等角六边形.3 .(1)研究性质4 .①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论5 .②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论6 .③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.7 .(2)探索判定8 .三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?9 .图:图二图二图-2.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM-=2,MN=3求BN的长;(2)如图2,在^ABC中,bG是中位线,点D,E是线段BC的勾股分割点,且EC>DE>BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM>>BN,△AMC,△MND和^NBM 均是等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S,S和S的数量关系,并说明理由A AMFNBEN四边形MNHG3.(本题12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”。

中考新定义题及答案

中考新定义题及答案

1.阅读以下材料:对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{﹣1,2,3}=;min{﹣1,2,3}=﹣1;min{﹣1,2,a}=a(a≤﹣1);﹣1(a>﹣1)解决下列问题:(1)填空:min{sin30°,cos45°,tan30°}= ,如果min{2,2x+2,4﹣2x}=2,则x的取值范围为≤x≤;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么(填a,b,c的大小关系)”,证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},则x+y= ;(3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为.2.阅读理解:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2.3}==;min{﹣1,2,3}=﹣1min{﹣1,2,a}=(1)填空:①M{(﹣2)3,(﹣3)2,(﹣)﹣2}= ;②min{sin60°,cos45°,tan30°}= ;③如果min{3,2x﹣5,﹣3x+24}=3,则x的取值范围为.探究归纳:(2)①如果M{2015,x+2014,2x+2013}=min{2015,x+2014,2x+2013},求x的值;①根据①,你发现了结论“如果M{a,b,c}=min={a,b,c},那么(填a,b,c的大小关系)”.证明你发现的结论;迁移运用:③运用②的结论,填空:M{3x+y,x+2y+11,4x﹣y﹣2}=min{3x+y,x+2y+11,4x﹣y﹣2},则x+y= .3.设x i(i=1,2,3,…,n)为任意代数式,我们规定:y=max{x1,x2,x3,…,x n}表示x1,x2,…,x n中的最大值,如y=max{1,2}=2(1)求y=max{x,3};(2)借助函数图象,解决以下问题:①解不等式 max{x+1,}≥2②若函数y=max{|x﹣1|,x+a,x2﹣4x+3}的最小值为1,求实数a的值.4.定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.(1)max{,3}= ;(2)已知y1=和y2=k2x+b在同一坐标系中的图象如图所示,若max{,k2x+b}=,结合图象,直接写出x的取值范围;(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.5.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2015的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数.”6.给出函数.(1)写出自变量x的取值范围;(2)请通过列表、描点、连线画出这个函数的图象;①列表:x …﹣4 ﹣3 ﹣2 ﹣1﹣﹣﹣1 2 3 4 …y ……②描点(在下面给出的直角坐标中描出上表对应的各点):③连线(将上图中描出的各点用平滑曲线连接起来,得到函数图象)(3)观察函数图象,回答下列问题:①函数图象在第象限;②函数图象的对称性是()A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形③在x>0时,当x= 时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x= 时,函数y有最(大,小)值,且这个最值等于;④在第一象限内,x在什么范围内,y随着x增大而减小,x在什么范围内,y随x增大而增大;(4)方程是否有实数解?说明理由.7.阅读材料:用配方法求最值.已知x,y为非负实数,∵x+y﹣2≥0∴x+y≥2,当且仅当“x=y”时,等号成立.示例:当x>0时,求y=x++4的最小值.解:+4=6,当x=,即x=1时,y的最小值为6.(1)尝试:当x>0时,求y=的最小值.(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?8.抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q 为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.9.在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为;(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.①若特征点C为直线y=﹣4x上一点,求点D及点C的坐标;②若<tan∠ODE<2,则b的取值范围是.10.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l 表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.11.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?12.如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线y=x2对应的碟宽为;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=a n x2+b n x+c n(a n>0)的对应准蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n= ,F n的碟宽右端点横坐标为;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.13.菱形与正方形的形状有差异,我们将菱形与正方形的接近程度记为“接近度”.设菱形相邻的两个内角的度数分别为m°和n°,将菱形与正方形的“接近度”定义为|m﹣n|.在平面直角坐标系中,抛物线y=x2+bx+c(b<0)交y轴于点A(与原点O不同),以AO为边作菱形OAPQ.(1)当c=﹣b时,抛物线上是否存在点P,使菱形OAPQ与正方形的“接近度”为0,请说明理由.(2)当c>0时,对于任意的b,抛物线y=x2+bx+c上是否存在点P,满足菱形OAPQ与正方形的“接近度”为60?若存在,请求出所有满足条件的b与c的关系式;若不存在,请说明理由.14.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)如图,△OAB是抛物线y=﹣x2+bx(b>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由;(3)在(2)的条件下,若以点E为圆心,r为半径的圆与线段AD只有一个公共点,求出r 的取值范围.15.定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“蛋圆”抛物线部分的解析式y ,自变量的取值范围是;(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;(3)求经过点D的“蛋圆”切线的解析式.16.阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理y p=,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为AB=.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.17.对于某一自变量为x的函数,若当x=x0时,其函数值也为x0,则称点(x0,x0)为此函数的不动点.现有函数y=,(1)若y=有不动点(4,4),(﹣4,﹣4),求a,b;(2)若函数y=的图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;(3)已知a=4时,函数y=仍有两个关于原点对称的不动点,则此时函数y=的图象与函数y=的图象有什么关系?与函数y=的图象又有什么关系?18.阅读下列材料,回答问题.材料一:人们习惯把形如的函数称为“根号函数”,这类函数的图象关于原点中心对称.材料二:对任意的实数a、b而言,a2﹣2ab+b2=(a﹣b)2≥0,即a2+b2≥2ab.易知当a=b时,(a﹣b)2=0,即:a2﹣2ab+b2=0,所以a2+b2=2ab.若a≠b,则(a﹣b)2>0,所以a2+b2>2ab.材料三:如果一个数的平方等于m,那么这个数叫做m的平方根(square root).一个正数有两个平方根,它们互为相反数.0的平方根是0,负数没有平方根.问题:(1)若“根号函数”在第一象限内的大致图象如图所示,试在网格内画出该函数在第三象限内的大致图象;(2)请根据材料二、三给出的信息,试说明:当x>0时,函数的最小值为2.19.“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM 得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:(1)设P(a,)、R(b,),求直线OM对应的函数表达式(用含a,b的代数式表示);(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.如图1,在平面直角坐标系中,O为坐标原点,对于任意两点A (x1,y1),B(x2,y2),由勾股定理可得:AB2=(x1﹣x2)2+(y1﹣y2)2,我们把叫做A、B两点之间的距离,记作AB=例题:在平面直角坐标系中,O为坐标原点,设点P(x,0).①A(0,2),B (3,﹣2),则AB= .;PA= .;解:由定义有AB=;PA=.②表示的几何意义是;表示的几何意义是.解:因为,所以表示的几何意义是点P(x,0)到点(1,2)的距离;同理可得,表示的几何意义是点P(x,0)分别到点(0,1)和点(2,3)的距离和.根据以上阅读材料,解决下列问题:(1)如图2,已知直线y=﹣2x+8与反比例函数y=(x>0)的图象交于A(x1,y1)、B(x2,y2)两点,则点A、B的坐标分别为A(,),B(,),AB= .(2)在(1)的条件下,设点P(x,0),则表示的几何意义是;试求的最小值,以及取得最小值时点P的坐标.1.已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.2.使得函数值为零的自变量的值称为函数的零点。

初中数学新定义题型试卷

初中数学新定义题型试卷

一、选择题(每题5分,共25分)1. 下列哪个选项不是新定义运算?A. 两个数a和b的“和差”定义为a + bB. 两个数a和b的“积商”定义为a bC. 两个数a和b的“和差”定义为a - bD. 两个数a和b的“积商”定义为a / b2. 以下哪个新定义符合“初、高中知识衔接新知识”的特点?A. 定义新运算:两个数a和b的“和差”定义为a + bB. 定义新概念:定义“奇数”为不能被2整除的整数C. 定义新运算:定义“数列”为一系列有规律的数D. 定义新概念:定义“对数”为y = log_a(x)3. 下列哪个新定义不属于“定义新概念”的类型?A. 定义“偶数”为能被2整除的整数B. 定义“质数”为除了1和它本身外,没有其他因数的自然数C. 定义“平行四边形”为对边平行且相等的四边形D. 定义“正方体”为所有面都是正方形的立体图形4. 在解决“新定义”题型时,以下哪个步骤最为关键?A. 理解新定义的含义B. 分析题目背景和条件C. 运用已学知识进行运算和推理D. 总结解题方法和技巧5. 下列哪个选项不属于新定义题型?A. 定义“函数”为一种映射关系B. 定义“极限”为当自变量趋于无穷大时,函数值趋于一个固定值C. 定义“几何体”为具有一定形状和尺寸的立体图形D. 定义“复数”为形如a + bi的数,其中a和b是实数,i是虚数单位二、填空题(每题5分,共25分)6. 若定义“数字a的奇偶性质”为:若a为偶数,则值为1;若a为奇数,则值为-1,则“数字5的奇偶性质”为______。

7. 下列数列中,若定义“数列的“和”为所有项之和,则数列1, 2, 3, ... 的“和”为______。

8. 已知定义“平行四边形的对角线”为连接非相邻顶点的线段,则平行四边形ABCD中,对角线AC的长度为______。

9. 若定义“三角形的“面积”为底边乘以高的一半,则三角形ABC的底边BC长度为3,高为4,则其面积为______。

中考数学定义新概念压轴题以及答案

中考数学定义新概念压轴题以及答案

1.(2013•安徽)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)考点:四边形综合题.专题:压轴题.分析:(1)根据条件∠B=∠C和梯形的定义就可以画出图形;(2)根据平行线的性质就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似三角形的性质就可以求出结论;(3)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.解答:解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;(2)∵AB∥DE,∴∠B=∠DEC,∵AE∥DC,∴∠AEB=∠C,∵∠B=∠C,∴∠B=∠AEB,∴AB=AE.∵在△ABE和△DEC中,,∴△ABE∽△DEC,∴,∴;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.当点E在四边形ABCD的外部时,四边形ABCD不一定是“准等腰梯形”.分两种情况:情况一:当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;情况二:当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.点评:本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.2.(2013•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图1 1 7图2 2 12图3 3 17图4 4 22………猜想:在图(n)中,特征点的个数为5n+2(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为2013.考点:规律型:图形的变化类;规律型:点的坐标.专题:压轴题.分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进一步猜想出:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)过点O1作O1M⊥y轴于点M,根据正六边形、等腰三角形的性质得出∠BO1M=30°,再由余弦函数的定义求出O1M=,即x1=;然后结合图形分别得出图(2)、图(3)、图(4)的对称中心的横坐标,找到规律,进而得出图(2013)的对称中心的横坐标.解答:解:(1)由题意,可知图1中特征点有7个;图2中特征点有12个,12=7+5×1;图3中特征点有17个,17=7+5×2;所以图4中特征点有7+5×3=22个;由以上猜想:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)如图,过点O1作O1M⊥y轴于点M,又∵正六边形的中心角=60°,O1C=O1B=O1A=2,∴∠BO1M=30°,∴O1M=O1B•cos∠BO1M=2×=,∴x1=;由题意,可得图(2)的对称中心的横坐标为(2×2)=2,图(3)的对称中心的横坐标为(2×3)=3,图(4)的对称中心的横坐标为(2×4)=4,…∴图(2013)的对称中心的横坐标为(2×2013)=2013.故答案为22,5n+2;,2013.点评:本题借助正六边形考查了规律型:图形的变化类问题,难度适中.关键是通过观察、归纳与总结,得到其中的规律;(2)要注意求的是整个图形的对称中心的横坐标,而不是第2013个正六边形的对称中心的横坐标,这也是本题容易出错的地方.3.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)如图3,在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,则四边形ABCD是不是“准等腰梯形”?请说明理由.考点:四边形综合题.分析:(1)过点A作AE∥CD交BC于点E,则△ABE和四边形AECD就是所求作的图形;(2)由AB∥DE,AE∥DC,就可以得出∠B=∠DEC,∠AEB=∠C,就可以得出△ABE∽△DEC,就可以得出结论;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,由角平分线的性质就可以得出EF=EG=EH,就可以得出△BEF≌△BEH,就可以得出∠FBE=∠HCE,从而得出∠ABC=∠DCB而得出结论.解答:解:(1)如图,过点A作AE∥CD交BC于点E,∴∠AEB=∠C.∵∠B=∠C∴∠AEB=∠B,∴AB=AE,∴△ABE是等腰三角形;∵AE∥CD,AD≠CD,∴四边形AECD是梯形.∴△ABE和四边形AECD就是所求作的图形;(2)∵AB∥DE,AE∥DC,∴∠B=∠DEC,∠AEB=∠C.∵∠B=∠C,∴∠AEB=∠DEC∴△ABE∽△DCE,∴;(3)四边形ABCD是“准等腰梯形”.理由:作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∵AE平分∠BAD,DE平分∠ADC,∴∠EFB=∠EHC=90°,EF=EG=EH.在Rt△BEF和Rt△CEH中,∴Rt△BEF≌Rt△CEH(HL);∴∠FBE=∠HCE.∵BE=BC,∴∠EBC=∠ECB,∴∠EBC+∠FBE=∠ECB+∠HCE,∴∠ABC=∠HCB.∴四边形ABCD是“准等腰梯形”.点评:本题考查了等腰三角形的性质的运用,平行线的性质的运用角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用等腰三角形的性质求解是关键.4.(2012•保定一模)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.考点:作图—复杂作图;全等三角形的判定与性质.专题:作图题.分析:(1)根据菱形的性质,在菱形对角线上找出除中心外的任意一点即可;(2)作对角线BD的垂直平分线于与另一对角线AC相交于点P,根据线段垂直平分线上的点到线段两端点的距离相等可得点P即为所求的准等距点;(3)连接BD,先利用“角角边”证明△DCF和△BCE全等,根据全等三角形对应边相等可得CD=CB,再根据等边对等角的性质可得∠CDB=∠CBD,从而得到∠PDB=∠PBD,然后根据等角对等边的性质可得PD=PB,根据准等距点的定义即可得证.解答:解:(1)如图2,点P即为所画点.…(1分)(答案不唯一)(2)如图3,点P即为所作点.…(2分)(答案不唯一.)(3)证明:连接DB,在△DCF与△BCE中,,∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD.∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.点评:本题考查了复杂作图,主要利用了线段垂直平分线的作法,全等三角形的判定与性质,读懂题意,理解准等距点的定义是解题的关键.5.(2006•福州)对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(﹣1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)(1)若已知M(0,1),△ABM≌△ABN(0,﹣1).请通过计算判断C ABM与C ABN是否为全等抛物线;(2)在图2中,以A、B、M三点为顶点,画出平行四边形.①若已知M(0,n),求抛物线C ABM的解析式,并直接写出所有过平行四边形中三个顶点且能与C ABM全等的抛物线解析式.②若已知M(m,n),当m,n满足什么条件时,存在抛物线C ABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与C ABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)应该是全等抛物线,由于这两个抛物线虽然开口方向不同,但是开口大小一样,因此二次项的绝对值也应该相等.可用待定系数法求出两抛物线的解析式,然后进行判断即可.(2)与(1)相同都是通过构建平行四边形来得出与△ABM全等的三角形,那么过与△ABM全等的三角形的三个顶点的抛物线都是与C ABM全等的抛物线.解答:解:(1)设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,1),∴抛物线C ABM的解析式为y=﹣x2+1,同理可得抛物线C ABN的解析式为y=x2+1,∵|﹣1|=|1|,∴C ABM与C ABN是全等抛物线.(2)①设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,n),抛物线C ABM的解析式为y=﹣nx2+n,与C ABM全等的抛物线有:y=nx2﹣n,y=n(x﹣1)2,y=n(x+1)2②当n≠0且m≠±1时,存在抛物线C ABM,与C ABM全等的抛物线有:C ABN,C AME,C BMF.点评:本题是函数与几何结合的综合题,解题关键是善于利用几何图形的性质以及函数的性质和定理等知识,主要考查学生数形结合的数学思想方法.6.(2013•沈阳)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD 沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC 的面积.考点:四边形综合题.专题:压轴题.分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴CO=OA′,BO=DO,∴四边形A′BDC是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:本题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据已知题意和所学的定理进行推理.题目比较好,但是有一定的难度.7.(2012•贵阳模拟)如果一个三角形和一个矩形满足下列条件:三角形的一边与矩形的一边完全重合,并且三角形的这条边所对的角的顶点落在矩形与三角形重合的边的对边上,则称这样的矩形为三角形的“友好矩形”.如图①所示,矩形ABEF即为△ABC的“友好矩形”.我们发现:当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,请你说明什么是一个三角形的“友好平行四边形”;(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”;(3)若△ABC是锐角三角形,且AB=5cm,AC=7cm,BC=8cm,在图③中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形并说明理由.考点:四边形综合题.分析:(1)仿照友好矩形的定义即可得出友好平行四边形的定义;(2)根据友好矩形的定义得出分别以AB为边和对角线得出△ABC的所有“友好矩形”即可;(3)利用勾股定理得出BD,AD的长,进而分别求出以BC、AB、AC为边的“友好矩形”周长比较即可.解答:解:(1)三角形的一边与平行四边形的一边完全重合,并且三角形的这条边所对的角的顶点落在平行四边形与三角形重合的边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)如图②所示:(3)如图③,过A做AD⊥BC于D设BD长为x cm,则DC长为(8﹣x)在Rt△ABD和Rt△ADC中AD2=AB2﹣BD2=52﹣x2,AD2=AC2﹣DC2=72﹣(8﹣x)2则52﹣x2=72﹣(8﹣x)2解得:x=2.5,过A做AD⊥BC于D,则有,则以BC为边的“友好矩形”周长为:,以AB为边的“友好矩形”周长为:,以AC为边的“友好矩形”周长为:,∴以BC为边的“友好矩形”周长最大.点评:此题主要考查了四边形综合题以及勾股定理等知识,考查学生的阅读理解、综合分析及分类讨论能力,难度较大.8.(2012•常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD 的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)考点:一次函数综合题;角平分线的性质;含30度角的直角三角形;锐角三角函数的定义.专题:计算题;作图题.分析:(1)①以O为圆心,以2为半径作圆,交CD于两点,则此两点为所求;②分别作∠BOC和∠BOD的角平分线并且反向延长,即可求出答案;(2)过M作MN⊥AB于N,根据已知得出OM=n,MN=m,求出∠NOM=60°,根据锐角三角函数得出sin60°==,求出即可.解答:解:(1)①如图所示:点M1和M2为所求;②如图所示:直线MN和直线EF为所求;(2)如图:过M作MN⊥AB于N,∵M的“距离坐标”为(m,n),∴OM=n,MN=m,∵∠BOD=150°,直线l⊥CD,∴∠MON=150°﹣90°=60°,在Rt△MON中,sin60°==,即m与n所满足的关系式是:m=n.点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等.9.(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.考点:一次函数综合题.专题:压轴题.分析:(1)根据新的运算规则知|x|+|y|=1,据此可以画出符合题意的图形;(2)根据新的运算规则知d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,然后由绝对值与数轴的关系可知,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.解答:解:(1)由题意,得|x|+|y|=1,∵d(O,P)=1,O(0,0),P(x,y)∴d(0,P)=|x|+|y|∴|x|+|y|=1①x≥0,y≥0∴x+y=1y=1﹣x②x≤0,y≤0∴﹣x﹣y=1y=﹣x﹣1③x≥0,y≤0∴x﹣y=1y=x﹣1④x≤0,y≥0∴﹣x+y=1y=1+x将四个函数关系式表示在数轴上,所有符合条件的点P组成的图形如图所示:(2)∵d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,又∵x可取一切实数,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.∴点M(2,1)到直线y=x+2的直角距离为3.点评:本题考查了一次函数综合题.正确理解新定义运算法则是解题的关键.10.(2012•厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.考点:一次函数综合题.专题:计算题.分析:(1)根据A、B的坐标得出AB∥x轴,根据点P到直线AB的距离小于1,求出当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,看点的纵坐标是否在y的范围内即可;(2)根据线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2和n=4分别代入n=m﹣1,求出相应的m 值,即可得出点的横坐标m的范围.解答:解:(1)点C()是线段AB的“临近点”.理由是:∵点P到直线AB的距离小于1,A、B的纵坐标都是3,∴AB∥x轴,3﹣1=2,3+1=4,∴当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,点C的坐标是(),∴y=>2,且小于4,∵C(,)在直线y=x﹣1上,∴点C()是线段AB的“临近点”.(2)∵点Q(m,n)是线段AB的“临近点”,由(1)可以得出:线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2代入y=x﹣1(即n=m﹣1)得:m=3,n=4代入y=x﹣1(即n=m﹣1)得:m=5,∴3<m<5,即m的取值范围是3<m<5.点评:本题考查了有关一次函数的应用,通过做此题培养了学生的阅读能力和计算能力,此题是一道非常好、比较典型的题目.11.(2012•台州)定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是2;当m=5,n=2时,如图2,线段BC与线段OA的距离为;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.考点:圆的综合题;勾股定理;相似三角形的判定与性质.专题:代数几何综合题;压轴题.分析:(1)理解新定义,按照新定义的要求求出两个距离值;(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长;(3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长;②如答图4所示,符合题意的相似三角形有三个,需要进行分类讨论,分别利用点的坐标关系以及相似三角形比例线段关系求出m的值.解答:解:(1)当m=2,n=2时,如题图1,线段BC与线段OA的距离(即线段BN的长)=2;当m=5,n=2时,B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,在Rt△ABN中,由勾股定理得:AB===.(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:∴d===.(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.②结论:存在.∵m≥0,n≥0,∴点M位于第一象限.∵A(4,0),D(0,2),∴OA=2OD.如答图4所示,相似三角形有三种情形:(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.如图,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,由相似关系可知,M1H1=2AH1,即2=2(2﹣m),∴m=1;(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.如图,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,由相似关系可知,M2H2=2AH2,即2=2(m﹣2),∴m=3;(III)△AM3H3,此时点B落在⊙A上.如图,OH3=m+2,AH3=OH3﹣OA=m﹣2,过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m﹣4,由相似关系可知,AH3=2M3H3,即m﹣2=2n (1)在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2(2)由(1)、(2)式解得:m1=,m2=2,当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,∴m=.综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.点评:本题是以圆为基础的运动型压轴题,综合考查了圆的相关性质、相似三角形、点的坐标、勾股定理、解方程等重要知识点,难度较大.本题涉及动线与动点,运动过程比较复杂,准确理解运动过程是解决本题的关键.第(3)①问中,关键是画出点M运动轨迹的图形,结合图形求解一目了然;第(3)②问中,注意分类讨论思想的运用,避免漏解.12.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.考点:线段垂直平分线的性质;等腰三角形的性质;等边三角形的性质;勾股定理.专题:新定义.分析:应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解.解答:应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x=,即PA=,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.点评:本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ¢,满足2CP CP r ¢+=,则称P ¢为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P ¢的示意图。

的示意图。

(1)(1)当当O 的半径为1时。

时。

①分别判断点(2,1)M ,3(,0)2N ,(1(1,,3)T 关于O 的反称点是否存在,若存在?在?求其坐标;求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P ¢存在,且点P ¢不在x 轴上,求点P 的横坐标的取值范围;的横坐标的取值范围; (2)(2)当当C 的圆心在x 轴上,轴上,半径为半径为1,直线3233y x =-+与x 轴,轴,y y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P ¢在C 的内部,求圆心C 的横坐标的取值范围。

的横坐标的取值范围。

yPOCx1 1【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ¹,12y y ¹,若,P Q 为某个矩形的两个顶点,为某个矩形的两个顶点,且该矩形的边均与某条坐标轴且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”的“相关矩形”..下图为点,P Q 的“相关矩形”的示意图意图. .(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积;的“相关矩形”的面积;②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;式;(2)O ⊙的半径为2,点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围的取值范围. .【03】对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线的相邻线. . (1)当⊙O 的半径为1时,时, ○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点有____________________;;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程相邻线,并说明你的作图过程. .○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;范围;(2)⊙C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.范围.21备用图1备用图2 图1【04】定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个)是否为这个最小值函数图象上的点;图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;的坐标;③以②中的点M 为圆心,以2为半径作圆为半径作圆. . 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值的值最小,直接写出此最小值. .【05】在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为的坐标为_________________________________________________________;; (2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT D 的“阴影点”,直接写出NQT D 的周长的最小值.的周长的最小值.图1 图2 图3yxB A OyxCOD yx11O【06】给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为____________________;; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;“关联”的两个点的坐标;(2)如图1,已知点R (-(-2,02,02,0)和抛物线)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.并直接写出该图形的面积.图1 图2R【06】在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.的示意图. (1)当⊙O 的半径为1时.时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;在?若存在,求其坐标;②点D 的坐标为(的坐标为(2,02,02,0)),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上的边上..若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;取值范围;(2)保持()保持(11)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E的方向的方向运动,⊙C 的圆心C 的坐标为(1,01,0)),半径为r .请从下面两个问题中任选一个作答一个作答. .温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为的最小值为______________________________.. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为的取值范围为________. ________.xOy P ¢2r PP r ¢££P ¢P¢(3,4)5(,0)2(1,2)P ¢P ¢P ¢P ¢r p P¢【07】对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零为零..例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;的值;②若13b ££,求其不变长度q 的取值范围;的取值范围;(3)记函数22()y x x x m =-³的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ££,则m 的取值范围为的取值范围为 . .【08】P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A PB ×的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________________;; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(,请参考(11)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围的“幂值”或“幂值”的取值范围________________________;; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为1313,,请写出b 的取值范围的取值范围________________________..图1POBAO备用图备用图【09】在平面直角坐标系xOy 中,中,图形图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=xl ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=xl ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.的坐标.(3)若图形W 为函数2x y =)(b x a ££的图象,其中0a b £<.当该图形.当该图形满足1£=y x l l 时,请直接写出a 的取值范围.的取值范围.x yO BA 1234123x y O 1231234图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是9090°.°.°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为9090°,则满足条件°,则满足条件的点为的点为 ; (2)将函数2ax y =)31(££a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的,若该圆的坐标角度°££°9060m .直接写出满足条件的r 的取值范围.的取值范围. O xy D C B A –1–2–312312345。

中考数学难题突破专题--新定义问题

中考数学难题突破专题--新定义问题

中考数学难题突破专题--新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近 年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题1、 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值. 例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F (m )=________=________;(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=________,根据“吉祥数”的定义确定出x 与y 的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F (t )的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键. 类型2 新定义几何概念型例题2、如图Z3-1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z3-1(1)将▱ABCD纸片按图Z3-2①的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG∶S▱ABCD=________.(2)▱ABCD纸片还可以按图Z3-2②的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图Z3-2③,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD,BC的长.图Z3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S矩形AEFG∶S▱ABCD =________;(2)由矩形的性质和勾股定理可求得FH=________,再由折叠的轴对称性质可知HD=________,FC=______,∠AHE=12______,∠CFG=12________,从而可得∠________=∠________,再证得△AEH≌△CGF,可得________,进而求得AD的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD,BC的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1. 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )图Z 3-3A .0或 2B .0或2C .1或- 2D .2或- 22. 对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533. 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4. 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z 3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z 3-45. 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z 3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图Z 3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z 3-57. 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z 3-6①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图Z 3-6②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图Z 3-6③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z 3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n ×n nn 1(2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n |=0,∴n ×n 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F (m )=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S ▱ABCD =AE ·AD , ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF ,∠CFG =12∠CFH .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C ,∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG . ∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF =BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x .由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°, ∴∠BEF =∠CFG ,∴△GFC ∽△BEF , ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x ]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x ]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x <43,y =min {2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A (a ,-a +1),B (b ,-b +1),∴AB 2=(a -b )2+(-a +1+b -1)2=2(a -b )2=(2 2)2,∴(a -b )2=4,∴a -b =±2.A ,B 两点的“倒影点”分别为A ′(1a ,11-a ),B ′(1b ,11-b). ∵点A ′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b ,∴a (1-a )=b (1-b ),变形得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43;由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A =46°.设∠ACB =x ,则∠ACD =x -46°.∵△ACD 是等腰三角形,又∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD . ①若AC =AD ,则∠ACD =∠ADC =x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD =∠A , 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2011, 解这个方程,得x =2017. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB =CD =1且AB ∥CD ,∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD . ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD , ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°,∴∠B +∠C =120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO (SAS ), ∴∠BDE =∠BOE .又∵∠BCF =12∠BOE ,∴∠BCF =12∠BDE .如图,连结OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°-∠AFE =180°-2α. ∵OA =OC ,∴∠OAC =∠OCA =α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC =12∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 交BC 于点M . ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB =OC ,∴∠OBC =∠OCB =30°, ∴BC =2BM =3BO =3BD . ∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴△DBG的面积△ABC的面积=(BD BC )2=13.∵DH =BG ,BG =2HG , ∴DG =3HG , ∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.。

2021年中考数学 培优专题:新定义类题型专练(含答案)

2021年中考数学 培优专题:新定义类题型专练(含答案)

2021中考数学 培优专题:新定义类题型专练(含答案)一、单选题(共有4道小题)2.我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足12-=i (即方程12-=x 有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有1i i = 12-=i32(1)i i i i i =⋅=-⋅=- .1)1()(2224=-==i i从而对任意正整数n ,我们可得到4144()n n n i i i i i i +=⋅=⋅=同理可得,1,,143424=-=-=++n n n i i i i那么20132012432i i i i i i +⋅⋅⋅++++的值为()A .0B .1C .-1D . i3.定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1.例如序列()02:4234S ,,,,,通过变换可生成新序列()122122S :,,,, .若S 0可以为任意序列,则下列的序列可能为S 1的是()A.()12122,,,,B. ()22233,,,,C.()11223,,,,D. ()12112,,,,4.定义:如果一元二次方程()20,0ax bx c a ≠++=满足0a b c ++=,那么我们称这个方程为“凤凰”方程.已知()20,0ax bx c a ≠++=是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a c =B .a b =C .b c =D .a b c ==二、填空题(共有7道小题)5.若规定“*”的运算法则为:*1a b ab =-,则2*3= .6.定义a b c d为二阶行列式,规定它是运算法则为a a c db b dc =-,那么当x=1时, 二阶行列式1101x x +-的值为 .7.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.8.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同....的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A ={1,2,3,4}.类比实数有加法运算,集合也可以“相加”. 定义:集合A 与集合B 中的所有元素组成的集合称为集合A 与集合B 的和,记为A +B .若A ={-2,0,1,5,7},B ={-3,0,1,3,5},则A +B = . 9.4个数a ,b ,c ,d 排列成a bcd,我们称之为二阶行列式.规定它的运算法则为:a b ad bc c d =-.若331233x x x x +-=-+,则x =________. 10.在计算n +(n +1)+(n +2)的过程中,若正整数n 使得各数位上均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.11.在计数制中,通常我们们使用的是“十进位制”,即“逢十进一”。

中考专题复习之新定义题

中考专题复习之新定义题

2017年中考专题复习之——新定义题一.选择题共2小题1.连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图扇形、菱形、直角梯形、红十字图标中“直径”最小的是A.B.C. D.2.对平面上任意一点a,b,定义f,g两种变换:fa,b=a,﹣b.如f1,2=1,﹣2;ga,b=b,a.如g1,2=2,1.据此得gf5,﹣9=A.5,﹣9 B.﹣9,﹣5 C.5,9 D.9,5二.填空题共2小题3.我们把四边形两条对角线中点的连线段称为奇异中位线.现有两个全等三角形,边长分别为3cm,4cm,5cm.将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么奇异中位线的长是cm.4.在△ABC中,P是AB上的动点P异于A,B,过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.三.解答题共16小题5.定义:对于实数a,符号a表示不大于a的最大整数.例如:=5,5=5,﹣π=﹣4.1如果a=﹣3,则a的取值范围为;2如果=4,求满足条件的所有正整数x.6.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.1写出你所学过的特殊四边形中是勾股四边形的两种图形的名称, ;2如图,已知格点小正方形的顶点O0,0,A3,0,B0,4,请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB.7.我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.8.提出问题:1如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:2如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:3在2问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.1请你在图1中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;若两种方法分得的三角形成3对全等三角形,则视为同一种2△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并直接写出x所有可能的值;3如图2,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.10.通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对sad.如图在△ABC 中,AB=AC,顶角A的正对记作sadA,这时sadA=.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:1sad60°=;sad90°=.2对于0°<A<180°,∠A的正对值sadA的取值范围是.3试求sad36°的值.11.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.1如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;2如图2,在12×16的网格图上每个小正方形的边长为1有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;3四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.12.对x,y定义一种新运算T,规定:Tx,y=其中a、b均为非零常数,这里等式右边是通常的四则运算,例如:T0,1==b.1已知T1,﹣1=﹣,T4,2=1.①求a,b的值;②若关于m的不等式组恰好有5个整数解,求实数p的取值范围;2若Tx,y=Ty,x对任意实数x,y都成立这里Tx,y和Ty,x均有意义,则a,b 应满足怎样的关系式13.探究发现如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;数学思考某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上B,C除外任意一点时其它条件不变,结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.拓展应用当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.14.如图1,P为∠MON平分线OC上一点,以P为顶点的∠APB两边分别与射线OM和ON交于A、B两点,如果∠APB在绕点P旋转时始终满足OAOB=OP2,我们就把∠APB叫做∠MON的关联角.1如图2,P为∠MON平分线OC上一点,过P作PB⊥ON于B,AP⊥OC于P,那么∠APB ∠MON的关联角填“是”或“不是”.2①如图3,如果∠MON=60°,OP=2,∠APB是∠MON的关联角,连接AB,求△AOB的面积和∠APB的度数;②如果∠MON=α°0°<α°<90°,OP=m,∠APB是∠MON的关联角,直接用含有α和m的代数式表示△AOB的面积.3如图4,点C是函数y=x>0图象上一个动点,过点C的直线CD分别交x 轴和y轴于A,B两点,且满足BC=2CA,直接写出∠AOB的关联角∠APB的顶点P的坐标.15.如图1,抛物线y=ax2+bx+ca>0的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.1抛物线y=x2对应的碟宽为;抛物线y=4x2对应的碟宽为;抛物线y=ax 2a >0对应的碟宽为 ;抛物线y=ax ﹣22+3a >0对应的碟宽为 ;2抛物线y=ax 2﹣4ax ﹣a >0对应的碟宽为6,且在x 轴上,求a 的值; 3将抛物线y=a n x 2+b n x+c n a n >0的对应准蝶形记为F n n=1,2,3…,定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为,且F n 的碟顶是F n ﹣1的碟宽的中点,现将2中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽右端点横坐标为 ;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上若是,直接写出该直线的表达式;若不是,请说明理由.16.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.1请用直尺和圆规画一个“好玩三角形”;2如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;3如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“好玩三角形”,试求的值.17.对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D,,E0,﹣2,F2,0.1当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点Pm,n 是⊙O的关联点,求m的取值范围;2若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.18.问题探究1如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;2如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ 的长;问题解决3有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°若存在,请求出符合条件的DM的长,若不存在,请说明理由.19.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车上、下车的时间忽略不计,两车速度均为200米/分.探究:设行驶寸间为t分.1当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2米与t分的函数关系式,并求出当两车相距的路程是400米时t的值;2t为何值时,1号车第三次恰好经过景点C并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K不与点B,C重合处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多含候车时间决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P 不与点D,A重合时,刚好与2号车迎面相遇.1他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:2设PA=s0<s<800米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择20.问题情境如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P 作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.结论运用如图2,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;迁移拓展图3是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且ADCE=DEBC,AB=8,AD=3,BD=7;M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.2017年04月14日马赛的初中数学组卷参考答案与试题解析一.选择题共2小题1.2013常德连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图扇形、菱形、直角梯形、红十字图标中“直径”最小的是A.B.C. D.分析先找出每个图形的“直径”,再根据所学的定理求出其长度,最后进行比较即可.解答解:连接BC,则BC为这个几何图形的直径,过O作OM⊥BC于M,∵OB=OC,∴∠BOM=∠BOC=60°,∴∠OBM=30°,∵OB=2,OM⊥BC,∴OM=OB=1,由勾股定理得:BM=,∴由垂径定理得:BC=2;连接AC、BD,则BD为这个图形的直径,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,∴AO=AB=1,由勾股定理得:BO=,∴BD=2BO=2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==,∵2>>2,∴选项A、B、D错误,选项C正确;故选C.点评本题考查了菱形性质,勾股定理,含30度角的直角三角形性质,扇形性质等知识点的应用,主要考查学生的理解能力和推理能力.2.2013乌鲁木齐对平面上任意一点a,b,定义f,g两种变换:fa,b=a,﹣b.如f1,2=1,﹣2;ga,b=b,a.如g1,2=2,1.据此得gf5,﹣9=A.5,﹣9 B.﹣9,﹣5 C.5,9 D.9,5分析根据两种变换的规则,先计算f5,﹣9=5,9,再计算g5,9即可.解答解:gf5,﹣9=g5,9=9,5.故选D.点评本题考查了点的坐标,理解新定义的变化规则是解题的关键.二.填空题共2小题3.2014杨浦区二模我们把四边形两条对角线中点的连线段称为奇异中位线.现有两个全等三角形,边长分别为3cm,4cm,5cm.将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么奇异中位线的长是cm.分析首先利用勾股定理的逆定理得出边长分别为3cm,4cm,5cm的三角形是直角三角形,然后将这两个直角三角形相等的边重合拼成凸四边形,如果凸四边形的奇异中位线的长不为0,那么只有一种情况,画出图形,根据正弦函数的定义求出OA,由中点的定义得出AM,再根据OM=AM﹣OA即可求解.解答解:∵32+42=9+16=25=52,∴边长分别为3cm,4cm,5cm的三角形是直角三角形.如图,将两个全等的直角△ABC与△DEF的斜边AC与DF重合,拼成凸四边形ABCE,AC与BE交于点O,M为AC的中点.∵△ABC≌△DEF,∴AB=AE=3cm,∠BAC=∠EDF,∴BO=OE,AO⊥BE.在Rt△AOB中,∵∠AOB=90°,∴OA=ABcos∠BAO=3×=,∵AM=AC=,∴OM=AM﹣OA=﹣=.即奇异中位线的长是cm.故答案为.点评本题考查了勾股定理的逆定理,图形的拼组,等腰三角形的性质,锐角三角函数的定义,难度适中.根据题目要求画出符合题意的图形是解题的关键.4.2013淄博在△ABC中,P是AB上的动点P异于A,B,过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有 3 条.分析根据相似三角形的判定方法分别利用平行线以及垂直平分线的性质得出对应角相等即可得出.解答解:当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连接PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB=72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.点评此题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法作出辅助线是解题关键.三.解答题共16小题5.定义:对于实数a,符号a表示不大于a的最大整数.例如:=5,5=5,﹣π=﹣4.1如果a=﹣3,则a的取值范围为﹣3≤a<﹣2 ;2如果=4,求满足条件的所有正整数x.分析1根据a=﹣3,得出﹣3≤a<﹣2,求出a的解即可;2根据题意得出4≤<5,求出x的取值范围,从而得出满足条件的所有正整数的解.解答解:1∵a=﹣3,∴a的取值范围是﹣3≤a<﹣2;2根据题意得:4≤<5,解得:7≤x<9.则满足条件的所有正整数为7,8.点评此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.6.2010秋无锡校级期末我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.1写出你所学过的特殊四边形中是勾股四边形的两种图形的名称矩形, 正方形;2如图,已知格点小正方形的顶点O0,0,A3,0,B0,4,请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB.分析1根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;2根据要求和图形,分析知该四边形即为矩形,画图即可.解答解:1矩形、正方形;2根据要求和图形,则该四边形即为矩形,根据上述定义可知只要有一个角为直角的四边形就是勾股四边形,∵∠BOA为直角,∴点M在点3,4时四边形OAMB为勾股四边形,∴点M横纵坐标分别为3,4,由勾股定理知AM2+AO2=OM2∴OM=5∵由勾股定理得AB也为5,∴对角线相等,∴OA,OB为勾股边且对角线相等的勾股四边形OAMB,点M坐标还有3,4,4,3.点评此题考查了学生对新定义的理解以及特殊四边形的性质.7.2016厦门模拟我们定义:有一组对角相等而另一对角不相等的凸四边形叫做“等对角四边形”.已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.分析分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.解答解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图1所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图2所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.点评此题考查了新定义、四边形内角和定理、勾股定理、矩形的判定与性质等知识,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.8.2014衢州提出问题:1如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:2如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:3在2问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.分析1由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DH;2EF=GH.将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据1的结论得AM=DN,所以EF=GH;3易得△AHF∽△CGE,所以,由EC=2得AF=1,过F作FP⊥BC 于P,根据勾股定理得EF=,因为FH∥EG,所以,根据2①知EF=GH,所以FO=HO,再求得三角形FOH与三角形EOG的面积相加即可.解答解:1∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.∴△ABE≌△DAHASA,∴AE=DH.2EF=GH.将FE平移到AM处,则AM∥EF,AM=EF.将GH平移到DN处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据1的结论得AM=DN,所以EF=GH;3∵四边形ABCD是正方形,∴AB∥CD∴∠AHO=∠CGO∵FH∥EG∴∠FHO=∠EGO∴∠AHF=∠CGE∴△AHF∽△CGE∴∵EC=2∴AF=1过F作FP⊥BC于P,根据勾股定理得EF=,∵FH∥EG,∴根据2知EF=GH,∴FO=HO.∴,,∴阴影部分面积为.点评本题考查了三角形的综合知识.用到全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等综合性较强,难度较大.9.2016秋宜兴市校级期中定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.1请你在图1中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;若两种方法分得的三角形成3对全等三角形,则视为同一种2△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并直接写出x所有可能的值;3如图2,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.分析145°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和°,再以°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;2用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC,根据图形易得x 的值;3因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,解方程可知三分线的长.解答解:1如图所示:2如图所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;3如图所示,CD、AE就是所求的三分线.设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,①∵△ACD∽△ABC,∴2:x=x+y:2,②由①和②解得或舍去,∴AE=,CD=,即三分线的长分别为和.点评此题是相似形的综合题,主要考查了三角形内角、外角间的关系及等腰三角形知识,掌握相似三角形的判定与性质,根据成比例的线段联立方程解决问题.10.2014宝山区一模通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对sad.如图在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:1sad60°= 1 ;sad90°=.2对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2 .3试求sad36°的值.分析1根据等腰三角形的性质,求出底角的度数,判断出三角形为等边三角形,再根据正对的定义解答进而得出sad90°的值;2求出0度和180度时等腰三角形底和腰的比即可;3作出等腰△ABC,构造等腰三角形BCD,根据正对的定义解答.解答解:1根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.根据正对定义,当顶角为90°时,等腰三角形底角为45°,则三角形为等腰直角三角形,则sad90°==故答案为:1,.2当∠A接近0°时,sadA接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.于是sadA的取值范围是0<sadA<2.故答案为:0<sadA<2.3如图所示:已知:∠A=36°,AB=AC,BC=BD,∴∠A=∠CBD=36°,∠ABC=∠C=72°,∴△BCD∽△ABC,∴=,∴=,解得:BC=CD,∴sad36°==.点评本题考查了解直角三角形:利用三角函数的定义和相似三角形的判定与性质,根据题意得出BC与CD的关系是解题关键.11.2013宁波若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.1如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;2如图2,在12×16的网格图上每个小正方形的边长为1有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;3四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.分析1要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;2根据扇形的性质弧上的点到顶点的距离相等,只要D在中点时构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,3由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.解答解:1∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;2由题意作图为:图2,图33∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.12.对x,y定义一种新运算T,规定:Tx,y=其中a、b均为非零常数,这里等式右边是通常的四则运算,例如:T0,1==b.1已知T1,﹣1=﹣,T4,2=1.①求a,b的值;②若关于m的不等式组恰好有5个整数解,求实数p的取值范围;2若Tx,y=Ty,x对任意实数x,y都成立这里Tx,y和Ty,x均有意义,则a,b应满足怎样的关系式分析1①已知两对值代入T中计算求出a与b的值;②根据题中新定义化简已知不等式,根据不等式组恰好有5个整数解,求出p的范围即可;2由Tx,y=Ty,x列出关系式,整理后即可确定出a与b的关系式.解答解:1①根据题意得:T1,﹣1==﹣,即a﹣b=﹣1,①T=4,2==1,即2a+b=7,②联立①②,解得:a=2,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有5个整数解,即m=0,1,2,3,4.∴4<≤5,解得:﹣≤p<﹣11;2由Tx,y=Ty,x,得到=,整理得:x2﹣y22b﹣a=0,∵Tx,y=Ty,x对任意实数x,y都成立,∴2b﹣a=0,即a=2b.点评此题考查了分式的混合运算,解二元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解本题的关键.13.2014东营探究发现如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF 成立;数学思考某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上B,C除外任意一点时其它条件不变,结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明。

中考数学专题复习 专题三 新定义探究测试题

中考数学专题复习 专题三 新定义探究测试题

专题三新定义探究一、基本运算新定义1.(•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1 =﹣6+1 =﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:2.(1)-2⊕3=(-2+3)⨯( -2-3)+2⨯3⨯(-2+3)=1⨯(-5)+ 2⨯3⨯1 =-5+6 =1a+;(2)因为a⊕b=(a+b)(a-b)+2b(a+b)=2a—2b+2 ab+22b= ()2ba+b⊕a=(b+a)(b-a)+2a(b+a)= 2b—2a+2 ab+22a= ()2b所以a⊕b=b⊕a二、几何图形新定义1.(•台州)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE 均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由.(1)解:①当MN为最大线段时,∵点 M、N是线段AB的勾股分割点,∴BN===;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN===,综上所述:BN=或;(2)证明:∵FG是△ABC的中位线,∴FG∥BC,∴===1,∴点M、N分别是AD、AE的中点,∴BD=2FM,DE=2MN,EC=2NG,∵点D、E是线段BC的勾股分割点,且EC>DE≥BD,∴EC2=BD2+DE2,∴(2NG)2=(2FM)2+(2MN)2,∴NG2=FM2+MN2,∴点M、N是线段FG的勾股分割点;(3)解:作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;点D即为所求;如图所示:(4)解:S四边形MNHG=S△AMF+S△BEN,理由如下:设AM=a,BN=b,MN=c,∵H是DN的中点,∴DH=HN=c,∵△MND、△BNE均为等边三角形,∴∠D=∠DNE=60°,在△DGH和△NEH中,,∴△DGH≌△NEH(ASA),∴DG=EN=b,∴MG=c﹣b,∵GM∥EN,∴△AGM∽△AEN,∴,∴c2=2ab﹣ac+bc,∵点 M、N是线段AB的勾股分割点,∴c2=a2+b2,∴(a﹣b)2=(b﹣a)c,又∵b﹣a≠c,∴a=b,在△DGH和△CAF中,,∴△DGH≌△CAF(ASA),∴S△DGH=S△CAF,∵c2=a2+b2,∴c2=a2+b2,∴S△DMN=S△ACM+S△ENB,∵S△DMN=S△DGH+S四边形MNHG,S△ACM=S△CAF+S△AMF,∴S四边形MNHG=S△AMF+S△BEN.2.(•嘉兴)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC 的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.解:(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1,∴AC=,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=A B=2,B′C′=BC=1,A′C′=AC=,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=;(III)当A′C′=BC′=时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=B,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2∴x2+(x+1)2=()2,解得:x1=1,x2=﹣2(不合题意,舍去),∴BB′=x=(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,设B′D=BD=x,则x2+(x+1)2=22,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;(3)BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,∵AB=AD,∴将△ADC绕点A旋转到△ABF,连接CF,∴△ABF≌△ADC,∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,∴∠BAD=∠C AF,==1,∴△ACF∽△ABD,∴==,∴BD,∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,∴∠ABC+∠ABF=270°,∴∠CBF=90°,∴BC2+FB2=CF2=(BD)2=2BD2,∴BC2+CD2=2BD2.3.(•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.三、函数新定义1.(•扬州)平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)(1)求点A(﹣1,3),B(+2,﹣2)的勾股值「A」、「B」;(2)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标;(3)求满足条件「N」=3的所有点N围成的图形的面积.解:(1)∵A(﹣1,3),B(+2,﹣2),∴「A」=|﹣1|+|3|=4,「B」=|+2|+|﹣2|=+2+2﹣=4;(2)设:点M的坐标为(m,n),由题意得解得:,,,,∴M(1,3),(﹣1,﹣3),(3,1),(﹣3,﹣1).(3)设N点的坐标为(x,y),∵「N」=3,∴|x|+|y|=3,∴x+y=3,﹣x﹣y=3,x﹣y=3,﹣x+y=3,∴y=﹣x+3,y=﹣x﹣3,y=x﹣3,y=x+3,如图:所有点N围成的图形的面积=3=18.2.(•河南)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.解:(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,∴C(0,8),A(﹣8,0),设抛物线解析式为:y=ax2+c,则,解得:故抛物线的解析式为:y=﹣x2+8;(2)正确,理由:设P(a,﹣a2+8),则F(a,8),∵D(0,6),∴PD===a2+2,PF=8﹣(﹣a2+8)=a2,∴PD﹣PF=2;(3)在点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,∵PD﹣PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2,∴当P、E、F三点共线时,PE+PF最小,此时点P,E的横坐标都为﹣4,将x=﹣4代入y=﹣x2+8,得y=6,∴P(﹣4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点,∴△PDE的周长最小时”好点“的坐标为:(﹣4,6),由(2)得:P(a,﹣a2+8),∵点D、E的坐标分别为(0,6),(﹣4,0),①当﹣4≤a<0时,S△PDE==;∴4<S△PDE≤12,②当a=0时,S△PDE=4,③﹣8<a<﹣4时,S△PDE=(﹣a2+8+6)×(﹣a)×﹣×4×6﹣(﹣a﹣4)×(﹣a2+8)×=﹣a2﹣3a+4,∴4≤S△PDE≤13,④当a=﹣8时,S△PDE=12,∴△PDE 的面积可以等于4到13所有整数,在面积为12时,a的值有两个,所以面积为整数时好点有11个,经过验证周长最小的好点包含这11个之内,所以好点共11个,11个好点,P(﹣4,6).3、(•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,﹣5),D (4,0).(1)求c,b (用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=﹣t;(2)①不变.如图6,当x=1时,y=1﹣t,故M(1,1﹣t),∵tan∠AMP=1,∴∠AMP=45°;②S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM=(t﹣4)(4t﹣16)+[(4t﹣16)+(t﹣1)]×3﹣(t﹣1)(t﹣1)=t2﹣t+6.解t2﹣t+6=,得:t1=,t2=,∵4<t<5,∴t1=舍去,∴t=.(3)<t<.。

探究几何新定义,形成解题新策略——以一道中考几何新定义题为例

探究几何新定义,形成解题新策略——以一道中考几何新定义题为例

探究几何新定义,形成解题新策略——以一道中考几何新定义题为例张绍俊【期刊名称】《中学数学》【年(卷),期】2018(000)016【总页数】3页(P67-69)【作者】张绍俊【作者单位】江苏省清江中学【正文语种】中文一、考题呈现考题(2018年江苏淮安中考卷第26题)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)如果△ABC是“准互余三角形”,∠C>90°,∠A=60°,那么∠B=__________.图1图2(2)如图1,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,如果AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”;试问在边BC上是否存在一点E (异于点D),使△ABE也是“准互余三角形”?如果存在,请求出BE的长;如果不存在,请说明理由.(3)如图2,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.二、思路突破第一步:理解新定义在问题分析求解之前,必须先对问题所涉及到的几何定义进行直观理解,“三角形的两个内角α与β满足2α+β=90°”,以图3所示三角形为例,如果2∠A+∠B=90°或者2∠B+∠A=90°,那么△ABC可称之为“准互余三角形”.依据三角形内角和等于180°可知:如果存在关系“2∠A+∠B=90°”,那么∠A必须小于45°,∠B小于90°;如果存在关系“2∠B+∠A=90°”,那么∠B必须小于45°,∠A小于90°,两角必须均为锐角.这样结合具体的图形可以充分理解问题中所陈述的新定义,有利于后面的思路分析与突破.图3第二步:问题总体分析基于上述对于定义的理解,对于问题(1)可知,由于∠C>90°,∠A=60°,如果△ABC是“准互余三角形”,那么只可能存在一种情形,即2∠B+∠A=90°(∠B<45°),代入角度即可求解.对于问题第(2)问,探求点E是否存在,可以先假设点E存在,然后分情况来分析,如果点E位于BC边之上,很显然∠AEB>90°,那么同样只可能存在两种情形,后续只需结合几何性质分析即可.最后一问是在四边形中的△ABC为“准互余三角形”时,求解对角线AC的长,同样需要分两种情况来分析,总体思路是在四边形中分析内角大小,然后根据角的关系构建相似三角形,利用相似三角形边的性质来完成对角线的求解.第三步:构建突破策略1.定角突破第(1)问已知∠C>90°,∠A=60°,根据定义可知,由于2∠C或2∠A均大于90°,因此只可能存在一种情形:2∠B+∠A=90°,则2∠B=30°,解得∠B=15°.2.点E确定由于点E位于BC边上,则∠AEB>90°,则有2∠B+∠BAE=90°或者2∠BAE+∠B=90°两种情形,但因点E异于点D,则第二种情形不满足.由图4可知,在Rt△ABC中,∠B+∠BAE+∠EAC=90°,又知2∠B+∠BAE=90°,可得∠B=∠EAC,分析可知△ABC∽△EAC,由相似性质可知,=,则EC==,所以BE=.图43.对角线AC求解根据题意可知,∠ABC=∠ABD+∠CBD,∠ABD=2∠BCD,则∠ABC=2∠BCD+∠CBD=90°+∠BCD,所以∠ABC>90°,存在两种情形,分别进行讨论:图5图6①△ABC是“准互余三角形,∠BAC+2∠ACB=90°,假设∠ACD=x,∠ACB=y,分析可知∠BAC=90°-2y,∠ABD=2x+2y,则∠ABE=90°-2x,如图5,但由于在△AEB中∠AEB=90°-x,则有x=0,与ABCD为四边形相矛盾,故该种情形不存在.②△ABC是“准互余三角形,2∠BAC+∠ACB=90°,可以从以下两种思路来完成求解.方法1:半角折叠构建倍角.由于∠ABD=2∠BCD,则可以将∠BCD沿着边BC进行翻折,如图6,则有∠DCB=∠ECB,所以∠DCE=∠ABD,又因为∠ABD+∠DBE=180°,则∠DCE+∠DBE=180°,即∠BDC+∠BEC=180°. 因为∠BDC=90°,所以∠BEC=90°,BC是∠DCE的角平分线,由角平分线的性质可知,CD=CE=12.因为2∠BAC+∠ACB=90°,可设∠BAC=θ,则∠ACB=90°-2θ,∠ACE=90°-θ,即∠ECB=θ,可得△ACE~△CBE,设BE=x,则=,解得x=9,即AE=16,CE=12,在Rt△ACE中使用勾股定理可得AC=20.方法2:构建导角.因为2∠BAC+∠ACB=90°,设∠BAC=α,则∠ACB=90°-2α,∠ABC=90°+α,过点B作BE⊥AB交AC于点E,如图7,分析可知△CBE∽△CAB,由相似性质可得CB2=CE·CA.由2∠BCD=∠ABD可得∠BAC=∠BCD,则△BAE∽△DCB,设AE=7a,则CB=12a,可求得CE=9a,所以BE=,利用勾股定理可得AE=7a,所以AC=16a=20,即对角线AC的长为20.图7三、考题评析1.命题评析本题目为涉及三角形内角的几何新定义题,求解过程需要学生首先理解几何定义,然后运用所学知识来解决问题,是对学生阅读理解、知识运用、方法综合能力的考查.问题的设置具有明显的关联性和递进性,由角到点再到几何对角线,问题层层递进,环环相扣,分析过程由浅入深,由难到易,解法上前者对于后一问的分析具有一定的启示作用,是关联性考题的典型代表.2.求解评析新定义考题虽有着较为新颖的命题形式,但依然是基于学生知识基础进行的几何创新,理解定义的核心含义是问题求解的基础,数形结合、模型建立是问题求解的有效方法,基于定义内容,把握知识联系,是构建解题思路的基本策略.上述考题由于三角形内角大小的不确定性,使得新定义的“准互余三角形”具有多种不同形式,因此在分析问题时需要分类讨论,根据角度大小的关系来完成特定情形下的问题求解.考题的第(3)问是本题的难点所在,其解题思路是基于前两问的求解,上述采用了“由角到形,由形入性,以性归质”的分析思路,即首先分析三角形内角关系,确立三角形的形状关系(如全等、相似),然后利用三角形的性质来确定几何线段的长度.求解过程在分类讨论的基础上采用了数形结合、模型构建的方法,而最后一问求解中采用了两种构建策略,一种是利用几何折叠来完成倍角构建,通过角度分析来建立边长求解的代数方程;另一种是在三角形中构建几何导角,同样通过分析内角关系,利用相似性质构建方程求解.其中三角形相似、勾股定理是建立几何关系到代数方程的重要途径,是几何线段求解的基本策略.四、教学思考近几年的中考中出现了众多的新定义考题,涉及到了几何概念、代数名称、运算法则、变化规律等,这些优秀的新定义题指引着中考的命题方向,也对中学教学有着重要的引领作用,结合考题分析,指导学生思考,启发学生思维,是考题的价值所在,下面围绕几何新定义考题开展教学反思,探求教学建议:1.基于新定义,强化阅读理解给出数学新定义是该类考题最为显著的特征,一般定义中含有大量的文字信息以及必要的数学符号,以描述的方式给出与数学相关的定义.在求解时不应急于思考后续的问题,而应对定义进行文字提炼,并转化为简洁的数学语言,然后构建问题研究的数学模型,充分理解定义所表述的本质内容,这其中涉及到了语言的转化、内容的理解以及模型的构建,对于定义的理解也应分上述三步来完成.因此,在数学教学中十分有必要强化学生概念理解、语言转化的能力,结合数形结合思想指导学生开展数学建模,促进学生数学阅读能力的提升.2.基于关联性,理解定义内容中考新定义题的内容虽然与教材的概念定义有一定的差异,但考虑到其命题材料来源于教材,是以学生认知为命题出发点的,因此本质上还是对学生所学概念的一种另类变式.在阅读新定义时可以充分结合教材的知识内容来理解题目定义,包括定义中的数学概念、基本性质和研究方法,思考定义内容与所学知识存在的关联,如上述考题涉及到的“准互余三角形”,就可以联想几何中的互为余角,即α+β=90°,然后明确何种情形下可称之为准互余三角形,进而理解准互余三角形所具有的特征,为后续的分析求解打下基础.3.基于思想方法,形成分析策略本文所分析的考题为典型的几何新定义题,求解过程采用分类讨论思想将不确定性问题具体化,然后利用构造思想建立了问题研究的模型,并采用数形结合的方式来分析求解.本文第三问的求解分别采用了不同的构造方式,获得了问题求解的关键条件,正是因为图形的构建使得问题的思考过程更为简洁,这种解题方式是几何问题研究的基本策略.在教学中,不仅应使学生掌握基本的数学知识,还应该渗透思想方法,引导学生掌握问题的分析策略,掌握问题研究的基本方法,逐步形成自我的解题思路,获得解题思维的提升.五、写在最后中考新定义题对学生的知识运用能力提出了更高的要求,同时也对初中教学提出了新的目标要求,这是课改推行下的命题导向,也是素质教育的必然趋势.提升学生能力应成为教学的主要目标,包括阅读理解、信息提炼、知识归纳和模型构建能力.使学生获得知识与能力的双重提升,促进学生数学素养的持续发展.参考文献:【相关文献】1.于杰.理解定义关联概念,解后反思走向教学——一道新定义考题的思路突破与教学思考[J].中学数学(下),2017(4).2.张丹燕.理解几何新定义,利用性质探究题——以图像类新定义题为例[J].中学数学(下),2018(1).3.谢良毅.知识综合巧运用,一题多解阔思维——以一道初中平面几何题为例[J].中学数学教学参考(中),2018(Z3).4.刘燕玲.例谈分类讨论思想在数学教学中的渗透[J].中学数学教学参考(中),2018(Z2).J。

浙教版九年级数学下册中考复习 中考新定义 练习题

浙教版九年级数学下册中考复习 中考新定义 练习题

浙教版九年级中考新定义1.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图①,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是“等高底”三角形,请说明理由.(2)问题探究:如图②,△ABC是“等高底”三角形,BC是“等底”,作△ABC关于BC 所在直线的对称图形得到△A′BC,连接AA′交直线BC于点D.若点B是△AA′C的重心,求AC:BC的值.(3)应用拓展:如图③,已知l∥2l,1l与2l之间的距离为2.“等高底”△ABC的“等底”BC1在直线l上,点A在直线2l上,有一边的长是BC的2倍.将△ABC绕点C1按顺时针方向旋转45°得到△A′B′C,A′C所在直线交l于点D.求CD的长.22.如图1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将□ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,_________;ABCD :平行四边形矩形S S AEFG = ____________.(2)□ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图4,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形.请你帮助画出叠合正方形的示意图,并求出AD,BC的长.3.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE 是等腰直角四边形,求AE的长.4.如图1,我们把对角线互相垂直的四边形叫做垂美四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,
BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE
相交于点P,求
AP
PD
的值.
小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
请回答:
AP
PD
的值为.
参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE 的延长线交于点P,DC:BC:AC=1:2:3 .
(1)求
AP
PD
的值;
(2)若CD=2,则BP= .
图1图2图3
26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .
(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;
明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;
请回答:AF 与BE 的数量关系是 .
(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AF
BE
的值.
图1 图2
G F E
O
26.阅读下面的材料
勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍 的一种拼图证明勾股定理的方法.
先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.
由图1可以得到
2
21
42
a b ab c +=⨯+(), 整理,得2
2
2
22a ab b ab c ++=+. 所以2
2
2
a b c +=.
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请 你参照上述证明勾股定理的方法,完成下面的填空:
由图2可以得到 , 整理,得 , 所以 .
图1

2
小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.
小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).
图1 图2 图3
请回答:BC +DE 的值为_______.
参考小明思考问题的方法,解决问题:
如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.
小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中, ∠A =2∠B,CD 平分∠A CB ,AD=2.2,AC=3.6 求BC 的长.
小聪思考:因为CD 平分∠A CB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.
(2)BC 的长为__________.
参考小聪思考问题的方法,解决问题: 如图3,已知△ABC 中,AB=AC, ∠A =20°, BD 平分∠ABC,BD=2.3,BC=2. 求AD 的长.
C
E
D C
B A
B
C
小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分∠ACB ,试判断BC 和AC 、AD 之间的数量关系.
小明发现,利用轴对称做一个变化,在BC 上截取CA′=CA ,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).
图1 图2
请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ;
(2)BC 和AC 、AD 之间的数量关系是 .
参考小明思考问题的方法,解决问题:
如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.
A'
D
D
C
C
A
A
图3
D
C
B
A
小红遇到这样一个问题:如图1,在四边形ABCD 中,︒=∠=∠90C A ,︒=∠60D ,
34=AB ,3=BC ,求AD 的长.
小红发现,延长AB 与DC 相交于点E ,通过构造Rt△ADE ,经过推理和计算能够使问题得到解决(如图2). 请回答:AD 的长为 . 参考小红思考问题的方法,解决问题:
如图3,在四边形ABCD 中,2
1
tan =
A ,︒=∠=∠135C
B , 9=AB ,3=CD ,求B
C 和A
D 的长.
图3
图1 图2
E
26.阅读、操作与探究:
小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:
如图1,Rt △ABC 中,BC ,AC ,AB 的长分别为3,4,5,先以点B 为圆心,线段BA 的长为半径画弧,交CB 的延长线于点D ,再过D ,A 两点分别作AC ,CD 的平行线,交于点E .得到矩形ACDE ,则矩形ACDE 的邻边比为 . 请仿照小亮的方法解决下列问题:
(1)如图2,已知Rt △FGH 中,GH :GF :FH = 5:12:13,请你在图2中画一个矩形,使
所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;
(2)若已知直角三角形的三边比为()()()
2221:2+2:2+21n n n n n ++(n 为正整数),
则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 .
图2
图1
H
G
F
E
D
A
B C
26.(1)请你根据下面画图要求,在图①中完成画图操作并填空.
如图①,△ABC中,∠BAC=30°,∠ACB=90°,∠P AM=∠A.
操作:(1)延长BC.
(2)将∠P AM绕点A逆时针方向旋转60°后,射线AM交BC的延长线于点D.
(3)过点D作DQ//AB.
(4)∠P AM旋转后,射线AP交DQ于点G.
(5)连结BG.
结论:AB
AG
= .
(2)如图②,△ABC中,AB=AC=1,∠BAC=36°,进行如下操作:将△ABC绕点A按逆时针方向旋转α度角,并使各边长变为原来的n倍(n >1),得到△''
AB C.当点B、C、'B在同一条直线上,且四边形''
ABB C为平行四边形时(如图③),求α和n的值.
图①图②图③
26.阅读下面的材料:
小敏在数学课外小组活动中遇到这样一个问题:
如果α,β都为锐角,且1tan 2α=,1
tan 3
β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.
请参考小敏思考问题的方法解决问题:
如果α,β都为锐角,当tan 4α=,3
tan 5
β=
时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.。

相关文档
最新文档