中考数学专题复习-函数中的面积问题
最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案
第 1 页二次函数的实际应用——面积最大(小)值问题知识要点:在生活理论中,人们经常面对带有“最〞字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用根本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度挪动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度挪动,假如P 、Q 两点同时出发,分别到达B 、C 两点后就停顿挪动.〔1〕运动第t 秒时,△PBQ 的面积y(cm²)是多少?〔2〕此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.〔3〕t 为何值时s 最小,最小值时多少?答案:[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门〔木质〕.花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米那么长为:x x 4342432-=+-(米)那么:)434(x x S -= ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. [例3]:边长为4的正方形截去一个角后成为五边形ABCDE 〔如图〕,其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,那么矩形PNDM 的面积S=xy 〔2≤x≤4〕易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H那么有△AFB ∽△BHP∴PH BH BF AF =,即3412--=y x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】此题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考察学生的综合应用才能.同时,也给学生探究解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,假设将此种地砖按图(2)所示的形式铺设,且能使中间的阴影局部组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 那么BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2021浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2021庆阳市)兰州市“安居工程〞新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);点(x ,y )都在一个二次函数的图像上,(如下图),那么6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如下图,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN第 3 页 ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2021湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大〔 C 〕A .7B .6C .5D .45.如图,铅球运发动掷铅球的高度y (m)与程度间隔 x (m)之间的函数关系式是:35321212++-=x x y ,那么该运发动此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,那么:02082=--x x 0)10)(2(=-+x x〔图5〕 〔图6〕 〔图7〕6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,假如抛物线的最高点M 离墙1 m ,离地面340m ,那么水流落地点B 离墙的间隔 OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2021乌兰察布)小明在某次投篮中,球的运动道路是抛物线21 3.55y x =-+的一局部,如图7所示,假设命中篮圈中心,那么他与篮底的间隔 L 是〔 B 〕A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.假设设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;〔2〕根据〔1〕中求得的函数关系式,描绘其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)假如中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比拟(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,那么宽为350x -米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,那么宽为250+-n x 米,设面积为S 平方米. 那么:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.11.(2021年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x 〔10-2x 〕=-2x 2+10x=-2(x-2.5)2+12.5当x=2.5时,S 有最大值12.512.(2021四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,那么绳子的最低点距地面的间隔 为 0.5 米.答案:如下图建立直角坐标系那么:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,第 5 页⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2021黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.〔1〕求S 与x 之间的函数关系式,并写出自变量x 的取值范围;〔2〕当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:〔1〕根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是〔2〕∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2021年南宁市)随着绿城南宁近几年城市建立的快速开展,对花木的需求量逐年进步.某园林专业户方案投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)〔1〕分别求出利润与关于投资量的函数关系式; 〔2〕假如这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:〔1〕设=,由图12-①所示,函数=的图像过〔1,2〕,所以2=, 故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过〔2,2〕,所以,故利润2y 关于投资量的函数关系式是2221x y =; 〔2〕设这位专业户投入种植花卉万元〔〕,那么投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8 x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子〔纸板的厚度忽略不计〕.〔1〕要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?〔2〕你感到折合而成的长方体盒子的侧面积会不会有更大的情况?假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由;〔3〕假如把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由.解:〔1〕设正方形的边长为cm , 那么. 即. 解得〔不合题意,舍去〕,. 剪去的正方形的边长为1cm .〔2〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 那么与的函数关系式为: 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.〔3〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.假设按图1所示的方法剪折, 那么与的函数关系式为: 即. 当时,.假设按图2所示的方法剪折, 那么与的函数关系式为:即.当时,.比拟以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的间隔均为5m.〔1〕将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;〔2〕求支柱的长度;〔3〕拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:〔1〕根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.〔2〕可设,于是从而支柱的长度是米.〔3〕设是隔离带的宽,是三辆车的宽度和,那么点坐标是.过点作垂直交抛物线于,那么.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.第 7 页。
二次函数-面积问题备战2023年中考数学考点微专题
考向3.10 二次函数-面积问题例1、(2021·四川雅安·中考真题)已知二次函数223y x bx b =+-. (1)当该二次函数的图象经过点1,0A 时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x 轴的另一个交点为点B ,与y 轴的交点为点C ,点P 从点A 出发在线段AB 上以每秒2个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,直到其中一点到达终点时,两点停止运动,求△BPQ 面积的最大值;(3)若对满足1≥x 的任意实数x ,都使得0y ≥成立,求实数b 的取值范围.解:(1)把1,0A 代入223y x bx b =+-, 得:20123b b =+-,解得:b =1,∴该二次函数的表达式为:223y x x =+-; (2)令y =0代入223y x x =+-, 得:2023x x =+-, 解得:11x =或23x =-,令x =0代入223y x x =+-得:y =-3, ∴A (1,0),B (-3,0),C (0,-3), 设运动时间为t ,则AP =2t ,BQ =t , ∴BP =4-2t ,过点M 作MQ ⊥x 轴, ∵OB =OC =3, ∴∠OBC =45°,∴BMQ 是等腰直角三角形,∴MQ =22BQ =22t , ∴△BPQ 的面积=()11222242BP MQ t t -⋅=⋅=()222122t --+,∴当t =1时,△BPQ 面积的最大值=22;(3)抛物线223y x bx b =+-的对称轴为:直线x =-b ,开口向上, 设2()23y f x x bx b ==+-,∵对1≥x 的任意实数x ,都使得0y ≥成立,∴()110b f -≤⎧⎨≥⎩或()10b f b ->⎧⎨-≥⎩,∴-1≤b ≤1或-3≤b <-1, ∴-3≤b ≤1.1、二次函数面积问题的几种形式(1)直接用面积公式;(2)三角形的面积等于铅直高度与水平宽度积的一半;(3)平行线等面积法(通过做平行线辅助线完成)。
九年级数学中考复习专题反比例函数中的面积问题 课件
G
H
M
F
例题图④
• ∴DH=3a. • ∵点C也在反比例函数的图象上,
∴C(3a,32 a),∴CH=31 a, ∴AC2=AH2+CH2=190 a2, ∵S△ABC=12 AC2=59 a2=10,解得 a2=18, ∴S△ADE=12 AD·EM=a2=18.
G
H
M
F
例题图④
二 阶 综合训练 1. •如图,在平面直角坐标系中,一次函数 y=kx +b 的图象经过点 A(0,-4),B(2,0),交反比 例函数 y=mx (x>0)的图象于点 G(3,a),点 P 在反比例函数的图象上,横坐标为 n(0<n<3), PQ∥y 轴交直线 AB 于点 Q,D 是 y 轴上任意一 点,连接 PD,QD.
于点• D,连接 AD,OD,若 k=4 3 ,求△AOD 的面积; (3)如图,过点A作AE⊥BO交BO于点E,过点D作DF∥BO交OA于点F, ∵k′=tan ∠AOB= 3 ,
设 OE=x,AE= 3 x,
∴x· 3 x=4 3 ,解得 x1=2,x2=-2(舍去),
∴OE=2,AE=2 3 ,
第1题图
• (1)求一次函数和反比例函数的表达式;
解:(1)∵点A(0,-4),B(2,0)均在一次函数
y=kx+b的图象上,
b=-4
k=2
∴2k+b=0 ,解得b=-4 ,
∴一次函数的表达式为y=2x-4,
∵点G(3,a)在一次函数y=2x-4图象上,
第1题图
• ∴a=2, • ∴G(3,2),
(2)如图,连接OD,
∵点A,E分别是CD,BD的中点, ∴AC=AD,DE=BE, ∴S△OAC=S△OAD,S△OBE=S△ODE.
中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题
S 阴影=|k1|-|k2|
图形
S =S -S 阴影 △AOB △AOD 结论 1 1
=2|k1|-2|k2|
S =S -S 阴影 △COB △OCD 11
=2|k1|-2|k2|
图形
过点 D 作 DF⊥x 轴于点
结论
S 阴影=S 矩形 -S -S = OABC △OCD △OAE |k1|-|k2|
【模型示例】
图形
结论
S 四边形 PMON=|k|
S =S 四边形 ABCD
四边形 PQMD
2.(2021·荆州)如图,过反比例函数 y=kx(k>0,x>0) 图象上的四点 P1,P2,P3,P4 分别作 x 轴的垂线,垂足 分别为 A1,A2,A3,A4,再过 P1,P2,P3,P4 分别作 y 轴, P1A1,P2A2,P3A3 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从 左到右依次为 S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则 S1 与 S4 的数量关 系为 S1=S1=44SS44.
x 轴于点 B,连接 BC,则△ABC 的面积等于
A.8
B.6 C.4 D.2
( C)
模型四:两点两垂线 【模型特征】
反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂 线围成的图形面积等于 2|k|.
【模型示例】
图形
结论
S△APP′=2|k| S 四边形 ANBM=2|k|
4.(2021·南京)如图,正比例函数 y=kx 与函数 y=6x的图象交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 S△ABC=1 12 2.
A.4
B.6
C.8
D.12
( C)
中考数学复习考点知识讲解与练习30 二次函数中的面积问题
中考数学复习考点知识讲解与练习专题30 二次函数中的面积问题进入函数学习以后,面积问题在一直是学习中的一个重点,常考点,因此在二次函数的面积问题必然是中考复习中的一个重要内容,其面积往往有直接计算,割补法计算等,其中基本图形有以下几种:当然,更多的时候利用铅垂高度与水平宽度的一半进行运用,更显方便;通过本中考数学复习考点知识讲解与练习专题的巩固训练,让学生对二次函数的面积问题能形成良好的才思考方法,学会观察、分析、比较、总结,掌握二次函数面积相关问题的计算方法。
1.正方形的边长为3,边长增加x,面积增加y,则y关于x的函数解析式为()A.2y(x3)=+B.2y x9=+C.26y x x=+D.2312y x x=+2.正方体的棱长为x,表面积为y,则y与x之间的函数关系式为()A.16y x=B.6y x=C.26y x=D.6yx=3.如图ABC和DEF都是边长为2的等边三角形,它们的边,BC EF在同一条直线l上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为()A .B .C .D .4.将抛物线y=x 2-4x+1向左平移至顶点落在y 轴上,如图所示,则两条抛物线、直线y=-3和x 轴围成的图形的面积S (图中阴影部分)是()A .4B .5C .6D .75.抛物线234y x x =--与x 轴交于A 、B ,与y 轴交于C 点,则△ABC 的面积为()A .3B .4C .10D .126.下列图形中阴影部分的面积相等的是()A .②③B .③④C .①②D .①④7.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为( )A .1B .2C .3D .48.如图,在等腰Rt ABC 中,90C ∠=︒,直角边AC 长与正方形MNPQ 的边长均为2,cm CA 与MN 在直线l 上.开始时A 点与M 点重合,让ABC 向右平移,直到C 点与N 点重合时为止,设ABC 与正方形MNPQ 重叠部分(图中阴影部分)的面积为2ycm ,MA 的长度为xcm ,则y 与x 之间的函数关系大致是( )A .B .C .D .9.如图,矩形ABCD 中,AB =2AD =4cm ,动点P 从点A 出发,以1cm /s 的速度沿线段AB 向点B 运动,动点Q 同时从点A 出发,以2cm /s 的速度沿折线AD →DC →CB 向点B 运动,当一个点停止时另一个点也随之停止.设点P 的运动时间是x (s )时,△APQ 的面积是y (cm 2),则能够反映y 与x 之间函数关系的图象大致是()A .B .C .D .10.如图,用长为24m 的篱笆围成一面利用墙(墙的最大可用长度a 为9m )、且中间隔有一道篱笆的长方形花圃,则围成的花圃的面积最大为()A .48 m 2B .45m 2C .16 m 2D .44m 211.如图,等腰()90Rt ABC ACB ∠=的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是()A .B .C .D .12.如图,在直角坐标系的第一象限内,AOB 是边长为2的等边三角形,设直线:(02)=l x t t 截这个三角形所得位于直线左侧的图形(阴影部分)的面积为S ,则S 关于t 的大致函数图象是( )A .B .C .D .13.如图,在ABC 中,90ACB ∠=︒,4AC =,3BC =.线段PE 的两个端点都在AB 上,且1PE =,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,空白部分面积DPEC S 四边形的大小变化的情况是()A .一直减小B .一直增大C .先增大后减小D .先减小后增大14.如图,在Rt DEF △中,90EFD ∠=︒,30DEF ∠=︒,3EF cm =,边长为2cm 的等边ABC 的顶点C 与点E 重合,另一个顶点B (在点C 的左侧)在射线FE 上.将ABC 沿EF 方向进行平移,直到A 、D 、F 在同一条直线上时停止,设ABC 在平移过程中与DEF 的重叠面积为2ycm ,CE 的长为x cm ,则下列图象中,能表示y 与x 的函数关系的图象大致是().A .B .C .D .15.如图,四边形ABCD 是矩形,AB=4,BC=6,点O 是线段BD 上一动点,EF 、GH 过点O ,EF∥AB,交AD 于点E ,交BC 于点F ,GH∥BC,交AB 于点G ,交DC 于点H ,四边形AEOG的面积记为S,GB=a,则S关于a的函数关系图象是()A.B.C.D.16.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),现有四种方案供选择(如图):A方案为一个封闭的矩形;B方案为一个等边三角形,并留一处1m宽的门;C方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m宽的门;D方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m宽的门.已知计划中的篱笆(不包括门)总长为12m,则能建成的饲养室中面积最大的方案为()A.B.C.D.17.如图,4AB 为半圆的直径,动点P为AB上,点P从点A出发,沿AB匀速运动到点B,速度为2,运动时间为t,分别以AP与PB为直径做半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为().A .B .C .D .18.如图,ABC 和DEF 都是直角边长为的等腰直角三角形,它们的斜边AB ,DE 在同一条直线l 上,点B ,D 重合.现将ABC 沿着直线l 以2cm/s 的速度向右匀速移动,直至点A 与E 重合时停止移动.在此过程中,设点B 移动的时间为()s x ,两个三角形重叠部分的面积为()2cm y ,则y 随x 变化的函数图象大致为()A .B .C .D .二、填空题19.用一根长为100cm 的铁丝围成一个矩形,则围成矩形面积的最大值是__________cm 2.20.如图,在平面直角坐标系中,抛物线2y x bx c =-++经过坐标原点O ,与x 轴的另一个交点为A ,且5OA =,过抛物线的顶点B 分别作BC x ⊥轴于C 、BD y ⊥轴于D ,则图中阴影部分图形的面积的和为______.21.已知,四边形ABCD 的两条对角线AC 、BD 互相垂直,且AC +BD =10,当AC =_______时,四边形ABCD 的面积最大,最大值为__________.22.如图,ABC ∆为一块铁板余料,10BC =cm ,高AD=10cm ,要用这块余料裁出一个矩形PQMN ,使矩形的顶点P ,N 分别在边上AB ,AC 上,顶点Q ,M 在边上BC 上,则矩形PQMN 面积的最大为_________2cm .23.如图,在Rt ABC 中,90BAC ∠=︒,AB AC ==AD 为BC 边上的高,动点P 在AD 上,从点A 出发,沿A D →方向运动,设AP x =,ABP △的面积为1S ,矩形PDFE 的面积为2S ,12y S S =+,则y 与x 的关系式是________.24.如图,边长为2的正方形ABCD 的中心在直角坐标系的原点O ,AD ∥x 轴,以O 为顶点且过A 、D 两点的抛物线与以O 为顶点且经过B 、C 两点的抛物线将正方形分割成几部分,则图中阴影部份的面积是______________.25.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积是_______26.如图,点P 是双曲线C :y =4x (x >0)上的一点,过点P 作x 轴的垂线交直线AB :y =12x ﹣2于点Q ,连结OP ,OQ .当点P 在曲线C 上运动,且点P 在Q 的上方时,△POQ 面积的最大值是_____.27.如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC ∆与ABD ∆的面积比为1:3,则k 值为________.28.如图,将抛物线y=−12x2平移得到抛物线m.抛物线m经过点A(6,0)和原点O,它的顶点为P,它的对称轴与抛物线y=−12x2交于点Q,则图中阴影部分的面积为______.29.如图,A、B为抛物线y=x2上的两点,且AB//x轴,与y轴交于点C,以点O为圆心,OC为半径画圆,若AB=,则图中阴影部分的面积为___30.已知二次函数y=2x2的图象如图所示,将x轴沿y轴向上平移2个单位长度后与抛物线交于A、B两点,则△AOB的面积为____.31.已知二次函数y=x 2-2x -3与x 轴交于A 、B 两点,在x 轴上方的抛物线上有一点C ,且△ABC 的面积等于10,则C 点坐标为________.32.如图,在平面直角坐标系中,过点(,0)P x 作x 轴的垂线,分别交抛物线22y x =+与直线y x =-交于点A ,B ,以线段AB 为对角线作菱形ACBD ,使得60D ︒∠=,则菱形ACBD 的面积最小值为______.33.如图,有一块三角形土地,它的底边100BC m =,高80AH m =,某房地产公司沿着地边BC 修一座底面是矩形DEFG 的大楼,当这座大楼的地基面积最大时,这个矩形的宽是________m .34.如图,在等边三角形ABC 中,6,AB D =是线段BC 上一点,以AD 为边在AD 右侧作等边三角形ADE ,连结CE .(1)若2CD =时,CE =_________(2)设BD a =,当EDC ∆的面积最大时,a =__________.35.在平面直角坐标系中,抛物线23y ax bx a =+-经过(1,0)-和(0,3)两点,直线1y x =+与抛物线交于A ,B 两点,P 是直线AB 上方的抛物线上一动点,当ABP △的面积最大值时,点P 的横坐标为___________.三、解答题36.如图,正方形ABCD 的边长为4,点E 在AB 边上,1BE =,F 为BC 的中点.将正方形截去一个角后得到一个五边形AEFCD ,点P 在线段EF 上运动(点P 可与点E ,点F 重合),作矩形PMDN ,其中M ,N 两点分别在CD ,AD 边上.设CM x =,矩形PMDN 的面积为S .(1)DM =__________(用含x 的式子表示),x 的取值范围是__________;(2)求S 与x 的函数关系式;(3)要使矩形PMDN 的面积最大,点P 应在何处?并求最大面积.37.如图,在ABC 中,∠B=90°,AB=8米,BC=10米,动点P 从点A 开始沿边AB 向B 以1米/秒的速度运动(不与点B 重合),动点Q 从点B 开始沿BC 向C 以2米/秒的速度运动(不与点C 重合),如果P ,Q 分别从A ,B 同时出发,设运动时间为x 秒,BPQ 的面积为y 平方米(1)填空:BQ=米,BP=米(用含x 的代数式表示)(2)求y 与x 之间的函数关系式,并求出当x 为多少时y 有最大值,最大值是多少?38.如图,某小区为美化生活环境,拟在一块空地上修建一个花圃,花圃形状如图所示.已知A D ∠=∠90=︒,120C ∠=︒,其中AD DC 、两边靠墙,另外两边由20米长的栅栏围成.设BC x =米,花圃的面积为y 平方米.(1)用含有x 的代数式表示出DC 的长;(2)求这块花圃的最大面积.39.如图,已知一次函数28y x =-与抛物线2y x bx c =++都经过x 轴上的A 点和y 轴上的B 点.(1)求抛物线的解析式;(2)若抛物线的顶点为D ,试求出点D 的坐标和△ABD 的面积;(3)M 是线段OA 上的一点,过点M 作MN x ⊥轴,与抛物线交于N 点,若直线AB 把△MAN 分成的两部分面积之比为1∶3,请求出N 点的坐标.40.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,已知(3,0)B ,(0,3)C -,连接BC ,点P 是抛物线上的一个动点,点N 是对称轴上的一个动点.(1)求该抛物线的函数解析式.(2)当PAB的面积为8时,求点P的坐标.(3)若点P在直线BC的下方,当点P到直线BC的距离最大时,在抛物线上是否存在点Q,使得以点P,C,N,Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.。
中考数学压轴题:二次函数中的面积问题(含答案)
学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。
了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
中考数学狙击重难点系列专题----二次函数的实际应用之面积最大值问题(含答案)
面积最大值问题1. 如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B (4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.2. 如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.3. 如图,二次函数y=ax 2+2x+c 的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求该二次函数的表达式;(2)过点A 的直线AD ∥BC 且交抛物线于另一点D ,求直线AD 的函数表达式;(3)在(2)的条件下,请解答问题: 动点M 以每秒1个单位的速度沿线段AD 从点A 向点D 运动,同时,动点N 以每秒个单位的速度沿线段DB 从点D 向点B 运动,问:在运动过程中,当运动时间t 为何值时,△DMN 的面积最大,并求出这个最大值.4. 如图,在平面直角坐标系中,二次函数y=﹣x 2+bx+c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0).(1)求该二次函数的表达式及点C 的坐标; (2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .求S 的最大值;5. 如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.7.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求△PCE面积最大时P点的坐标;8.如图,在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;①求S与t的函数关系式;②当t是多少时,△PBF的面积最大,最大面积是多少?9.如图,曲线y1抛物线的一部分,且表达式为:y 1=(x2﹣2x﹣3)(x≤3)曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点D作CD∥x轴交曲线y1于点D,连接AD,在曲线y2上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.、(备用图)(1)求点A,点B和点D的坐标;(2)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.11.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y 轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,求t的值;12.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B 两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;13.已知在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx的图象经过点A(﹣1,4),交x轴于点B(a,0).(1)求a与b的值;(2)如图1,点M为抛物线上的一个动点,且在直线AB下方,试求出△ABM 面积的最大值及此时点M的坐标;14.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC 于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?15.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M 从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;16.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;。
最全二次函数中的面积问题(中考数学必考题型)
二次函数中的面积问题二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。
【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【铅垂法】()11112222ABCACDBCDC D B A SSSCD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-【方法梳理】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12S =⨯水平宽铅垂高.二、转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQPABQQBA PDEF OyxCBA 铅垂高水平宽DA BCxyOE三、面积比类型例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);PyxO CB A变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.42.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。
2020年数学中考 专题复习 万能解题模型(一) 反比例函数中的面积问题
万能解题模型(一)反比例函数中的面积问题前言:“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。
通过考试可以检测同学们对知识的理解、掌握情况,提高应试能力。
但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。
结果常常出现一些题在考试中屡次出现,但却一错再错的情况。
这样,学生们无法从考试中获益,考试也就失去了它的重要意义。
做好试卷分析和总结是十分有必要的。
那么,怎样做好试卷分析呢?我认为,应从下面两点做起:一.失分的原因主要有如下四方面:(1)考试心理:心理紧张,马虎大意;(2)知识结构:知识面窄,基础不扎实;(3)自身能力:审题不清,读不懂题意;(4)解题基本功:答题规范性差。
只有查出、找准原因,才能对症下药,从弱项方面加强训练,以提高成绩。
二.“扭转乾坤”的方法做题的过程中对每一道题要试图问如下几个问题?(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。
转变,让我们从一轮复习开始。
按照上面两点认真完成后面练习题。
希望每一位同学经过一轮复习后,能够扭转“一考就废”的局面,最后决胜中考。
类型1 单支双曲线上一点一垂直形成的三角形的面积S △AOP =12|k| S △ABC =12|k| S △ABC =12|k|1.(2019·枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx(x >0)的图象上.若AB =1,则k 的值为(A)A .1B.22C. 2 D .2类型2 单支双曲线上一点两垂直形成的矩形面积S 四边形PMON =|k| S 四边形ACDE =S 四边形EFGB2.如图,A ,B 两点在双曲线y =4x 上,分别经过A ,B 两点向x 轴、y 轴作垂线段,已知S 阴影=1,则S 1+S 2=(D)A .3B .4C .5D .6类型3 双曲线上不在同一象限上两点一垂线形成的三角形的面积S △ABM =|k| S △ABM =|k|S △CDE =S △ACD +S △ADE =12AD·|y C -y E | S △ABC =S △BCD +S △ACD =12CD·|x B -x A |3.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx(k>0)相交于点A 、点B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.类型4 双曲线上不在同一象限上两点两垂线形成的三角形或四边形的面积S △APP′=2|k| S ▱AMBN =2|k|4.如图,A ,B 是函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 的图象与反比例函数y =4x的图象的交点,过A 点作AD ⊥x轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.类型5 双曲线上在同一象限上任意两点与原点形成的三角形的面积作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,S △OAM =S 四边形MEFB ,S △AOB =S 直角梯形AEFB .6.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB=4.类型6 两条双曲线与一条平行于坐标轴的直线所形成的几何图形的面积S 矩形ABCD =|k 1-k 2| S ▱ABCD =|k 1-k 1| S △AOB =12|k 1-k 2| S △ABC =S △AOB =12|k 1|+12|k 2|7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x 上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是(C) A.32 B.52 C .4 D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =kx(k >0)上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx(x >0)的图象经过点B ,则k。
人教版初中数学中考考点系统复习 方法技巧微专题(二) 反比例函数中的面积问题模型
1
第11题 图
-12
对点训练
-8
第3题 图
8
第4题 图
模型3 两点一垂线 模型展示
S△ABM=|k|
S△
模型解读 过正比例函数与反比例函数的一个交点作坐标轴的垂
线,两交点与垂足构成的三角形的面积等于|k|.
对点训练
D
A.k
B.k2
C.2
D.3
第5题 图
C A.k1=-6 B.k1=-3 C.k2=-6 D.k2=-12
第一轮 中考考点系统复习
第三章 函数及其图象 方法技巧微专题(二) 反比例函数中的
面积问题模型
模型1 一点.3
B.2
D.1
第1题 图
3
第2题 图
模型2 一点两垂线 模型展示
S四边形
模型解读 过反比例函数图象上一点作两条坐标轴的垂线,垂线与
坐标轴所围成的矩形面积等于|k|.
点)所构成的三角形面积,若两交点在同一支上,用减法; 若两交点分别在两支上,用加法.
对点训练
A.-12
C
B.-8
C.-6
D.-4
第8题 图
第9题 图
模型6 两曲一平行
模型解读 两条双曲线上的两点的连线与一条坐标轴平行,求这两
点与原点或坐标轴围成的图形面积,结合k的几何意义求解.
对点训练 13
第6题 图
模型4 两点两垂线 模型展示
S△APP'=2|k|
S▱
模型解读 过反比例函数与正比例函数的交点作两条坐标轴的垂
线,两交点与两垂足(或两垂线的交点)连线围成的图形面 积等于2|k|.
对点训练 8
模型5 两点和一点 S△AOB=S△COD-S△AOC-S△BOD
专题03 二次函数与面积有关的问题(知识解读)-备战2023年中考数学《重难点解读专项训练》
专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。
与面积有关的问题,更是常见。
本节介绍二次函数考试题型种,与面积问题的常用解法。
同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。
【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。
)方法二: 铅锤法铅锤高水平宽⨯=21S方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B (4,0)两点(A 在B 的左侧),与y 轴交于点C (0,﹣4).点P 在抛物线上,连接BC ,BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A (﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
九年级中考数学专题复习:二次函数综合题(面积问题)含答案
中考数学专题复习:二次函数综合题(面积问题)1.如图,一次函数y =kx +b 的图象与二次函数y =ax 2的图象交于点A (1,m )和B (﹣2,4),与y 轴交于点C .(1)求k ,b ,a 的值; (2)求△AOB 的面积.2. 如图,已知二次函数212y x bx c =-++的图象经过点A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.3.如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (0,﹣4)、B (2,0),交反比例函数y 6x=(x >0)的图象于点C ,点P 在反比例函数的图象上,横坐标为n (0<n <3),PQ y ∥轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD 、QD .(1)求一次函数的表达式和C点坐标;(2)求△DPQ面积的最大值.4.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.△求△PBC面积最大值和此时m的值;△Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.5.图1,抛物线2y x 2x 3=-++与x 轴交于A ,B 两点,与y 轴交于点C .(1)求点A ,B ,C 的坐标.(2)P 为直线BC 上方抛物线上的一个动点,当PBC 的面积最大时,求点P 的坐标; (3)设M 为该抛物线的顶点,D 为抛物线的对称轴与x 轴的交点,如图2所示,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,直接写出点N 的坐标;若不存在,请说明理由.6.如图,已知二次函数2y x bx c =-++的图像交x 轴于点()1,0A -,()5,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B 出发,BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒(05t <<).当t 为何值时,BMN △的面积最大?最大面积是多少? (3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 坐标;若不存在,请说明理由.7.如图,已知抛物线2342y ax x =++的对称轴是直线x =3,且与x 轴相交于A 、B 两点(B 点在A 点的右侧),与y 轴交于C 点.(1)A 点的坐标是_____________;B 点坐标是________________; (2)求直线BC 的解析式;(3)点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合),是否存在点P ,使△PBC 的面积最大.若存在,请求出△PBC 的最大面积,若不存在,试说明理由;(4)若点M 在x 轴上,点N 在抛物线上,以A 、C 、M 、N 为顶点的四边形是平行四边形时,请直接写出点M 点坐标.8.如图,抛物线()20y ax bx c a =++≠与y 轴交于点C (0,4),与x 轴交于点A 和点B ,其中点A 的坐标为(﹣2,0),抛物线的对称轴x =1与抛物线交于点D ,与直线BC 交于点E .(1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F 使四边形ABFC 的面积最大,若存在,求出点F 的坐标和最大值;若不存在,请说明理由;(3)平行于DE 的一条动直线l 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标.(4)探究对称轴上是否存在一点P ,使得以点P ,C ,A 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P 点的坐标,若不存在,请说明理由.9.如图,在平面直角坐标系中,直线334y x =-+与x 轴交于点A ,与y 轴交于点C .抛物线214y x bx c =-++经过点A 、C .(1)求抛物线解析式及顶点M 坐标;(2)P 为抛物线第一象限内一点,使得PAC △面积最大,求PAC △面积的最大值及此时点P 的坐标;(3)当1m x m +≤≤时,(1)中二次函数有最大值为2-,求m 的值.10.如图,在平面直角坐标系中,二次函数2y ax x c =-+的图像与x 轴交于点A (2-,0)、B (4,0),与y 轴交于点C .(1)求a 和c 的值;(2)若点D (不与点C 重合)在该二次函数的图像上,且ABD ABC S S =△△,求点D 的坐标;(3)若点P 是该二次函数图像上位于x 轴上方的一点,且BPABPCS S=,直接写出点P 的坐标.11.如图,抛物线()214y x =--的图像与x 轴交于的A 、B 两点,与y 轴交于点D ,抛物线的顶点为C .(1)求点A 、B 、C 坐标; (2)求ABC 的面积;(3)点P 是抛物线上一动点,当ABP △的面积为6时,求所有符合条件的点P 的坐标;12.如图,抛物线()20y ax bx c a =++≠经过点A (2,0),B (-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标; (3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.13.如图,直线y=-x+4与x轴交于点C,与y轴交于点B,抛物线y=23x2+bx+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),当S△BEC=14S△BOC时,求点E的坐标;(3)若点F是抛物线上的一动点,当S△BFC取值在什么范围时,对应的点F有且只有两个?14.如图,已知抛物线y=ax2+bx-8的图像与x轴交于A(2,0),B(﹣8,0)两点,与y轴交于点C(0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q 的坐标;如果没有,请说明理由.15.如图,已知抛物线2y ax bx c ++=交x 轴于点A 、B ,交y 轴于点C (0,6),且顶点坐标为(4,﹣2).直线x =m 分别交直线BC 和抛物线于点E 、P .(1)求该抛物线的解析式及A 、B 两点坐标; (2)当0<m <6时,求△BCP 面积的最大值; (3)当△BPE 是等腰三角形时,直接写出m 的值.16.已知二次函数242y ax x =++的图象经过点()3,4A -.(1)求a 的值;(2)直接写出函数y 随自变量的增大而减小的x 的取值范围.(3)设242y ax x =++的顶点为M ,与y 轴相交于C ,连结MC 、MA 、AC ,求AMC S △.17.如图,抛物线23y ax bx =++与x 轴交于点()3,0A ,与y 轴交于点B ,点C 在直线AB 上,过点C 作CD x ⊥轴于点()1,0D ,将ACD △沿CD 所在直线翻折,使点A 恰好落在抛物线上的点E 处.(1)求抛物线解析式;(2)连接BE ,求BCE 的面积;(3)拋物线上是否存在一点P ,使PEA BAE ∠=∠?若存在,求出P 点坐标;若不存在,请说明理由.18.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +3交x 轴负半轴于点A ,交x 轴正半轴于点B ,交y 轴于点C ,且OA =OC =3OB .(1)求这个抛物线的解析式;(2)如图1,点P 为第三象限抛物线上的点,设点P 的横坐标为t ,△P AC 面积S ,求S 与t 的函数解析式(直接写出自变量t 的取值范围);(3)如图2,在(2)的条件下,Q 为CA 延长线上的一点,若P 到x 轴的距离为d ,△PQB 的面积为2d ,且△P AQ =△AQB ,求点P 的坐标.19.如图,已知抛物线2y x bx c =++经过点()30A -,和点()0,3C -.解答下列问题.(1)求抛物线的解析式;(2)抛物线的顶点为D ,对称轴与x 轴的交点为E ,求线段BD 的长;(3)点F 在抛物线上运动,是否存在点F 使FAB 的面积等于6?如果存在,求出点F 的坐标;如果不存在,说明理由.20.如图,抛物线23y ax bx =++经过点A (2,3),与x 轴负半轴交于点B ,与y 轴交于点C ,且3OC OB =.(1)求该抛物线的解析式;(2)点D 在y 轴上,且BDO BAC ∠=∠,求点D 的坐标;(3)点P 在直线AB 上方的抛物线上,当△P AB 的面积最大时,直接写出点P 的坐标.参考答案:1.(1)k =−1,a =1,b =2(2)S △AOB =32.(1)21462y x x =-+- (2)63.(1)一次函数的表达式:y =2x -4,点C (3,2);(2)DPQ 面积的最大值是4.4.(1)2722y x x =-++(2)△最大值为8,m =2;△存在,⎝⎭或⎝⎭5.(1)A (﹣1,0),B (3,0),C (0,3) (2)31524P ⎛⎫ ⎪⎝⎭,(3)存在,(14N -+,或(14--,6.(1)245y x x =-++(2)当52t =时,BMN △的面积最大,最大面积是258(3)存在,Q 的坐标为()7,12-或()7,2-或()1,4或()2,37.(1)()-2,0,()8,0(2)直线BC 的解析式为142y x =-+ (3)存在点P ,使PBC ∆的面积最大,最大面积是16,理由见详解(4)满足条件的点M 的坐标为(8,0)-,(4,0),(50),(5,0)8.(1)y =﹣12x 2+x +4(2)存在,四边形ABFC 的面积最大为16,F (2,4)(3)P 点坐标为(3,1)或(,2)或(2(4)存在,P 点坐标为(1或(1,或(1,1)或(1,或(1,49.(1)211344y x x =-++,顶点M 的坐标为149,216⎛⎫ ⎪⎝⎭ (2)最大值为2,此时P 点坐标为52,2⎛⎫ ⎪⎝⎭(3)5-或510.(1)142a c ==-,4)或(14)或(2,-4)(3)(-6,20)11.(1)()1,0A -,()3,0B ,()1,4C -(2)8(3)()0,3-或()2,3-或()1或()112.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)13.(1)y =23-x 2+53x +4(2)E 1),E 2),E 34222,,E 44222, (3)当S △BFC >163时,对应的点F 有且只有两个.14.(1)抛物线解析式为y =122x +3x ﹣8;(2)点F 的坐标是F (﹣4,﹣12);(3)存在,点Q 有坐标为(0,0,﹣0,﹣4)或(0,0).15.(1)21462y x x =-+,点A (2,0),点B (6,0) (2)S △BCP 的最大值为272(3)当△BPE 是等腰三角形时,m 的值为2或416.(1)2242y x x =-++(2)1x >(3)617.(1)2y x 2x 3=-++(2)2(3)存在,()2,3或()4,5-18.(1)y =-x 2-2x +3(2)S =23922t t +(t <-3) (3)P 的坐标为(-4,-5)19.(1)223y x x =+-(2)(3)存在,点F 的坐标为:()1-或()1-或()0,3-或()2,3-- 20.(1)2y x 2x 3=-++(2)点D 的坐标为(0,1)或(0,-1)(3)P (12,154)。
中考数学复习考点知识归类讲解08 一次函数中的面积问题
中考数学复习考点知识归类讲解专题08 一次函数中的面积问题知识对接考点一、怎样解一次函数中的面积问题(1)如果三角形有一边在坐标轴上(或平行于坐标轴)直接用面积公式求面积.(2)如果三角形任何一边都不在坐标轴上,也不平行于坐标轴,则需转化为几个有边在坐标轴上的三角形面积之和(或差).专项训练一、单选题1.在平面直角坐标系中,点O(0,0),A(5,3),B(4,0),直线y=mx﹣5m+3将△OAB 分成面积相等的两部分,则m的值为()A.1 B.2 C.3 D.﹣12.将一次函数y=2x+4的图象与坐标轴围成的三角形面积是()A.4 B.5 C.6 D.73.如图,在平面直角坐标系中,已知点A坐标为(4-,5),点B坐标为(0,3),点D在x轴上.若线段DB交直线12y x=-于点C,当点D从点O向x轴负半轴方向运动时,△ABC面积的变化趋势是()A .先变大再变小B .先变小再变大C .无法确定D .保持不变 4.直线24y x =-与两坐标轴所围成三角形的面积等于()A .2B .4C .8D .165.一次函数y =2x +4的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积()A .6B .8C .2D .46.如图,点A ,B ,C 在一次函数y = -2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中的阴影部分的面积之和是()A .1B .3C .3(m -1)D .()322m -7.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b 经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为( )A .0.5B .1C .1.5D .28.已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x的形如y =a b x c c 的一次函数称为“勾股一次函数”.若点P (﹣1)在“勾股一次函数”的图象上,且Rt △ABC 的面积是92,则c 的值是( )A .6B .12C .D .9.如图①,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图像如图②所示,则ABC 的面积是()A .6B .12C .16D .2110.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为( )A .3.5B .2.5C .2D .1.2二、填空题 11.在平面直角坐标系中,□OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y =2x +1以每秒1个单位的速度向右平移,经过_______秒该直线可将□OABC 的面积平分.12.已知平行四边形ABCD 三个顶点的坐标分别为A (﹣1,0),B (5,0),C (7,4).直线y =kx +1将平行四边形ABCD 分成面积相等的两部分,则k 的值为______.13.在平面直角坐标系xOy 中,直线24y x =-+与两坐标轴围成三角形的面积_______.14.直线m 过A (1,﹣4)和B (5,4)两点,则它与坐标轴围成的面积=__.15.如图,已知一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (3,a ),点B (14﹣2a ,2).若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,则△ACD 的面积____.三、解答题16.(1)如图1,梯形ABCD 中对角线交于点O ,AB ∥CD ,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O 是坐标原点,点A (﹣2,3),B (2,1).①分别求三角形ACO 和三角形BCO 的面积及点C 的坐标;②请利用(1)的结论解决如下问题:D 是边OA 上一点,过点D 作直线DE 平分三角形ABO 的面积,并交AB 于点E (要有适当的作图说明).17.如图,已知四边形ABCD 的四个顶点的坐标为(1,1),(3,1)A B ---,(1,2),(1,1)C D -.请用不含刻度的直尺和圆规作图并解答问题:(1)请在图中作出这个平面直角坐标系;(2)过点A 作一条直线把四边形ABCD 的面积二等分,并直接写出该直线对应的函数表达式.18.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A ,动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求OAC 的面积;(3)是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.19.ABC 在平面直角坐标系中的位置如图所示,点C 在y 轴正半轴上,6OC =,OA ,OB60OB -=.过点A 的直线交BC 于点D ,ABD △的面积等于ABC 面积的13,请解答下列问题:(1)求点A ,点D 的坐标:(2)过点B 作BH AC ⊥于H ,交y 轴于点G ,求线段OG 的长;(3)点M 在y 轴上,平面内是否存在点N ,使以A ,B ,M ,N 为顶点的四边形是菱形?若存在,直接写出点N 坐标;若不存在,请说明理由.20.设一次函数11y k x b =+(10k ≠)的图像为直线1l ,一次函数22y k x b =+(20k ≠)的图像为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点()1,4P 且与已知直线21y x =--平行的直线l 的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.21.如图,已知直线11:l y x b =+经过点()5,0A -,交y 轴于点B ,直线22:24l y x =--与直线11:l y x b =+交于点C ,交y 轴于点D .(1)求b 的值.(2)求BCD △的面积(3)当210y y ≤<时,则x 的取值范围是________.(直接写出结果)22.如图,已知直线AB 过点A (5,0)、B (0,﹣5),交直线OC 于点C ,且直线OC 的解析式为y 32x =-.(1)求直线AB 的解析式;(2)求△AOC 的面积;(3)若点P 在直线OC 上,且△BCP 的面积是△AOC 面积的2倍,求点P 的坐标.23.如图,直线1l :23y x =-与x 轴交于点A ,直线2l 经过点()()4,0,0,2B C ,与1l 交于点D .l的解析式;(1)求直线2(2)求ABD△的面积.。
人教版中考数学二轮复习专题练习:函数中的面积问题(含答案)
当 1 t<3时, S
3 t2
3 3t
73
;
2
2
当 3 t<4 时, S 4 3t 20 3 ;
当 4 t<6 时, S 3t 2 12 3t 36 3
(3)存在;理由如下:
在 RtVABC 中, tan CAB BC
3
,∴
CAB
30 .
AB 3
又∵ HEO 60 ,∴ HAE AHE 30 .
∴ AE HE 3﹣ t 或 t﹣3.
21 61 101
(4) x
,,
99 9
4.如图,矩形 ABCD 中, AB 6, BC 2 3 ,点 O 是 AB 的中点,点 P 在 AB 的 延长线上,且 BP 3 .一动点 E 从 O 点出发,以每秒 1个单位长度的速度沿 OA 匀速运 动,到达 A点后,立即以原速度沿 AO 返回;另一动点 F 从 P 点发发,以每秒 1 个单位长 度的速度沿射线 PA 匀速运动, 点 E、 F 同时出发, 当两点相遇时停止 运动, 在点 E、F 的运动过程中,以 EF 为边作等边 VEFG ,使 VEFG 和矩形 ABCD 在射线 PA 的同 侧.设运动的时间为 t 秒( t 0).
gEF
2
33 t
22
②当 6 t 8 时,点 P 在 BC 运动,点 Q 仍在 AB 上运动,如图③
设 PM 与 DC 交于点 E , QN 与 AD 交于点 F ,
则 AQ t , AF 1 t ,QF 3 t
2
2
t DF 4
2
BP t 6,CP 10 t ,PE (10 t )g 3
而 BD 4 3
19 x
35
2
2
1
初三中考数学专题复习:二次函数综合题(面积问题)含答案
中考数学专题复习:二次函数综合题(面积问题)1.如图所示,二次函数22y x x m =-++的图像与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C .(1)求二次函数的解析式; (2)求点B 、点C 的坐标;(3)若抛物线的顶点是M ,求△ACM 的面积.2.如图,抛物线2y x bx c =++经过()1,0A -、()4,5B 两点,点E 是线段AB 上一动点,过点E 作x 轴的垂线,交抛物线于点F .(1)求抛物线的解析式; (2)求线段EF 的最大值;(3)抛物线与x 轴的另一个交点为点C ,在抛物线上是否存在一个动点P ,使得25ACP ABC S S ∆∆= ?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,二次函数23y ax bx =++的图像与x 正半轴相交于点B ,负半轴相交于点A ,其中A 点坐标是(-1,0),B 点坐标是(3,0).(1)求此二次函数的解析式;(2)如图1,点P在第一象限的抛物线上运动,过点P作PD x轴于点D,交线段BC于点E,线段BC把△CPD分割成两个三角形的面积比为1△2,求P点坐标;(3)如图2,若点H在抛物线上,点F在x轴上,当以B、C、H、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.4.如图,已知直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.5.如图,已知在平面直角坐标系xOy 中,抛物线y =-12x 2+bx +c 经过点A (-2,0).与点C (0,4).与x 轴的正半轴交于点B .(1)求抛物线的表达式;(2)如果D 是抛物线上一点,AD 与线段BC 相交于点E ,且AD 将四边形ABDC 分成面积相等的两部分,求DEAE的值; (3)如果P 是x 轴上一点,△PCB =△ACO ,求△PCO 的正切值.6.如图,抛物线23y ax bx =+-交x 轴于()30A -,,()10B ,两点,与y 轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.7.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.8.如图,二次函数23=++的图象经过点A(-1,0),B(3,0),与y轴交于点C.y ax bx(1)求二次函数的解析式;(2)第一象限内的二次函数23=++图象上有一动点P,x轴正半轴上有一点D,且OD=2,当y ax bxS△PCD=3时,求出点P的坐标;(3)若点M在第一象限内二次函数图象上,是否存在以CD为直角边的Rt MCD,若存在,求出点M的坐标,若不存在,请说明理由.9.如图,在平面直角坐标系中,已知抛物线y =ax 2+4x +c 与直线AB 相交于点A (0,1)和点B (3,4).(1)求该抛物线的解析式;(2)设C 为直线AB 上方的抛物线上一点,连接AC ,BC ,以AC ,BC 为邻边作平行四边形ACBP ,求四边形ACBP 面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,是否存在点E 使得△ADE 是以AD 为腰的等腰直角三角形?若存在,直接写出....点E 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴的交点为C ()0,3-,顶点为()1,4D -.(1)求抛物线的表达式;(2)若平行于x 轴的直线与抛物线交于M ,N 两点,与抛物线的对称轴交于点H ,若点H 到x 轴的距离是线段MN 长的12,求线段MN 的长;(3)若经过C ,D 两点的直线与x 轴相交于点E ,F 是y 轴上一点,且AF ∥CD ,在抛物线上是否存在点P ,使直线PB 恰好将四边形AECF 的周长和面积同时平分?如果存在, 求出点P 的坐标;如果不存在,请说明理.11.如图,已知抛物线y=ax2+4x+c经过A(2,0)、B(0,﹣6)两点,其对称轴与x轴交于点C.(1)求该抛物线和直线BC的解析式;(2)设抛物线与直线BC相交于点D,求△ABD的面积;(3)在该抛物线的对称轴上是否存在点Q,使得△QAB的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+c 与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l 与抛物线交于A、D 两点,与y 轴交于点E,点D 的坐标为(4,3).(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接P A、PD,求△P AD 面积最大值;(3)由(2)并求出点P的坐标.13.已知抛物线2y ax c =+过点()2,0A -和()1,3D -两点,交x 轴于另一点B .(1)求抛物线解析式;(2)如图1,点P 是BD 上方抛物线上一点,连接AD ,BD ,PD ,当BD 平分ADP 时,求P 点坐标; (3)将抛物线图象绕原点O 顺时针旋转90°形成如图2的“心形”图案,其中点M ,N 分别是旋转前后抛物线的顶点,点E 、F 是旋转前后抛物线的交点. △直线EF 的解析式是______;△点G 、H 是“心形”图案上两点且关于EF 对称,则线段GH 的最大值是______.14.如图,抛物线2142y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求A ,B ,C 三点的坐标,并直接写出直线AC 的函数表达式;(2)若D 是第一象限内抛物线上一动点,且△BCD 的面积等于△AOC 的面积,求点D 的坐标;(3)在(2)的条件下,连接AD ,试判断在抛物线上是否存在点M ,使△MDA =△ACO ?若存在,请直接写出点M 的坐标;若不存在,请说明理由.15.综合与探究线交x 轴于另一点C ,且2OA OC =,点F 是直线AB 下方抛物线上的动点,连接F A ,FB .(1)求抛物线解析式;(2)当点F 与抛物线的顶点重合时,ABF 的面积为______;. (3)求四边形F AOB 面积的最大值及此时点F 的坐标.(4)在(3)的条件下,点Q 为平面内y 轴右侧的一点,是否存在点Q 及平面内另一点M ,使得以A ,F ,Q ,M 为顶点的四边形是正方形?若存在,直接写出点Q 的坐标;若不存在,说明理由.16.抛物线224y ax ax =--交x 轴于(2,0)A -、B 两点,交y 轴于C ;直线AD 交抛物线于第一象限内点D ,且D 的横坐标为5,(1)求抛物线解析式;(2)点E 为直线AD 下方抛物线上一动点,且21ADES=,求点E 的坐标;(3)抛物线上是否存在点P ,使PCO DAO CBO ∠+∠=∠,若存在,请求出此时点P 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,3OA =,4OC =,抛物线24y ax bx =++经过点B ,且与x 轴交于点()1,0D -和点E .(1)求抛物线的表达式:(2)若P 是第一象限抛物线上的一个动点,连接CP ,PE ,当四边形OCPE 的面积最大时,求点P 的坐标,此时四边形OCPE 的最大面积是多少;(3)若N 是抛物线对称轴上一点,在平面内是否存在一点M ,使以点C ,D ,M ,N 为顶点的四边形是矩形?若存在,请直接写出点M 的坐标;若不存在,说明理由.18.如图,抛物线与x 轴交于点()2,0B -、()4,0C 两点,与y 轴交于点()0,2A ;(1)求出此抛物线的解析式;(2)如图1,在直线AC 上方的抛物线上有一点M ,求AMC S △的最大值;(3)如图2,将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围;19.如图,已知抛物线2=++与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,y x bx cOA=OC=3.(1)求抛物线的函数表达式;(2)若点P为直线AC下方抛物线上一点,连接BP并交AC于点Q,若AC分ABP△的面积为1:2两部分,请求出点P的坐标;(3)在y轴上是否存在一点N,使得45∠+∠=︒,若存在,请求出点N的坐标;若不存在,请说BCO BNO明理由.C-.20.已知二次函数2(0)y x bx c a=++≠的图像与x轴的交于A、(1,0)B两点,与y轴交于点(0,3)(1)求二次函数的表达式及A点坐标;(2)D是二次函数图像上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图像对称轴上的点,在二次函数图像上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).答案1.(1)2y x 2x 3=-++(2)()0,3C 、()1,0B -(3)32.(1)223y x x =-- (2)254(3)存在,点P 的坐标为(12) 或(12)或()12-或(12)-3.(1)2y x 2x 3=-++(2)P 点坐标115(,)24或(2,3)(3)F 点坐标为:(1,0)、(5,0)、)2,0、()2- 4.(1)y =﹣43x 2﹣83x +4 (2)S 最大=252,D (﹣32,5) (3)存在,Q (﹣2,198) 5.(1)抛物线解析式为y =-12x 2+x +4; (2)14DE AE =; (3)△PCO 的正切值13或3.6.(1)223y x x =+-(2)()14P --,或()23--,(3)存在,坐标为⎝⎭或⎝⎭或或(-7.(1)2142y x x =+- (2)24=--S m m ,4(3)()4,4Q -或(2-+-或(2--+或()4,4-8.(1)2+23y x x =-+(2)P 1(32,154),P 2(2,3)(3)存在点M 其坐标为1M 43539(,)或2M9.(1)241y x x =-++ (2)274(3)存在,E (4,3)或(-2,5)或(-3,2)或(3,0).10.(1)223y x x =--(2)1或1-(3)在抛物线上存在点3(4P -,15)16-,使直线PB 恰好将四边形AECF 的周长和面积同时平分 11.(1)y =﹣12x 2+4x ﹣6,y =32x ﹣6 (2)152(3)存在,点Q 的坐标为(4,﹣2)12.(1)(1)y =-14x 2+x +3,y =12x +1 (2)274(3)(1,154) 13.(1)24y x =-+ (2)232,39P ⎛⎫ ⎪⎝⎭(3)△y x =;△414.(1)A (-2,0),B (4,0),C (0,4),24y x =+(2)(2,4)(3)存在,(-23,289)或(-6,-20)15.(1)2142y x x =-- (2)3 (3)FAOB S 四边形有最大值12,此时点F 的坐标为()2,4-(4)存在,点Q 的坐标()18,2Q -,()26,6Q -,()35,3Q -,()41,1Q -16.(1)2142y x x =-- (2)191,2E ⎛⎫- ⎪⎝⎭;E 2(2,-4) (3)存在,(8,20)17.(1)y =-x 2+3x +4(2)P (2,6);四边形OCPE 的面积最大为16(3)存在; M 113,28⎛⎫- ⎪⎝⎭或M 252728,⎛⎫ ⎪⎝⎭或M 355,22⎛⎫- ⎪⎝⎭或M 453,22⎛⎫- ⎪⎝⎭18.(1)211242y x x =-++ (2)2(3)34m -≤-或32m -≤≤19.(1)223y x x =+-(2)(-2,-3)或(-1,-4)(3)(0,2)或(0,-2)20.(1)223y x x =+-,(3,0)A - (2)315,24D ⎛⎫-- ⎪⎝⎭(3)存在,(2,3)--或(0,3)-或(2,5)。
专题58 二次函数中的面积问题(原卷版)-中考数学解题大招复习讲义
例题精讲求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S AE BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下面求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.例题精讲【例1】.如图,抛物线y=﹣x2﹣2x+3与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C.点P为抛物线第二象限上一动点,连接PB、PC、BC,求△PBC面积的最大值,并求出此时点P的坐标.变式训练【变1-1】.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式和直线AC的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【变1-2】.如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣+bx+c 经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标.【例2】.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m),点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E.(1)求抛物线的解析式;(2)当P在何处时,△ACE面积最大.变式训练【变2-1】.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式;(2)若点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.【变2-2】.如图,在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)连接DC,DB,设△BCD的面积为S,求S的最大值.1.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点,与y轴交于点C,若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A.(2,3)B.(,)C.(1,3)D.(3,2)2.如图1,抛物线与x轴交于A、B两点,与y轴交于点C,直线过B、C两点,连接AC.(1)求抛物线的解析式;(2)点P为抛物线上直线BC上方的一动点,求△PBC面积的最大值,并求出点P坐标;(3)若点Q为抛物线对称轴上一动点,求△QAC周长的最小值.3.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出△PBC面积的最大值.若没有,请说明理由.4.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的二次函数解析式:(2)若点P在抛物线上,点在x轴上,当以点B、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(3)如图2,点H是直线BC下方抛物线上的动点,连接BH,CH.当△BCH的面积最大时,求点H的坐标.5.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.6.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.7.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.E是BC上一点,PE∥y轴.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一动点,求BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当m为何值时MN=BM,9.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.10.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0),过点B的直线y==x﹣2交抛物线于点C.(1)求该抛物线的函数表达式;(2)若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求△PBC面积的最大值.11.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;=S△OAB?若存在,请求出点P的坐标,若不(2)在抛物线上是否存在一点P,使S△P AB存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.12.直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B 两点.(1)求这个二次函数的表达式;(2)若P是直线AB上方抛物线上一点;①当△PBA的面积最大时,求点P的坐标;②在①的条件下,点P关于抛物线对称轴的对称点为Q,在直线AB上是否存在点M,使得直线QM与直线BA的夹角是∠QAB的两倍?若存在,直接写出点M的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)交y轴于点A,交x轴于点B(﹣3,0)和点C(1,0).(1)求此抛物线的表达式.(2)若点P是直线AB下方的抛物线上一动点,当△ABP的面积最大时,求出此时点P 的坐标和△ABP的最大面积.(3)设抛物线顶点为D,在(2)的条件下直线AB上确定一点H,使△DHP为等腰三角形,请直接写出此时点H的坐标.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标.15.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.(3)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由.16.已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图1,抛物线的对称轴交x轴于点M,连接BC、CM.求△BCM的周长及tan∠BCM的值;(3)如图2,过点A的直线m∥BC,点P是直线BC上方抛物线上一动点,过点P作PD⊥m,垂足为点D,连接BD,CD,CP,PB.当四边形BDCP的面积最大时,求点P 的坐标及四边形BDCP面积的最大值.17.如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B (1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.18.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y =a(x﹣h)2+k.抛物线H与x轴交于点A、B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式.(2)如图1,点P在线段AC上方的抛物线H上运动(不与A、C重合),过点P作PD ⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值.(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A、P、C、Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为.。
中考数学专题复习教案 二次函数中的面积问题
教学目标1.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长,利用割补法求图形的面积,会将非轴边图形转化为轴边图形.2.通过解决二次函数背景下的三角形面积问题,体会数形结合思想和转化思想的应用.3.通过解决已知三角形的面积关系得出相关线段的长,从而求出点的坐标的问题,体会分类讨论思想和数形结合思想的应用.教学重点解决二次函数背景下的三角形面积问题,体会分类讨论思想、转化思想的运用.教学难点由已知面积问题,转化为点线距问题,通过作平行线,得出等面积,体会平行条件下的等积变形.问题情境师生活动设计意图活动一活动一.已知抛物线223y x x=+-与x轴交于A、B两点,其中A点位于B点的左侧,与y轴交于C点,顶点为P.(1)写出下列点的坐标:A____,B___,C____,P____.(2)求出下列线段的长:AO=____,CO=___,AB=___.(3)写出下列三角形的面积S△AOC=____,S△PAB=____,S△COP=____.(4)求出△APC的面积.师:本节课我们进行一个专题学习:二次函数中的面积问题-----三角形面积.教师板书课题.学生独立完成第(1)(2)(3)小题,并口答.教师板书知识框图.师生得出第(3)小题中的三角形的共同特征, 总结求轴边三角形面积的方法.第(4)小题学生独立进行求解,教师巡视,了解学生采用的不同方法,然后让学生讲解思路.师生共同总结:利用割补法,将非轴边图形转化为轴边图形求面积.并观察特征,发现它是直角三角形,可直接求解.体会通法与特法.通过活动一的学习,学生掌握已知二次函数的解析式,求出相关点的坐标,得出线段的长,研究三角形的面积的问题,总结利用割补法将非轴边图形转化为轴边图形求解.课题二次函数中的面积问题----三角形面积第1页共3页第2页 共3页(请尝试用不同的方法求解) 活动二活动二.已知抛物线的顶点P 的坐标为(1,4),交y 轴于点C (0,3).(1) 求抛物线的解析式,并求出 抛物线与x 轴的交点A 、B 的坐标(A点在B点的左侧).(2)抛物线上是否存在一点D ,使△ABD 的面积等于△ABC 的面积,如果存在,求出点D 的坐标;若不存在,请说明理由. (3)抛物线上是否存在一点E ,使△ECB的面积等于△PCB 的面积,如果存在,求出点E 的坐标,若不存在,请说明理由.学生独立完成第(1)小题,并回答.学生独立思考第(2)小题,然后由学生来讲解解题思路.教师关注由线段的长转化为点的坐标时,是否进行了分类讨论.利用平行线间的距离处处相等,体会平行条件下的等积变形,得出“过已知点作已知线段的平行线”的方法,并根据位置进行分类讨论,得出另一条平行线,突破本题的难点. 学生先独立思考第(3)小题,教师了解情况,及时进行引导,仍然运用“平行线间距离处处相等”的性质,得出过已知点作已知线段的平行线的方法,然后根据图形位置,进行分类讨论.活动二已知三角形的面积关系,得出线段的长,利用平行线间的距离处处相等,得出作平行线的方法,体会平行条件下的等面积问题.运用分类讨论思想,求出符合条件的所有点的坐标.活 动 三小结:由学生总结本节课的收获.学生结合框图和例题进行总结, 教师强调:由线段的长到点的坐标需进行分类讨论,体会数形结合思想、转化思想、分类讨论思想的应用.总结本节课的内容板书设计:二次函数中的面积问题-----三角形的面积绝对值第3页 共3页例2.(2)解: (3)点的坐 标 分类 讨论非轴边图形线段的长 图形 面积轴边图形转 化割 补 二次函数解析式 (及其它函数点线距点 点距。
中考数学复习讲义:专题十九 借助函数关系解决图形问题
利用函数关系解决图形问题一、借助函数关系解决面积问题1. (2022陕西黑白卷)问题提出(1)如图①,在△ABC中,∠ACB=120°,AC=BC,S△ABC=363,点P为AB上的动点,求CP的最小值;问题解决(2)如图②,以AB为直径的半圆O是一片草地,某园艺规划师计划在AB上找一点C,与点A,B围成一个三角形区域,在△ABC中种植花卉,其中AC=40米,BC=30米.按照设计要求,在AB上取一点P,AC,BC上分别取点E,F,且点E,F到AB的距离相等,为提高人们的观赏性,在点P,E,F围成的三角形区域内种植甲花卉,其他区域内种植乙花卉,已知甲花卉的价格为40元/平方米,乙花卉的价格为80元/平方米,请问是否存在符合设计要求且使得总费用最少的△EPF?若存在,请求出最少费用及此时EF的长;若不存在,请说明理由.2.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:ΔAEF~ΔABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?3.如图,在Rt△ABC中,AB=4,AC=3,∠BAC=90°,矩形DEFG的边EF在BC边上,顶点D,G分别在AB,AC边上.设EF=x,矩形DEFG的面积为y.(1)求y与x之间的函数关系式;(2)求矩形DEFG面积的最大值.4.如图,四边形ABCD为某老式住宅的地基平面示意图,其中∠A=∠B=90°,AD=9 m,AB =14 m,BC=23 m.某设计师受业主委托将该住宅翻新改造,为了固定房屋主体结构,设计师打算在AB,CD边上分别选取两点E,F,使得EF∥BC,再在BC上选取点G,H,连接EG,FH 交于点O(点O在四边形ABCD内部),且满足EG⊥FH,EG∥CD,设AE=x(m),房屋主体结构所在四边形EFGH的面积为S(m2).(1)请求出S与x的函数关系式;(2)求S的最大值及此时AE的长.6.如图,在等边△ABC中,AB=12,点D为BC上一点,分别过点D作DE⊥AB于点E,DF⊥AC 于点F,以ED,DF为邻边在△ABC内作四边形DEGF,设BD=x,四边形DEGF的面积为y.(1)求y与x之间的函数关系式;(2)求四边形DEGF面积的最大值.二、借助函数关系解决线段问题1. 问题提出(1)如图①,在等边△ABC中,点D,E分别在BC,AC上,且∠ADE=60°,若AB=3,BD=1,则CE的长为________;问题解决(2)某开发商准备依托AB,BC两条街道建立一个四边形游乐场ABCD,规划游乐场的平面示意图如图②,已知AB=500 m,BC=300 m,根据规划要求,将点C处修建为停车场(大小忽略不计),在空地上的点D处建立标志性建筑摩天轮,在AB,BC上的点E,F处建立游乐场入口,为了整体布局与美观,要使得DE∥BC,DC∥AB,∠DEF=∠A,在满足规划要求时,停车场与入口F是否存在最短距离(即CF最短)?若存在,请求出CF的最小值以及此时摩天轮到停车场的距离;若不存在,请说明理由.第1题图2.如图,ΔABC是一块锐角三角形材料,边BC=6c=6cm,高AD=4cm=4cm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,要使矩形EGFH的面积最大,EG的长应是多少?3.李大爷计划用18米长的绳子围成如图所示的矩形围栏,其中AD 为墙(AD 足够长).若AB =x ,矩形ABCD 的面积为y.(1)求y 与x 之间的关系式;(2)当矩形ABCD 的面积最大时,求AB 的长.4.如图,在菱形ABCD 中,AB =2,连接AC ,∠ABC =120°,点E ,F ,G ,H 分别为AB ,BC ,CD ,AD 上的点,且四边形EFGH 为矩形,设BE =x ,矩形EFGH 的面积为y.(1)求y 与x 之间的函数关系式;(2)当S 矩形EFGH =21S 菱形ABCD 时,求AE 的长.5.如图,在Rt△ABC中,AB=AC=2,∠BAC=90°,D是AC边上一点(不与点A,C重合),过点D作DE⊥BC于点E,若BE=x,BD2=y.(1)求x的取值范围;(2)求y与x之间的函数关系式.6.如图,在矩形ABCD中,AB=6,BC=10,点P为AD边上一点(不与点A,D重合),连接BP,PQ⊥BP交CD于点Q.若AP=x,DQ=y.(1)求y与x的关系式;(2)求DQ的最大值.7. 如图,是一直径为100 m的圆形空地,空地中建设一正方形停车场ABCD,为了满足停车场中所停车辆的充电需求,计划在劣弧BC上一点P处安装一个小型变压器,在正方形ABCD的四个顶点处修建充电桩,同时从点P处埋设电路直通A,B,C,D四个充电桩,若设变压器到最近的两个充电桩所埋设的电路PB,PC的总长度为x(m),到A,D两个充电桩所埋设的电路PA,PD的总长度为y(m).(1)求y与x之间的函数关系式;(2)若变压器P与充电桩C的距离为60 m,则埋设的电路长度一共有多长?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数中的面积问题1.如图,在直角梯形ABCD 中,AD BC ∥,90B ∠︒=,6AD cm =,8AB cm =,14BC cm =.动点P Q 、都从点C 出发,点P 沿C B →方向做匀速运动,点Q 沿C D A →→方向做匀速运动,当P Q 、其中一点到达终点时,另一点也随之停止运动.(1)求CD 的长;(2)若点P 以1/cm s 速度运动,点Q 以22/cm s 的速度运动,连接BQ PQ 、,设BQP 面积为2S cm (),点P Q 、运动的时间为t s (),求S 与t 的函数关系式,并写出t 的取值范围;(3)若点P 的速度仍是1/cm s ,点Q 的速度为/acm s ,要使在运动过程中出现PQ DC ∥,请你直接写出a 的取值范围.解析:(1)过D 点作DH BC ⊥,垂足为点H ,则有8DH AB cm ==,6BH AD cm ==∴1468CH BC BH cm =-=-=在Rt DCH中,CD ==.(2)当点P Q 、运动的时间为t s (),则PC t =. ①当Q 在CD 上时,过Q 点作QG BC ⊥,垂足为点G ,则由点Q的速度为/s,得QC =.又∵DH HC =,DHBC ⊥, ∴45C ∠︒=.∴在Rt QCG中,·sin sin 452QG QC C t ∠︒===.又∵14BP BC PC t =-=-, ∴211(14)21422BPQ S BP QG tt t t ==-=-当Q 运动到D 点时所需要的时间4t=== ∴21404S t t t =-≤(<).②当Q 在DA 上时,过Q 点作QG BC ⊥,垂足为点G ,则8QG AB cm ==,14BP BC PC t =-=-. ∴11(14)856422BPQ S BP QG t t ==-=-当Q 运动到A点时所需要的时间42t ===+∴564S t =-442t ≤+(< 综合上述,所求的函数关系式是:21404564442t t t S t t ⎧-≤⎪=⎨-≤+⎪⎩(<)(<). (3)要使运动过程中出现PQ DC ∥,a的取值范围是1a ≥2.如图,90C ∠=︒,点A B 、在C ∠的两边上,30CA =,20CB =,连接AB .点P 从点B 出发,以每秒4个单位长度的速度沿BC 方向运动,到点C 停止.当点P 与B C 、两点不重合时,作PD BC ⊥交AB 于D ,作DE AC ⊥于E .F 为射线CB 上一点,且CEF ABC ∠=∠.设点P 的运动时间为x (秒). (1)用含有x 的代数式表示CE 的长.(2)求点F 与点B 重合时x 的值.(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y (平方单位).求y 与x 之间的函数关系式. (4)当x 为某个值时,沿PD 将以D E F B 、、、为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x 值.解析:(1)由题意知,DBP ABC ∽,四边形PDEC 为矩形. ∴PD PB CA CB=, ∴304620CA PB x PD x CB ⋅⋅===. ∵CE PD =∴CE 6x =(2)由题意知,CEF CBA ∽, ∴CF CE CA CB=. ∴306920CA CE x CFx CB ⋅⋅===. 当点F 与点B 重合时,CF CB =,920x =.解得209x =. (3)当点F 与点P 重合时,BP CF CB +=,4920x x =+,得20=13x . 当20013x <<时,如图①,2()6(2013204)5112022PD PF DE x x x y x x +-+-===-+.当2020139x ≤<时,如图②, 12y DE DG =⋅12(204)(204)23x x =-⋅-216(5)3x =-∴y 与x 之间的函数关系式为()2220501200131620205 3139x x x y x x ⎧⎛⎫-+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤< ⎪⎪⎝⎭⎩(4)1232020519132x x x ===,, 【分析】(1)由DBP ABC ∽,即可得出比例式从而得出表示CE 的长.(4)根据三角形边长相等得出答案:′如图③,当PD PF =时,62013x x =-.解得2019x =.B PE ∆'为拼成的三角形; 如图④,当点F 与点P 重合时,4920x x +=.解得2013x =.BDC ∆为拼成的三角形; 如图⑤,当DE PB =时,2044x x -=.解得52x =.DPF ∆为拼成的三角形.3.如图,梯形ABCD 中,AD BC ∥,90BAD ∠=︒,CE AD ⊥于点E ,8AD cm =,4BC cm =,5AB cm =.从初始时刻开始,动点,P Q 分别从点,A B 同时出发,运动速度均为1 /cm s ,动点P 沿A B C E ---的方向运动,到点E 停止;动点Q 沿B C E D ---的方向运动,到点D 停止,设运动时间为xs ,PAQ 的面积为2 y cm ,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当2x s =时,y =_____2cm ;当92x s =时,y =_______2cm (2)当5 14x ≤≤时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出415y =ABCD S 梯形时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.解析:(1)29,;(2)分三种情况:①当59x ≤≤时(如图), ABP PCQ ABCQ y S SS =--梯形 ()()()()2111165545594722222x x x x x x =⋅+⋅-⋅⋅--⋅-⋅-=-+ ②当913x ≤<时(如图),()()21119941435222APQ y S x x x x ∆==⋅-+⋅-=-+- ③当1314x ≤<时(如图),()18144562APQ y S x x ∆==⋅⋅-=-+ (3)当动点P 在线段BC 上运动时,D P∵()441485815152ABCD y S ==⋅⋅+⋅=梯形, ∴21657822x x -+=,即214490x x -+=,解得127x x ==. ∴当7x =时,415ABCD y S =梯形 (4)2161101 999x = ,,4.如图,矩形ABCD 中,623AB BC ==,,点O 是AB 的中点,点P 在AB 的延长线上,且3BP =.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E F 、同时出发,当两点相遇时停止运动,在点E F 、的运动过程中,以EF 为边作等边EFG ,使EFG 和矩形ABCD 在射线PA 的同侧.设运动的时间为t 秒(0t≥). (1)当等边EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使AOH是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由.解析:(1)当边FG 恰好经过点C 时,60CFB ∠=︒,3BF t =﹣,在Rt CBF 中,BC =tan BC CFB BF ∠=,即23tan 60BF ︒= 解得2BF=,即321t t ==﹣, ∴当边FG 恰好经过点C 时,1t =(2)当01t ≤<时,S =+当13t ≤<时,222S t =-++;当34t ≤<时,S =-+当46t ≤<时,2S =-+(3)存在;理由如下:在Rt ABC 中,tan 3BC CAB AB ∠==,∴30CAB ∠=︒. 又∵60HEO ∠=︒,∴30HAEAHE ∠=∠=︒. ∴3AE HE t ==﹣或3t ﹣.1)当3AHAO ==时,(如图②),过点E 作EM AH ⊥于M ,则1322AM AH ==,在Rt AME 中,cos AMMAE AE ∠=,即32cos30AE ︒=,∴AE =,即3t =﹣3t =﹣∴3t =或3t =+2)当HA HO =时,(如图③)则30HOA HAO ∠=∠=︒,又∵60HEO ∠=︒, ∴90EHO ∠=︒,22EO HE AE ==.又∵3AE EO +=,∴23AE AE +=,1AE =. 即31t =﹣或31t =﹣.∴2t =或4t =.3)当OH OA =时,(如图④),则30OHA OAH ∠=∠=︒,∴60HOB HEB ∠=︒=∠,∴点E 和点O 重合.∴3AE =,即33t=﹣或33t =﹣, ∴6t =(舍去)或0t =.综上所述,存在5个这样的t 值,使AOH 是等腰三角形,即33t =﹣,33t =+,2t =,4t =,0t =5.如图,在平行四边形ABCD 中,4AD cm =,60A ∠︒=,BD AD ⊥,一动点P 从A 出发以每秒1cm 的速度沿ABC →→的路线匀速运动,过点P 作直线PM,使PM AD ⊥于点E ,(1)当点P 运动2s 时,设直线PM 与AD 相交于点E ,求APE 的面积.(2)当点P 运动2s 时,另一动点Q 也从A 出发沿A B C →→的路线运动,在BC 上以每秒2cm 的速度匀速运动,过Q 作直线QN ,使//QNPM ,设点Q 运动的时间为t 秒(010t ≤≤),直线PM 与QN 截平行四边形ABCD 所得图形的面积为2Scm ,求S 关于t 的函数关系式.解析:(1)当点P 运动2S 时,2AP cm =,由60A ∠︒=∴1,AE PE ==∴2APE S ∆= (2)∵点P 速度为1/cm s ,点Q 在AB 上的速度为1/cm s 又4AD =,60A ∠︒=∴8AB cm =∴点P 在AB 上运动8秒钟,而点Q 晚2秒钟开始运动∴点Q 在AB 上运动8秒钟①当06t ≤≤时,点P 与点Q 都在AB 上运动,设PM 与AD 交于点E ,QN 与AD 交于点F ,如图②则,,22t AQ t AF QF t === D CMEA P B2,1,22t AP t AE PE t =+=+=+,∴此时两平行线截平行四边形ABCD 的面积为:3222FQ PE S EF t +==+ ②当68t ≤≤时,点P 在BC 运动,点Q 仍在AB 上运动,如图③设PM 与DC 交于点E ,QN 与AD 交于点F ,则1,,22AQ t AF t QF t === 42t DF =- 6,10,(10)3BP t CP t PE t =-=-=-而BD =∴AQF CPE ABCD S S S S ∆∆=--平行四边形1131(10)(10)32222t t t t =----28t =-+-③当810t ≤≤,点P 和点Q 都在BC 上运动,如图④则202,(202CQ t QF t =-=-∴10,(10)3CP t PE t =-=-∴此时两平行线截平行四边形ABCD 的面积为:()2EP FQ S PQ +=⨯∴代入化简得:22S t =-+6.菱形ABCD 的对角线AC BD ,相交于点O ,AC=4BD =,动点P 在线段BD 上从点B 向点D 运动,PF AB ⊥于点F ,四边形PFBG 关于BD 对称,四边形QEDH 与四边形PEBG 关于AC 对称.设菱形ABCD 被这两个四边形盖住部分的面积为1S ,未被盖住部分的面积为2S ,BP x =. (1)用含x 的代数式分别表示12S S ,;(2)若12S S =,求x 的值.解析:(1)①当点P 在BO 上时,如图1所示.∵四边形ABCD 是菱形,AC =4BD =,∴AC BD ⊥,122BO BD ==,12AO AC ==且1•2ABCD S BD AC ==菱形∴tan AO ABO BO∠== ∴60ABO ∠=︒.在Rt BFP 中,∵90BFP ∠=︒,60FBP ∠=︒,BP x =,∴sin sin602FP FP FBP BP x ∠===︒=.∴2FP x =. ∴2x BF =. ∵四边形PFBG 关于BD 对称,四边形QEDH 与四边形PEBG 关于AC 对称, ∴BFP BGP DEQ DHQ S S S S ===.∴2113442222BFP x S S x x ==⨯⨯=.∴222S x =-. ②当点P 在OD 上时,如图2所示.∵4AB =,2x BF =, ∴42x AF AB BF =-=-. 在Rt AFM 中,∵90AFM ∠=︒,30FAM ∠=︒,42x AF =-.∴tan tan303FM FAM AF ∠==︒=.∴)32x FM =-. ∴1•2AFMS AF FM = 13(4)(4)2232x x =-⨯-2)62x =-. ∵四边形PFBG 关于BD 对称,四边形QEDH 与四边形PEBG 关于AC 对称, ∴AFM AEM CHN CGN S S S S ===.∴22244(4)8)626AFM x S S x ==⨯-=-.∴212(8)6S S x =-=--. 综上所述:当点P 在BO 上时,212S x =,222S x =-;当点P 在OD 上时,21(8)6S x =--,22(8)6S x =-. (2)①当点P 在BO 上时,02x ≤<.∵12S S =,12S S +=∴1S =∴212S x ==解得:1x =2x =-∵2,0﹣,∴当点P 在BO 上时,12S S =的情况不存在.②当点P 在OD 上时,24x ≤<.∵12S S =,12S S +=∴2S =∴2286S x ==(﹣)解得:18x =+,28x =﹣.∵84+>,284<﹣,∴8x =﹣综上所述:若12S S =,则x 的值为8﹣7.如图,已知矩形ABCD 的边长2AB =,3BC =,点P 是AD 边上的一动点(P 异于A D 、),Q 是BC 边上的任意一点.连AQ 、DQ ,过P 作PE DQ 交AQ 于E ,作PF AQ ∥交DQ 于F .(1)求证:APE ADQ ∽;(2)设AP 的长为x ,试求PEF 的面积PEF S 关于x 的函数关系式,并求当P 在何处时,PEF S 取得最大值?最大值为多少?(3)当Q 在何处时,ADQ 的周长最小?(须给出确定Q 在何处的过程或方法,不必给出证明)解析:(1)证明:∵PE DQ ∥,∴APE ADQ AEP AQD ∠=∠∠=∠, ∴APE ADQ ∽(2)作ADQ 中DQ 边点的高AH∵AH DQ ⊥,∴90AHD︒∠=. ∵四边形ABCD 是矩形,∴90DCQ ACD ︒∠=∠=∴90ADH QDC DQC ︒∠=∠=∠- ∴ADH ADQ ∽ ∴AH AD DC DQ= ∵23DC AB AD BC ====,,∴32AH DQ=,即6DQ AH ⋅= ∴116322ADQS DQ AH ∆=⋅⋅=⋅= ∵APE ADQ ∽,AP x =,∴22223APE ADQ S AP x S AD ∆∆==,即22223393APEADQ x x x S S ∆∆=⋅=⋅= 又∵PF AQ ∥,PE DQ ∥, ∴PAE DPF ∠=∠,APE D ∠=∠ ∴APE PDF ∽∴22APE PDF S AP S PD∆∆= 又∵3PD x =-,∴()22223APE PDF S AP x S PD x ∆∆==-, 即()()2222223316333PDF APEx x x S S x x xx ∆∆--=⋅=⋅=-+. 又∵PF AQ ∥,PE DQ ∥,∴四边形PEQF 是平行四边形∴12PEFPEQHS S ∆=.∴()1122PEFPEQHADQ APE PDF S S S S S ∆∆∆∆==-- 22211136332333x x x x x ⎡⎤⎛⎫=---+=-+ ⎪⎢⎥⎝⎭⎣⎦又∵22133313324PEFx S x x ∆⎛⎫--+ ⎪⎝⎭=-+=,∴当32x =,即P 是AD 的中点时,PEF S 取得最大值34. (3)作A 关于直线BC 的对称点A ',连DA '交BC 于Q ,则这个点Q 就是使ADQ周长最小的点,此时Q 是BC 的中点.8.已知:ABC ,DEF 都是等边三角形,M 是BC 与EF 的中点,连接AD BE ,.(1)如图1,当EF 与BC 在同一条直线上时,直接写出AD 与BE 的数量关系和位置关系; (2)ABC 固定不动,将图1中的DEF 绕点M 顺时针旋转α(090α≤≤︒︒)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)ABC 固定不动,将图1中的DEF 绕点M 旋转α(090α≤≤︒︒)角,作DH BC ⊥于点H .设BH x =,线段AB ,BE ,ED ,DA 所围成的图形面积为S .当62AB DE ==,时,求S 关于x 的函数关系式,并写出相应的x 的取值范围.解析:(1)ADBE=AD BE ⊥. (2)证明:连接DM AM ,.在等边三角形ABC 中,M 为BC 的中点,∴AMBC ⊥,1302BAM BAC ∠=∠=︒,AMBM= ∴90BME EMA ∠+∠=︒.同理,DMEM=90AMD EMA ∠+∠=︒. ∴AM DMBM EM=,AMD BME ∠=∠.∴ADM BEM ∽.∴AD DMBE EM==. 延长BE 交AM 于点G ,交AD 于点K . ∴MAD MBE ∠=∠,BGM AGK ∠=∠.∴90GKA AMB ∠=∠=︒. ∴AD BE ⊥. (3)解:(ⅰ)当DEF 绕点M 顺时针旋转α(090α≤≤︒︒)角时,∵ADM BEM ∽, ∴2()3ADM BEM S AD S BE∆∆==.∴13BEMADM S S ∆∆= ∴ABM ADM BEM DEM SS S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=+-121133)12322x =⨯⨯+⨯⨯--⨯⨯=+∴S=+(33x ≤≤+. (ⅱ)当DEF 绕点M 逆时针旋转α(090α≤≤︒︒)角时,可证ADM BEM ∽,∴12()3SBM BEM S AM ADM∆==∆. ∴13BEMADM S S ∆∆=. ∴ABM BEM ADM DEM SS S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=--21)322x =-⨯⨯-+=+∴S=+(33x -≤≤).综上,S =+(33x -≤≤+.9.如图,在ABC 中,10AB AC ==,3cos 5B =,点D 在射线AB 上,DE BC ∥交射线AC于点E,点F在AE的延长线上,且14EF AE=,以DE EF、为邻边作DEFG,连接BG.(1)当EF FC=时,求ADE的面积;(2)设AD x=,DEFG与ABC重叠部分的面积为y,求y与x的函数关系式;(3)当点F在线段AC上时,若DBG是等腰三角形,求AD的长.解析:(1)作AH BC⊥于H在Rt ABH中,3cos5BHBAB==,10AB=∴6 BH=,∴8 AH=∵AB AC=,∴212BC BH ==∴1128482ABCS=⨯⨯= ∵ 14EF AE =,EF FC =,∴4263AE AC == ∵DE BC ∥, ∴ADE ABC ∽,∴24()9ADE ABC S AE S AC ∆∆== ∴ 446448993ADEABCSS ⨯=== (2)设AH 交DE GF 、于点M N 、∵DE BC ∥,∴AE AM DE AC AH BC==∵AD x =,∴45AM x =,65DE x = ∵1145MN AM x == ①当点F 在线段AC 上时∴28616(0)5525DEFGy Sx x x x ===<≤ ②当点F 在AC 延长线上时,则485MHx =-∴2642448(8)(8)55255DECKy Sx x x x x ==-=-+> 综合得:2286(0)252448(8)255x x y x x x ⎧<⎪⎪=⎨⎪-+>⎪⎩≤(3)∵BC AC >, ∴A ABC ∠∠> ∵DG AC ∥,∴BDG A ABC DBG ∠∠∠∠=>> ∴BG DG >作FP BC ⊥于P ,GQ BC ⊥于Q在RtFPC 中,5104FC x =-,4sin sin 5C ABC ∠==,3cos cos 5C ABC =∠=∴8FP x =-,364PCx =-,∴63912(6)65420BQ x x x =---=-∴BG =在DBG 中,10DB x =-,14DG x =①若DB DG =,则1104x x -=,解得8x = ②若DB BG =,则10x -=解得10x =(舍去),256081x =综上所述,若DBG 是等腰三角形,AD 的长为8或5608110.已知:如图①,在平行四边形ABCD 中,126AB BC =,=,AD BD ⊥.以AD 为斜边在平行四边形ABCD 的内部作Rt AED ,30EAD ∠︒=,90AED ∠︒=.(1)求AED 的周长;(2)若AED 以每秒2个单位长度的速度沿DC 向右平行移动,得到000A E D ,当00A D 与BC 重合时停止移动.设移动时间为t 秒,000A E D 与BDC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出t 的取值范围; (3)如图②,在(2)中,当AED 停止移动后得到BEC ,将BEC 饶点C 按顺时针方向旋转0180αα︒︒(<<),在旋转过程中,B 的对应点为1B ,E 的对应点为1E ,设直线11B E 与直线BE 交于点P 、与直线CB 交于点Q .是否存在这样的α,使BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.解析:(1)在RtAED 中,63090AD EAD AED ∠︒∠︒=,=,=∴3DE =,AE =∴AED的周长为9+(2)222633(0)223333923()62221339203423()62t t S t t t t t t ⎧⎪⎪⎪=-+-<⎨⎪⎪-+-<⎪⎩≤≤≤≤(3)存在α,使BPQ 为等腰三角形理由如下:经探究,得1BQP B QC ∽故当BQP 为等腰三角形时,1B QC 也为等腰三角形①当QB QP =时(如答图①)则1QB QC =,∴1130B CQ B ∠∠︒== 即130BCB ∠︒=,∴30α︒= ②当BQ BP =时,则11B Q B C =若点Q 在线段11B E 的延长线上时(如答图②)∵130B ∠︒=,∴1175B CQ B QC ∠∠︒==即17575BCB α∠︒︒=,=若点Q 在线段11E B 的延长线上时(如答图③)∵1130CBE CB E ∠∠︒==,∴111515BPQ BQP B CQ B QC ∠∠︒∠∠︒==,==, ∴11165BCB BCQ B CQ ∠∠∠︒=-=∴165α︒=③当PQ PB =时(如答图④),则1CQ CB =∵1CB CB =,∴1CQ CB CB == 又∵点Q 在直线CB 上,0180α︒︒<<∴点Q 与点B 重合此时B P Q 、、三点不能构成三角形综上所述,α的度数为30︒或75︒或165︒时,BQP 为等腰三角形11.如图1,在梯形ABCD 中,ADBC ,90A ∠︒=,8AB =,4AD =,2tan 3C =,边长为3的正方形EFMN 的边FM 在直线BC 上,且M 与B 重合,并沿直线BC 以每秒1个单位长度的速度向右运动,当M 与C 重合时停止运动,设运动时间为t 秒.(1)当正方形EFMN 的顶点N 分别落在线段BD 和DC 上时,求运动时间1t 和2t 的值; (2)在整个运动过程中,设正方形EFMN 与DBC 重合部分的面积为S ,直接写出S与t 之间的函数关系式和自变量t 的取值范围; (3)如图2,将ABD 沿BD 翻折,得到BDP ,取BD 的中点Q ,连接PQ 、PE 、QE ,是否存在某一时刻t ,使PQE 是直角三角形,若存在,求出相应的t 值;若不存在,请说明理由.解析:(1)当点N 落在线段BD 上时,设EN 交AB 于H ,则BGN BAD ∽∴GN BG AD BA =,即1348t = ∴132t =当点N 落在线段DC 上时过D 作DH BC ⊥于H ,则48BH AD DH AB ==,==∵2tan 3DH C HC ==,∴ 3122HC DH ==∴41216BC BH HC =+=+=∴2tan 3NM C MC ==,即232163t =- ∴2232t =(2)2223163(0)2933()424599(3)429239()221234212329()33122229235()2t t t t t t t S t t t t t t ⎧<⎪⎪⎪-<⎪⎪⎪-+-<⎪=⎨⎪<⎪⎪⎪-+-<⎪⎪-+<⎪⎩≤≤≤≤≤≤(3)连接AP ,过P 作PR AB ⊥于R由面积法可得AP =易证ARP DAB ∽,得165AR =,325PR =①若90PQE ∠︒=过Q 作AB 的平行线GH ,作PG GH ⊥于G ,EH GH ⊥于H易证PQG QEH ∽,∴PG QHQG EH=∴322435163245t --=---,解得5711t = ②若90PEQ ∠︒=作PG EN ⊥于G ,QH EN ⊥于H易证PQG QEH ∽,∴EG QHPG EH=∴32(3)435163255t t ---=---,解得365t ±=③若90QPE ∠︒=过P 作BC 的平行线GH ,作EG GH ⊥于G ,QH GH ⊥于H易证PEG QPH ∽,∴PG QHEG PH=3216345516325255t ---=--,解得10711t = 综上所述,存在时刻t ,使PQE 是直角三角形5711t =或365-或365+或1071112.已知,在矩形ABCD 中,E 为BC 边上一点,AE DE ⊥,12AB =,16BE=,F 为线段BE 上一点,7EF =,连接AF .如图①,现有一张硬质纸片GMN ,90NGM ∠=︒,6NG =,8MG =,斜边MN 与边BC 在同一直线上,点N 与点E 重合,点G 在线段DE 上.如图②,GMN 从图①的位置出发,以每秒1个单位的速度沿EB 向点B 匀速移动,同时,点P 从A 点出发,以每秒1个单位的速度沿AD 向点D 匀速移动,点Q 为直线GN 与线段AE 的交点,连接PQ .当点N 到达终点B 时,GMN和点P 同时停止运动.设运动时间为t 秒,解答下列问题: (1)在整个运动过程中,当点G 在线段AE 上时,求t 的值. (2)在整个运动过程中,是否存在点P ,使APQ 是等腰三角形.若存在,求出t 的值;若不存在,说明理由. (3)在整个运动过程中,设GMN 与AEF 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.解析:(1)在GMN 中,9068NGM NG MG ∠=︒==,,,由勾股定理,得10MN ==.∵123tan 164AB AEB BE ∠===,63tan 84NG GMN MG ∠===, ∴AEB GMN ∠=∠,∴当点G 运动到AE 上时,点M 与点E 重合,运动路程为10, 又∵GMN 运动速度为每秒一个单位长度,∴10t=.(2)存在满足条件的t .理由如下: 在ABE 中,901216ABE AB BE ∠=︒==,,,由勾股定理,得:20AE ==.由(1)可知,AEB GMN ∠=∠, ∴AE GM ∥, ∴90NQENGM ∠=∠=︒, ∴90NQEB ∠=∠=︒, 又∵AEBNEQ ∠=∠,∴.ABE NQE ∽∴AE BE NE QE =,即2016t QE =, ∴45QEt =, ∴4205AQ AE QE t =-=-.①当AP PQ =时,如图①,过点P 作PH AE ⊥于点H ,得121025AH AQ t ==-.由APH EAB ∽,得AH AP BE AB =,即21051620t t -=,解得253t =. ②当APAQ =时,如图②,由4205t t =-,解得1009t =.③当AQ PQ =时,如图③,过点Q 作QK AD ⊥于K ,可得1122AK AP t ==.由AQK EAB ∽,得AQ AK AE BE =,即,解得80057t =. 1621205420t t =-综上所述,当或或时,△APQ 是等腰三角形. (3) 当07t ≤<时,重合部分是一个直角三角形,其斜边长为t ,两直角边分别长为35t 和45t ,2625S t =; 当710t≤<时,重合部分是一个四边形,如图①所示,设GN 与AF 交于点K ,则KNF 是一个等腰三角形,底边7FN t =-,作KR FN ⊥于点R ,则1(7)2FR t =-,由FKR FAB ∽,可得高2(7)3KR t =-, ∴KNF 的面积为12(7)(7)23t t --. ∴2714492533S t t =-+-; 当110145t ≤<时,重合部分是一个四边形,此时点G 在AFE 内部,如图②所示,211423333S t t =-++; 当114165t ≤<时,重合部分是一个三角形,此时点G 在ABF 内部, 325=t 9100=t 57800=t ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≤<-≤<++-≤<-+-≤<=)16571()17(76)57110(32331431)107(349314757)70(2562222t t t t t t t t t S7FN EN EF t =-=-,10(7) 17FM MN FN t t =-=--=-, 此时KMF AEF ∽,而AEF 的面积为42, ∴217()427S t -=, ∴26(17)7St =-.。